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Abstract

Language-based AI systems are diffusing into society, bringing positive and nega-
tive impacts. Mitigating negative impacts depends on accurate impact assessments,
drawn from an empirical evidence base that makes causal connections between AI
usage and impacts. Interconnected post-deployment monitoring combines informa-
tion about model integration and use, applications, and real-world incidents and
impacts. For example, chain-of-thought and inference data can be combined with
monitoring social media for AI generated text, or monitoring societal indicators of
disinformation. Drawing on information sharing mechanisms in other industries,
we highlight example data sources and specific data points that governments and
their AI Safety Institutes could collect to inform AI risk management.

1 Interconnected Post-Deployment Monitoring of AI as a Government
Priority

People are increasingly exposed to AI systems in all areas of life. Language-based AI systems
are general-purpose technologies [1], meaning they may be deployed across contexts. Systems
like GPT-4, Claude, and Gemini are increasingly being integrated into workflows at Fortune 500
companies [2], public services [3], and in critical sectors like courts [4, 5] and health services [6].

Governments and the public have limited visibility into AI systems use and impacts. While many
applications are beneficial, adopting language-based AI systems also carries societal risks [7, 8, 9].
Applicants may be discriminated against based on their names, as recruiters screen CVs with AI
systems [10]; certain people’s jobs may be displaced [11, 12], and citizens’ data can be more readily
stolen through AI-assisted cyber attacks [13]. Despite these risks, very little information about how
AI is used and its impacts on society is available to governments or the general public [14], which
could allow harms to propagate unaddressed.

Pre-deployment information is insufficient to thoroughly assess AI risks. To understand AI risks,
governments and civil society have primarily developed mechanisms for gathering pre-deployment
information, such as model evaluations [15]. However, pre-deployment information can not fully
predict the downstream impacts of AI systems [16]. Risks ultimately arise from real-world usage,
and depend on complex interactions of AI systems with people and society. For instance, combining
systems with other tools can expand AI systems’ capabilities in unpredictable ways [17].
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Interconnected post-deployment monitoring can improve AI risk management through the use
of empirical evidence. By monitoring AI’s actual usage and impact, researchers can derive risk
taxonomies [18, 19] and acceptable risk tolerances [20]. Interconnected post-deployment monitoring
means 1) assessing risk by causally connecting different types of post-deployment information; for
example, connecting real-world AI impacts with information about where a model is integrated
and how it is used, and 2) connecting this causal risk assessment to specific mitigation strategies.
For example, studies investigating AI-boosted misinformation and persuasion could benefit from
increased visibility into AI usage in writing social media posts, to help inform causal connections
about whether and how AI increases the prevalence of disinformation.

Post-deployment monitoring has been at least partly effective in other industries, and more
effective when integrated into follow-up processes. The US Food and Drug Administration monitors
population-level impacts of drugs linked to individual doctor observations [21]; this helps it apply
new warning labels or, in the extreme case, remove a product from the market. Incident reporting
in healthcare works best when connected with corrective action procedures [22, 23]. Accident
monitoring and investigations by transport safety boards have sharply reduced fatalities across modes
of transport, but only in high-income countries [24]. The EU’s Digital Services Act 2022 monitors
content moderation decisions and aims to link them to structural levels of misinformation [25, 26].
More detailed industry comparisons are required [27, 28, 29].

Current, public post-deployment monitoring of AI systems is driven by civil society, with
limited capacity. Civil society organisations and researchers have revealed incidents, misuse and
adverse impacts of AI systems [30, 31]. While civil society plays an important role in conducting
post-deployment monitoring, restricted access to industrial information usually poses limits on its
ability to audit industry [32]. AI companies partly screen usage data and customers [33, 34], but lack
incentives to publicly share post-deployment information and monitoring tools [35, 36].

Given these restrictions and limitations on public access to post-deployment information, this position
paper argues that governments need to take an active role in conducting and incentivising
post-deployment monitoring. We contribute an overview of post-deployment monitoring and its
impacts (Section 2), a description of its challenges (Section 3) and recommendations for governments,
including identifying specific data points to request based on successes in other industries (Section 4).1
Current practices in post-deployment monitoring are based on large fields of research in social science
and computer science. We limit this overview to approaches directly related to general-purpose AI
models, acknowledging its inherent high-level nature.

2 What is Post-Deployment Monitoring of AI Systems?

Post-deployment monitoring increases visibility into AI models’ integration into applications, usage
of AI applications, and AI applications’ impacts on people and society. In figure 1, we categorise
post-deployment information by the stage in the supply chain at which it is available.

2.1 Types of Post-Deployment Information

Model Integration and Usage Information relates to how AI models are integrated into digital
applications. It includes information on how AI models are made available on the market, which
application providers use them, and which industries most readily adopt AI models and downstream
applications. An example is the US Census Bureau’s survey of companies’ AI use [12].

Governments and the public have little visibility into how different sectors deploy AI systems.
This hinders the ability to monitor cross-cutting risks like over-reliance on AI in certain sectors or
geographies, or market concentration and unequal access. Integration information can indicate when
and where these cross-cutting risks might emerge.

Application Usage Information relates to how an application is used in context. It is generated when
users interact with applications, ideally in the real world. It includes, for example, analysing AI system
logs [40], monitoring feedback about AI applications (e.g. model vulnerabilities [41, 42, 43]), or
conducting explicit sociotechnical field tests [44, 16]. Application usage data could also be collected

1These practices can be implemented in every jurisdiction that regulates AI systems. However, we draw on
examples in the EU, the US and the UK throughout this article.
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Figure 1: Information types for AI governance, categorised by supply chain stage. Some information
sharing involves structured documentation (disclosure-focused), some requires additional analysis
(assessment-focused). From Stein and Dunlop [37]. Information subcategories are superscript, and
are drawn from 1) the Foundation Model Transparency Index [38], 2) the International Scientific
report on the Safety of Advanced AI [39] and 3) the Sociotechnical Safety Evaluation Repository [16].

by monitoring online content for the appearance of AI outputs, which would be aided by requiring AI
watermarks [45], content provenance [46] and AI agent activity logs [47, 48] (Section 4.4).

Usage information is especially useful in industries requiring high levels of reliability, safety and
assured benefits. Understanding real-world AI usage is essential for assessing risk causally, thus
informing effective mitigation strategies [16]. Usage monitoring could find, for example, that a few
AI systems are used extensively in CV screening across many companies, which might correlate
discrimination risks [10]. It may also show an over-reliance on AI systems for specific tasks, e.g., in
critical infrastructure, which could then be reduced to prevent incidents [49].

Impact and Incident Information relates to tracking AI applications’ societal effects, and adverse
events and near-misses. It can be obtained through incident monitoring and reporting (see Section 4.1),
survey of affected populations [50, 51], observing socioeconomic indicators such as income disparity
or employment rates [1], or monitoring societal systems and infrastructure2. Entire research fields
investigate AI impact information.

2.2 Deployment Configurations: Different Supply Chain Actors’ Possession of Information

A single entity can fulfil one or many roles in the supply chain. For instance, OpenAI is the foundation
model developer, a host and application provider for ChatGPT. Commercial relationships between
entities affect information availability, due to customers’ expectation of confidentiality with their
vendor.

2Relevant societal functions to monitor could be prioritised based on ratings of their criticality [52, 53] and
marginal influence of AI
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Some deployment configurations, like open-source models and open centralised hosting, allow for
more publicly available post-deployment information and feedback. If open-weight models are hosted
privately, less information is available with centralised actors (e.g. Microsoft collects post-deployment
information centrally of the open Mistral Large model on Microsoft’s Azure servers [54]).

2.3 How Post-Deployment Monitoring of AI Could Inform Action

Empirical risk assessments could help inform institutional decision making. We briefly list non-
exhaustive mechanisms that could incorporate post-deployment information. As more governments
pursue AI regulation, risk levels could be measured through post-deployment monitoring, which
could support government decisions to require corrective action from AI developers on deployed
models [55]. Post-deployment information could also help set regulatory designations; designating
by training compute [56] has been criticised for overlooking post-deployment capability improve-
ments [57]. More generally, governments disseminating post-deployment information through, for
example, international reports [39], could help decentralised actors identify and prioritise interven-
tions that mitigate AI risk [58, 59]. Other, specific utilities of post-deployment information are listed
in Table 1.

3 Challenges for Governments Monitoring AI Post-Deployment

Implementing policies for post-deployment monitoring of AI systems poses challenges, some seen in
other industries, and others specific to AI technologies:

• User privacy. Users expect their AI system usage to be private, thus potentially input per-
sonal data in prompts. To monitor usage data directly, it’s necessary to employ consent-based
data donation [40] or privacy-preserving anonymisation and data analysis techniques [60].

• Costs and independence. Who pays the cost of compliance with post-deployment moni-
toring? Industry-funded monitoring, without appropriate incentive structures, can be low
quality [61]. Independent third-parties require appropriate access and funding [32].

• Information misuse. Collecting information about incidents and misuse could strategically
inform malign actors, requiring coordinated sharing mechanisms [55, 62].

• Commercial sensitivity. Information detailing the rate and distribution of AI integration may
reveal opportunities for competitors. Whilst current market players keep this information
private by default, limited public availability may promote wealth-creating competition [63].
Where governments have offered full confidentiality for post-market monitoring, conflicts
of interest can emerge between commercial activity and public safety [64, 65].

4 Recommendations for Governments on Post-Deployment Monitoring

Post-deployment monitoring and follow-up do not happen by default. We outline four recommenda-
tions for governments and AI Safety Institutes developing post-deployment monitoring processes.

4.1 Prioritise Incident Monitoring and Reporting with Causal Connection to AI System Use

Incident reporting and monitoring are commonly practiced in many regulated industries [66, 67],
and have proven at least partially effective in managing risks [22, 24]. These practices have inspired
efforts to evaluate how incident reporting could support AI risk management [68, 21, 69, 70, 71].
Several AI incident databases have already emerged from civil society [30, 72, 73, 74], collecting
their data from public channels. These have already informed analyses and taxonomies [75, 76, 77],
and have proven to help their users quantify AI harms [78].

To be effective, AI incident reporting and monitoring processes should be designed with clear policy
goals, typically one of learning or accountability [79]. These goals drive post-reporting actions,
such as sharing learning with relevant stakeholders [62, 80] or implementing safety measures [55].
Governments are often well-suited to facilitate these processes: they have the authority to mandate
reporting, act as neutral parties to encourage voluntary reporting, and can provide the resources and
authority for follow-up actions.
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Since it’s difficult to evaluate the most effective incident reporting processes in advance, governments
could adopt an iterative approach to their implementation. This would allow them to build expertise
and gain insight into reporting gaps over time. As a low cost starting point, government functions that
catalogue AI risks - like the UK’s Central AI Risk Function [81] - could monitor publicly available
data like news or incident databases to collect empirical evidence of AI harm, thus quantifying their
risk assessments. From there, governments could explore more involved proposals, such as developing
an ombudsman for citizens to report AI harms [82], mandating reporting for major AI incidents [68],3
and collating AI-related incidents from sector-specific regulators [83]. By conducting further root
cause analysis, policy teams could generate risk assessments that connect impact information with
usage and integration information, thus informing effective mitigation strategies.

4.2 Establish Mechanisms to Gather Post-Deployment Information

In this recommendation we outline several non-exhaustive strategies that governments and AI Safety
Institutes can employ to gather post-deployment information on AI systems and models. Their
respective utilities depend on the regulatory and industry context, and the nature of the monitored AI
system.

Voluntary Information Provision and Cooperation. Governments can gather information from AI
companies through both informal and formal channels for voluntary cooperation. This can involve
requests for specific statistics (examples given in Table 1), but could also involve companies providing
regular aggregated data streams: the UK’s Office for National Statistics receives aggregated data
from payment service providers [84], which could be a useful model for governments monitoring
AI integration and usage statistics. The UK and US AI Safety Institutes have already established
voluntary agreements with leading AI model developers to test their models before deployment [85,
86], and this framework could be expanded to include post-deployment data. Voluntary cooperation
strategies are lighter-touch and more flexible than making mandatory requests, but their success is
dependent on goodwill relationships, which may incur a selection bias in which companies provide
the most information to government [87].

Mandatory reporting through legislation. Mandatory reporting requirements ensures broad com-
pliance, which may be essential for obtaining safety critical information. Mandatory requests often
require legislative backing. A useful framework to consider for AI-related information requests is
the UK’s Digital Economy Act 2017, which empowers its Office for National Statistics to mandate
businesses to submit specific data through binding surveys [88]. The EU AI Act already mandates
certain post-market reporting, including metric reporting (Article 72) and documentation of serious
incidents (Article 73) [89]. An effective approach depends on governments having enough knowledge
to request targeted information [87].

Third-Party Research and Independent Monitoring. Academics and other third party institutions
play an important role in collecting and analysing post-deployment data, however their data access
is often limited to public sources [32]. Third parties have utilised alternative sources like Similar-
Web [90] and building independent datasets for AI usage [40]. Governments can support third party
efforts through funding [91], providing researcher access to non-public data [92], and otherwise
protecting and supporting third party investigations [32].

4.3 Request Initial Data Points and Build Analysis Capacity

By examining post-market information that has been useful in existing regulated industries, we
provide in Table 1 a preliminary, non-comprehensive list of data points that governments could
start requesting from companies in the AI supply chain. It includes: integration and model usage
information like usage by location and sector; application usage information like intended use case
and degree of tool use; and impact information like incident monitoring.

A full effort to understand AI risks would use these data points in combination with other data sources,
such as macroeconomic indicators and surveying affected populations. Together, causal connections
could be inferred between observed societal impacts and the data outlined in this table. For example,
the environmental impacts of AI could be inferred from inference volumes [93]. Economic disparities
across genders can be predicted using differing usage amounts [94].

3Definitions of major incidents are underway [68, 83]
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Gathering and learning from information as a government is likely to be an iterative process of
identifying an informative data point, requesting it from industry, analysing the provided data, then
evaluating its usefulness to generate new lines of inquiry. Requesting and analysing information
requires staff time, which governments could hire-in directly [28], fund [91], or facilitate by incen-
tivising a third-party ecosystem [32, 16]. Despite access limitations, third party organisations should
not be overlooked; in the past, they have advocated for monitoring functions and the enforcement of
the Digital Services Act through analysing public data [95].

4.4 Support Technical Governance Methods that Increase Visibility

As AI outputs become more prevalent, governments should continue to encourage adoption of
visibility-building technologies like content provenance [46] and watermarking [45]. As language-
based AI agents are developed and become more prevalent, governments should proactively support
corresponding visibility standards [48]. This includes AI agents outputting identifiers, informing
companies and individuals about when they are interacting with agents, indicating where possible
which developer is accountable, and otherwise creating visibility that third-party researchers could
analyse.

Visibility into AI agent behaviour may also involve analysing logs [47]. Researchers have pre-
served privacy by conducting test tasks, however technical solutions may enable monitoring of real
agents [60]. In any case, government agencies should work with agent developers to understand
agent behaviour and human-agent interaction early in this technology’s development to identify risks,
inform technical processes that mitigate them, and surface ways that companies and individuals
should adapt to the diffusion of AI agents [59].

5 Conclusion and Future Work

In this paper, we have argued for the critical importance of interconnected post-deployment monitoring
of AI systems by governments and their AI Safety Institutes. We suggest causally connecting three
kinds of post-deployment information: model integration and usage, application usage, and impact
and incident data. We recommend that governments begin building this information ecosystem by:

• Prioritising incident monitoring and reporting, with causal links to AI system use.
• Implementing mechanisms to gather post-deployment information.
• Requesting specific data points from AI companies and build analysis capacity.
• Supporting technical governance methods that increase visibility of AI systems.

We call on the technical and AI governance research communities and AI companies to support these
measures, which requires future work on assessing the effectiveness of different post-deployment
monitoring approaches and using privacy-preserving techniques to build more post-deployment
datasets like WildChat [40] across different sectors and applications.
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Table 1: Examples data points for post-deployment monitoring.

Data Point Utility Downsides Analogies
Integration and model usage information (usually provided by model hosts)
Size of user-base,
including total
inference volume.

Allocate research by
measuring prevalence
and growth in AI
applications.

Data is coarse, and
survey may suffice.

EU Digital Service Act
regulation only covers
platforms with > 45M
active EU users [26].

Usage by sector,
e.g. inference
volumes by
Standard Industrial
Classification code.

Identify potential
structural risks like
over-reliance and
market concentration
in critical sectors.

Revealing market
gaps across industries
may be commercial
sensitive.

The US Census Bureau
collects usage
information by survey to
understand AI’s impact
on employment [12].

Usage by location,
e.g. inference
volume per region.

Monitor adoption
effects, e.g.
comparing economic
outcomes with
regional AI use.

Revealing market
gaps across
geographies may be
commercially
sensitive.

Regional differences are
commonly measured to
inform digital inclusion
strategies [96].

Model host
downtime, e.g.
minutes/month of
unavailability.

Minimise economic
and other harms from
downtime as AI
reliance grows.

Competitive markets
already incentivise
minimal downtime
(see ’service level
agreements’).

The UK’s Financial
Conduct Authority
monitors payment
service providers’
up-time (e.g. Visa [97]).

Application usage information (usually provided by application developers)
Intended use case
of an AI request,
e.g. CV screening,
therapy, medical.

Prioritise regulatory
response based on
prevalence of use
cases.

Revealing market
gaps in use-cases may
be commercially
sensitive.

The US Food and Drug
Administration monitors
drug usage as part of
broader
evaluations [98].

Degree of tool use
in AI applications
(e.g., web browser
access).

Assess AI’s potential
to operate
autonomously.

Revealing specific
tool usage may be
commercially
sensitive.

AI-specific data point,
discussed in [48].

Anonymised chat
logs, with user
consent [40].

Support research on
AI impacts like
sycophancy,
over-reliance and
safeguard failures.

Important privacy
concerns. User
awareness of sharing
causes sampling bias.

The UK’s Office for
National Statistics
receives anonymised
payment data from
providers [84].

Incident and impact information (usually better informed by observation)
Misuse statistics,
e.g. declined
requests and
account closures.

Measure scale of
misuse and safeguard
efficacy.

Reporting misuse may
incentivise under-
detection, and could
inform attackers.

EU Digital Service Act
requires transparency on
moderation decisions
and incidents [99].

Incident
monitoring and
reporting to
identify or quantify
harm.

Prevent repeated AI
failures by informing
legislation or
safeguards [30].
Respond to crises.

Compliance costs,
and difficulty scoping
an AI incident.

Incident reporting has
precedent in multiple
industries [68, 70].

Societal Impacts Statement

This paper aims to increase visibility of AI’s societal impacts. However, increasing visibility naturally
raises privacy concerns. In this paper, the most privacy-sensitive policy we discuss is the analysis
of users’ chat logs to help understand AI usage (other metrics we discuss are usually aggregated
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and/or carry no personal information, only high-level statistics about usage). Analysis of usage
is already conducted by foundation model providers for misuse monitoring, and is usually highly
automated (meaning few humans require access to chat logs). Monitoring usage information should
be carried out using best practice developed for those purposes, with a minimal set of employees able
to view personal data. When considering data sharing agreements, governments and other actors
should: follow data protection laws in the relevant jurisdiction(s) at a minimum; ensure data sharing
agreements are clear and transparent to users; and take every effort to conceal or remove personal
data using privacy-preserving technologies.
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