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Abstract

The effectiveness of domain translation in addressing image-based problems of
Unsupervised Domain Adaptation (UDA) depends on the quality of the translated
images and the preservation of crucial discriminative features. However, achieving
high-quality and stable translations typically requires paired data, which poses a
challenge in scenarios with limited annotations in the target domain. To address
this issue, this paper proposes a novel method termed Stain-Guided Cycle Dif-
fusion (SGCD), employing a dual diffusion model with bidirectional generative
constraints to synthesize highly realistic data for downstream task fine-tuning. The
bidirectional generative constraints ensure that the translated images retain the
features critical to the downstream model in properly controlling the generation
process. Additionally, a stain-guided consistency loss is introduced to enhance the
denoising capability of the dual diffusion model, thereby improving the quality of
images translated between different domains using latents from one domain and a
diffusion model trained on another. Experiments conducted on four public datasets
demonstrate that SGCD can effectively enhance the performance of downstream
task models on the target domain.

1 Introduction

Machine learning is powerful for aiding pathologists in analyzing histopathology slides and diagnos-
ing cancer. However, in medical imaging, models trained on one dataset often struggle to generalize
across different hospitals or laboratories due to variations in sample preparation, staining protocols,
and digitization processes Howard et al. (2021). These inconsistencies create domain shifts between
the training domain (source domain) and real-world application settings (target domain), leading to
a drop in model performance. In scenarios where the source domain is fully labeled but the target
domain lacks annotations, Unsupervised Domain Adaptation (UDA) Wilson and Cook (2020) seeks
to bridge this gap by aligning the distributions of two domains, allowing models trained on the source
domain to perform effectively in the target domain.

Traditional stain normalization-based UDA methods Chang et al. (2021); Vahadane et al. (2016);
Zhou et al. (2019) align image distributions by decomposing an input image into a stain color matrix
and a stain density map, using a reference image’s stain color matrix for normalization. However, their
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performance is highly dependent on selecting an appropriate reference image, which requires domain
expertise to ensure it accurately represents the target domain. Moreover, annotating Whole Slide
Images (WSIs) is time-consuming and demands expert interpretation, adding complexity to domain
adaptation. In histopathology, positive and negative samples often share similar morphological
features, making it challenging to distinguish critical diagnostic details. Preserving subtle structural
information is crucial for reliable cancer diagnosis, yet it is easily lost during domain adaptation.
While generative model-based UDA methods Chang et al. (2021); Figueira et al. (2020); Xing et al.
(2019) transform images across domains, they primarily emphasize statistical feature alignment,
often at the expense of fine-grained structural details. For instance, STRAP Yamashita et al. (2021)
employs AdaIN Huang and Belongie (2017) to normalize feature distributions, and SST Cho et al.
(2017) utilizes Kullback-Leibler divergence for feature alignment. However, according to Khamankar
et al. (2023), these techniques tend to overlook structural integrity, which is crucial for accurate
diagnosis in histopathology.

While contrastive (e.g., CluSiam Wu et al. (2023)) and continual learning (e.g., ConSlide Huang et al.
(2023)) enhance feature representations using unlabeled data, they do not directly tackle domain
discrepancies. GAN-based methods address this by generating realistic samples to align source and
target domains, thereby reducing domain shifts Chiou et al. (2024). Dual consistency models like
HistAuGAN Wagner et al. (2021) and ContriMix Nguyen et al. (2024) further enhance alignment by
extracting domain-invariant content through encoder-decoder designs. However, this architectural
dependence limits their ability to disentangle domain-specific and pathology-relevant features Li et al.
(2023b). For instance, MultiPathGAN Nazki et al. (2023) shows that while high-level structures can
be modeled, semantic alignment remains a challenge. ContriMix’s reliance on accurate content and
attribute encoders also constrains its adaptation performance Nguyen et al. (2024). Other approaches,
such as Region-Guided CycleGAN Boyd et al. (2022) and CAGAN Cong et al. (2022), utilize ROI
localization or histogram loss but are sensitive to ROI accuracy or reference quality. Additionally,
GANs commonly suffer from mode collapse, limiting sample diversity and their domain adaptation
efficacy.

Thus, diffusion models Ho et al. (2020) have emerged as a promising alternative to GANs for image
translation in UDA problems, offering more stable and controlled training while improving diversity.
While proper diffusion modeling requires paired data to ensure reliable domain transformation through
direct supervision—enabling the model to learn exact correspondences between the source and target
domains—such data are often extremely difficult to obtain in real-world scenarios, particularly in
the medical domain. To address this limitation, our study proposes a Stain-Guided CycleDiffusion
(SGCD) architecture with bi-directional generation constraints to synthesize highly realistic data
for downstream task fine-tuning. The dual-diffusion model is based on the stain-based conditional
constraints and semantic constraints, which allows the semantic information of the predicted images
to be refined backward and forward from the initial generation step, ensuring that important discrimi-
native features are preserved in the generated images, and thus achieving higher UDA performance.
Meanwhile, the stain-guided consistency loss is also proposed, which can enhance the denoising
ability of the dual-diffusion model in the domain translation.

The contributions of this study include:

• The proposed SGCD is a dual diffusion framework with bidirectional generative constraints
that preserves semantic information during domain translation to enhance downstream task
performance in the target domain.

• The stain-guided consistency loss mitigates the reliance on paired data, thereby improving
the model’s applicability in real-world scenarios.

• The results obtained on four public pathology test sets show that SGCD can generate higher-
quality images, which further ensures the performance of downstream task models on the
target domain.

2 Related Work

This section reviews the related work on three key approaches underlying the proposed SGCD method.
In Table 1, we compare SGCD with existing stain UDA methods based on various aspects, including
whether they require paired training data or specific reference images for adaptation, rely on auxiliary
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Method Input
Image

Generative
Model

Paired Data or
Reference Image

Handling
Less Heterogeneity

Auxiliary
Models or Data

Vahadane Vahadane et al. (2016) WSI X V V X
Stain mix-up Chang et al. (2021) WSI X X V X
StainNet Kang et al. (2021) WSI GAN X X X
StainDiffShen and Ke (2023) WSI Diffusion Model X V V
BBDM Li et al. (2023a) Natural Image Diffusion Model V X X
A-Bridge WANG et al. (2024) Natural Image Diffusion Model V X X
HistAuGAN Wagner et al. (2021) WSI GAN X V V
G-SAN Li et al. (2023b) WSI GAN X V X
STRAP Yamashita et al. (2021) WSI X X V X
Ours (SGCD) WSI Diffusion Model X V X

Table 1: Comparision of different stain UDA methods. SGCD does not require specific reference
images and can be directly applied to the target domain without the need for image normalization.

models or incorporate additional input information, and are capable of handling the less heterogeneity
of medical images.

2.1 Stain Normalization

When scanning histologically stained tissue samples, a histopathology image x ∈ R3×n with n pixels
in RGB space is converted to its relative optical density via the Beer-Lambert (BL) law Gavrilovic
et al. (2013): BL(x) = − log x

I0
= WH , where I0 is the illumination intensity (255 for 8-bit

images), and W ∈ R3×s and H ∈ Rs×n represent the stain color matrix and stain density map,
respectively, for s stains. BL law supports stain normalization by reconstructing a target image
using the source’s stain density and the target’s stain color. However, relying on a single reference
image Chang et al. (2021); Rabinovich et al. (2003); Vahadane et al. (2016) may introduce color
artifacts due to staining and digitization variability. ContriMix Nguyen et al. (2024) builds on this
with optical-style transfer to synthesize images for domain adaptation, but its performance is limited
by encoder accuracy and the difficulty of designing content and attribute encoders for diverse datasets.

2.2 Generative Adversarial Network (GAN)

Numerous GAN-based approaches have been developed for UDA in histopathology Vasiljević et al.
(2023); Guan et al. (2024); Nazki et al. (2023); Wagner et al. (2021). Similar to stain normalization
methods Hetz et al. (2024); Salehi and Chalechale (2020); Nishar et al. (2020), these approaches
often convert target domain images into the source domain to enable direct application of source-
trained models. StainGAN Shaban et al. (2019) first adopted a CycleGAN-based architecture Zhu
et al. (2017) for stain normalization, while StainNet Kang et al. (2021) enhanced performance and
efficiency via knowledge distillation using StainGAN outputs. Alternatively, model generalization
techniques Figueira et al. (2020); Xing et al. (2019) transform annotated source images into the target
domain for training. HistAuGAN Wagner et al. (2021) disentangles content and style to manipulate
color properties, but despite producing realistic structures, such GANs often struggle with semantic
consistency Nazki et al. (2023).

2.3 Denoising Diffusion Probabilistic Models (DDPM)

Denoising Diffusion Probabilistic Models (DDPM) Ho et al. (2020) consist of a forward and a reverse
phase of small, reversible transformations. In the forward phase, noise is progressively added to the
input image until it approximates a normal distribution N (0, I). Let xt be the latent at step t and let
D be the diffusion model. The forward process is defined as:

q(xt|xt−1, D) = N (xt;
√

1− βD
t xt−1, β

D
t I), (1)

where βD
t denotes the noise schedule. The reverse process gradually removes the noise to recover the

original data, modeled as:

p(xt−1|xt, D) =

N

(
xt−1;

1√
1− βD

t

(
xt −

βD
t√

1− β̄D
t

D(xt, t)

)
, βD

t I

)
, (2)
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Figure 1: Illustrative example. (a) Similarity of the generated image with domain A and domain B,
respectively. After adding a specific degree of noise to the image from domain A, the reverse process
is performed via a diffusion model trained in domain B. The generated images are more similar to
domain B when more noise is added. For less noise, it is more similar to domain A. The results
show the same trend when using Inception V3 and ResNet50 as feature extractors for FID metrics.
(b) The reverse process guided by the additional condition preserves the desired categorical features
regardless of the increase in added noise.

with β̄D
t =

∏t
s=1(1− βD

s ). Recent works such as BBDM Li et al. (2023a) and A-Bridge WANG
et al. (2024) enable image-to-image translation by modifying the noise schedule. SynDiff Özbey et al.
(2023) incorporates paired generators and discriminators into the reverse process for source-target
domain translation with large-step sampling. StainDiff Shen and Ke (2023) further adapts diffusion
for stain normalization in histopathology images, but its reliance on auxiliary networks to preserve
fine structural details may hinder robustness in handling rare or subtle patterns.

3 Preliminary and Motivation

Let DA be the diffusion model trained on domain A and let k be the given timestep. Referring to Eq.
(1), the forward process for an initial image x0 is defined as: fDA

(x0, k) =
∏k

t=1 q(xt|xt−1, DA).
From Eq. (2), the reverse process for diffusion model DA and a noisy image xk can be defined
as: rDA

(xk, k) = p(xk)
∏k

t=1 p(xt−1|xt, DA). Two experiments were performed to justify the
motivation and intuition underlying the proposed SGCD method: (1) An investigation into the
relationship between the images generated by the diffusion model and the actual target domain
images; and (2) A demonstration of the use of additional constraints to ensure that the generated
images retain specific, important features.

3.1 Similarity of Generation Distributions to Target Distributions

As previously described, the diffusion model’s forward process adds noise to input images, while the
reverse process removes it to reconstruct the data. This enables domain-specific image generation
by applying the reverse process to noise using a model trained on the target domain Su et al. (2022).
However, it remains unclear whether a latent from domain A can yield similar results when denoised
by a model trained on domain B. To examine this, we used two public diffusion models from
Google Google (2022a,b), trained on the LSUN bedroom and church datasets Yu et al. (2015),
representing domains A and B, respectively (denoted DA and DB). Images xA ∼ A were corrupted
at various noise levels k and then denoised using DB , i.e., rDB

(fDA
(xA, k), k). As shown in

Figure 1(a), FID scores Heusel et al. (2017) computed with Inception v3 Szegedy et al. (2016) and
ResNet50 He et al. (2016) reveal that higher noise levels led to outputs resembling domain B, but at
the cost of losing key characteristics of the original domain A images.

3.2 Reverse Process Guided by Conditions

In diffusion models, conditional constraints can retain critical information during forward and reverse
processes. For instance, Gao et al. Gao et al. (2023) applied low-pass filtering to preserve image
outlines throughout denoising, enabling corrupted categories to be inferred from restored images. To
explore this mechanism further, we conducted a second experiment using the Office31 dataset Saenko
et al. (2010), which includes three domains and 31 categories. Specifically, the Amazon (domain
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Figure 2: Overview of the proposed method. (a) shows the two-stage conversion of proposed SGCD
architecture. (b) shows the training flow of target classifier CT , where both the annotated image
converted by S and the target image are used to fine-tune the classifier to be applied to the target
domain.

A) and Webcam (domain B) domains were selected to observe changes in categorical features.
Algorithm 1 in Appendix A.1 describes the condition-guided reverse process. Unlike Gao et al.
(2023), we use a Canny edge detector Canny (1986) as ϕ(·), guiding x̂t−1 along the gradient
minimizing the difference between ϕ(x̂0) and ϕ(xA

0 ), thus preserving texture features. As shown in
Figure 1(b), the unconditional case yields textures unrelated to the original image, while conditional
guidance ensures generated features resemble the source.

4 Proposed Method

4.1 Stain-Guided CycleDiffusion (SGCD)

Figure 2 illustrates the basic structure of the proposed SGCG method. Based on the similarity results
shown in Figure 1(a), a dual diffusion model pre-trained in the source and target domains is utilized
to perform the reverse process, effectively converting the input images into their corresponding
domains. However, such a transformation does not guarantee the preservation of key features. In
SGCD, this issue is addressed by a dual diffusion model combined with bidirectional constraints and
a stain-guided consistency loss.

To better simulate the target domain and improve the performance of the downstream task model,
a two-stage conversion cyclic framework is utilized to train the dual diffusion model. Without this
cyclic framework, the diffusion model would merely convert data from one domain to another with
no additional control, potentially leading to inconsistencies and loss of important features. However,
the proposed cyclic framework allows the final reconstruction results to be incorporated as additional
constraints, thereby enhancing the consistency between the translations from domain A to domain B
and domain B to domain A, respectively. As a result, the model’s ability to generate realistic target
images is improved. For a given diffusion model D and a latent xt at time t, an estimate image at
step 0 is obtained by: x̂0(xt) = at · xt − bt ·D(xt, t), where at =

√
1/β̄D

t and bt =
√

1/β̄D
t − 1.

And given a reference image Iref , the stain-guided process is:

G(xt, Iref) = x̂t−1 −∇xt
∥x̂0(xt)− Iref∥

for x̂t−1 ∼ p(xt−1|xt, D),
(3)

which can be iterated by: x(n+1)
t = G(x

(n)
t , Iref), x

(0)
t = xt.

In Eq. (3), image x̂t−1 is moved along the gradient that minimizes the distance between x̂0(xt) and
Iref . In the first stage, the diffusion model DT trained using the target domain T converts the source
images in S to a set of target-style images, denoted as TS , for a given timestep k (i.e., S → T ).
Meanwhile, the diffusion model DS in source domain S converts the target images in T to a set of
source-style images, denoted as ST , for a given timestep k (i.e., T → S). The first stage can be
summarized as:

S′ = {fDS
(x, k) | x ∈ S} T ′ = {fDT

(x, k) | x ∈ T}, (4)
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TS = {rDT
(x(kG), k′) | x ∈ S′}, ST = {rDS

(x(kG), k′) | x ∈ T ′}, k′ = k − kG. (5)
Eq. (4) denotes the forward noise addition processes on S and T , respectively. In Eq. (5), TS

denotes the target-style image generated from the source image and ST denotes the source-style
image produced from the target image. TS uses a reference image constructed using the target stain
color matrix WT and the source stain density map HS , while ST uses a reference image constructed
using the source stain color matrix WS and the target stain density map HT , respectively.

The second stage transforms the outputs of the first stage back to the original source and target
domains (i.e., S → T → S and T → S → T ). It is formulated as:

T ′
S = {fDT

(x, k) | x ∈ TS}, S′
T = {fDS

(x, k) | x ∈ ST }, (6)

Ŝ = {rDS
(x(kG), k′) | x ∈ T ′

S}, T̂ = {rDT
(x(kG), k′) | x ∈ S′

T }, k′ = k − kG. (7)

Eq. (6) denotes the forward noise addition processes on TS and ST , respectively. In Eq. (7), Ŝ
denotes the source image reconstructed from the target-style image and T̂ denotes the target image
reconstructed from the source-style image. Ŝ uses a reference image constructed using the source stain
color matrix WS and the source stain density map HS , while T̂ uses a reference image constructed
using the target stain color matrix WT and the target stain density map HT , respectively.

4.2 Training of Dual Diffusion Model

Recall that the results of the second experiment (Figure 1(b)) show that the use of only a diffusion
model to convert images from one domain to another may result in the loss of important features. To
effectively realize the conversion between different domains, while simultaneously ensuring that the
detailed information in the pathological images is preserved during the conversion process, SGCD
utilizes bidirectional constraints and stain-guided consistency (SGC) loss to enforce the diffusion
model’s generative process in both forward and backward directions.

A stain-guided constraint is applied at each reverse step from k to kG, where kG is the hyperparameter
to control the range of stain-guide constraint. Specifically, for the route S → TS in Figure 2(a)), the
reference image ITS

ref is used to guide the generation of TS . Each step in the reverse process is moved
along the gradient that is close to the reference image, ensuring that the final converted image at step
0 is as similar as possible to the reference image. An analogous procedure is employed for the route
T → ST → T̂ and TS → Ŝ. The detailed steps of the S → T → S conversion process are shown in
Algorithm 2 in the Appendix.

Let CS and CT be the source and target classifier, both pre-trained on S. Task constraints −
∑

y ·
CS(Ŝ) and −

∑
y · CT (TS) are applied to preserve the crucial feature information required for

downstream tasks from step 0 to k, thereby enabling the downstream model to produce consistent
results. Additionally, to ensure the latents from the source (target) domain can be converted into the
target (source) domain, a consistency constraint is imposed on the guided reconstructed images Ŝ and
T̂ for further improving the quality of the converted images. Therefore, the Stain-Guided Consistency
(SGC) loss is defined as:

lossSGC = ∥S − Ŝ∥2 −
∑

y · CS(Ŝ) + ∥T − T̂∥2

−
∑

y · CT (TS).
(8)

Since the pre-trained diffusion model is capable of generating images corresponding to the training
domain directly, the guiding processes in S → T → S and T → S → T do not require paired
images or specified reference images. Thus, our method does not require specific reference images
and paired data, making it more adaptable to a wider variety of applications, as described in Table 1.
The two-stage conversion process yields complete S → S and T → T cycles. Thus, the round-trip
cyclic process can be used to fine-tune pre-trained diffusion models, enabling them to generate images
with distributions similar to the training domain, even when the input is perturbed (i.e., different
from the training domain). This then allows the converted source domain images to be used to train
downstream task models. A more detailed discussion of the task losses is provided in the next section.
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4.3 Training Strategy

An alternating training approach is used to update the diffusion models and classifiers iteratively.
CS is fixed during all the training phases to force the diffusion model to produce the correct image
during the training phase. CT is the desired target model, whose classifier head will be fine-tuned
through the alternating training. In particular, classifiers CS and CT are first fixed, and the two-stage
conversion process introduced in the previous section is performed using Eq. (8) to fine-tune the
diffusion models with the reconstructed images in Ŝ and T̂ , and the target-style images in TS . In the
next step, the two diffusion models are fixed and the classifier CT is trained using the task loss in Eq.
(9). The generalization ability of the classifier CT is gradually enhanced using the images converted
by the boosted diffusion model and source images with annotations such that it can progressively
adapt to operating in the target domain. Furthermore, given the availability of unlabeled target domain
images, the maximum mean discrepancy (MMD) Gretton et al. (2012) loss is additionally employed
to reduce the distribution distance between the converted images and the real target images. Thus, the
task loss is defined as:

losstask = −
∑

y · CT (Ts) + lossMMD(CT (Ts), CT (T )), (9)

where lossMMD represents the MMD loss, which is used to measure the distance between the two
embedding feature distributions. Given the annotated target-style images Ts, the cross entropy loss is
used to fine-tune the target classifier CT . The training process of CT is shown in Figure 2(b).

5 Experiment Results

5.1 Datasets

SGCD was evaluated on four open datasets: Camelyon17 Bejnordi et al. (2017), Camelyon16
Bejnordi et al. (2017), Camelyon17-WILDS Koh et al. (2021), and MITOS & ATYPIA14 Racoceanu
et al. (2014). The details of the four datasets are provided in Sec. A.2 of the Appendix.

5.2 Setting

The experiments were implemented on NVIDIA V100 GPU with Python 3.10.12 and Pytorch 2.4.0.
The Adam optimizer was employed with a learning rate of 2e − 4 and batch size of 4. The total
timestep T of the diffusion models was set to 1000. Stain guidance was applied from timestep 600 to
100. The remaining timesteps used the standard reverse diffusion process in Eq. (2).

For the balanced dataset Camelyon17-WILDS, following the WILDS benchmark, DenseNet121
Huang et al. (2017) was used as the backbone of classifiers CS and CT , and the models were evaluated
using the average accuracy. For the imbalanced datasets Camelyon16 and Camelyon17, ResNet50
He et al. (2016) was used as the backbone of the classifiers, and the Area Under the Curve (AUC)
was adopted as the evaluation metric. For the MITOS & ATYPIA14 dataset, visualizations of the
generated images were provided, and their quality was evaluated using the SSIM Wang et al. (2004)
and PSNR metrics.

5.3 Comparison of General UDA Methods

To investigate the distinction between the medical image-specific UDA methods and general UDA
methods, experiments were conducted on Camelyon17-WILDS. Table 2 presents the comparison
results. Among the comparison methods, Connect Later Qu and Xie (2024) and SwAV Caron et al.
(2020) were initially trained on the target domain to enhance their clustering capability inside it,
followed by fine-tuning on the labeled source domain. Regarding the difference between the various
comparison models, Connect Later simulates the target data by augmenting the source data, while
AFN Xu et al. (2019) aims to achieve domain invariance between the source and target domains.
Simprov Tahir et al. (2022) adopts knowledge distillation to enable the student model to adapt
to the target domain. RLSbench Garg et al. (2023) refines the estimation of the target domain
distribution, making it more closely aligned with that of the actual target. Designed specifically for
medical imaging, ContriMix Nguyen et al. (2024), STRAP Yamashita et al. (2021), and our SGCD
demonstrate better performance than general UDA approaches. Nevertheless, Connect Later, through
its tailored augmentation approach and subsequent model fine-tuning, demonstrates a marginally
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Method Test
ACC

Test
AUC

Connect Later Qu and Xie (2024) 95.0 98.7
SwAV Caron et al. (2020) 91.4 95.2

AFN Xu et al. (2019) 83.2 91.3
Simprov Tahir et al. (2022) 92.8 -

RLSbench Garg et al. (2023) 86.8 -
STRAP Yamashita et al. (2021) 93.7 98.1
ContriMix Nguyen et al. (2024) 94.6 -

Ours (SGCD) 94.7 98.6

Table 2: Histopathology classification results for Camelyon17-WILDS.

superior performance as a result of an enhanced feature-level alignment between the source and target
domains.

5.4 Histopathology Classification

For histopathology classification, Vahadane et al. (2016), Macenko et al. (2009), and Reinhard
et al. (2001) are the classical stain normalization methods, while Stain Mix-Up Chang et al. (2021)
uses stain-normalized images as augmented data to train the classifiers for improved generalization.
StainNet Kang et al. (2021) and MultiPathGAN Nazki et al. (2023) utilize GANs for stain normal-
ization, further enhancing the image quality. BCD-net Yang et al. (2023) estimates more accurate
color matrices and stain density maps using two models, leading to improved stain normalization
results. SPA Xiao et al. (2024), an advanced UDA method for general images, enhances in-domain
classification and cross-domain alignment using latent feature matching.

Table 3 presents the classification results. It is observed that the traditional stain normalization
methods exhibit a poorer performance and are susceptible to the influence of the reference images,
resulting in a less stable performance. StainNet and MultiPathGAN, benefiting from the excellent
image generation capabilities of GAN architectures, achieve promising results on many domains.
G-SAN Li et al. (2023b) improves the feature alignment in GAN to further enhance the classification
accuracy. HistAuGAN Wagner et al. (2021) and ContriMix Nguyen et al. (2024) are both augmen-
tation methods but are inherently constrained by the diversity of input data or the availability of
source-domain samples, leading to performance discrepancies when encountering unseen data. Stain
Mix-Up enhances model generalization by using augmented data, but perturbed data in highly similar
domains may lead the model to deviate from the target domain. Connect Later performs better in the
balanced dataset, Camelyon17-WILDS, than the imbalanced dataset, Camelyon17, primarily due
to its sensitivity to augmentation hyperparameters. BCD-Net, which focuses on solving blind color
deconvolution problems for histological images, and SPA, which employs latent feature matching,
can both preserve more critical class information in the images, and thus yield better performance. A
more thorough evaluation is presented in Sec. A.3 of the Appendix.

Table 4 presents the classification results for Camelyon16. In comparison to traditional stain nor-
malization and GAN-based methods (e.g., StainGAN and StainNet), SGCD exhibits a higher AUC
score.

5.5 Ablation Studies

The visual results of various stain transfer methods are presented and discussed in Sec. A.4 of the
Appendix. In addition, the validation of proposed two-step conversion process is examined in Sec.
A.5 of the Appendix.

5.6 Remarks on Stability, Reproducibility, and Generalizability

SGCD aims to enable diffusion models to accept specific images as input instead of noise. This
adaptation is accomplished through fine-tuning with consistency constraints, avoiding the need for a
complex training framework.
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Method C2 C3 C4 C5 Average
No adaptation 83.8 64.5 85.0 73.6 76.7

Vahadane et al. Vahadane et al. (2016) 79.5 88.1 86.4 67.3 80.3
Mackenko et al. Macenko et al. (2009) 63.1 86.9 71.8 78.8 75.2
Reinhard et al. Reinhard et al. (2001) 82.9 85.9 81.6 88.6 84.8

Stain Mix-Up Chang et al. (2021) 87.2 82.6 86.9 68.3 81.3
StainNet Kang et al. (2021) 83.6 89.5 86.2 87.7 86.8

MultiPathGAN Nazki et al. (2023) 85.0 69.8 90.7 80.3 81.5
BCD-net Yang et al. (2023) 89.0 92.4 91.8 87.9 90.3

Connect Later Qu and Xie (2024) 88.9 82.3 93.0 84.1 87.1
SPA Xiao et al. (2024) 88.7 92.3 94.7 92.7 92.1

HistAuGAN Wagner et al. (2021) 90.5 90.3 91.9 85.0 89.4
G-SAN Li et al. (2023b) 87.9 84.7 92.7 82.5 87.0

ContriMix Nguyen et al. (2024) 89.0 90.3 92.0 88.5 90.0
Ours (SGCD) 89.1 94.9 98.1 93.9 94.0

Table 3: Histopathology classification results for Camelyon17 under the condition that C1 is the
source domain and others are regarded as the target domain individually. Here, AUC (%) was adopted
as the evaluation metric.

Method Test AUC (%)
No Adaptation 75.9

Reinhard et al. Reinhard et al. (2001) 89.3
Mackenko et al. Macenko et al. (2009) 90.3
Vahadane et al. Vahadane et al. (2016) 88.2

StainGAN Shaban et al. (2019) 90.5
StainNet Kang et al. (2021) 93.5

Ours (SGCD) 95.8

Table 4: Histopathology classification for Camelyon16.

• Stability: SGCD fine-tunes a pre-trained diffusion model using consistency constraints to
guide the adaptation process. Since the process involves only fine-tuning, it is inherently
stable.

• Reproducibility: The fine-tuning process involves only one hyperparameter, i.e., the timestep
k introduced in Sec. 4.2. In addition, the proposed two-step approach preserves both
structural integrity and distribution consistency in the S→T and T→S transformations, as
validated in Sec. A.5 of Appendix.

• Generalizability: The consistency constraints allow SGCD to generalize effectively across
diverse pathological domains, as shown in Tables 2∼ 5 for images from different staining
protocols and Table 6 and Figure 5 of the appendix for images from diverse scanners.

6 Conclusion

An innovative stain-guided cyclic diffusion (SGCD) model has been proposed to effectively solve the
problem of model performance degradation caused by domain distribution differences in histopathol-
ogy images. SGCD consists of: (1) bidirectional generative constraints to maintain feature consistency,
(2) a SGC loss to improve the quality the synthesized images, and (3) high-quality target domain
synthesized images that preserve crucial discriminative features and enhance the generalization ability
of downstream task models. The experimental results have confirmed the superiority of SGCD for
adaptive tasks in the pathology image domain.

Limitations. We acknowledge that the cyclic bi-directional training, while crucial for maintaining
semantic integrity without paired data, introduces additional computational demands compared to
traditional UDA techniques. For more efficient deployment in practice, future efforts will focus
on optimizing sampling schedules to reduce inference steps, and exploring smaller, more efficient
diffusion model architectures.

Future Work. Our initial focus on binary classification within H&E staining establishes founda-
tional efficacy. Future studies will explore applying SGCD to more complex scenarios, including

9



multi-class classification and adaptation between entirely different staining protocols (e.g., H&E to
immunohistochemistry). We plan to tackle highly challenging cross-organ domain adaptation tasks
and generalize the methodology to other medical imaging domains, such as immunology problems,
where domain heterogeneity is a significant challenge.
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A Appendix

A.1 Pseudo Code of Proposed Method-SGCD

Algorithms 1 and 2 show the pseudo-codes of the proposed SGCD method.

Algorithm 1 Reverse Process Guided by Conditions
Input: xA

0 : Image from A, DB : DDPM pretrained on B, ϕ(·): Canny edge detector
Parameter: Timestep k
Output: Converted image xB

1: xk ∼ fDA
(xA

0 , k) using Eq. (1).
2: for t← k...1 do
3: x̂t−1 = p(xt−1|xt, DB) using Eq. (2) .

4: x̂0 =
√

1
αt
· xt −

√
1
αt
− 1 ·DB(xt, t).

5: xt−1 = x̂t−1 −∇xt∥ϕ(x̂0)− ϕ(xA
0 )∥.

6: end for
7: return xB = x0

Algorithm 2 S → T → S conversion of SGCD
Input: xS

0 : Image from S, xT
0 : Image from T , DS : DDPM pretrained on S, DT : DDPM pretrained

on T
Parameter: Timestep k, Guide range kG
Output: Converted image xS

1: Compute WT and, HT from xT
0 , and WS and HS from xS

0 , respectively, using BL law in 2.1.
2: Get noisy image xk ∼ fDS

(xS
0 , k) using Eq. (1).

3: Get reference image Iref = I0 exp(−WTHS).
4: for t← k...kG do
5: xt−1 = GDT

(xt, Iref ) using Eq. (5).
6: end for
7: Initialization for the next stage xTS

0 = rDT
(xkG

, kG).
8: Get noisy image xk ∼ fDT

(xTS
0 , k) using Eq. (1).

9: Get reference image Iref = I0 exp(−WSHS).
10: for t← k...kG do
11: xt−1 = GDS

(xt, Iref ) using Eq. (7).
12: end for
13: return xS = rDS

(xkG
, kG)

In Algorithm 2, Lines 2 and 8 represent the forward processes on S and T , respectively. Lines 4∼6
represent the Stain-Guided reverse process on T , and Lines 10∼12 represent the Stain-Guided reverse
process on S. Lines 1 derives stain-guided reference images from BL law in Sec. 2.1, which are used
to guide the reverse processes to S and T , respectively. To ensure that the image can be transformed
to the corresponding domain by the diffusion model, a hyperparameter kG is employed to specify
the guidance. Furthermore, by adding stain guidance at each step within a specified range in the
reverse process, it can be ensured that the converted image x0 is as similar as possible to the reference
image Iref (especially in terms of the stain color and stain density map), thereby encouraging each
step-generated image to retain similar features to the stain-guided reference image. Similar steps are
applied to T → S → T .

A.2 Datasets

The effectiveness of SGCD was evaluated on four open datasets: Camelyon17 Bejnordi et al.
(2017), Camelyon16 Bejnordi et al. (2017), Camelyon17-WILDS Koh et al. (2021), and MITOS
& ATYPIA14 Racoceanu et al. (2014). The details of the four datasets are described below.
Camelyon17 is obtained from five hospitals, denoted by C1 to C5, in the Netherlands. In the
present study, C1 was taken as the source domain and the others were taken as the target domain.
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Camelyon16 is obtained from two hospitals, Radboud University Medical Center (RUMC) and
UniversityMedical Center Utrecht (UMCU), in the Netherlands. RUMC contains 249 WSIs, 99 of
which have tumor annotations, while UMCU contains 150 WSIs, 60 of which have tumor annotations.
In the experiments, RUMC and UMCU were set as the source domain and target domain, respectively.
Camelyon17-WILDS is a balanced version of Camelyon17. Given the extremely small number
of lesion areas compared to normal ones in Camelyon17, the ratio of positive to negative samples
derived from WSI patches is unbalanced. By comparison, Camelyon17-WILDS provides a more
equitable ratio of positive and negative samples. Furthermore, it groups the images from hospitals
with similar characteristics into a training set, with the data in the remaining hospitals serving as
the validation and test sets. MITOS & ATYPIA14 is obtained from the same slide samples scanned
by two scanners, namely Aperio Scanscope XT (A) and Hamamatsu Nanozoomer 2.0-HT (H). A
training set was constructed consisting of 10, 000 patches randomly selected from the first 184 WSIs
of the two scanners. Furthermore, 500 patches from the remaining 100 WSIs from the scanners were
selected at random for testing. The A domain was taken as the source domain, and the H domain was
taken as the target domain.

A.3 Thorough Evaluations in Histopathology Classification

A complete evaluation was conducted on the Camelyon17 dataset in addition to Table 3 to validate
the efficacy of SGCD further. Table 5 presents the results of a cross-hospital domain adaptation
experiment in that each of the five hospitals in Camelyon17 was in turn assigned as the source domain
while the remaining hospitals served as the target domain. For example, when hospital C2 was the
source domain, hospitals C1, C3, C4, and C5 were treated as the target domains. It is observed that
the proposed method, SGCD, generally demonstrates superior performance in almost all cases and
the best result averagely, indicating that it enables diffusion models to generate more realistic and
high-quality images, which can be effectively fine-tuned for downstream task models.

Method C1 C3 C4 C5 Average

No adaptation 78.4 66.0 79.5 64.6 72.1
Vahadane et al. Vahadane et al. (2016) 79.8 77.7 83.1 78.8 79.9
Mackenko et al. Macenko et al. (2009) 75.9 71.0 85.1 73.3 76.3
Reinhard et al. Reinhard et al. (2001) 79.0 78.2 85.5 76.9 79.9

Stain Mix-Up Chang et al. (2021) 89.1 73.3 80.5 88.9 83.0
StainNet Kang et al. (2021) 84.8 85.8 81.5 88.0 85.0

MultiPathGAN Nazki et al. (2023) 88.4 80.4 87.3 89.1 86.3
BCD-net Yang et al. (2023) 86.8 82.8 85.8 87.6 85.8

Connect Later Qu and Xie (2024) 88.8 85.1 96.7 91.0 90.4
SPA Xiao et al. (2024) 90.1 83.6 96.8 92.0 90.6

HistAuGAN Wagner et al. (2021) 86.6 86.5 95.7 82.4 87.8
G-SAN Li et al. (2023b) 88.1 84.8 85.1 85.5 85.9

ContriMix Nguyen et al. (2024) 86.8 85.8 94.0 88.9 88.9
Ours (SGCD) 91.2 87.3 95.3 93.3 91.8

(a) Experiment results when C2 as source domain.

Method C1 C2 C3 C5 Average

No adaptation 75.5 76.0 67.4 60.1 69.8
Vahadane et al. Vahadane et al. (2016) 85.0 81.3 76.9 76.5 79.9
Mackenko et al. Macenko et al. (2009) 83.2 76.5 72.5 76.5 77.2
Reinhard et al. Reinhard et al. (2001) 83.8 78.2 78.8 77.7 79.6

Stain Mix-Up Chang et al. (2021) 85.7 80.6 87.8 85.2 84.8
StainNet Kang et al. (2021) 87.6 88.9 85.0 85.9 86.9

MultiPathGAN Nazki et al. (2023) 88.8 90.1 84.7 86.1 87.4
BCD-net Yang et al. (2023) 90.5 90.7 91.1 92.2 91.1

Connect Later Qu and Xie (2024) 94.5 93.0 91.7 91.3 92.6
SPA Xiao et al. (2024) 93.8 92.0 92.2 93.6 92.9

HistAuGAN Wagner et al. (2021) 87.5 86.5 95.7 82.4 88.0
G-SAN Li et al. (2023b) 88.9 87.2 82.6 83.7 87.0

ContriMix Nguyen et al. (2024) 90.6 86.8 91.3 85.4 88.5
Ours (SGCD) 95.7 94.6 93.6 95.4 94.8

(b) Experiment results when C4 as source domain.

Method C1 C2 C4 C5 Average

No adaptation 74.9 77.2 79.5 83.4 78.8
Vahadane et al. Vahadane et al. (2016) 82.8 76.3 81.9 91.9 83.2
Mackenko et al. Macenko et al. (2009) 76.1 74.0 82.6 87.3 80.0
Reinhard et al. Reinhard et al. (2001) 77.8 72.2 85.3 84.4 79.9

Stain Mix-Up Chang et al. (2021) 90.7 77.0 88.6 95.2 87.9
StainNet Kang et al. (2021) 82.1 78.1 88.8 94.8 86.0

MultiPathGAN Nazki et al. (2023) 84.8 84.4 91.7 94.6 88.9
BCD-net Yang et al. (2023) 88.3 85.9 88.7 96.8 89.9

Connect Later Qu and Xie (2024) 92.9 84.9 92.5 95.5 91.5
SPA Xiao et al. (2024) 94.2 87.6 97.7 96.6 94.0

HistAuGAN Wagner et al. (2021) 88.9 86.5 92.1 93.6 90.3
G-SAN Li et al. (2023b) 86.7 87.7 88.5 93.1 89.0

ContriMix Nguyen et al. (2024) 89.0 84.3 94.8 93.7 90.5
Ours (SGCD) 94.3 89.3 95.7 97.5 94.2

(c) Experiment results when C3 as source domain.

Method C1 C2 C3 C4 Average

No adaptation 65.2 65.9 73.8 69.4 68.6
Vahadane et al. Vahadane et al. (2016) 79.8 79.1 72.8 73.3 76.3
Mackenko et al. Macenko et al. (2009) 76.7 77.3 74.0 70.0 74.5
Reinhard et al. Reinhard et al. (2001) 74.0 73.9 72.2 70.1 72.6

Stain Mix-Up Chang et al. (2021) 85.7 81.9 81.8 77.9 81.8
StainNet Kang et al. (2021) 82.1 79.9 80.6 76.0 79.7

MultiPathGAN Nazki et al. (2023) 88.1 82.1 87.2 83.7 85.3
BCD-net Yang et al. (2023) 89.0 82.4 88.9 89.8 87.5

Connect Later Qu and Xie (2024) 88.7 80.6 91.3 90.1 87.7
SPA Xiao et al. (2024) 90.0 81.7 93.5 91.1 89.1

HistAuGAN Wagner et al. (2021) 88.7 81.7 85.7 89.0 86.3
G-SAN Li et al. (2023b) 90.2 80.3 81.0 88.7 85.1

ContriMix Nguyen et al. (2024) 90.1 81.4 84.7 93.1 87.8
Ours (SGCD) 92.5 82.6 93.5 95.2 91.0

(d) Experiment results when C5 as source domain.

Table 5: Histopathology classification results for Camelyon17 were obtained under a series of
experimental settings. Here, one of the four hospitals C2∼C5 was designated as the source domain,
while the remaining four ones were the target domains. Here, AUC (%) was adopted as the evaluation
metric.
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A.4 Visual Results

Figure 3: Samples generated by SGCD used to train diffusion models DS and DT .

Figure 4: Samples generated by SGCD used to train target classifier CT .

Method SSIM PSNR (dB)

Vahadane normalization Vahadane et al. (2016) 0.63 12.7
Mackenko normalization Macenko et al. (2009) 0.66 13.5
Reinhard normalization Reinhard et al. (2001) 0.61 13.6

StainGAN Shaban et al. (2019) 0.71 17.1
Ours (SGCD) 0.88 27.5

Table 6: Quantitative results of stain transfer on MITOS & ATYPIA14. Each image from A-domain
is converted into H-domain, and both SSIM and PSNR are calculated between converted image and
corresponding ground truth image in H-domain.

Figure 3 and Figure 4 present some typical samples obtained when applying SGCD on Camelyon17.
Figure 3 illustrates the cyclic architecture (S → T → S and T → S → T ) used for training the
diffusion model, while Figure 4 demonstrates the results generated by the diffusion model under
different conditional constraints. The images transformed from S to T are used to train the target
classifier. The transformed images in Figure 5 and quantitative results in Table 6 reveal that the stain
normalization method suffers from a loss of detail information and distortion due to its normalization
process, resulting in lower SSIM and PSNR scores. In contrast, StainGAN, which is based on a GAN
architecture, generates images of a higher quality and greater accuracy, thus outperforming the stain
normalization methods. Nonetheless, among all the considered methods, the proposed SGCD method,
which incorporates cyclic and conditional constraints, and leverages the image generation capabilities
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Figure 5: Visualization results of different conversion methods on MITOS & ATYPIA14 dataset.
Paired images from domains A and H are used, with H-domain serving as ground truth. Rightmost
column shows source images from A-domain, and leftmost column shows corresponding target
images from H-domain.

of diffusion models, achieves the best performance on this task. Moreover, Figure 6 illustrates the
UMAP embeddings of color statistics from different domains wherein the embeddings demonstrate
that the transformed images closely match the target domain distribution, a critical factor for effective
downstream task performance.

Figure 6: UMAP embeddings of color statistics across domains. (a) Embeddings for A-domain,
H-domain, and the images converted from H-domain to A-domain. (b) Embeddings for H-domain,
A-domain, and the images converted from A-domain to H-domain.

A.5 Validation of the Two-step Conversion Process

Experiments were conducted on the paired data in MITOS & ATYPIA14 to validate the effectiveness
of SGCD in adapting a diffusion model trained on domain A to generate images resembling domain
A from domain B images. To evaluate the sensitivity of SGCD to different hyperparameter settings,
k was varied. The performance of SGCD was measured by computing PSNR and SSIM metrics
between the generated images and their ground truth equivalents in both domain S and domain T .
The results are visualized in Figure 7, where the stain guidance process was stopped at step 100. It can
be seen that as k increases, the quality of the transformed results improves accordingly. Specifically,
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Figure 7: Quantitative results and visualization results of the two-stage conversion process on MITOS
& ATYPIA14.

the transformed TS becomes more similar to the actual T , and the transformed Ŝ becomes more
similar to the actual S, as evidenced by the consistent increase in the PSNR and SSIM metrics.
However, an excessively large k may lead to a loss of original image features, resulting in a decrease
in the SSIM value after conversion. Therefore, k = 600 was employed in our experiments to achieve
optimal performance. The same experiment was also conducted on Camelyon17. As Camelyon17
lacked a paired image, only the visualization results of the reconstructed and converted images are
shown in Figure 8 and Figure 9, respectively. Overall, the proposed SGCD improves the ability of the
diffusion model to perform bidirectional translation between S and T , making it a powerful tool for
downstream task fine-tuning.
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Figure 8: The visualization results of input and reconstructed images using SGCD on the Camelyon17
dataset.

Figure 9: The visualization results of input and converted images using SGCD on the Camelyon17
dataset.
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A.6 Performance with the new image Ts

This section presents supplementary experimental evidence on Camelyon16 dataset to quantify the
intrinsic value of our generated synthetic images (TS) and clarify their role in our overall domain
adaptation pipeline.Our method’s core contribution is the ability to produce high-quality, labeled TS

images that are both stylistically consistent with the target domain and class-consistent. We argue
that even before the full domain adaptation (DA) process, these generated images are a powerful
resource that establishes a strong baseline.The full adaptation pipeline then refines the model further
by incorporating unlabeled target images (T ) via a feature alignment strategy (e.g., MMD) to optimize
performance on the true target domain distribution.Table 7 shows the results that quantify the impact
of these two distinct steps.

Method AUC (%)

No Adaptation (Source Only) 75.9
Training with only TS 92.6

Training with TS and T 95.8

Table 7: Quantitative analysis of the contribution of synthetic images (TS).

The results clearly demonstrate that training a classifier on only our generated TS images achieves
a strong AUC of 92.6%, representing a substantial gain over the Source Only baseline (75.9%).
This highlights the primary benefit of our method: generating class-consistent, labeled images that
can be used directly for Domain Adaptation.The further performance gain to 95.8%, achieved by
additionally incorporating the unlabeled target domain images (T ), confirms that our approach
provides an excellent, high-performance starting point with TS , which subsequent feature alignment
steps can leverage to achieve maximum performance.

A.7 Ablation Study of Components

Dual Diffusion Model SGC Loss FT of Diffusion Models AUC (%)

V V V 95.8
- V V 92.8
V - V 89.4
- - - 86.8

Table 8: Component-wise ablation study on the Camelyon16 dataset.

This section provides a component-wise ablation study to precisely quantify the individual contri-
butions of our key architectural elements: the dual diffusion model, the Stain-Guided Consistency
(SGC) loss, and the fine-tuning (FT) of the diffusion models. This analysis confirms the source
of performance gains stems from the synergistic effect of these targeted components, rather than
diffusion in general. The results, measured on the Camelyon16 dataset, are summarized in Table 8

The results underscore the following key findings:

• Dual Diffusion’s Crucial Role: Comparing the full model (’V V V’) to the single-diffusion
approach (’- V V’) shows a significant performance contribution from the dual diffusion
model (95.8 vs. 92.8). This indicates that the cyclic nature and the bidirectional generative
constraints are essential for achieving the highest performance.

• Impact of SGC Loss: The introduction of the SGC loss provides a substantial boost to the
method’s effectiveness (comparing ’V V V’ to ’V - V’: 95.8 vs. 89.4). This confirms the
value of targeted stain guidance in aligning features during the adaptation process.

• Synergistic Gains: The performance difference between the full model (95.8) and the
baseline without any of our proposed components (86.8) demonstrates that the gains are
primarily derived from the synergistic effect of both cycle consistency and targeted stain
guidance, rather than solely from the general properties of diffusion models.
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A.8 Robustness to Non-Stain Domain Degradations

Augmentation Method No Adaptation (AUC (%)) With SGCD (AUC (%))

Blur 61.4 86.3
Noise 59.3 82.9

Blur + Noise 62.1 83.5

Table 9: Robustness comparison against non-stain related domain degradations.

While our core loss function is stain-guided, the bidirectional generative constraints inherent in our
dual-diffusion framework provide a degree of robustness against other common types of domain shift,
including structural variations and image artifacts.

To demonstrate this broader applicability, we conducted supplementary experiments on the Came-
lyon16 dataset where common image imperfections (blur and noise) were simulated through data
augmentation. The results in Table 9 compare the baseline performance (No Adaptation) against
our SGCD method under these corrupted conditions. As shown, the SGCD method significantly
improves performance even when input images are corrupted with common artifacts like blur and
noise. This suggests that the dual-diffusion framework, while optimized for stain variations, possesses
a broader adaptability to structural or artifactual variations frequently encountered in real-world
medical imaging. This aligns with findings in related workGao et al. (2023) exploring diffusion-driven
adaptation to test-time corruption.

A.9 Ablation Study of Diffusion Timesteps

We conducted a dedicated ablation study on the key hyperparameters k and kG (as defined in Eq. 5
and Eq.7 of the manuscript) to evaluate proposed SGCD’s robustness to their variation. The AUC(%)
results, measured on the Camelyon16 dataset, are presented in Table10. The experimental results
demonstrate that our proposed method consistently achieves superior performance compared to
existing methods across a wide range of k values. This suggests that while these hyperparameters
influence peak performance, our method’s overall effectiveness is robust to reasonable variations.

k \kG 10 100 150

200 88.6 94.5 85.6
400 93.6 94.2 89.1
600 94.1 95.8 90.9
800 85.9 94.7 90.4
1000 91.5 94.9 83.9

Table 10: Ablation study on the hyperparameters k and kG.

A.10 Quantifying Semantic Preservation (Class Consistency)

Method Class Consistency Ratio

No Adaptation 0.66
With SGCD 0.85

Table 11: Quantitative analysis of Class Consistency.

Semantic preservation is critical for clinical decision-making. We address this through collaborative
training where the target classifier actively guides the diffusion model, ensuring generated images
retain semantic information consistent with the source.

To quantify this, we measured the Class Consistency Ratio on the Camelyon16 dataset, comparing
the class labels of original images with their transformed counterparts. This metric demonstrates
that our method significantly improves the preservation of class-level semantic information during
domain translation, thereby establishing a necessary foundation for clinical trust.
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A.11 Robustness to Limited Target Domain Data

We acknowledge that handling data scarcity is critical in real-world applications. To quantify our
method’s ability to adapt with minimal target domain samples, we conducted a supplementary
experiment on Camelyon16 using varying percentages of available target data.

The results, shown in Table12, demonstrate the effectiveness of our Stain-Guided Consistency
Diffusion (SGCD) even with heavily restricted data access. The results indicate that our method
shows promising adaptability even with only 1% of target domain data (AUC 87.5), significantly
outperforming the Source-Only baseline (75.9). This confirms our method’s capability to generalize
effectively in challenging, data-scarce scenarios.

Target Data % Source-only 1% 10% 50% 100%

AUC (%) 75.9 87.5 89.4 93.5 95.8

Table 12: Robustness to Limited Target Domain Data.

A.12 Fine-Grained Pathological Fidelity

Histopathology relies on subtle details. To provide quantitative validation that our method preserves
diagnostically meaningful structures, we measured the pixel-level overlap of tumor nuclei regions
before and after image translation. We used a semantic segmentation model trained on the target
domain for evaluation consistency.The results in Table13 compare segmentation performance on
original target images with that on our translated images (TS). These high metrics confirm that
our method is highly effective at preserving fine-grained pathological structures. The marginal
performance drop provides strong quantitative evidence that our approach maintains the critical
pixel-level details essential for accurate pathological interpretation.

Original Translated

IoU 0.9661 0.9124
Dice Score 0.9827 0.9542

Table 13: Quantitative validation of Fine-Grained Pathological Fidelity.

A.13 Robustness to Rare Cohorts (Positive Class Performance)

Our datasets are inherently class-imbalanced, with tumor regions often representing rare cohorts.
To explicitly address performance on the most challenging, clinically relevant rare samples, we
compared our full method against a Source-Only baseline in the 1% target data setting. The results
demonstrate a severe performance degradation in the Source-Only baseline for the rare positive class
(Recall: 0.212). In stark contrast, our full SGCD method achieves a robust Recall of 0.819 and a high
F1-score of 0.861 for the same rare class. This evidence confirms that our domain adaptation strategy
provides a crucial and decisive benefit in accurately identifying challenging, clinically relevant rare
samples.

Metric No Adaptation (Source Only) SGCD with 1% Target Data

Precision 0.985 0.835
Recall 0.967 0.917

F1-score 0.976 0.874

Table 14: Comparison of performance metrics for the Negative/Majority Class on the Camelyon16
dataset with only 1% target domain data.

A.14 Reference image selection

Our method does not rely on a specific, fixed reference image for domain translation. Instead, we
dynamically sample images from the target domain during training to provide stain information for
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Metric No Adaptation (Source Only) SGCD with 1% Target Data

Precision 0.104 0.908
Recall 0.212 0.819

F1-score 0.140 0.861

Table 15: Comparison of performance metrics for the Positive/Rare Class on the Camelyon16 dataset
with only 1% target domain data.

the Stain-Guided Consistency (SGC) loss. This inherent design makes the adaptation process robust
by accounting for the natural variations in stain matrices within the target domain.

Furthermore, this dynamic process leads to an implicit benefit: occasionally generated images with
slight stylistic deviations from the target mean act as a form of on-the-fly data augmentation for the
target classifier. This strengthens the model’s generalization capability against minor distribution
shifts Chang et al. (2021).

However, while beneficial, this randomness is also the source of potential failure cases, as shown
in Figure 10. When the dynamic reference image leads to an overly aggressive style shift or
excessive distortion of fine-grained pathological structures, the resulting synthetic image may become
diagnostically ambiguous, leading to classifier errors.

Figure 10: The fail cases of input and converted images using SGCD on the Camelyon17 dataset.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• Researchers should communicate the details of the dataset/code/model as part of their
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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