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ABSTRACT

Space situational awareness (SSA) plays an imperative role in maintaining safe
space operations, especially given the increasingly congested space traffic around
the Earth. Space-based SSA offers a flexible and lightweight solution compared
to traditional ground-based SSA. With advanced machine learning approaches,
space-based SSA can extract features from high-resolution images in space to
detect and track resident space objects (RSOs). However, existing spacecraft im-
age datasets, such as SPARK, fall short of providing realistic camera observa-
tions, rendering the derived algorithms unsuitable for real SSA systems. In this
research, we introduce SpaceSet, a large-scale realistic space-based image dataset
for SSA. We consider accurate space orbit dynamics and a physical camera model
with various noise distributions, generating images at the photon level. To extend
the available observation window, four overlapping cameras are simulated with a
fixed rotation angle. SpaceSet includes images of RSOs observed from 19km to
63, 000km, captured by a tracker operating in LEO, MEO, and GEO orbits over
a period of 5, 000 seconds. Each image has a resolution of 4418 × 4418 pixels,
providing detailed features for developing advanced SSA approaches. We split
the dataset into three subsets: SpaceSet-100, SpaceSet-5000, and SpaceSet-full,
catering to various image processing applications. The SpaceSet-full corpus in-
cludes a comprehensive data-loader with 781.5GB of images and 25.9MB of
ground truth labels. We also benchmark detection and tracking algorithms on the
SpaceSet-100 dataset using a specified splitting method to accelerate the training
process.

1 INTRODUCTION

Space Situational Awareness (SSA) Wang et al. (2022) plays a crucial role in ensuring the safety
of space assets by providing real-time information perception and risk evaluation for space opera-
tions, such as spacecraft navigation Hein (2020) and debris mitigation Usovik (2023). Conventional
SSA systems, like those used by the Japanese Space Agency (JAXA) Harris et al. (2021), rely on
observing resident space objects (RSOs) and determining their orbits using ground-based facilities
equipped with large telescopes and radars. These systems necessitate extensive site areas, high
costs, and specific geographical locations. Given the computational limitations of satellites, current
space-based SSA systems, which involve complex numerical calculations, typically depend on the
space-ground network for data processing and information fusion. This reliance results in substantial
communication loads and delays.

With the advancements in artificial intelligence (AI) and high-performance edge computing, an on-
board vision-based SSA system presents a more flexible and lightweight alternative to traditional
ground-based SSA for RSO detection and tracking. One of the primary challenges in SSA is pro-
viding accurate position and orientation vectors (observations) of targets to determine their orbits.
Methods such as Gauss’s method Vallado (2001), which requires at least three observations for
preliminary orbit determination, and Lambert’s method Engels & Junkins (1981), which needs only
two position vectors with temporal information, are used for this purpose. Essentially, increasing the
number of observations enhances the accuracy of orbit determination, highlighting the importance of
the object detection and tracking (ODT) component in SSA. To develop precise and practical ODT
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(a) (b) (c)

Figure 1: Comparison of our SpaceSet images with SPARK images Musallam et al. (2021a) and
real-life observed images. (a) SpaceSet images at timestamp 0 (four cameras from left top to right
bottom), which show the realistic exposure with noise distribution; (b) A simulated spacecraft image
from SPARK; (c) The real-life space observation image from the telescope and sensor network
(EGTN2). The similar streaks due to the exposure of fast-moving RSOs and the hot pixels induced
by the noises in (a) and (c) demonstrate the realistic images in our SpaceSet dataset.

algorithms, extensive high-resolution space imagery is essential. However, most existing spacecraft
image generation techniques Musallam et al. (2021a) rely on high-fidelity simulators that ignore
space camera models and the cosmic background, resulting in unrealistic images (See Figure 1) and
ODT algorithms unsuitable for real SSA systems.

In this work, we present SpaceSet, a large-scale realistic space-based image dataset for SSA. This
dataset considers accurate space orbit dynamics and a physical camera model with various noise
distributions, generating images at the photon level. To extend the observation window, we simulate
four overlapping cameras with a fixed rotation angle. SpaceSet comprises images of RSOs observed
from distances ranging from 19 km to 63, 000 km, captured by a tracker operating in Low Earth
Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary Orbit (GEO) over 5, 000 seconds.
Each image boasts a resolution of 4418 × 4418 pixels, providing detailed features for the develop-
ment of advanced SSA approaches. We have divided the dataset into three subsets: SpaceSet-100,
SpaceSet-5000, and SpaceSet-full, catering to various image processing applications. The SpaceSet-
full corpus includes a comprehensive dataloader with 781.5GB of images and 25.9MB of ground
truth labels. To the best of our knowledge, SpaceSet is the first image dataset to offer four-camera
observations with realistic image generation from space for space object detection and tracking. The
key contributions and features of this dataset are summarized as follows:

Realistic Image Generation: Incorporating accurate space orbit dynamics and a physical camera
model with various noise distributions to produce photon-level realistic space images.

Multiple Camera Observations: Simulating four overlapping cameras with fixed rotation angles
to extend the observation window.

Large Range Tracker Observation: Covering RSO images observed from 19 km to 63, 000 km for
the tracker operating in LEO, MEO, and GEO orbits.

Automated Label Generation with Bearing Angle: Providing accurate ground truth labels with
bearing angle information generated by the simulator through an automated transformation and an-
notation process.

Extensive Benchmarks: Benchmarking the dataset using SOTA algorithms, including YOLOv5,
YOLOv8, YOLOv10, DINO, etc., on SpaceSet-100 with a specified splitting method to expedite the
training process. Additionally, various object tracking methods are compared on SpaceSet-100 to
explore its applications.

2 RELATED DATASET WORK

Publicly available image datasets for space object imagery are predominantly ground-based, such
as SatNet and SatSim Fletcher et al. (2019). Existing space-based image datasets, such as BUAA-
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SID-POSE 1.0 Qiao et al. (2022), SPEED Kisantal et al. (2020), SPEED+ Park et al. (2023), and
URSO Proença & Gao (2020), primarily emphasize spacecraft pose estimation Pauly et al. (2023).
These datasets typically feature a limited number of RSOs in the images and lack comprehensive
annotations such as bounding boxes, which are essential for broader SSA applications beyond pose
estimation.

Since space-borne real data is often challenging and expensive to acquire, simulated datasets have
become the predominant approach for developing methods for SSA tasks. BUAA-SID 1.0 Zhang
et al. (2010) features various satellite models created using 3dsMax but lacks simulation of the
space environment. The SPARK Musallam et al. (2021a) dataset includes simulated models of
different satellites and space debris but lacks realistic camera observations. An annotated dataset
derived from the Resident Space Object Near-Space Astrometric Research (RSONAR) mission is
provided by Suthakar et al. (2023), which collected data using a low-resolution, wide-field-of-view
imager on a stratospheric balloon. Additionally, some datasets have been generated by researchers
to simulate space conditions and RSOs, facilitating algorithm development and testing Tang et al.
(2023); Chen et al. (2023); Shen et al. (2024). However, these datasets are often inaccessible and
lack comprehensive reality analysis. Table 1 provides a summary of statistics for existing space-
based RSO detection image datasets as well as our SpaceSet dataset. SpaceSet captures more RSOs
in the images and has a higher resolution compared to prior datasets.

Table 1: Comparisons of SpaceSet with existing datasets.

Dataset #Images #Objects Resolution Object/Image Public?

BUAA-SID-share 1.0 Zhang et al. (2010) 9.2k 20 320×240 single yes
SPARK Musallam et al. (2021a) 30k 11 1440× 1080 single request
RSONAR Suthakar et al. (2023) 429 3 1024× 1024 multiple no
SpaceSet-100 100 56 4418× 4418 multiple yes
SpaceSet-5000 5k 414 4418× 4418 multiple yes
SpaceSet-full 20k 673 4418× 4418 multiple yes

3 DATA CURATION PROCESS

3.1 DATA GENERATION

The SpaceSet dataset is collected from a real-time high-fidelity simulator based on precise space
orbit dynamics and physical camera models. Since the space-based observer operates at an altitude
of 500 km, the effects of the atmosphere and related noise are not included in the modeling process.
The space environment model simulates a catalog of RSOs in orbit around the Earth, along with
other celestial bodies in the sky. The RSO simulation is based on the United States 18th SDS
Space Catalog 3, which is fetched in Two-Line Elements (TLEs) format for the desired simulation
epoch and propagated using an SGP4 propagator. The propagator provides the positions and velocity
vectors of all objects in the TEME coordinate system, which is used to populate the 3D environment.

The modeling of environmental noise expected for a sensor is also incorporated. Under favorable
imaging conditions, the sensor’s payload is oriented away from the sun and perpendicular to the
orbit, allowing the primary background noise source to be the Earth’s limb—the bright edge of the
Earth’s horizon. This background noise is modeled using data from the Hubble Space Telescope 4

and the NEOSSAT mission Thorsteinson (2018). The camera captures a circular image on the image
plane, and the detector on the focal plane records the digital image.

To detect which RSOs crossing the field of view (FOV) can be identified by the sensor, a photometric
detection model is applied. The sensor detects an object only when its signal-to-noise ratio (SNR)
exceeds a specified threshold, typically set at 5. The received signal is calculated assuming 100%
diffuse reflection, where the fraction of incident sunlight reflected to the sensor is given by:

2https://exoanalytic.com/space-domain-awareness
3http://space-track.org/
4https://hst-docs.stsci.edu/stisihb/chapter-6-exposure-time-calculations/6-5-detector-and-sky-backgrounds
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Figure 2: Overall framework of the data curation process.

Reflection Factor =
2µr2

3πR2
× (sinϕ+ (π − ϕ) cosϕ), (1)

where µ is the object’s reflectivity, r is the object’s radius, R is the distance between the object and
the telescope, and ϕ is the phase angle of reflection. The solar flux, considered as the solar constant
at 1 AU from the sun, is assumed to be uniform across all objects, as the variation in distance from
the sun is negligible. The brightness data from the star catalog is used to determine the signal level
from stars, which is distributed across a Gaussian spot formed on the detector.

The model for projecting star/object positions onto the image is based on a pinhole camera model,
supplemented by a compound distortion model (radial and tangential), similar to the Brown-Conrady
model Zhang (2000). To calculate the noise electrons, three noise sources are modeled: shot noise
with a random distribution, sensor noise (e.g., dark current) modeled with a Poisson distribution,
and read noise modeled with a normal distribution. Additionally, background noise is modeled with
a Poisson distribution. Relative illumination is implemented as a quadratic function to account for
roll-off and vignetting effects in the image. These signal and noise models provide the number of
photo-electrons collected by each pixel on the sensor, which are then converted into 16-bit digital
values (0-65535). Note that four cameras (60◦, 75◦, 90◦ and 105◦ azimuth angle for Cam1 to Cam4,
respectively) are adopted to generate the images simultaneously.

The overall framework for the data curation process is illustrated in Figure 2. The datasets generated
by the simulator are in the forms of images (TIFF format) and a set of metadata (CSV format). All
state information (including position, velocity and attitude) of RSO is propagated with the public
in-catalog TLEs. The data collection is free of any ethical issue or participation risk. The space
orbit propagation program is developed based on the Standards of Fundamental Astronomy (SOFA)
Board package and SGP4 model Vallado & Crawford (2008). With camera specifications such as
lens parameters, sensor parameters, and camera pointing direction angles (elevation and azimuth
angles in RSW coordinate frame), the physical camera model can generate pixel values of images at
each timestep based on the aforementioned relative illumination and noise distributions. The physi-
cal camera model used for generating realistic space-based images includes several key components,
including the pinhole camera model, lens distortion, and noise modeling. Each 3D point X in the
space is projected onto the image plane using the pinhole camera model, then distorted based on the
lens distortion model, and finally, various noise distributions as mentioned are added to simulate the
physical conditions of space imaging. For instance, we model the noise as a combination of Poisson
noise (sensor noise) and Gaussian noise (read noise):

Inoisy(u, v) = Poisson(I(u, v)) +N (0, σ2) (2)
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where I(u, v) is the intensity value at pixel (u, v), Poisson(I(u, v)) represents the Poisson noise,
and N (0, σ2) represents the Gaussian noise with mean 0 and variance σ2. The exposure time (1
second) is reflected in the image generation as we overlap the images over the exposure time into one
image. The ground truth bounding box is calculated with the bearing angles (θ1 and θ2) of a target
with respect to the tracker as defined in the Figure 2. By selecting the starting time of simulation
(YYYY-MM-DD HH:MM:SS in UTC) and simulation duration, we can generate desired images and
metadata over a certain period. The specified simulation time is from 2023-01-01 0:00:00 to 2023-
01-01 1:23:20 with 1 second time difference for the successive images (this time difference is the
exposure time and optimized for object detection).

3.2 DATASET VALIDITY AND UNIQUENESS

Currently, there are fewer than six datasets available in this field, and they are all based on simu-
lations, as NASA’s database is not publicly accessible. The dataset presented in this work is the
first large-scale, realistic, space-based image dataset at the photon level, aiming to bridge the gap
between simulated and real-world data. Most existing datasets, such as BUAA-SID-share 1.0 Zhang
et al. (2010), SPARK Musallam et al. (2021b), and the Space Target Dataset Zhang et al. (2022c), are
primarily generated for satellite pose estimation and space target classification in ideal simulation
conditions. These datasets focus on capturing targets from close distances and multiple angles to
emphasize single-target characteristics. In contrast, the presented dataset captures targets at various
distances based on realistic space-based camera observations. We have compared our images with
the real observed images with a ground-based telescope in Appendix A.6, where the starfield and
captured positions at various timestamps are first compared to show the accuracy of the simulator.
These imaging results then clearly validate the realistic characteristics of our simulated images.

3.3 DATA ANNOTATION

All images in the SpaceSet dataset are annotated with classes indicating LEO, MEO, and GEO (low,
medium, and high accordingly), as well as 2D bounding boxes for the labeled parts (see Figure 3). To
ensure high-quality annotations, all classes and bounding box information is automatically derived
from the orbital and positional information of space objects, rather than being manually labeled. All
the orbital and positional information of these space objects is generated from the aforementioned
orbit propagation simulator containing a semi-major axis (SMA) and two bearing angles.

Classes Annotation: SMA, a key parameter for describing orbital ellipses, determines the size and
shape of the orbit. Targets are classified as LEO (SMA ≤ 8413km), MEO (8413km < SMA ≤
42240km) , and GEO (SMA > 42240km) based on their SMA.

Bounding Boxes Annotation: Bounding boxes are derived from two bearing angles θ1 and θ2
of space objects. The bearing angle information is defined in the camera frame, while the pixel
position is defined in the pixel coordinate system (origin at the upper left, x-axis to the right, y-axis
downward). The transformation from bearing angles to pixel positions is given by the following
equations:

xpixel =

(
tan(θ1) ·

focal length
H number

+ 0.5

)
· width (3)

ypixel =

(
tan(θ2) ·

focal length
H number

− 0.5

)
· (−width) (4)

The transformations provide the position of the space object at a specific moment in the image. Since
each image has a one-second exposure time, the objects appear as a path showing their movement
during that second. To find the bounding box, we calculate the pixel coordinates of the space object
at the start and end of the exposure. These two points form the diagonal corners of the bounding
box, which helps us accurately determine the size and location of each bounding box.

3.4 IMAGE SLICING

The original image size is 4418×4418 far beyond the processing capabilities of YOLO and most
GPUs. To address the issue of large image dimensions, the images are initially sliced into smaller
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4418x4418

(a)

4418x4418

(b)

260x260 260x260 260x260 260x260

(c)

Figure 3: The image sample from the SpaceSet dataset. (a) The original image generated from the
simulator with 1 second exposure time; (b) The post-processed image to show the observed image
and RSOs with reference IDs; (c) The sliced image batch and annotations.

sections measuring 260×260 pixels each (see Figure 3 (c)). Multiple split sizes were tested, and
260x260 was selected as the optimal size based on experimental results. This slicing process in-
cludes an adjustable overlap in both horizontal and vertical directions, serving as a strategy for data
augmentation. The last slices are aligned to the image’s edge and then cut to the predefined size.
Additionally, the annotations of the labels are accurately adjusted to match the newly sliced dimen-
sions. Given the inherent sparse labeling of the dataset, 96% of the sliced images do not contain the
target. Addressing the risk of overfitting caused by a high proportion of negative samples (images
without targets), the training and validation datasets are selectively pruned to remove a substantial
number of negative samples. This strategy is directed towards creating a more balanced dataset,
aiming for an approximate 0.9 : 0.1 ratio between images with and without targets. For the test
dataset, selective pruning is omitted to maintain the accuracy and validity of model evaluation.

3.5 DATASET RELEASE

The release of the SpaceSet dataset is structured into three distinct subsets, namely SpaceSet-100,
SpaceSet-5000, and SpaceSet-full (see Table 1), to cater to varying levels of image processing and
analysis requirements.

SpaceSet-100: This is the minimal dataset intended for preliminary training and testing purposes.
It includes 100 high-resolution images that provide a foundational basis for algorithm develop-
ment and initial performance assessments. This subset is ideal for quick iteration cycles and for
researchers who are beginning their work on SSA without requiring extensive computational re-
sources. SpaceSet-100 is particularly useful for initial model training and validation, performance
benchmarking of new methods, and educational purposes, allowing students and new researchers to
get hands-on experience with SSA data.

SpaceSet-5000: This subset expands the dataset to 5000 images, all captured from Camera 2. It
is designed to offer a more comprehensive dataset that can be used for more rigorous training and
testing of machine learning models. SpaceSet-5000 provides a larger sample size to improve the
robustness of algorithms and to ensure that the models are exposed to a wider variety of scenarios
and conditions encountered in space-based observations. It is intended for detailed algorithm devel-
opment and refinement, robustness testing across a larger set of scenarios, and intermediate-scale
projects that require significant but manageable computational resources.

SpaceSet-full: This is the full version of the SpaceSet dataset, featuring 5000 images captured from
each of the four simulated cameras, resulting in a total of 20,000 images. This comprehensive dataset
is collected for advanced research and development objectives. It supports the training and validation
of complex models that require multi-view observations to accurately detect and track RSOs. The
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Figure 4: Histogram of observation range for four cameras in SpaceSet-full.

multi-camera setup allows researchers to develop and test algorithms capable of leveraging spatial
information from different perspectives, enhancing the accuracy and reliability of SSA systems.

4 SPACESET DATASET ANALYSIS

Statistical Features of Individual Images: Here, we provide a specific quantitative description of
images of size 4418× 4418 pixels (16-bit, 39.1MB in storage). After testing, the average signal-to-
noise ratio (SNR) and average root mean square (RMS) contrast Peli (1990) of SpaceSet-full images
are 1.94 dB and 4.67, respectively (typical values for general images are 30 dB for SNR and 80 for
contrast). With a threshold pixel value of 2000, the bright point ratio is 0.47. This large image
size ensures high resolution and clarity, which is beneficial for detailed analysis and visualization in
various applications. However, hardware or applications such as edge computing in satellites may
have difficulty handling images with such high resolution. In such cases, we suggest compressing
the images before using this dataset. In real-space environments, various types of noise, such as
optical and electromagnetic interference, can be present, which manifest in the SNR parameter
of this dataset. Generally, a smaller SNR indicates a greater amount of noise in the images (see
Figure 3 (b)). This suggests that the image information in this dataset more closely aligns with
real-world conditions but poses challenges for feature extraction. Additionally, due to variations in
the distance between the targets and the cameras, the brightness of different targets varies, which is
a natural phenomenon in imaging. The targets appear brighter when they are closer to the camera
and dimmer when they are farther away. As some applications may have specific requirements for
image brightness, some image processing algorithms may be needed to enhance brightness.

Statistical Features of the Whole Dataset: Figure 4 shows the histogram of observation ranges for
four cameras in SpaceSet-full. The horizontal axis of the graph represents the observation distance
of the cameras, and the vertical axis represents the counts of target occurrences. Each bar in the
histogram corresponds to a range of 3128 km. The closest observed target is at a distance of 19 km,
while the farthest is at 62,578 km. The bars for the ranges 19 to 3147 km and 37,554 to 40,682 km
are the highest, indicating the highest frequency of target occurrences. In contrast, the frequencies
are much lower for other ranges, resembling a long-tail distribution commonly seen in the dataset.
More analysis, including the positional distributions and the size distribution of all observed objects,
is illustrated in A.1 Figure 5 and Figure 6, respectively.

5 BENCHMARK

As SpaceSet is regarded as a new SSA dataset, we provide several object detection and tracking
baseline results based on representative one or two stage detectors and detection-based multiple
object tracking methods on SpaceSet-100. All the code for the methods used is available in the sup-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

plementary material. Additionally, detailed descriptions of the experimental settings and additional
comparison results can be found in Appendix A.

5.1 BASIC SETTINGS

We utilize the Ultralytics library Jocher et al. (2023) under the AGPL-3.0 license, which includes all
YOLO series models for object detection and tracking (ODT). Other architectures are implemented
using the MMDetection toolbox Chen et al. (2019) from OpenMMLab. Following standard config-
urations, all models are trained on an NVIDIA RTX A6000 GPU for up to 400 epochs, with early
stopping if there is no improvement for 30 epochs. From the SpaceSet-100 dataset, 70% of images
are used for training and 20% for validation. To minimize randomness in testing, 100 images from
the SpaceSet-5000 dataset are selected for evaluation. Metrics for detection performance include
mAP@50, mAP@50-95, precision, recall, and F1 score, while object tracking is assessed using
false positives, ID switches, and multiple object tracking accuracy (MOTA).

5.2 OBJECT DETECTION BENCHMARK

In our object detection benchmark, we evaluated various models, primarily YOLOv8m. We also
included yolov3 mobilenetv2, using MobileNetV2 as the YOLOv3 backbone Redmon (2018), and
faster rcnn, based on the ResNet architecture Ren et al. (2016). Transformer-based models such as
DETR, Deformable-DETR, and DINO were also employed Carion et al. (2020) Zhu et al. (2020)
Zhang et al. (2022a). To optimize training, batch sizes were adjusted based on GPU memory con-
straints. All models utilized our custom preprocessing pipeline, tailored to the challenges of SSA
datasets. All models used 260x260 images as input to ensure result reliability.

The experimental results in Table 2 show the strengths and weaknesses of each method in terms of
model size, speed, and accuracy. Transformer-based models capture complex features but require
more memory and inference time, making them less suitable for space-based tasks. Faster rcnn
achieves an acceptable level of accuracy but demands significant memory and long detection times,
indicating a trade-off between accuracy and efficiency. Yolov3 mobilenetv2 provides faster detec-
tion but sacrifices performance, highlighting the challenges of balancing speed and accuracy in SSA.

Existing SOTA methods struggle in the space domain due to the sparse distribution of small targets,
many of which occupy only a few pixels in large 4418x4418 images. Over 99% of each image is
background noise, presenting challenges not found in typical detection tasks, which emphasizes the
unique value of our dataset.

Overall, the YOLOv8m model stands out with its small size, high accuracy, and reasonable detection
speed, making it the most suitable for SSA tasks. Its balance of speed and precision effectively meets
the unique challenges of space-based monitoring.

Table 2: Performance comparison of SOTA models for space object detection (averaged over three
runs). Mem denotes GPU memory usage during training. T/epoch refers to training time per epoch.
Epoch indicates the number of epochs until convergence. Size refers to the storage size of trained
models. Precision (P), Recall (R), and F1 score are presented as mean ± standard deviation.

Model Information Training Process Testing Process

Models batch Mem T/epoch Epochs Size(MB) P R F1 T/img

yolov3 mobilenetv2 48 34.36G 5.09s 57 35.9 0.288 ± 0.005 0.277 ± 0.023 0.282 ± 0.010 1.99s
faster rcnn 40 42.70G 1.82s 24 333.8 0.347 ± 0.013 0.315 ± 0.020 0.329 ± 0.009 6.42s

DETR 8 23.18G 1.78s 209 512.2 0.236 ± 0.055 0.312 ± 0.026 0.267 ± 0.043 4.60s
deformable detr 8 38.91G 4.96s 141 498.8 0.315 ± 0.017 0.479 ± 0.024 0.380 ± 0.018 9.71s

DINO 8 34.13G 6.62s 35 597.7 0.332 ± 0.014 0.495 ± 0.092 0.394 ± 0.021 13.15s
YOLOv8m 48 19.20G 3.81s 209 52.1 0.600 ± 0.017 0.435 ± 0.005 0.492 ± 0.019 3.81s

In selecting state-of-the-art (SOTA) models for space object detection, the YOLO series was chosen
for its strong performance across various tasks. Given the demands of space deployment, factors
such as computational complexity, detection speed, and accuracy are crucial. Various YOLO ver-
sions and sizes offer trade-offs between these factors. To identify the optimal model for space
deployment, comprehensive experiments were conducted.
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As shown in Table 3, three object detection models are compared: YOLOv5 Jocher (2020), YOLOv8
Jocher et al. (2023), and YOLOv10 Wang et al. (2024), each evaluated with five parameter sizes (n,
s, m, l, x). Generally, larger models (m, l, x) achieve better accuracy but require more memory
and longer training times. While YOLOv8m demonstrated superior performance, smaller models
like YOLOv5n and YOLOv8s exhibited lower performance but faster detection times. YOLOv8n
balanced speed and accuracy effectively, making it more suitable for SSA, where lightweight com-
putation and timely detection are essential.

Our experiments on the SpaceSet-100 dataset reveal that existing SOTA object detection and track-
ing methods, effective in conventional scenarios, underperform in space environments, achieving
significantly lower scores compared to standard datasets. This underscores the need for algorithms
specifically designed for SSA, and our dataset aims to bridge this gap.

Table 3: Detection results of baseline object detection models on SpaceSet-100. During the training
of v10x, in order to prevent the GPU memory from being full, we adjusted the batch size to 36.

Model Information Training Process Testing Process

Models Mem T/epoch Epochs Size(MB) P R F1 T/img

v5n 6.38G 8s 62 5.30 0.78 0.18 0.29 1.93s
v5s 10.20G 26s 312 18.60 0.66 0.33 0.44 2.36s
v5m 18.20G 25s 226 50.50 0.72 0.26 0.38 3.45s
v5l 28.00G 37s 236 106.80 0.65 0.33 0.44 4.88s
v5x 40.80G 63s 239 195.00 0.65 0.33 0.44 7.07s

v8n 6.65G 8s 236 6.30 0.65 0.36 0.47 2.01s
v8s 10.60G 13s 72 22.50 0.72 0.18 0.29 2.37s
v8m 19.20G 25s 228 52.10 0.62 0.38 0.47 3.81s
v8l 29.80G 41s 305 87.70 0.55 0.38 0.45 5.55s
v8x 37.40G 61s 192 136.70 0.58 0.38 0.46 7.02s

v10n 9.10G 11s 345 5.80 0.65 0.28 0.39 2.38s
v10s 15.60G 19s 85 16.50 0.67 0.27 0.38 2.63s
v10m 26.30G 31s 216 33.50 0.63 0.34 0.44 3.74s
v10l 40.80G 48s 188 52.20 0.66 0.34 0.45 5.66s
v10x 41.80G 68s 242 64.10 0.65 0.36 0.46 6.54s

5.3 OBJECT TRACKING BENCHMARK

SpaceSet can also be used to evaluate multiple object tracking methods, as it contains ID information
for each space object. The ground truth tracking data includes timestamps, object IDs, and two
bearing angles. During tracking, pixel positions of the targets are converted into bearing angles
using formulas (3) and (4) for comparison with the actual data.

Table 4 summarizes the results of various tracking methods based on a YOLOv8n model with an F1
score of 0.4674. Two tracking methods were tested: Bytetrack Zhang et al. (2022b) and BoT-SORT
Aharon et al. (2022), using Intersection over Union (IoU) and Euclidean distance for similarity cal-
culations. Variants of BoT-SORT incorporated different global motion compensation algorithms
(ECC, ORB, SIFT, and Sparse Optical Flow), and feature-based similarity calculations were ex-
plored using features from the pre-trained YOLOv8n model, as well as traditional methods like
HOG and SIFT.

From Table 4, it is evident that the performance of models using IoU distance is far inferior to
those using Euclidean distance. This is because space targets are small and fast-moving, and even
slight calculation errors can result in an IoU of 0. For fast-moving objects in space, minor camera
movements have minimal impact on tracking. Consequently, the evaluation metrics for different
global motion compensation methods show little variation in MOTA. BoT-SORT, an improved ver-
sion of Bytetrack with global motion compensation, performs similarly to Bytetrack because the
SSA dataset is insensitive to camera motion. For the SpaceSet dataset, global motion compensation
increases processing time with minimal benefits. Although IoU and Euclidean distance calculations

9
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Table 4: Performance evaluation of multiple object tracking methods on SpaceSet-100 (averaged
over three runs). Total and Predict columns refer to the total and predicted target numbers, respec-
tively. Real and Predict columns show actual and predicted object numbers. Evaluation metrics
include Matches, Misses, False Positives (FP), ID switches (IDs), Multi-Object Tracking Accuracy
(MOTA), and tracking time(Time). MOTA are presented as mean ± standard deviation

Model Information Target Number Object Number Evaluation Metrics

Models Total Predict Real Predict Matches Misses FP IDs MOTA Time

Byte iou 4695 182 56 180 178 4517 4 143 0.0065 ± 0.0002 0.06
Byte euclidean 4695 2111 56 134 2098 2597 13 202 0.4012 ± 0.0072 0.05

BoT iou 4695 182 56 181 178 4517 4 143 0.0065 ± 0.0002 0.05
BoT euclidean 4695 2107 56 150 2095 2600 11 183 0.4049 ± 0.0078 0.05

BoT euclidean ecc 4695 2101 56 145 2092 2603 9 203 0.4002 ± 0.0075 1.53
BoT euclidean orb 4695 2105 56 145 2095 2597 9 204 0.4003 ± 0.0082 0.10
BoT euclidean sift 4695 2102 56 139 2092 2603 10 196 0.4012 ± 0.0085 1.15

BoT euclidean sparse 4695 2106 56 145 2096 2599 10 202 0.4017 ± 0.0089 0.14

BoT feature yolo 4695 2498 56 53 2486 2209 12 51 0.5160 ± 0.0091 0.26
BoT feature hog 4695 499 56 57 495 4200 3 52 0.0938 ± 0.0044 7.46
BoT feature sift 4695 121 56 33 117 4578 3 4 0.0235 ± 0.0010 1.42

are fast, their accuracy is lower than feature distance based on YOLO. Among all tracking methods,
the YOLO feature extraction method performs the best, with a 27% higher accuracy than Euclidean
distance. Additionally, traditional feature extraction methods like HOG and SIFT perform poorly.

In addition to the limitations on computing resources and speed, space target tracking tasks must
also minimize false detections and ID switches. Excessive false detections and ID switches can
negatively impact subsequent tasks such as orbit determination and orbit propagation. BoT-SORT,
based on YOLO feature extraction, performs well in all these aspects, making it more suitable for
SSA tasks.

6 LIMITATIONS OF SPACESET DATASET

Despite the comprehensive nature of the SpaceSet dataset, there are current limitations to consider.
First, while the dataset is designed to be highly realistic, the images are still generated via sim-
ulations, which may not capture all the complexities and variabilities of real space environments.
Second, the dataset focuses on high-resolution images, which, while beneficial for detailed analysis,
also require considerable computational resources for processing and storage, potentially limiting
accessibility for researchers with limited resources. Lastly, while the dataset includes a range of
orbital distances and conditions, it hasn’t covered all possible scenarios that SSA systems might
encounter, necessitating further validation with real-world data to ensure robustness and generaliz-
ability of the developed algorithms.

7 CONCLUSION

Focusing on improving SSA, we present SpaceSet, a large-scale realistic space-based image dataset
designed to overcome the limitations of existing datasets such as SPARK. SpaceSet provides a com-
prehensive collection of high-resolution images (4418×4418 pixels) generated using accurate space
orbit dynamics and a physical camera model with Poisson noise distribution, capturing observations
from 19 km to 63,000 km. The dataset is divided into three subsets: SpaceSet-100, SpaceSet-
5000, and SpaceSet-full, each catering to different research needs. Our benchmark evaluations
show that while larger YOLO models generally outperform smaller ones, lightweight models like
YOLOv5s and YOLOv8n offer faster detection speeds, crucial for space-based applications with
limited computing resources. Moreover, state-of-the-art object detection and tracking methods per-
form inadequately in the space environment, underscoring the necessity for algorithms tailored to
SSA. SpaceSet not only facilitates the development of new object detection and tracking algorithms
but also serves as a benchmark for evaluating advanced SSA techniques.
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A APPENDIX

A.1 MORE ANALYSIS OF RSO DISTRIBUTIONS IN DATASET

Figure 5 shows the positional distribution of targets across four camera datasets. In these maps,
the origin of the coordinates is set at the top-left corner of each image, with x and y representing
pixel coordinates. The targets are distinguished by their orbital categories: blue points for Low
Earth Orbit (LEO) targets, green points for Medium Earth Orbit (MEO) targets, and red points for
Geostationary Earth Orbit (GEO) targets.

From the figure, it can be observed that the red and green points form dense, curved trajectories. This
is because MEO and GEO targets, being farther from the observer, appear to move more slowly in
the images, resulting in closely spaced positions across consecutive frames. In contrast, LEO targets
are more widely dispersed, indicating a faster apparent movement across the images.

The figure also shows that there is no discernible pattern in the occurrence and density of the tar-
gets. The complex nature of the space environment, combined with variations in observation times,
viewing angles, and the orbital paths of tracking instruments, leads to differences in target position
distributions. This complexity poses a significant challenge for space object detection.

Since the orientations of the object is neigable considering the far-range observation, the size distri-
bution for all observed objects is illustrated in Figure 6. From all distributions, most of the RSOs are
within 0.5m to 10m, and the smallest object is approximately 30cm. Given the large detection range,
detecting such small objects in space is extremely challenging, which highlights the significant value
of our dataset and benchmark pipeline.

Figure 5: Positional distribution of targets across four camera datasets, categorized by orbital type
(LEO, MEO, GEO).
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Figure 6: The size distributions for all observed objects categorized by orbital type (LEO, MEO,
GEO)

A.2 COMPARISON WITH EXISTING SPACE DATASETS

Most existing datasets, such as BUAA-SID-share 1.0 Zhang et al. (2010), SPARK Musallam et al.
(2021a), and the Space Target Dataset Zhang et al. (2022c), are primarily designed for satellite
pose estimation and space target classification. These datasets focus on capturing targets from close
distances and multiple viewing angles to highlight specific characteristics. In contrast, SpaceSet
captures targets at various distances, simulating realistic space-based camera observations that sig-
nificantly differ from the approaches of existing datasets.

To emphasize the uniqueness of SpaceSet, we compare its features with those of other existing
datasets, as summarized in Table 5. As shown, SpaceSet aims to provide the first large-scale re-
alistic space-based image dataset at the photon level, which advances AI-driven Space Situational
Awareness (SSA) techniques. Additionally, the table highlights the size, resolution, and accessibility
of each dataset. Currently, fewer than six datasets exist in this domain, all of which are simulated,
as NASA’s real observations are not publicly available. This lack of accessible real-world data un-
derscores the contribution of SpaceSet to the field.

Table 5: Comparisons of SpaceSet with existing space datasets.

Dataset #Images #Objects Resolution Public?

BUAA-SID-share 1.0 Zhang et al. (2010) 9.2k 20 320 × 240 Yes
SPARK Musallam et al. (2021a) 30k 11 1440 × 1080 Request
RSONAR Suthakar et al. (2023) 429 3 1024 × 1024 No

Space Target Dataset Zhang et al. (2022c) 50k 46 Variable No

SpaceSet-100 100 56 4418 × 4418 Yes
SpaceSet-5000 5k 414 4418 × 4418 Yes
SpaceSet-full 20k 673 4418 × 4418 Yes

A comparison of sample images from these existing datasets, alongside real ground-based telescope
images, is provided in Figure 7 (since real space-based images are currently unavailable). The
differences between these datasets, the SpaceSet simulated images, and real-world observations are
evident. Furthermore, only BUAA-SID-share 1.0 and SPARK are publicly available, limiting direct
comparisons. Due to these limitations and the distinct nature of realistic camera observations, it is
likely that training models on these existing publicly available datasets and testing on real images
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Figure 7: Comparison of images from different datasets. (a) Simulated spacecraft image from
BUAA-SID-share 1.0; (b) Simulated spacecraft image from SPARK; (c) Simulated spacecraft image
from Space Target Dataset; (d) Simulated space camera observation image from RSONAR, with de-
tected streaks highlighted by green bounding boxes; (e) Simulated space camera observation image
from SpaceSet; (f) Real observed images from the telescope at the ground.

would not produce optimal results. As a result, SpaceSet’s training performance on other datasets
has not been tested, as there are no accessible datasets with comparable space-based observations.

A.3 IMPLEMENT DETAILS

To ensure the reproducibility of the experimental results, detailed settings for each method used in
this paper are provided. The dataset is divided into training, validation, and test datasets with a
default partition of 70%, 20%, and 10%. To ensure testing accuracy and minimize randomness, we
use 100 new images from SpaceSet-5000, which are the next 100 images in the timestamp sequence
following SpaceSet-100, to replace the original test dataset. The original large TIFF image size is
4418 × 4418 pixels. The cutting size parameter, which can be adjusted, is set to 260, tiling the
large image into smaller 260 × 260 pixel images. For the selective pruning process, the adjustable
parameter is set to 0.1, creating an approximate 9:1 ratio between images with and without targets.
Our models are trained on servers with one Nvidia A6000 GPU (48GB) and an Intel Xeon w9-3495X
CPU (4.8 GHz). The open-source codebase YOLOv8 and YOLOv10 can be found at https:
//github.com/ultralytics/ultralytics and https://github.com/THU-MIG/
yolov10.

A.4 OBJECT DETECTION METHODS

Using the default settings from Ultralytics Jocher et al. (2023), we train the state-of-the-art object
detection models YOLOv5 Jocher (2020), YOLOv8 Jocher et al. (2023), and YOLOv10 Wang et al.
(2024). Each model is trained with five different parameter sizes (n, s, m, l, and x). To accelerate the
process, all training operations use pre-trained YOLO models released by Ultralytics Jocher et al.
(2023). Due to hardware limitations, the SpaceSet-100 dataset is used by default in each experiment.
However, the SpaceSet-5000 and SpaceSet-full datasets are also utilized for further experiments,
which are detailed in the subsequent More Experiments section. In the training process, some default
parameters are adjusted to better fit our scenario, as shown in Table 6. Specifically, the epochs are
set to 500 to ensure model convergence. The patience parameter is set to 30, meaning training will
automatically stop if there is no improvement for 30 consecutive epochs. The learning rate scheduler
is changed from linear decay to exponential decay. Additionally, the number of workers is set to 24
to optimize data loading and accelerate training. For the inference process, the original large image
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Figure 8: Merging detected objects from segments to the full image for accurate tracking. (a) shows
the detection and tracking results at time 0; (b) presents the results at time 1. The original 4418x4418
image is divided into 260x260 segments, as indicated by the green grid, where object detection is
initially performed. The detected objects are then mapped back to their positions on the full-size
image. Finally, object tracking is performed directly on the full-size image.

is first tiled into smaller images for detection. After detection, these small images and their results
are combined back into the original large image. The parameter distance threshold is used to merge
divided targets back into a complete one. Only detection results with an IoU greater than 0.5 are
considered valuable.

Table 6: Implement details for object detection benchmark on SpaceSet-100

Parameter Value Description

epochs 500 Number of training cycles to ensure model convergence
batch 48 Number of samples processed before the model is updated

workers 24 Number of data loading subprocesses to speed up training
lr scheduler ‘exponential’ Strategy for reducing the learning rate over epoch

patience 30 Early stopping criteria based on epochs without improvement
distance threshold 60/4418 Threshold for merging divided targets in the original image

IoU threshold 0.5 Minimum intersection over union for valid detection

A.5 OBJECT TRACKING METHODS

All the selected multiple object tracking methods are detection-based, relying on a well-trained
YOLOv8n model, as described in Section 5.2 Object Detection Benchmark. The tracking process
operates on the original full-size images with a resolution of 4418x4418 pixels. To facilitate de-
tection, each image is initially divided into 260x260 segments, and the position of each segment
within the original image is recorded. Object detection is then performed on these segments, and
the detected positions are mapped back to their respective locations on the original full-size image,
using the recorded positional information.

To handle objects that may span across adjacent segments, a merging strategy is implemented. The
strategy calculates the distance between the edges of bounding boxes in neighboring segments. If the
distance between the right edge of one bounding box and the left edge of an adjacent one is below a
set threshold, the bounding boxes are merged, ensuring an accurate representation of the object on
the original image. After this merging process, the tracking algorithm operates on the entire original
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image, avoiding issues such as objects moving out of segment boundaries and enhancing tracking
accuracy.

The tracking process incorporates the Euclidean distance calculation and feature distance calcula-
tions using three feature extraction techniques to improve robustness. The experimental settings for
tracking largely follow those in Ultralytics Jocher et al. (2023), with specific differences listed in
Table 7. The parameter tracker type can be set to either ’botsort’ or ’bytetrack’, representing two
tracking algorithms, and gmc method is set to ’none’ to ensure faster tracking, as GMC has minimal
impact on the SSA dataset.

Table 7: Implement details for object tracking benchmark on SpaceSet-100

Parameter Value Description

tracker type ’botsort’ Type of tracking algorithm (’botsort’ or ’bytetrack’)
gmc method ’none’ Options include ’orb’, ’sift’, ’ecc’, ’sparseOptFlow’, ’none’

with reid True Use feature distance (True or False)
feature method ’yolo’ Method for feature extraction (’yolo’, ’hog’, ’sift’)
angle threshold 0.2 Threshold for matching tracking results with ground truth
track low thresh 0.4 Threshold for considering low-confidence detections

The with reid parameter, set to True, indicates the use of feature distance, which can be computed
using ’yolo’, ’hog’, or ’sift’ as the feature method. Additionally, the angle threshold is set to 0.2, to
match tracking results with ground truth, considering the ID correct only if the difference in bearing
angles is below this threshold. The track low threshold is set to 0.4, allowing the tracking algorithms
to consider low-confidence detections to reduce misses and ID switches.

The detection and tracking process across consecutive frames is illustrated in Figure 8 of the sup-
plementary material. Detection is performed within the 260x260 segments (grid division shown
in green), and objects spanning segments are merged. Once detection and merging are complete,
tracking is performed on the full original image to ensure reliable tracking performance across the
entire field of view.

A.6 COMPARISON WITH REAL-WORLD GROUND-BASED TELESCOPE IMAGES

To evaluate the model trained on the simulated dataset, tests were conducted using real-world im-
ages obtained from a ground-based telescope. The ground-based telescope used is a Celestron CPC
RASA with a 620mm focal length, located at coordinates 32.9024°N, -105.53202°W, equipped with
a QHY268M camera (3.76 micron pixel size, 26 Megapixel resolution). Due to the current unavail-
ability of real space-based observational data, these ground-based images serve as the best available
alternative for assessing model performance on real data. Figure 9 illustrates the detection results in
a real-world image.

The model successfully detected the most prominent linear object in the real-world image. Several
other objects were also identified, though some detections may be false positives. These false de-
tections are likely caused by differences between ground-based telescope images and space-based
camera observations, particularly due to atmospheric conditions that affect the spot size and distri-
bution in the images. Such discrepancies highlight the challenges of directly transferring models
trained on simulated space-based data to ground-based observations.

To provide a more detailed comparison, Table 8 compares the Right Ascension (RA) and Declination
(Dec) values between real observations and our simulated images, showing the small differences in
pointing direction and starfield representation. The comparison also accounts for additional effects
from the atmosphere in ground-based images, especially differences in spot size.

Furthermore, Table 9 compares the tracked positions of objects from the ground-based telescope and
the SGP4 propagation simulator. With the given pointing direction, the object positions at different
timestamps are nearly identical to the real-world observations. The results demonstrate the accuracy
of our simulator regarding the observation pointing direction and object positions.
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Figure 9: Detection results on a real-world ground-based telescope image using a model trained on
simulated space-based data with Zoomed-in view of a potential false positive.

Table 8: Comparison of RA and Dec values from different sources for starfield.

Source Telescope http://astrometry.net/ Simulator Difference

RA (deg) 334.900806 334.888 334.911317 0.011
Dec (deg) 57.236457 57.223 57.2352077 0.00125

The comparison of generated images is illustrated in Figures 10 and 11. The observed similarities
confirm that the simulated images effectively replicate key characteristics of real space-based obser-
vations, such as streaks of fast-moving RSOs and noise distributions, despite the inherent differences
caused by atmospheric interference in ground-based telescope images.

Figure 10: The spot comparison of our simulated image (left) and the real observed image with a
ground-based telescope (right). The star has a visual magnitude of 8.6.
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Table 9: Comparison of tracked position from the telescope and SGP4 propagation simulator.

Telescope Simulator Difference
Time Stamp 2023-12-25T01:40:20.97 2023-12-25 01:40:20.999994

RA (deg) 334.724 334.765 0.041
Dec (deg) 57.458 57.380 0.078

Time Stamp 2023-12-25T01:40:22.515 2023-12-25 01:40:22.513506
RA (deg) 335.003 335.037 0.034
Dec (deg) 56.580 56.520 0.060

Figure 11: The image comparison of our simulated image (left) and the real observed image with
a ground-based telescope (right). These simulation parameters are matched to the real observation
position and pointing directions.

In practice, false detections are typically filtered out during the tracking process. Objects detected in
only a single frame, which cannot be matched across multiple frames, are classified as false detec-
tions and removed. However, the lack of consecutive real images from ground-based observations
limited the ability to test tracking performance comprehensively on real-world data.

This evaluation highlights the correctness of our simulated image dataset SpaceSet, which aims to
bridge the gap and provide realistic space-based observational data for model training and testing.

A.7 MORE EXPERIMENTS

To demonstrate the performance of object detection and tracking methods on the SpaceSet-5000 and
SpaceSet-full datasets, additional experiments are conducted. Due to hardware limitations, only one
object detection method (YOLOv8m) and one multiple object tracking method (BoT feature yolo)
are used in these experiments. For the SpaceSet-5000 dataset, the detection results are presented
in Table 10, and the tracking results are shown in Table 11. The parameter GT represents the total
number of targets in the ground truth, while Total Predict indicates the total number of targets pre-
dicted by the model. Correct Predict is the total number of correctly predicted targets. The results in
the table demonstrate that the YOLOv8m model achieves high detection accuracy with a sufficiently
large dataset. The training process follows a 0.7:0.2:0.1 split for the training, validation, and test
datasets. The evaluation metrics for the multiple object tracking algorithm show the effectiveness of
the feature distance calculation method, based on YOLO feature extraction, in tracking RSOs.

Table 10: Detection results of the object detection model on SpaceSet-5000.

Model GT Total Predict Correct Predict Precision Recall F1 Score

YOLOv8m 75376 71565 56184 0.78 0.75 0.76

Similarly, for the SpaceSet-full dataset, the detection results are provided in Table 12, and the track-
ing results are listed in Table 13. Due to varying pointing directions between different cameras,
the captured images exhibit a degree of distribution shift. Additionally, training on multiple camera
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Table 11: Tracking results of the object tracking model on SpaceSet-5000.

Model Target Number Object Number Evaluation Metrics

Name Total Predict Real Predict Matches Misses FP IDs MOTA

BoT feature yolo 75376 55350 414 431 54965 20816 385 406 0.71

Table 12: Detection results of object detection model on SpaceSet-full.

Dataset GT Total Predict Correct Predict Precision Recall F1 Score

Cam1 44683 51631 31203 0.61 0.70 0.65
Cam2 75376 76260 52839 0.69 0.70 0.70
Cam3 97204 85684 62542 0.72 0.64 0.68
Cam4 84614 81314 58256 0.71 0.69 0.70

datasets may degrade the model’s performance on a single camera dataset. This issue introduces
the need to explore ways to enhance model generalization and continual learning capabilities in the
SSA field. Such exploration can promote the development of space object detection and tracking
algorithms with higher generalization capabilities.

Table 13: Tracking results of the object tracking model on SpaceSet-full.

Dataset Target Number Object Number Evaluation Metrics

Name Total Predict Real Predict Matches Misses FP IDs MOTA

Cam1 44683 26933 373 376 26464 18612 469 219 0.57
Cam2 75376 51770 414 404 51503 24278 267 357 0.67
Cam3 97204 60952 452 498 60792 36857 160 584 0.61
Cam4 84614 56433 426 623 55915 39119 518 616 0.64
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