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Abstract

Recent advances in deep learning-based denoising methods have improved the quality of
Low-Dose CT (LDCT) images. However, due to anatomical variability and limited data
availability, a single model often struggles to generalize effectively across multiple anatomi-
cal regions. To address this limitation, we propose the Agent-Integrated Denoising Experts
(A-IDE) framework. A-IDE integrates three region-specialized RED-CNN models under
the control of a decision-making large language model (LLM) agent. This agent analyzes
anatomical priors extracted from BiomedCLIP and dynamically routes incoming LDCT
scans to the most suitable specialized model. We highlight three major advantages. First,
A-IDE shows robust performance in heterogeneous and data-scarce environments. Second,
the framework reduces risk of overfitting by distributing tasks among multiple experts.
Finally, the fully automated agent-driven routing eliminates the need for manual interven-
tion. Experimental results in the Mayo-2016 dataset confirm that A-IDE achieves superior
performance in RMSE, PSNR, and SSIM compared to a single unified denoiser.
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1. Introduction

LDCT significantly reduces patient radiation at the cost of increased noise and artifacts,
which can obscure diagnostic details and adversely affect clinical decision making (Zhang
et al., 2024a). Although deep learning-based methods like RED-CNN (Chen et al., 2017),
GANs (You et al., 2019), Transformers (Zhang et al., 2021), and Diffusion models (Zhao
et al., 2023) have shown notable success in denoising LDCT images, they typically rely on
single and generalized architecture. However, anatomical regions differ greatly in terms of
Hounsfield Unit (HU) intensity distributions, scanner protocols, and artifact characteristics.
As a result, not a single method consistently performs well across all regions (Deng and
Campbell, 2025). Furthermore, data scarcity and privacy constraints often lead models to
overfit on a limited range of anatomies or characteristics, particularly in underrepresented
or imbalanced categories (Won et al., 2021). These regional variations and limited data
highlight the need for context-aware, region-specific denoising frameworks (Chen et al.,
2023) (Yang et al., 2025).

To overcome these limitations, we propose A-IDE, which employs a decision-making
LLM agent to evaluate the anatomical context of each incoming LDCT image and orches-
trate the optimal denoising experts. First, the input CT image is processed by BiomedCLIP
(Zhang et al., 2024b) to generate an anatomical prior distribution over anatomical struc-
tures. This distribution, along with textual descriptions of three pretrained RED-CNN
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denoising models—each specialized for a distinct anatomical region—is passed to a LLM
agent (gpt-4o) (OpenAI, 2024). Guided by prompts detailing each model’s anatomical fo-
cus, the agent dynamically selects the most appropriate expert model for the given input.
The selected model then reconstructs the denoised image patches and reports quantitative
metrics. Our experimental results show that A-IDE achieves superior performance in terms
of PSNR, SSIM, and RMSE compared to baseline approach.

2. Methods

BiomedCLIP Semantic Similarities
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Liver: 0.000, Lungs: 0.9491, 
Spleen: 0.0053, Heart: 0.000, 
Chest: 0.0375, Spine: 0.031…

Model 0: This model tackles abdomen, spine, pancreas, and spleen.

Model 1: This model specializes in identifying prostate and pelvis.

Model 2: This model is optimized for lungs, spleen, and chest.

Cluster-Expert Model Descriptions

Prompt
Probability for each structures: 

Among three models, only choose a 
single model that best suits for analysis. 

Agent

Expert_0 Expert_1 Expert_2

v.s.

RMSE
PSNR (db)
SSIM

Figure 1: A-IDE Architecture.

We use the 2016 Low-Dose X-ray CT Grand Challenge dataset (Mayo-2016) (McCol-
lough et al., 2017), which includes paired LDCT and NDCT images from 10 anonymized
patient scans. Each 512×512 image is normalized and divided into non-overlapping 55×55
patches to yield 81 patches per image. To simulate anatomy-specific denoising, we cluster
the dataset into three groups based on semantic embeddings extracted from BiomedCLIP.
These high-dimensional vectors are reduced to two dimensions using Principal Component
Analysis (PCA) and clustered using K-means (k=3). We characterize each cluster by av-
eraging the anatomical structure probabilities over a randomly selected set of 100 images,
thereby capturing the dominant anatomical features within each group.

We train a baseline model and three cluster-specific expert models using the RED-
CNN architecture. The models are optimized using the Adam optimizer with an initial
learning rate of 1e-5, a mean squared error (MSE) loss, and a learning rate scheduler that
decays the rate to with a minimum threshold 1e-10. We then introduce an LLM-driven
agent that autonomously selects the most suitable expert model based on the anatomical
content of each CT image. Each image is first processed by BiomedCLIP to extract semantic
embeddings and generate a probability distribution over twenty anatomical structures. This
distribution, along with concise descriptions of the three specialized RED-CNN models, is
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passed as a prompt to a GPT-4o agent. Guided by this contextual information, the agent
selects the optimal model to perform patch-wise denoising.

3. Results and Discussion

Methods RMSE PSNR SSIM

Baseline 0.097±0.00164 43.06±1.73 0.9557±0.0125

Expert 0 0.097±0.00245 42.15±2.28 0.9483±0.0200

Expert 1 0.086±0.00165 43.33±1.82 0.9576±0.0107

Expert 2 0.107±0.00196 40.89±1.39 0.9435±0.0147

A-IDE 0.094±0.00169 43.42±1.72 0.9583±0.0110

Table 1: Evaluation metrics (mean ± standard deviation) for the baseline, cluster-specific
expert models, and the proposed A-IDE framework. A-IDE consistently outper-
forms the baseline in RMSE, PSNR, and SSIM, and achieves the highest PSNR
and SSIM scores among all models.

Table 1 presents the quantitative performance of all models in terms of RMSE, PSNR,
and SSIM. The single, generalized baseline model demonstrates competitive performance
across all metrics. However, the cluster-specific expert models, especially Expert 1, exhibit
superior performance due to training tailored to specific anatomical regions. The proposed
A-IDE framework effectively leverages the strengths of these individual anatomical experts
to deliver superior overall performance. Notably, A-IDE outperforms all individual expert
models in both PSNR and SSIM, demonstrating the effectiveness of the proposed frame-
work’s adaptive integration strategy in harnessing the complementary strengths of multiple
specialized denoisers to achieve more accurate and reliable reconstruction—particularly in
the presence of complex, overlapping, or anatomically ambiguous regions. As a result, A-
IDE achieves enhanced visual fidelity and structural preservation compared to both the
baseline and individual expert models.

4. Conclusion

Our results demonstrate the effectiveness of employing an intelligent agent to dynamically
route inputs to the most appropriate expert model. By harnessing the complementary
strengths of multiple specialized RED-CNN experts, the agent-driven A-IDE framework
achieves a balanced trade-off between low reconstruction error, high signal-to-noise ratio,
and accurate structural preservation. As a result, A-IDE delivers robust performance across
diverse imaging scenarios, positioning it as a promising solution for enhancing LDCT re-
construction in real-world clinical applications.
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