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ABSTRACT

Diffusion models have achieved impressive performances on generative tasks in
various domains. While numerous approaches are striving to generate feature-
rich graphs to advance foundational science research, there are still challenges
hindering generating high-quality graphs. First, the discrete geometric property of
graphs gains difficulty in capturing complex node-level dependencies for diffusion
model. Second, there is still a gap to simultaneously unify unconditional and
conditional generation. In this paper, we propose a subgraph latent diffusion model
to jointly address above challenges by inheriting the nice property of subgraph.
Subgraphs can adapt diffusion process to discrete geometric data by simplifying
the complex dependencies between nodes. Besides, subgraph latent embedding
with explicit supervision can bridge the gap between unconditional and conditional
generation. To this end, we propose a subgraph latent diffusion model (SubDiff)
by taking subgraphs as minimum units. Specifically, a novel Subgraph Equivariant
Graph Neural Network is proposed to achieve graph equivariance. Then a Head
Alterable Sampling strategy (HAS) is devised to allow different sampling routes
along diffusion processes, unifying the conditional and unconditional generative
learning. Theoretical analysis demonstrate that our training objective is equivalent
to optimizing the variational lower bound of log-likelihood. Extensive experiments
show SubDiff achieving better performance in both generative schemes.

1 INTRODUCTION

Diffusion models (DMs), as a novel generative paradigm, have achieved numerous impressive results
in the image and text generation (Ho et al., 2020; Song et al., 2020; Dhariwal & Nichol, 2021; Li
et al., 2022). Inspired by non-equilibrium thermodynamics theory, DMs model the learning process
as Markov chains trained with variational inference (Sohl-Dickstein et al., 2015). They consist of two
stages (chains), i.e., forward diffusion and reverse denoising. The forward process gradually adds
noise to original data, while the backward process reverses the noise by a learnable denoising neural
network. The generative process is to feed random noise and recover to a well-trained denoising
neural network. Prior practices of DMs are mainly concentrated in the domains of image and text.
Recently, graph diffusion models have been extensively studied to advance foundational science
research (Wu et al., 2022; Xu et al., 2023). However, there are still some challenges that have not
been well solved, i.e., the difficulty in modeling discreteness of geometric data and the gap between
unconditional and conditional generative learning.

The discreteness of geometric data introduces tremendous challenges to diffusion models on graph
domain (Fan et al., 2023). Actually, the key problem lies in that the complex intrinsic dependencies
among nodes are non-trivial and not explicit to be captured by generative frameworks. Previous
studies with node-level diffusion tend to destroy the rich semantic dependencies of the original graph
(Xu et al., 2022; Hoogeboom et al., 2022; Xu et al., 2023). Empirical evidence has verified this
view in Appendix A.2. We observe most invalid samples generated by node-level generative models
trap into the insufficient understanding of node-wise connections. We argue that the reason is that
graph generative models generate not only the features of each node but also the complex semantic
association between nodes. Therefore, the reason can lie in that the diffusion of each node or edge
cannot be modeled as an independent event.

Besides, there still exists huge gap between unconditional (Un-G) and conditional (Con-G) generative
models (Ho & Salimans, 2022; Liu et al., 2023; Fan et al., 2023). Previous works learn Un-G and
Con-G respectively by twice-trained paradigm. The reason for this training pattern is that they have
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their own training expectations. Un-G focuses on the diversity of generated samples, while Con-G
is expected to generate samples with desired properties. Actually, these two generative schemes
should not be contradictive. Con-G is essentially the resampling of desired property from Un-G
sampling space, and the space of Un-G is the combination of all conditionally generated sampling
space. However, pervious independent training paradigm fails to bridge the mutual relationships
between Un-G and Con-G.

Present work. We propose a subgraph-level latent diffusion model (SubDiff) to address these
challenges. SubDiff takes subgraph latent embedding as the minimum unit in diffusing and sampling
to overcome the complex intrinsic dependencies between nodes, and further proposes a Head Alterable
Sampling strategy (HAS) to unify Un-G and Con-G models.

Subgraph has natural advantages to accommodate discrete non-Euclidean geometries (Zhao et al.,
2021; Yang et al., 2023; Zhang et al., 2021). On the one hand, subgraph-level modeling can simplify
most connections between nodes, which can alleviate the challenges posed by complex dependencies
in graphs (Yu & Gao, 2022). On the other hand, taking subgraph as a minimum unit of graph
is a common inductive bias in various science domains, such as functional groups in molecules,
which benefits exploring more interpretable generative models. However, bringing subgraphs into
diffusion learning scheme raises two critical questions, i.e., how to extract subgraph and how to
guarantee subgraph-level equivariance. We first summarize that the veracity of subgraph and the
sufficiency of subgraph set are the key to extracting subgraphs. Thus, we employ a frequency-based
subgraph extractor following MiCaM (Geng et al., 2023), and we propose a subgraph-level equivariant
architecture (SE-GNN).

We attempt to unify Un-G and Con-G by predefining appropriate sampling sapce. Based on this,
we design a head-alternable sampling strategy in our generative model, to achieve such unification.
Specifically, labels can be exploited as an explicit supervision during the training process of Autoen-
coder (AE). Different from traditional latent diffusion models, supervised information is conducive to
obtaining interpretable subgraph latent embedding with meaningful property. This intuition empowers
a great potential to integrate condition into unconditional models. To this end, we first investigate how
to map the latent embedding space with the supervision, and then devise a Head Alterable Sampling
strategy for integrating unconditional and conditional generation into one unified model.

Our study achieves following observations and contributions. First, we propose a paradigm of
subgraph-level latent diffusion (SubDiff) to counteract the discreteness challenge in graphs generation.
Then, a frequency-based subgraph extractor Geng et al. (2023) is utilized and a novel subgraph
equivariant framework is propsoed to encode subgraph latent embedding. Secondly, we unify the
unconditional and conditional generation models from the perspective of sampling space. HAS is
proposed and various empirical results verify its excellent performance. Besides, theoretical analysis
shows that our training objective is equivalent to optimizing the variational lower bound of the
log-likelihood. Third, we conduct detailed evaluations on multiple benchmarks. All empirical results
demonstrate that SubDiff is with superior capacity to accommodate graphs, and achieves a unified
generative learning paradigm.

2 RELATED WORK

Generative Models on Graph. Driven by recent advances in Deep Neural Networks (DNNs)
techniques, deep generative models, such as variational autoencoder (VAE) Simonovsky & Komodakis
(2018), Generative Adversarial Networks (GAN) De Cao & Kipf (2018) , and normalizing flows
Luo et al. (2021), have largely improved the generation performance for graph-structured data. To
further improve the generative modeling capacity, diffusion models are proposed and widely used in
graph generation tasks (Peng et al., 2023; Wu et al., 2022; Austin et al., 2021). Among them, the
stable (latent) diffusion model is verified to have superior performance (Rombach et al., 2022; Xu
et al., 2023). Actually, all diffusion models are node-wise operations. The only difference among
numerous practices is whether the diffusion process based on specific graph structure or node-level
embedding. There are few methods considering the effect of complex dependencies between nodes
on diffusion process (Fan et al., 2023). Besides, there still exists huge barrier between unconditional
and conditional generation, where a joint unconditional-conditional learning task follows a multi-time
training paradigm. Along the line of diffusion models, we propose to alleviate the influence of
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Figure 1: The architecture of SubDiff. a: Subgraph extractor aims to find high-frequency subgraphs
in each graph and combine into a subgraph dictionary. b: The latent embedding space of two graphs
with opposite solubility characteristics (LogP). c: Our subgraph latent diffusion model achieves
Head Alterable Sampling, i.e., HC and HU denotes conditional and unconditional generation head
respectively.

complex node-level dependencies, and bring unconditional and conditional generative patterns into a
unified training paradigm.

Subgraph Learning. Subgraph learning aims to extract a bag of subgraphs to enable models to
achieve more powerful representation ability (Yang et al., 2023; Frasca et al., 2022). This idea is
also used to advance fundamental science research (Geng et al., 2023). The key consensus of these
researches is that subgraph-level equivariance is vital in learning subgraph embedding (Bevilac-
qua et al., 2021). In this work, based on this intuition, we present a subgraph-level equivariance
architecture to achieve subgraph diffusion model.

3 PRELIMINARY

Notations. In this paper, we consider undirected graphs G = (X , E), where X denotes the feature all
nodes and E represents the connection information of nodes. GS is the set of subgraphs extracted by
G. zG and zGS

represent graph latent embedding and subgraph-level representation set respectively.

3.1 PROBLEM DEFINITION

The challenges to graph latent diffusion models are two-fold. First, the discreteness of graph
data increase the difficulty in comprehending the complex node-level dependencies. Second, the
unification of unconditional and conditional generative schemes is the second challenge. Therefore,
we consider the following two targets in this paper.

(I) Achieve subgraph-level generation process. Subgraph-level study can directly model the
inherent substructure thus detouring the complex dependencies between nodes. Given a graph G,
our goal is to achieve subgraph-level diffusion and denoising, which raises an even challenge of
extracting subgraphs.

(II) Unify unconditional and conditional generative patterns. Different from previous twice-
trained generative models, our goal is to unify the two generative paradigms into one model. This
calls for finding out the commonality and unified learning scheme via embedding space.
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3.2 DIFFUSION MODELS

Diffusion models (DMs) learn data distributions by modeling the reverse of a diffusion process, which
constructs two Markov chains. (Xu et al., 2023; Ho et al., 2020) They respectively diffuse the data
with predefined noise and reconstruct the desired samples from the noise.

In the forward diffusion chain, DMs gradually add Gaussian noise to data x(t) from raw data
distribution x0 ∼ q(x0) for t = 1, ..., T , where x0 denotes G in graph diffusion model.

q(x(t)|x(t−1)) = N (x(t);
√
1− βtx

(t−1), βtI), q(x(1:T )|x(0)) =

T∏
t=1

q(x(t)|x(t−1)) (1)

where βt ∈ [0, 1] represents the variance of the Gaussian noise added at time step t.

In the reverse denoising chain, DMs reconstruct original data from x(T ) using pθ parameterized by θ.

pθ(x
(t−1)|x(t)) = N (x(t−1);µθ(x

(t), t), ρ2t I), pθ(x
(0:T )) = p(x(T ))

T∏
t=1

pθ(x
(t−1)|x(t)) (2)

where the µθ is neural network, and the variance ρt is also predefined. Since q(x(1:T )|x(0)) can be
viewed as a fixed posterior, the learning process of DMs is to train pθ.

The variational lower bound of the likelihood of the data is given by,

log p(x(0)) ≥ log pθ(x
(0)|x(1))︸ ︷︷ ︸

Lreconstruct

−DKL(q(x
(T )|x(0))||p(x(T )))︸ ︷︷ ︸
Lprior

−
T∑
t=2

DKL(q(x
(t−1)|x(t), x(0))||pθ(x(t−1)|x(t)))︸ ︷︷ ︸

Ldenoise

(3)

Thus, pθ is trained to maximize the variational lower bound of the likelihood of over all samples,

Lvlb = Lreconstruct + Lprior + Ldenoise (4)

3.3 SUBGRAPH LEARNING

Subgraph learning aims to extract a bag of subgraphs GS = {G1
S , ..., G

k
S} to alleviate the deficiency

caused by node-wise graph representation methods (Frasca et al., 2022; Miao et al., 2022; Yang et al.,
2023). Actually, this practice is proved to be more expressive and interpretable both theoretically
and empirically. Specifically, predefined structure and learnable discovery are two lines of research
for subgraph extraction. The former achieves outstanding performance in the theoretical research of
model expressiveness and some domain-special subgraph learning methods. The latter focuses more
on analyzing the causal relationship between subgraphs and labels.

It is known that equivariance plays a significant role in graph representation (Bevilacqua et al., 2021).
Similarly, subgraphs, which extracted from a whole graph, are faced the same equivariance issue. To
this end, if f(τ ·GS) = τ · f(GS) always holds on for any permutation τ acting on subgraphs, then
f is equivariant. In molecular generation task, we focus on the Euclidean group E(3) generated by
translations and rotations in 3D space (Xu et al., 2023).

4 SUBDIFF: SUBGRAPH LATENT DIFFUSION MODEL

In this section, we introduce the subgraph latent diffusion model (SubDiff), which consists of two
major components, i.e., Subgraph-level Equivariant Graph Neural Network (SE-GNN) for encoding
and Head Alterable Sampling (HAS) for unifying unconditional and conditional generative schemes.

4



Under review as a conference paper at ICLR 2024

4.1 SUBGRAPH-LEVEL ENCODING IN DIFFUSION PROCESS

The discrete nature of graphs, different from image data with continuous space, blocks the exploration
of diffusion models in geometry domain. Subgraphs have natural advantages for discrete non-
Euclidean geometries (Miao et al., 2022; Zhao et al., 2021). We propose subgraph-level latent
diffusion model, which takes the subgraphs latent embedding as the minimum unit for diffusing and
denoising. The use of subgraphs gives rise to a series of new questions, i.e., how to extract subgraph
and how to guarantee subgraph-level equivariance. Next, we will gradually answer them.

During the generation process, we should determine the type set (dictionary) of all elements, such
as atoms type in node-level molecules generation. This requires us to extract interpretable and
sufficient subgraphs. Thus, we point out that the veracity of each subgraph and the sufficiency
of subgraph dictionary should be primarily guaranteed in the stage of subgraph discovery. The
veracity refers to the extracted subgraphs should be domain-meaningful, while the sufficiency means
that we should extract all domain-related subgraphs to support subgraph dictionary. In the case of
molecular generation, it is very significant to extract meaningful functional group (subgraph) structure
and build a sufficient subgraph dictionary. In our work, we follow MiCaM (Geng et al., 2023), a
frequency-based subgraph extractor, to guarantee veracity and sufficiency. This method identifies the
highest frequency subgraph pairs, and merge them into an entire fragment (subgraph). Compared
with the learnable subgraph extraction methods, frequency-based strategies enjoys the nice capacity
to extract accurate and sufficient subgraphs.

Although subgraph can effectively detour most complex connections between nodes, subgraph-level
equivariance still needs to be considered. Given the subgraph set GS = {G1

S , G
2
S , ...G

k
S} extracted

by G, Equation 5 should always hold on for any subgraph-level permutation operation τ .

τ · Eϕ(GS) = Eϕ(τ ·GS), τ · Dξ(zGS
) = Dξ(τ · zGS

) (5)

Subgraph Equivariant Graph Neural Network. We propose the equivariant subgraph learning
architecture SE-GNN. It consists of the siamese component (L1) and the information sharing compo-
nent (L2). The encoder L1 independently acts on each subgraph, while L2 forces to capture sharing
information across subgraphs via taking reconstructed graph with subgraph as input. In practice,
SE-GNN can also support the equivariance properties of E(3) symmetries, i.e., 3D translation and
rotation. More details are shown in Section 5.3.

(L(X , E))i = L1(Xi, Ei) + L2(XS , ES) (6)

(L(X , E))i represents the output of the layer on the i-th subgraph. (Xi, Ei) denotes the i-th subgraph
element, and (XS , ES) indicates reconstructed graph with the unit of subgraph.

4.2 UNIFYING UNCONDITIONAL AND CONDITIONAL GENERATIVE MODEL

The diversity and specificity of sampling space are the focuses of unconditional and conditional
generative schemes respectively, which leads to their different learning preferences. In other words,
unconditional generative models aim to obtain broader sampling space ΩU via pθ : ΩN → ΩU ,
while conditional sampling is more focused on acquiring more specific sampling space ΩCi by
pψ : (ΩN , yi)→ ΩCi . We define ΩCi to represent the sampling space with yi as the condition. ΩN

represents the standard Gaussian space, and ΩU denotes the unconditional sampling space.

However, we argue that these two generative processes should not be contradictive. The conditional
generative space can be viewed as the conditional distribution p(ΩCi |ΩU , yi), while unconditional
sampling space is the union of all properties spaces. Previous twice-trained generation models are
difficult to build a bridge between unconditional and conditional schemes, due to their indepen-
dent training parameters and different learning preferences. Therefore, we propose an insightful
proposition from the perspective of sampling space to unify these two generative schemes.

Proposition 1. Let ΩU and ΩCi be unconditional and yi-conditioned sampling spaces respectively,
where i = 1, ..,m. If there exists ΩCi ⊂ ΩU and

⋃
i∈[m]

ΩCi = ΩU , then unconditional and

conditional generative models can be unified.
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This proposition delivers that the efforts from the perspective of sampling space have the potential
to build a bridge between unconditional and conditional generative schemes. Now we provide a
practical implementation with HAS to achieve their unity.

In the training stage, we propose a unified diffusion model with supervised information. Specifically,
the label information is used as the prior constraint to obtain domain-specific subgraph latent repre-
sentation in the training process of AE. Different from variational autoencoder (VAE) using standard
Gaussian to constrain latent representation (Simonovsky & Komodakis, 2018), we personalize the
prior distribution N (µi, I) for each property yi to constrain graph latent embedding. In other words,
we expect each sample with label yi satisfying

zG= pooling(zGS
) ∼ N (µi, I) (7)

where pooling is MEAN operation. This enables the diffusion process to be guided by a supervised
latent representation, which is also designed as the beginning of conditional generative process in our
work. Thus, the practical training objective of AE is

LAE = Lrecon + Lreg = −Epϕ(z(0)
GS

|G)
[log pξ(G|z(0)GS

)] +DKL(pϕ(zG|G)||p(zG)) (8)

We extract subgraphs and obtain subgraph-level latent representation. Next, we will discuss the
diffusion and denoising process of SubDiff. Analogous to traditional latent diffusion models, we can
train the model pθ by

LLDM = Eε∼N (0,I),t[w(t)||ε− εθ(x
(t), t)||2] (9)

where w(t) is set to 1 for each t.

The combined objective of SubDiff could be L := LLDM + LAE , and we provide a theoretical
analysis to prove that L is the variational lower bound of the log-likelihood.
Theorem 1. Let L := LLDM + LAE . L is a variational lower bound to the log-likelihood , i.e.,
there is hold on for any G,

Epdata
[log pϕ,ξ,θ(G)] ≥ −L (10)

Proof. We denote z
(0)
GS

as the original latent representation of subgraph set zGS
. Then we have

Epdata
[log pϕ,ξ,θ(G)] = Epϕ(zGS

|G)[log
pξ(G|z(0)

GS
)p(z(0)

GS
)

pϕ(z
(0)
GS

|G)
]

≥ E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
[log

pξ(G|z(0)

GS
)p(z(0:T )

GS
)

pϕ(z
(0)
GS

|G)q(z
(1:T )
S |z(0)

S )
]

= E
pϕ(z

(0)
GS

|G)
[log pξ(G|z(0)GS

)]−DKL(q(z
(T )
GS
|z(0)GS

)||p(z(T )
GS

))

+Epϕ log
q(z

(T )
GS

|z(0)
GS

)

pϕ(z
(0)
GS

|G)
−

T∑
t=1

DKL(q(z
(t)
GS
|z(t−1)
GS

, z
(0)
S )||pθ(z(t−1)

GS
|z(t)GS

))

Except for the third term, the others are common training objective in diffusion models. Thus, we
further derive the third item,

Epϕ log
q(z

(T )
GS

|z(0)
GS

)

pϕ(z
(0)
GS

|G)
= E

pϕ(z
(0)
GS

|G),q(z
(t)
S |z(0)

S )
log

q(z
(t)
GS

|z(0)
GS

)p(z
(0)
GS

)

p(z
(0)
GS

)pϕ(z
(0)
GS

|G)

≥ −DKL(p(z
(0)
GS

)||pϕ(z(0)GS
|G))

We can conclude that this term can be viewed as a regularization term, which constrains latent
representation of graphs to prior distributions. Actually, our design in Equation 8 is corresponding to
above regularization. We complete the proof and the details are provided in Appendix B.

5 THE IMPLEMENTATION OF SUBDIFF

Above analysis provides a discussion of the research motivations and key innovations of subgraph-
level latent diffusion model. We will dissect the detailed implementations in this section.
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5.1 ENCODING LATENT EMBEDDING VIA SUPERVISION

Given that the well-trained latent space should follow the property of input graphs, it should be
learned with an explicit supervision. If the label values indicate the property evolution of an attribute,
such as the biological activity of molecular, the µi of each sample then should follow a successive
pattern representing by series of continuous values. If labels reveal pairwise inverse properties, the µi
and µj regarding two samples with opposite properties should keep far away in the latent space.

In the embedding distribution space, we construct a mapping function between labels and the latent
embedding space (described as a parameterized distribution), which enables achieving µi associated
with yi. As shown in Figure 1, we present two graphs with opposite solubility characteristics (LogP).
Thus, the huge distance between µ1 and µ2 expresses their inverse property. Besides the six properties
in our experiments with QM9 all indicate the evolution of attributes, we map the labels scale to
µi ∈ [I, 2I]. Details are provided in Appendix F.3.

Another note is that we directly constrain graph latent embedding rather than subgraph representation.
Thus, the same subgraph in various graphs have different latent embedding encodered by SE-GNN. It
is the context environment that determine the subgraph representation in different graphs.

5.2 TRAINING AND SAMPLING

With the proposed SE-GNN and HAS, we now present the training and sampling mechanism for
SubDiff.

During training, the primary question is how to train the AE component and denoising module. Most
practices of previous latent diffusion models have been proved that the two-stage training strategy
usually leads to better performance. In our implementation, we inherit such two-stage training
mechanism. First, we first train AE component to learn domain-special subgraph embeddings, and
then train denoising module on subgraph latent embeddings. A detailed description of the training
process is provided in Algorithm 1.

The HAS is our key technical contribution in the process of sampling. We design two sampling
beginning z

(T )
GS

and z
(0)
GS

to unify unconditional and conditional generation. z(T )
GS

is the beginning of
traditional unconditional methods, which samples from the standard Gaussian distribution N (0, I)

to the denoising module εθ. Given desired property yk, we sample z
(0)
GS

from distribution N (µk, I),
as the head of conditional generative process. We obtain the embedding of desired graph through
the cycle of diffusion and denoising process. Then, we reconstruct the subgraph via well-trained Dξ
. A detailed description of the training process is provided in Algorithm 2. And, we also provide
additional results about the setting of µi in Appdenix F.4.

5.3 3D MOLECULE GENERATION WITH SUBGRAPH

All neural networks used for the encoder, latent diffusion, and decoder, including Eθ and Dξ, are
implemented with SE-GNN. In SE-GNN, L1 and L2 are both basic backbones of GNNs to encode
graph data, which is implemented by GIN (Xu et al., 2018). Recently, extensive works focus
on generating molecules as 3D graphs (Xu et al., 2023; Hoogeboom et al., 2022). Actually, our
experimental analysis is based on 3D molecular generation tasks. Each molecule is represented as
point clouds G = (x,h, E), where x ∈ RN×3 is the atom coordinates matrix, h ∈ RN×d is the node
feature matrix, such as atomic type and charges, and E represents the connection information of nodes.
The presence of coordinate information makes 3D graph different from traditional graph. For graph G
with k subgraphs, we redefine G = (xGS

,hGS
, ES) from the perspective of subgraph. hGS

∈ RN×d

denotes node feature matrix, and ESi represents the connection information between subgraphs.
xGS

∈ Rk×3 represents subgraph-level coordinates matrix, where each element xGi
S
= 1

|Gi
S |

∑
v∈Gi

S

xv .

The reason of hGS
∈ RN×d is our SE-GNN learns subgraph feature via node-level training. We aim

to learn the latent embedding zGS
= (zxGS

, zhGS
). The function (zxGS

, zhGS
) = Eϕ(xGS

,hGS
) is E(3)

equivariant if for any translation vector t and orthogonal matrix rotation R, there exists:

RzxGS
+ t, zhGS

= Eϕ(RxGS
+ t,hGS

) (11)
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Table 1: Results of atom stability, molecule stability, validity, and validity×uniqueness. A higher
number indicates a better generationquality. The best results are in bold and the second best is
underlined. The results of Data can be viewed as the upper bounds of all metrics.

QM9 DRUG
Metrics Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%) Atom Sta (%) Valid (%)

Data 99.0 95.2 97.7 97.7 86.5 99.9
E-NF 85.0 4.9 40.2 39.4 - -

G-Schnet 95.7 68.1 85.5 80.3 - -
GDM 97.0 63.2 89.1 87.4 75.0 90.8
EDM 98.7 82.0 91.9 90.7 81.3 92.6

GEOLDM 98.9 89.4 93.8 92.7 84.4 99.3
SubDiff-VAE 98.9 90.3 93.9 91.0 84.7 98.8

NodeDiff 97.9 89.1 92.9 90.9 84.2 98.4
SubDiff 98.9 ± 0.1 91.1 ± 0.8 94.2 ± 0.3 91.4 ± 0.4 85.3 ± 0.4 99.5 ± 0.1

Inspired by (Satorras et al., 2021), we slightly adjust the structure of SE-GNN to ensure E(3)
equivariance. The feature and coordinate embedding are encoded by L1 and L2,

zhGS
, zxGS

=
(
L1(hGS

, EGS
), xGS

⊙ L2(x
(0)
GS

, ES)
)

(12)

where each element of x(0)
GS

is defined x
(0)

Gi
S

= λ
∑
j ̸=i
||xGj

S
− xGi

S
||2 and ⊙ represents the element-

wise multiplication. λ is a hyperparameter set to 1. Note that x(0)
GS

is calculated as the input of L2,
which is different from xGS

. This variant of SE-GNN can satisfy E(3) equivariance, we provide a
formal proof in Appendix C.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

Datasets. QM9 (Ramakrishnan et al., 2014) is one of the most widely-used datasets for molecular-
related tasks, which provides quantum chemical properties for a relevant, consistent, and compre-
hensive chemical space of small organic molecules. Following the common practice (Xu et al.,
2023), we evaluate the conditional generation ability of SubDiff with 6 properties: polarizability
α, orbital energies εHOMO, εLUMO and their gap ∆ε, Dipole moment µ, and heat capacity Cv.
GEOM-DRUG (Axelrod & Gomez-Bombarelli, 2022) is also one of the most popular datasets in
molecule generation tasks. We follow the implementation (Hoogeboom et al., 2022) to select the 30
lowest energy conformations of each molecule for training.

Baselines. Our baselines are two-fold, i.e., diffusion-based generative models and others. (i)
Equivariant Graph Diffusion Model (EDM) with its nonequivariant variant (GDM) (Hoogeboom
et al., 2022) are representatFive studies on graph diffusion models. Geometric Latent Diffusion Model
(GEOLDM) (Xu et al., 2023) is the first latent diffusion model for the molecular geometry domain.
(ii) G-Schnet (Gebauer et al., 2019) and Equivariant Normalizing Flows (E-NF) (Garcia Satorras
et al., 2021) are typical equivariant graph generative models, which are based on autoregressive and
flow-based models respectively.

Metrics. We evaluate the ability of SubDiff in unconditional and conditional generation. (i) In
unconditional generation task, we use atom stability (the proportion of atoms that have the right
valency) and molecule stability (the proportion of generated molecules for which all atoms are
stable), which are frequently used metrics in previous works (Hoogeboom et al., 2022) . Besides, we
report validity and uniqueness, which are the proportion of valid and unique molecules among all the
generated compounds (Xu et al., 2023). (ii) In conditional generation task, we test SubDiff on QM9
with 6 properties. We split QM9 and train a property prediction network ω (Hoogeboom et al., 2022).
Given a desired property C, we draw samples from the generative models and input them into ω to

8
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calculate their property values as Ĉ (Garcia Satorras et al., 2021). We employ the Mean Absolute
Error (MAE) between C and Ĉ to measure how close generated molecules to desired property.

6.2 MAIN RESULTS

Table 2: Mean Absolute Error for molecular property prediction. The
results of QM9 and Random can be viewed as lower and upper bounds
of MAE on all properties.

Property α
(Bohr3)

∆ε
(meV)

εHOMO

(meV)
εLUMO

(meV)
µ

(D)
Cv

( cal
mol

K)

QM9 0.10 64 39 36 0.043 0.040
Random 9.01 1470 645 1457 1.616 6.857

EDM 9.01 655 356 584 1.111 1.101
GEOLDM 2.37 587 340 522 1.108 1.025

SubDiff 2.03 466 286 477 1.079 1.010

Following previous graph
generation works, we gen-
erate 10000 samples from
each method to calculate
the above metrics. The
results of unconditional
and conditional genera-
tion are reported in Ta-
ble 1 and 2 respectively,
and we have the following
Observations:

Obs 1: In unconditional generation task, SubDiff is generally better than other generative
models. As shown in Table 1, we observe two main results, i.e. diffusion-based models are
generally superior to traditional generation strategies and SubDiff is superior to prior diffusion-based
frameworks. On the one hand, it demonstrates the dominance of diffusion mechanisms in generative
models. On the other hand, SubDiff marginally outperforms current popular diffusion models. We
argue that the reason is that the design principle based on subgraph play a crucial role in SubDiff.

Obs 2: Subgraph-level latent diffusion model is superior to the node-level ones. Compared with
GEOLDM, a node-level latent diffusion model, the performance of molecules generated by SubDiff is
more impressive. Except for uniqueness , SubDiff can achieve improvement than sub-optimal results
on other metrics. The reason is that subgraph-level generation greatly simplifies the complexity of
sampling process. Thus, all atoms inside subgraph are exactly with correct valency. This demonstrates
that subgraph-level design can effectively improve the quality of generated samples.

Obs 3: In conditional generation task, SubDiff can achieve outstanding performance in gener-
ating molecules with desired properties. As shown in Table 2, SubDiff significantly outperforms
baselines. The superior performance exhibits SubDiff’s higher capacity for conditional generation
and generate chemically realistic molecular geometries.

6.3 ABLATION STUDY

Our ablation studies aim to explore the effects of Lrecon and subgraph-level generation. We design
a variant of SubDiff with the same regularization term as VAE, named SubDiff-VAE. We also
degenerate our model to a node-level latent diffusion model NodeDiff with the objective of Lrecon,
which is totally different from GEOLDM. We keep SubDiff-VAE and NodeDiff with the same other
configuration as SubDiff. Table 1 shows the performance comparison of SubDiff with its variants. We
can observe the drop of NodeDiff and SubDiff-VAE performance. Specifically, SubDiff-VAE achieves
many sub-optimal results and the performance of NodeDiff decreases more. Two conclusions can
be reached, (i) subgraph-level study effectively promotes graph generation, (ii) the design of Lrecon
with supervised information not only unifies unconditional and conditional generation, but also can
improve the quality of generated graphs. More discussion is provided in Appendix F.6.

7 CONCLUSION

In this work, we propose SubDiff, a novel latent diffusion model with subgraph as generative unit.
To detour complex node-level dependencies in graph generations, we design a latent diffusion
model by taking subgraph as the minimum unit. Besides, SubDiff also breaks the barrier between
unconditional and conditional generative models via a Head Alterable Sampling strategy. We also
provide theoretical analysis to prove that the training objective of SubDiff is the variational lower
bound of the log-likelihood. Although subgraph-based graph generation achieves promising results,
the exploration of subgraph-level interactions and generation for much larger graphs can be left as
our future work.
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A BACKGROUND AND RESEARCH MOTIVATION

A.1 DIFFUSION MODEL

Diffusion models (DMs) learn data distributions by modeling the reverse of a diffusion process,
which constructs two Markov chains. They respectively diffuse the data with predefined noise and
reconstruct the desired samples from the noise.

In the forward diffusion chain, DMs gradually add Gaussian noise to data x(t) from raw data
distribution x0 ∼ q(x0) for t = 1, ..., T , where x0 denotes G in graph diffusion model.

q(x(t)|x(t−1)) = N (x(t);
√
1− βtx

(t−1), βtI), q(x(1:T )|x(0)) =

T∏
t=1

q(x(t)|x(t−1)) (13)

where βt ∈ [0, 1] represents the variance of the Gaussian noise added at time step t. The final diffusion
result is that samples x(T ) can approximately converge to standard Gaussians, i.e., q(x(T )) ≈ N (0, 1).
Note that this forward process q is predefined without trainable parameters.

In the reverse denoising chain, DMs gradually reconstruct the original data from x(T ) using pθ
parameterized by θ.

pθ(x
(t−1)|x(t)) = N (x(t−1);µθ(x

(t), t), ρ2t I), pθ(x
(0:T )) = p(x(T ))

T∏
t=1

pθ(x
(t−1)|x(t)) (14)

where the µθ is neural network, and the variance ρt is also predefined. Since q(x(1:T )|x(0)) can be
viewed as a fixed posterior, the learning process of DMs is to train pθ.

The variational lower bound of the likelihood of the data is given by

log p(x(0)) ≥ log pθ(x
(0)|x(1))︸ ︷︷ ︸

Lreconstruct

−DKL(q(x
(T )|x(0))||p(x(T )))︸ ︷︷ ︸
Lprior

−
T∑
t=2

DKL(q(x
(t−1)|x(t), x(0))||pθ(x(t−1)|x(t)))︸ ︷︷ ︸

Ldenoise

(15)

Thus, pθ is trained to maximize the variational lower bound of the likelihood of the data:

Lvlb = Lreconstruct + Lprior + Ldenoise (16)

Further, (Song & Ermon, 2019; Ho et al., 2020) suggest a simple surrogate objective:

LDM = Eε∼N(0,I),t[w(t)||ε− εθ(x
(t), t)||2] (17)

where xt = αtx0 + σtε, with αt =

√
t∏

s=1
(1− βs) and σt =

√
1− α2

t . We get εθ(x(t), t) from the

parameterized method µθ(x
(t), t) := 1√

1−βt
(x(t) − βt√

1−α2
t

εθ(x
(t), t)). And, the reweighting term

is w(t) := β2
t

2ρ2t (1−βt)(1−α2
t )

while it has been proven empirically that setting it as 1 can promote the
sampling quality. In the generation stage, we can draw samples with εθ by the iterative sampling:

x(t−1) =
1√

1− βt
(x(t) − βt√

1− α2
t

εθ(x
(t), t)) + ρtε (18)

where ε ∼ N (0, I).
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A.2 RESEARCH MOTIVATION

Table 3: The proportion of failure
samples that can be reconnected to
generate valid molecules (PRV).

PRV (%)
E-NF 70.3

G-Schnet 74.5
GDM 80.8
EDM 77.4

GEOLDM 67.4

We investigate failure samples generated by prior works. A
remarkable phenomenon we observe is most invalid samples
stem from incorrect understanding of dependencies (connec-
tions) between nodes not by generated node set. This means
that generative models always sampling correct nodes but fail
to understand their complex dependencies. We provide em-
pirical results in Table 3. For every generative models trained
on QM9, we investigate 1000 failure samples. We calculate
the proportion of these nodes that can be reconnected to form
valid molecules (PRV). It verifies the motivation of our study.

B THEOREM PROOF

Theorem 1. Let L := LLDM +LAE . L is a variational lower bound to the log-likelihood , i.e., there
is hold on for any G,

Epdata
[log pϕ,ξ,θ(G)] ≥ −L (19)

Proof. We interchangeably use z(0)GS
to denote original latent representation of subgraph set zGS

. Then
we have that,

Epdata
[log pϕ,ξ,θ(G)]

= Epϕ(zGS
|G)[log

pξ(G|z(0)

GS
)p(z(0)

GS
)

pϕ(z
(0)
GS

|G)
]

= Epϕ(zGS
|G)[log

∫
z
(1:T )
GS

pξ(G|z(0)

GS
)p(z(0:T )

GS
)

pϕ(z
(0)
GS

|G)
]

= Epϕ(zGS
|G)[log

∫
z
(1:T )
GS

pξ(G|z(0)

GS
)p(z(0:T )

GS
)q(z

(1:T )
S |z(0)

S )

pϕ(z
(0)
GS

|G)q(z
(1:T )
S |z(0)

S )
]

≥ E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
[log

pξ(G|z(0)

GS
)p(z(0:T )

GS
)

pϕ(z
(0)
GS

|G)q(z
(1:T )
S |z(0)

S )
]

= E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
[log pξ(G|z(0)GS

) + log
p(z(0:T )

GS
)

pϕ(z
(0)
GS

|G)q(z
(1:T )
S |z(0)

S )
]

= E
pϕ(z

(0)
GS

|G)
[log pξ(G|z(0)GS

)] + E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
[log

p(z(0:T )

GS
)

pϕ(z
(0)
GS

|G)q(z
(1:T )
S |z(0)

S )
]

= E
pϕ(z

(0)
GS

|G)
[log pξ(G|z(0)GS

)] + E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
[log

p(z
(T )
GS

)
T∏

t=1
pθ(z

(t−1)
GS

|z(t)
GS

)

pϕ(z
(0)
GS

|G)
T∏

t=1
q(z

(t)
GS

|z(t−1)
GS

,z
(0)
S )

]

= E
pϕ(z

(0)
GS

|G)
[log pξ(G|z(0)GS

)] + E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
[log

p(z
(T )
GS

)

pϕ(z
(0)
GS

|G)
+ log

T∏
t=1

pθ(z
(t−1)
GS

|z(t)
GS

)

q(z
(t)
GS

|z(t−1)
GS

,z
(0)
S )

]

= E
pϕ(z

(0)
GS

|G)
[log pξ(G|z(0)GS

)] + E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
log

p(z
(T )
GS

)q(z
(T )
GS

|z(0)
GS

)

q(z
(T )
GS

|z(0)
GS

)pϕ(z
(0)
GS

|G)

+E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
[log

T∑
t=1

pθ(z
(t−1)
GS

|z(t)
GS

)

q(z
(t)
GS

|z(t−1)
GS

,z
(0)
S )

]

= E
pϕ(z

(0)
GS

|G)
[log pξ(G|z(0)GS

)]−DKL(q(z
(T )
GS
|z(0)GS

)||p(z(T )
GS

))

+E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
log

q(z
(T )
GS

|z(0)
GS

)

pϕ(z
(0)
GS

|G)
−

T∑
t=1

DKL(q(z
(t)
GS
|z(t−1)
GS

, z
(0)
S )||pθ(z(t−1)

GS
|z(t)GS

))

Except for the third term, the others are common training objective in diffusion models. Thus, we
further derive the third item,
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Figure 2: The architecture of SE-GNN. SE-GNN consists of the siamese component (L1) and the
information sharing component (L2).

E
pϕ(z

(0)
GS

|G),q(z
(1:T )
S |z(0)

S )
log

q(z
(T )
GS

|z(0)
GS

)

pϕ(z
(0)
GS

|G)

= E
pϕ(z

(0)
GS

|G),q(z
(t)
S |z(0)

S )
log

q(z
(t)
GS

|z(0)
GS

)p(z
(0)
GS

)

p(z
(0)
GS

)pϕ(z
(0)
GS

|G)

= E
q(z

(t)
S |z(0)

S )
log

q(z
(t)
GS

|z(0)
GS

)

p(z
(0)
GS

)
+ E

pϕ(z
(0)
GS

|G)
log

p(z
(0)
GS

)

pϕ(z
(0)
GS

|G)

≥ DKL(q(z
(t)
GS
|z(0)GS

)||p(z(0)GS
))−DKL(p(z

(0)
GS

)||pϕ(z(0)GS
|G))

We can easily conclude that this term can be viewed as a regularization term, which constrain latent
representation of graphs to prior distributions. Actually, our design in Equation 8 is corresponding to
it. Therefore, we can obtain following conclusion,

Epdata
[log pϕ,ξ,θ(G)] ≥ E

pϕ(z
(0)
GS

|G)
[log pξ(G|z(0)GS

)]︸ ︷︷ ︸
Reconstruction

−DKL(q(z
(T )
GS
|z(0)GS

)||p(z(T )
GS

))︸ ︷︷ ︸
Prior

−DKL(p(z
(0)
GS

)||pϕ(z(0)GS
|G))︸ ︷︷ ︸

Regularization

−
T∑
t=1

DKL(q(z
(t)
GS
|z(t−1)
GS

, z
(0)
S )||pθ(z(t−1)

GS
|z(t)GS

))︸ ︷︷ ︸
Denoising

= −ELBO

We finish the proof.

C EQUIVARIANCE PROOF

In this section we prove that our variant of SE-GNN is E(3) equivariant if for any translation vector t
and orthogonal matrix rotation R, there exists,

RzxGS
+ t, zhGS

= Eϕ(RxGS
+ t,hGS

) (20)

Proof. We analyze how a translation and rotation of the input coordinates propagates through our
model. Thus, we focus on the input of L2. Since x(0) is obtained by (x(0))i = λ

∑
j ̸=i
||xGj

S
− xGi

S
||2,

x(0) is invariant. The reason is that the distance between two particles is invariant to translations.

||(RxGi
S
+ t)− (RxGj

S
+ t||2 = ||RxGi

S
− xGj

S
)||2 = ||(xGi

S
− xGj

S
)||2 (21)

Therefore, we have

L2(x(0), ES) = L2(Rx(0) + t, ES) (22)
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We can further derive

(RxGS
+ t)⊙ L2(Rx

(0)
GS

+ t, ES) = (RxGS
+ t)⊙ L2(x

(0)
GS

, ES)

= R(xGS
⊙ L2(x

(0)
GS

, ES)) + t
= RzxGS

+ t

(23)

Thus, we can conclude RzxGS
+t, zhGS

= Eϕ(RxGS
+t,hGS

), where Eϕ is implemented by SE-GNN.
We have proven that the variant of SE-GNN can satisfy E(3) equivariance.

D DETAILS OF IMPLEMENTATION

In this section, the subgraph extraction and dictionary generation processes are presented. We also
provide detailed training and sampling process. 1

D.1 DETAILED MICAM

MiCaM Geng et al. (2023) consists with two phases: the merging-operation learning phase and
the motif-dictionary construction phase. This algorithm discovers the most common substructures
based on their frequency of appearance in the molecule dictionary. We define each molecule in D is
represented as a graph G(V, E), where the nodes V and edges E denote atoms and bonds respectively.

The merging-operation learning phase aims to learn the top K most common patterns from dataset
D, where K is a hyperparameter. For each G(V, E) ∈ D, we use a merging graph GM(VM, EM) to
track the merging status, i.e., to represent the fragments and their connections. In GM(VM, EM),
each node F ∈ VM represents a fragment (either an atom or a subgraph) of the molecule, and the
edges in EM indicate whether two fragments are connected with each other. MiCaM first initializes
each merging graph from the molecule graph by treating each atom as a single fragment and inheriting
the bond connections from G, i.e., G(0)

M (V(0)
M , E(0)M ) = G(V, E). MiCaM defines an operation ⊕ to

create a new fragment Fij = Fi ⊕ Fj by merging two fragments Fi and Fj together. The newly
obtained Fij contains all nodes and edges from Fi, Fj , as well as all edges between them. Then,
MiCaM iteratively updates the merging graphs to learn merging operations. In the merging graph
G

(k)
M (V(k)

M , E(k)M ) at the kth iteration (k = 0, ...,K − 1), each edge represents a pair of fragments,
(Fi,Fj), that are adjacent in the molecule. It also gives out a new fragment Fij = Fi ⊕ Fj .
MiCaM traverses all edges (Fi,Fj) ∈ E(k)M in all merging graphs G(k)

M to count the frequency of
Fij = Fi⊕Fj , and denote the most frequent Fij asM(k). Consequently, the k-th merging operation
is defined as: if Fi ⊕ Fj ==M(k), then merge Fi and Fj together. MiCaM applies the merging
operation on all merging graphs to update them into G

(k+1)
M (V(k+1)

M , E(k+1)
M ). We repeat such a

process for K iterations to obtain a merging operation sequence {M(k)}K−1
k=0 .

The motif-dictionary construction phase repeats this process for a pre-defined number of steps
and collect the fragments to build a motif dictionary. For each molecule G(V, E) ∈ D, MiCaM
applies the merging operations sequentially to obtain the ultimate merging graph GM(VM, EM) =

G
(0)
M (V(K)

M , E(K)
M ). MiCaM then disconnects all edges between different fragments and add the

symbols ∗ to the disconnected positions. The fragments with ∗ symbols are connection-aware, and we
denote the connection-aware version of a fragment F as F∗. The motif vocabulary is the collection
of all such connection-aware motifs: Dictionary = ∪GM(VM,EM)∈D{F∗ : F ∈ VM}.

1The code of SubDiff is available at https://anonymous.4open.science/r/SubDiff-6F90.
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D.2 DETAILED TRAINING AND SAMPLING

Algorithm 1: Training Algorithm of SubDiff
Input: graph data G = (X , E)
Output: encoder network Eϕ, decoder network Dξ, denoising network εθ

1 First Stage: Extract Subgraphs
2 GS ← G
3 Second Stage: Autoencoder Training
4 while Eϕ and Dξ have not converged do
5 zGS

← Eϕ(GS)

6 G̃S ← Dξ(zGS
)

7 LAE = Lrecon + Lreg
8 ϕ, ξ ← optimizer(LAE ;ϕ, ξ)
9 end

10 Third Stage: Latent Diffusion Model Training
11 while εθ have not converged do
12 z

(0)
GS
← Eϕ(GS)

13 t ∼ U(0, T ), ε ∼ N (0, I)

14 z
(t)
GS

= αtz
(0)
GS

+ σtε

15 LLDM = Eε∼N (0,I),t[w(t)||ε− εθ(x
(t), t)||2]

16 θ ← optimizer(LLDM ; θ)
17 end

Result: Eϕ, Dξ and εθ

Algorithm 2: Sampling Algorithm of SubDiff
Input: encoder network Eϕ, decoder network Dξ, denoising network εθ and condition C
Output: generative graph G

1 if C is None then
2 ε ∼ N (0, I)
3 else
4 yk ← C

5 ẑ
(0)
GS
∼ N (µk, I)

6 ε := z
(T )
GS
← ẑ

(0)
GS

7 end
8 for t← T, T − 1, ..., 1 do
9 z

(t−1)
GS

= 1√
1−βt

(z
(t)
GS
− βt√

1−α2
t

εθ(z
(t)
GS

, t)) + ρtε

10 end
Result: GS ∼ Dξ(zGS

)

E MORE RELATED WORKS

As a classic discrete graph diffusion model on molecule generation tasks, MDM(Huang et al., 2023)
give me some inspiration. Diffusion-based methods for generating molecules always suffer from
poor performance with large molecules and lack diversity. MDM addresses these challenges by
incorporating interatomic relations and using dual equivariant encoders to capture interatomic forces
of different strengths. It also introduces a distributional controlling variable to improve exploration
and increase generation diversity. Extensive experiments demonstrate that MDM outperforms existing
methods for both unconditional and conditional molecule generation tasks.

Besides, as one of early works on graph latent diffusion models, NVDiff (Chen et al., 2022) generates
novel and realistic graphs by taking the VGAE structure and uses SGM as its prior for latent node
vectors. More important, this work proven that the latent graph diffusion model has a proper
lower-bound of the graph likelihood.
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F SUPPLEMENTARY EXPERIMENTS

F.1 DETAILS OF THE DATASETS

QM9 (Ramakrishnan et al., 2014) is a widely used benchmark for the prediction of physical properties
of molecules in equilibrium. It consists of around 130k small organic molecules with up to 9
heavy atoms (C, O, N, and F). The properties are computed using density functional theory (DFT)
calculations. It provides quantum chemical properties for a relevant, consistent, and comprehensive
chemical space of small organic molecules.

GEOM-DRUG (Axelrod & Gomez-Bombarelli, 2022) is a larger scale dataset of molecular con-
formers. It features 430000 molecules with up to 181 atoms and 44.4 atoms on average. For each
molecule, many conformers are given along with their energy. From this dataset, we retain the 30
lowest energy conformations for each molecule. The models learn to generatethe 3D positions and
atom types of these molecules. One of the most notable features of GEOM-DRUG is that molecules
in this dataset are bigger and have more complex structures than QM9.

F.2 DETAILS OF THE BASELINES

EDM and its nonequivariant variant GDM (Hoogeboom et al., 2022) are representative studies on
graph diffusion models. EDM is an E(3) equivariant diffusion modelfor molecule generation in
3D, which scales better and can generate valid conformations while explicitly modeling hydrogen
atoms. GDM is the nonequivariant variant of EDM, which is design as an ablation architecture with
non-equivariant component.

GEOLDM (Xu et al., 2023) is the first latent diffusion model for the molecular geometry domain.
To address the limitations caused by prior models operating directly on high-dimensional, multi-
modal atom features, GEOLDM learns diffusion models over a continuous, lower-dimensional latent
space. By building point-structured latent codes with both invariant scalars and equivariant tensors,
GEOLDM is able to effectively learn latent representations while maintaining roto-translational
equivariance.

G-Schnet (Gebauer et al., 2019) is a autoregressive neural network, which is proposed for the
generation of 3d point sets incorporating the constraints of Euclidean space and rotational invariance
of the atom distribution as prior knowledge. It both incorporates the constraints of euclidean space
and the spatial invariances of the targeted geometries. This is achieved by determining the next
position using distances to previously placed points, resulting in an equivariant conditional probability
distribution.

E-NF (Garcia Satorras et al., 2021) is a generative model equivariant to Euclidean symmetries. E-NF
is continous-time normalizing flow that utilize an EGNN with improved stability as parametrization.

F.3 DETAILS OF LATENT EMBEDDING SPACE

In practices, we test the ability of SubDiff conditional generation with 6 properties: polarizability
α, orbital energies εHOMO, εLUMO and their gap ∆ε, Dipole moment µ, and heat capacity Cv. The
label embedding space for all these 6 properties is successive. For example, the dipole moment µ of
a molecule can be used to predict its polarity. A larger dipole moment of the molecule results in a
larger polarity. Based on the value of dipole moment, we map the mean µi of each element to [I, 2I].
Detailed setting is provided in Table 4.

F.4 THE SETTING OF µi

In our insights, we should maintain the semantic consistency between the facts of graph properties
and latent representation space, and graph properties are considered as the supervision signal in our
implementation. Thus, the assumption of the latent embeddings actually comes from the physical
facts.

Specifically, the setting of µi is to control the ‘distance’ between sample representations with property
value yi . In our implementations, since the six properties we use are all evolving continuous variables,
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Table 4: The setting of mean µi .
Property Description Unit Label Relation µi

α Isotropic polarizability a0
3 Continuous [I, 2I]

εHOMO Highest occupied molecular orbital energy eV Continuous [I, 2I]
εLUMO Lowest unoccupied molecular orbital energy eV Continuous [I, 2I]
∆ε Gap between εHOMO and εLUMO eV Continuous [I, 2I]
µ Dipole moment D Continuous [I, 2I]
Cv Heat capavity at 298.15K cal

molK Continuous [I, 2I]

Table 5: Results of the setting of µi.
Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)

SubDiff([0, I]) 97.8 ± 1.2 89.9 ± 1.6 91.4 ± 1.2 89.2 ± 1.9
SubDiff([I, 2I]) 98.9 ± 0.1 91.1 ± 0.8 94.2 ± 0.3 91.4 ± 0.4

we map the range of property values to k = [1, 2] and constrain the corresponding sample latent
representation by µi = kI ∈ [I, 2I] where I is the unit matrix.

I guess that you are confused about why µi ∈ [I, 2I] is used as the priori instead of [0, I]. We
experimentally explored this problem in the early stages of our research, and now show empirical
results on QM9 as below. In most evaluation metrics, different settings can achieve similar overall
performance, but [0, I]’s design is obviously more unstable.

F.5 EXTRACTED SUBGRAPH DICTIONARY

As described in Section 4.1, we present that the veracity of each subgraph and the sufficiency of
subgraph dictionary should be primarily guaranteed in the stage of subgraph discovery. The veracity
means that the extracted subgraphs should be domain-meaningful, while the sufficiency means that
we should extract all domain-related subgraphs to form subgraph dictionary. Thus, we provide visual
results of extracted dictionary. Figure 3 show the 3D subgraph dictionary extracted by MiCaM. We
obtain this dictionary according to the configuration of (Geng et al., 2023). Except for extracted
subgraphs, five atoms types (H, C, N, O, F) and integer-valued atom charges as atomic features are
also presented in the dictionary on the generation tasks based on QM9. For DRUG, we only add five
atom types to subgraphs dictionary.

F.6 ABLATION STUDY

The target of our ablation study is to explore the effects Lrecon and subgraph-level generation. Thus,
we design two variants of SubDiff to achieve our exploration. Table 1 shows the performance
comparison of SubDiff with its variants.

SubDiff-VAE is a variant of SubDiff obtained by replacing Lrecon with the same regularization term
as VAE. We observed the performance drop of SubDiff-VAE compared with SubDiff in all metrics.
This means that Lrecon contributes to generating excellent graphs. However, it is worth noting that
the SubDiff-VAE still obtains some sub-optimal results in some metrics. We argue that the design of
Lrecon mainly play a vital role in unifying unconditional and conditional generative schemes. It does
not cause significant performance degradation on unconditional generative tasks.

NodeDiff is a variant of SubDiff achieved by degenerating it to a node-level latent diffusion model. It
is with the objective of Lrecon, which is totally different from GEOLDM. Compared with SubDiff-
VAE, the performance of NodeDiff dropped more sharply. We argue that SubDiff is particularly
outstanding in the use of subgraph latent embedding. Subgraph latent diffusion can achieve great
improvement over node-based models. However, GEOLDM is stronger than NodeDiff on many
metrics. We think NodeDiff with Lrecon not appropriate. Subgraph have the characteristic of directly
determining the properties of graph, but node don’t have this characteristic. Thus, the design of
Lrecon with supervision is conducive to obtaining excellent subgraph latent embedding, but does not
contribute to good node-level latent embedding.
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Figure 3: The subgraph dictionary extracted by MiCaM on QM9.

The above discussion drives two conclusions, (i) subgraph-level study effectively promotes graph
generation, (ii) the design of Lrecon with supervised information not only unifies unconditional and
conditional generation, but also can improve the quality of generated graphs.

F.7 MORE VISUALIZATION RESULTS

In this section, we provide more visualizations of molecules generated from SubDiff. We mainly
analyze generated molecules with given conditions. We visualize the samples whose ∆ε are desired
labels (eV). Figure 4 shows some samples generated by SubDiff with given condition C and their
real labels Ĉ. We observe that most generated molecules are small size graphs. We argue that there
are two main reasons, i.e., the limitations of datasets and the preference to generate models.

For the limitations of datasets, we think more datasets with complex graph structure should be
proposed and explored. For the preference to generate models, the scale of generated samples perhaps
should also be considered in the model design process. These two issues will also be further studied
in our future works.
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Figure 4: The samples generated by SubDiff with given condition C and their real labels Ĉ (eV).
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