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Abstract

Time series prediction is a crucial task in sequential decision-making. With the in-
creasing use of black-box models for time series prediction, the need for uncertainty
quantification has become more critical. Conformal prediction has gained attention
as a reliable uncertainty quantification framework. However, conformal prediction
for time series faces two key challenges: (1) effectively leveraging sequential corre-
lations in features and non-conformity scores, and (2) handling multi-dimensional
outcomes. To address these challenges, we propose a novel conformal prediction
method for time series using flow with classifier-free guidance. We provide the-
oretical guarantees by establishing an exact non-asymptotic marginal coverage
and a finite-sample bound on conditional coverage for our method. Evaluations
on real-world multi-dimensional time series datasets demonstrate that our method
constructs significantly smaller prediction sets while maintaining target coverage,
outperforming existing baselines.

1 Introduction

Uncertainty quantification has become essential in scientific fields where black-box machine learning
models are increasingly deployed [2]. Conformal prediction (CP) provides a distribution-free
framework for uncertainty quantification by constructing prediction sets using three key components:
a base prediction model, features, and observed outcomes [38, 45]. By computing non-conformity
scores that quantify how atypical predicted values are relative to past observations, CP generates
reliable prediction sets that satisfy a target confidence level.

Time series prediction aims to forecast future outcomes based on past sequential observations of
features [8]. Recent advances in machine learning have led to the development of various foundation
models designed for time series prediction [32, 46]. The widespread adoption of such models for
time series prediction underscores the pressing need for reliable uncertainty quantification. Although
CP has emerged as a powerful framework for uncertainty quantification, most existing CP methods
fundamentally rely on the assumption of data exchangeability [4]. The exchangeability assumption is
frequently violated in time series data, where observations exhibit complex temporal dependencies
and stochastic variations that induce correlations in the non-conformity scores, thereby making the
direct application of CP to time series prediction particularly challenging.

An additional challenge is that modern time series data often contain high-dimensional features and
multi-dimensional outcomes. While CP methods for univariate outcomes are well-established, extend-
ing these methods to generate prediction sets for multi-dimensional outcomes is not straightforward
and requires careful consideration in constructing prediction sets. Although some prior studies have
proposed methods to generate prediction sets for multi-dimensional outcomes using copulas [30] or
ellipsoidal uncertainty sets [31], these approaches still rely on the exchangeability assumption, thus
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(a) Wind dataset
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(b) Traffic dataset
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(c) Solar dataset
Figure 1: Comparison of the prediction sets with a target coverage of 0.95, constructed by FCP (ours),
MultiDimSPCI, and conformal prediction using empirical copulas on (a) the wind dataset, (b) the
traffic dataset, and (c) the solar dataset. The prediction sets were manually selected from the test set
for clear comparison.

limiting their applicability to time series data. Consquently, an effective CP method for time series
prediction requires to address the two aformentioned challenges: leaveraging correlations in features
and non-conformity scores and handling multi-dimensional outcomes. However, there remains a
lack of studies that attempt to tackle both challenges simultaneously. For a comprehensive review of
related work, we refer readers to Appendix A.

In this work, we propose a novel conformal prediction method designed for time series prediction
with multi-dimensional outcomes. Our method is designed to effectively address the aforementioned
two challenges by using flow with classifier-free guidance. Specifically, we use a flow to model the
distribution of prediction residuals and their transformations conditioned on historical context, which
is encoded using Transformer. We define the non-conformity score as the Euclidean distance between
the transformed prediction residual and the mean of a Gaussian source distribution of the flow. This
allows us to construct prediction sets at a desired confidence level directly in the source distribution
space of the flow. We provide theoretical guarantees by establishing an exact non-asymptotic marginal
coverage and a finite-sample bound on conditional coverage for our method. Evaluations on three
real-world multi-dimensional time series datasets demonstrate that our method constructs significantly
smaller prediction sets while maintaining target coverage, outperforming existing baselines.

2 Conformal Prediction for Time Series using Guided Flow

Our problem setup and a comprehensive background on guided flow are provided in Appendix B and
Appendix C, respectively. Our goal is to train a guided flow to model the conditional distribution of
the prediction residual at time i, defined as ϵ̂i = f̂(xi)−yi, conditioned on a guidance h that contains
contextual information useful for predicting ϵ̂i. We designed the Gaussian probability path as defined
in equation (16), with interpolating scheduler at = t and σt = (1− t). The source distribution was
set to an isotropic Gaussian distribution with zero mean and covariance scale γ > 0.

Since explicit supervision is unavailable from the data, it is not feasible to directly learn a time-
dependent classifier as required in equation (17) and (18). Instead, we extracted contextual information
using an encoder applied to a context window k of the past features and residuals and modeled the
conditional distribution using the classifier-free guidance as described in equation (20). The encoder
was jointly trained with the guided vector field. In our method, we used Transformer [44] as the
encoder, though alternative sequence models, such as recurrent neural networks (RNNs), are also
applicable. The guided flow was trained using flow matching [28, 1, 29] with the loss:

L = Et,η,ϵ̂t,(ϵ̂i,zi)
[∥∥∥uθt|h(ϵ̂t | (1− η)hi · ηh∅)− utarget

t|h (ϵ̂t | ϵ̂i)
∥∥∥2] , (1)

where t ∼ Unif[0, 1], η ∼ Bernoulli(p∅), ϵ̂t ∼ pt|ϵ̂1(· | ϵ̂1), and (ϵ̂i, zi) ∼ qdata. h∅ ∈ Rdy indicates
the guidance representing the null condition and || · || denotes the 2-norm. uθt|h denotes the guided
vector field with trainable parameter set θ and p∅ is the probability of assigning the null condition ∅
instead of the guidance h during training. The context zi is known and fixed for each ϵ̂i.
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Non-conformity score. The trained guided flow can model the conditional distribution q(ϵ̂i | hi).
Based on the guided flow ψ, we defined the non-conformity score ê(yi) for a given prediction residual
ϵ̂i = yi − f̂(xi) as:

ê(yi) = ||ψ−1
1 (ϵ̂i | hi)||, (2)

where ψ−1
1 represents flow transformation in reverse time from t = 1 to t = 0, which transforms ϵ̂i

to a sample from the source distribution conditioned on hi. Intuitively, ê(yi) represents the Euclidean
distance between the transformed residual and the origin, which corresponds to the mean of the source
Gaussian distribution in our setting. This approach implicitly leverages sequential dependencies
in the features and the resulting non-conformity scores, as the guidance vector hi is constructed
from the historical context and conditions both the distribution of ϵ̂i and its transformation into the
non-conformity score.

Prediction set. Using the non-conformity score defined in equation (2), we defined the prediction
set at significance level α as:

Ĉi−1(zi, α) = {y : ê(yi) ≤ rBα
} , (3)

where rBα
denotes the radius of the ball Bα, which contains 1 − α probability mass. Since we

used an isotropic Gaussian with zero mean and covariance matrix γI as the source distribution
p, the radius corresponding to the ball containing probability mass 1 − α, rBα

, can be computed
by rBα

=
√
γχ−1

d (1 − α), where χ−1
d is the inverse cumulative distribution function of the chi

distribution with d degrees of freedom.

Size of the prediction set. The size of the prediction set defined in equation (3) is computed by:∫
Bα

|det (Jψ1(x | h))| dx, (4)

where ψ1 represents the flow transformation from t = 0 to t = 1, and Jψ1
(x | h) denotes the Jacobian

of ψ1 at x ∈ Bα conditioned on h. This can be approximated by using Monte Carlo estimation:

Size(Bα)
1

N

N∑
j=1

|det(Jψ1
(xj | h))| , (5)

where xj are i.i.d. samples drawn from Bα, and N is the number of samples. However, direct compu-
tation of det (Jψ1

(x | h)) is expensive as it requires solving the guided flow ODE and evaluating the
full Jacobian matrix. Instead, we can compute the log-determinant of the Jacobian by solving the
following ODE:

d

dt
log |det Jψt

(x | h)| = div (ut(ψt(x | h) | h)) , (log-determinant of the Jacobian ODE)

log det (Jψ0(x | h)) = 0, (initial condition)
(6)

where div(·) denotes the divergence operator. A detailed derivation is provided in Proposition E.3.

The accuracy of the prediction set size estimate depends on the Monte Carlo approximation. Purely
random sampling from Bα can lead to biased estimates due to uneven coverage of the sampling
space, and a small sample size N can result in high variance. To reduce bias from random sampling,
we employed quasi-Monte Carlo sampling based on Sobol sequences [39, 34], which ensures more
uniform sampling from Bα. To control the variance from finite sampling, we monitor the relative
error in terms of sample size N . Further implementation details are provided in the experiment
section.

Properties of the prediction set. The prediction sets constructed by guided flow do not have a
definite geometrical shape, such as spheres or ellipsoids. Nonetheless, useful topological properties
of the prediction sets can be inferred. Specifically, the prediction sets are guaranteed to be closed
and connected based on Theorem E.4. Figure 1 shows the prediction sets in a 2-dimensional space
constructed by our method compared to two other methods based on copula and ellipsoid. The figure
visually confirms that the prediction sets constructed by our method have flexible shapes.
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Coverage guarantees. Our method provides exact non-asymptotic marginal coverage guarantees
and finite-sample bounds on conditional coverage. Theoretical analysis is provided in Appendix D
and detailed proofs are deferred in Appendix E.
Proposition 2.1 (Marginal coverage). Let α ∈ (0, 1) be a pre-specified significance level. Under
Assumptions D.1 and D.3, if the ball Bα defining the prediction set in equation (3) has probability
mass 1− α, then the prediction set achieves exact marginal coverage of 1− α.
Theorem 2.2 (Conditional coverage bound under i.i.d. non-conformity scores). Under Assump-
tion D.1, D.6, D.7, D.9, and D.10, with probability 1− δ, we have:∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1)− (1− α)

∣∣∣
≤ 12

√
log(16T )

T
+ 4(LT+1 +

1

2
)(2C + δT ).

(7)

Corollary 2.3 (Conditional coverage bound under stationary and strongly mixing non-conformity
scores). Under Assumption D.1, D.7, D.9, D.10, and D.16, with probability 1− δ, we have:∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1)− (1− α)

∣∣∣
≤ 12

(M2 )1/3(log T )2/3

T 1/3
+ 4(LT+1 +

1

2
)(2C+δT ).

(8)

3 Experiments
Setup For notational convenience, we refer to our method as FCP. We evaluated FCP using two
different architectures to model the guided vector field. The first one is MLP with Softplus activation,
and the second one is iResNet [5] with Softplus activation. Both architectures are smooth and
continuously differentiable, satisfying the conditions needed to ensure the existence and uniqueness
of the guided flow (Assumption D.3). Moreover, the iResNet architecture satisfies the bi-Lipschitz
condition of the guided flow, which is required to derive the conditional coverage bound of FCP
(Assumption D.7). Details of the experiment setup and implementation details are provided in
Appendix F and Appendix G, respectively.
Datasets. We evaluated FCP and baselines using three real-world time series datasets: wind, traffic,
and solar datasets. For the wind and traffic datasets, we randomly selected dy ∈ {2, 4, 8} locations to
construct five sequences of dy-dimensional time series. For the solar dataset, we randomly selected
dy ∈ {2, 4} locations to construct five sequences of dy-dimensional time series. Base predictor f̂
is required to provide a point prediction ŷ. We used two types of base predictors for each dataset:
(1) leave-one-out (LOO) bootstrap multivariate linear regression, and (2) recurrent neural network
(RNN) with long short-term memory (LSTM) units [21].
Baselines. We evaluated our method against several CP methods designed for multi-dimensional
time series or i.i.d. data: MultiDimSPCI [51], conformal prediction using local ellipsoid [31],
CopulaCPTS [42], and conformal prediction using empirical and Gaussian copulas [30]. We also
included two probabilistic time series forecasting methods as baselines: TFT [27] and DeepAR [37].
Evaluation metrics. Efficient prediction sets are those that are as small as possible while satisfying
the desired coverage. Therefore, we used two evaluation metrics: empirical coverage and the average
size of the prediction sets.
Results Table 1 (see Appendix) presents the results of experiments on three real-world datasets.
FCP consistently obtained smaller prediction sets than all baselines while maintaining the target
coverage. The performance gains of FCP were especially notable for higher outcome dimensions.
While FCP maintained stable coverage across varying dy, baseline methods often suffered from
undercoverage, or overcoverage accompanied by inflated prediction set sizes.

4 Conclusion and Future Works
In this study, we proposed a novel conformal prediction method for multi-dimensional time series
using flow with classifier-free guidance. Our method provides theoretical guarantees, including exact
non-asymptotic marginal coverage and finite-sample bounds on conditional coverage. Evaluations
on real-world datasets demonstrated the effectiveness of the proposed approach, achieving superior
performance over existing state-of-the-art methods. Future research directions include: (1) exploring
alternative flow-based architectures for prediction set construction; (2) extending conformal prediction
to discrete outcomes such as image labels; and (3) developing conformal prediction methods in the
latent space.
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Table 1: Average empirical coverage and prediction sets sizes obtained by FCP and all baselines on three
real-world datasets, evaluated under different base predictors and varying outcome dimensions dy . Reported
values represent the average and standard deviation over five independent experiments. The target confidence
level was set to 0.95. Results with average empirical coverage below the target confidence level are grayed out,
and the smallest prediction set sizes, excluding the grayed-out results, are highlighted in bold.

Dataset Base Predictor Method dy = 2 dy = 4 dy = 8

Coverage Size Coverage Size Coverage Size

Wind

LOO Bootstrap

FCP (MLP) 0.951±.018 0.88±.089 0.953±.006 3.43±1.37 0.956±.010 19.4±10.2

FCP (iResNet) 0.951±.021 1.14±.069 0.954±.014 1.79±.736 0.953±.018 14.8±22.5

MultiDimSPCI 0.953±.016 1.31±.524 0.956±.018 6.39±3.90 0.951±.024 205.5±161.5

Local Ellipsoid 0.964±.015 1.38±.419 0.971±.013 8.63±5.90 0.974±.011 394.9±522.4

Empirical Copula 0.951±.013 1.22±.316 0.958±.019 4.94±2.57 0.948±.012 77.4±26.1

Gaussian Copula 0.945±.017 1.17±.289 0.958±.019 5.11±2.40 0.948±.012 77.4±26.1

CopulaCPTS 1.0±.000 22.3±19.0 1.0±.000 611.3±484.7 1.0±.000 3.50× 105±3.73×105

TFT 0.723±.172 1.34±.588 0.515±.174 4.26±3.52 0.187±.126 6.75±3.19

DeepAR 0.909±.036 1.32±.445 0.672±.130 4.84±3.86 0.320±.160 52.8±64.5

LSTM

FCP (MLP) 0.952±.054 1.18±.215 0.957±.022 10.8±1.05 0.953±.056 2.48 × 103
±669

FCP (iResNet) 0.957±.034 1.84±.279 0.957±.018 6.37±2.91 0.978±.015 2.55× 103±1.94×103

MultiDimSPCI 0.974±.009 3.79±1.71 0.926±.045 63.9±58.4 0.896±.035 5.53× 103±6.31×103

Local Ellipsoid 0.978±.043 10.5±6.97 1.0±.000 354.4±406.8 1.0±.000 2.63× 105±2.70×105

Empirical Copula 0.983±.035 14.2±8.19 1.0±.000 494.5±196.1 1.0±.000 4.46× 105±9.82×104

Gaussian Copula 0.983±.035 14.1±8.18 1.0±.000 499.1±189.5 1.0±.000 5.24× 105±1.89×105

CopulaCPTS 1.0±.000 45.7±45.4 1.0±.000 4.82× 103±3.73×103 1.0±.000 2.83× 107±3.28×107

TFT 0.550±.321 1.90±.695 0.395±.195 3.93±2.01 0.136±.189 23.7±34.8

DeepAR 0.786±.065 1.69±.489 0.305±.258 9.88±10.1 0.00±.000 22.8±32.6

Traffic

LOO Bootstrap

FCP (MLP) 0.957±.014 0.915±.119 0.953±.009 1.06±.431 0.965±.015 1.53±.161
FCP (iResNet) 0.950±.021 1.21±.084 0.959±.014 1.33±.118 0.970±.007 2.72±.215
MultiDimSPCI 0.963±.008 1.58±.446 0.968±.006 2.62±.908 0.971±.004 10.7±4.60

Local Ellipsoid 0.970±.007 2.04±.505 0.975±.005 2.95±1.06 0.980±.003 3.82±1.13

Empirical Copula 0.973±.006 2.35±.446 0.972±.004 5.61±1.48 0.970±.005 40.4±6.04

Gaussian Copula 0.973±.006 2.37±.430 0.972±.004 5.61±1.48 0.970±.005 40.4±6.04

CopulaCPTS 1.0±.000 21.6±16.3 1.0±.000 645.8±645.5 1.0±.000 3.18× 105±4.80×105

TFT 0.407±.065 0.292±.089 0.189±.306 0.07±.031 0.09±.007 0.009±.007
DeepAR 0.443±.095 0.308±.088 0.197±.054 0.07±.030 0.09±.028 0.004±.003

LSTM

FCP (MLP) 0.968±.022 0.859±.075 0.966±.022 1.05±.111 0.950±.010 1.82±.287
FCP (iResNet) 0.957±.024 0.788±.051 0.970±.010 1.31±.103 0.956±.016 2.50±.328
MultiDimSPCI 0.957±.007 0.870±.383 0.960±.009 1.59±.588 0.952±.014 14.2±7.56

Local Ellipsoid 0.957±.023 0.987±.413 0.948±.008 1.48±.559 0.928±.017 3.37±.605
Empirical Copula 0.955±.005 3.81±.629 0.948±.010 25.8±5.06 0.920±.017 1.22× 103±281.9

Gaussian Copula 0.953±.006 3.74±.570 0.952±.011 26.4±4.00 0.920±.017 1.22× 103±281.9

CopulaCPTS 1.0±.000 21.9±12.7 1.0±.000 330.0±219.4 0.992±.002 4.47× 104±4.23×104

TFT 0.374±.110 0.285±.106 0.192±.048 0.06±.022 0.062±.015 0.003±.002
DeepAR 0.386±.065 0.266±.069 0.211±.056 0.06±.017 0.09±.009 0.003±.001

Solar

LOO Bootstrap

FCP (MLP) 0.957±.007 1.48±.292 0.969±.003 4.18±.597 - -
FCP (iResNet) 0.952±.009 1.42±.166 0.956±.003 2.69±.196 - -
MultiDimSPCI 0.968±.005 1.97±.076 0.971±.003 11.4±1.20 - -
Local Ellipsoid 0.947±.004 1.44±.188 0.948±.005 1.87±.540 - -
Empirical Copula 0.986±.004 4.47±.174 0.988±.004 36.5±4.03 - -
Gaussian Copula 0.986±.004 4.47±.174 0.989±.003 38.2±1.37 - -
CopulaCPTS 1.0±.000 67.9±12.6 1.0±.000 7.25× 103±1.86×103 - -
TFT 0.782±.026 0.779±.056 0.722±.028 3.18±.415 - -
DeepAR 0.802±.121 1.03±.114 0.713±.086 6.73±1.09 - -

LSTM

FCP (MLP) 0.968±.009 1.16±.092 0.961±.008 2.09±.566 - -
FCP (iResNet) 0.955±.005 1.24±.076 0.955±.008 2.42±.276 - -
MultiDimSPCI 0.969±.004 1.31±.010 0.976±.005 6.46±2.51 - -
Local Ellipsoid 0.972±.005 1.27±.143 0.978±.004 2.43±.996 - -
Empirical Copula 0.987±.002 6.47±.103 0.990±.003 67.7±10.9 - -
Gaussian Copula 0.992±.001 7.11±.216 0.997±.001 89.9±4.69 - -
CopulaCPTS 1.0±.000 44.8±9.88 1.0±.000 3.34× 103±570 - -
TFT 0.746±.081 0.651±.095 0.684±.063 1.63±.177 - -
DeepAR 0.839±.028 1.01±.088 0.715±.043 3.57±.493 - -

A Related Works

A.1 Conformal Prediction for Time Series

Conformal prediction has gained widespread popularity for its effectiveness in uncertainty quan-
tification for black-box models, requiring only the exchangeability assumption [45]. However,
applying CP methods to time series poses significant challenges, as time series inherently violate the
exchangeability assumption due to their sequential and temporal dependencies.

Numerous studies have extended conformal prediction (CP) beyond the exchangeability assumption.
A significant line of research focuses on assigning unequal weights to past non-conformity scores or
leveraging their historical context, allowing more informative scores to contribute more effectively.
Such works include Xu and Xie [50], Xu and Xie [47], Tibshirani et al. [43], and Lee et al. [25].
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In particular, Xu and Xie [50] introduced the Sequential Predictive Conformal Inference (SPCI)
framework, which incorporates correlations in non-conformity scores to construct more robust
prediction intervals by sequentially adopting a quantile regression estimator. Based on this idea,
several studies have employed neural networks to enhance CP for time series. For example, Lee et al.
[26] utilized the Transformer [44] to capture the correlations in non-conformity scores. Auer et al.
[3] proposed HopCPT, which leverages Hopfield networks to achieve a similar objective.

A.2 Conformal Prediction for Multi-dimensional Data

Conformal prediction for multi-dimensional data has been actively studied, as modern data often
contain multiple variables. One of the simplest approaches involves constructing coordinate-wise
prediction intervals with Bonferroni correction. For instance, Stankeviciute et al. [41] applied this idea
to generate coordinate-wise prediction intervals for multi-step time series forecasting by adjusting the
significance level using Bonferroni correction. A similar approach has been explored for multivariate
functional data [14] and multivariate functional time series data [13].

Recent studies have explored various uncertainty sets, such as copulas and ellipsoids, to construct
prediction regions for multidimensional data. For example, Messoudi et al. [30] investigated the use
of copulas for constructing prediction regions, while Messoudi et al. [31] and Johnstone and Ndiaye
[22] utilized ellipsoidal uncertainty sets. Sun and Yu [42] extended the application of copulas to
exchangeable time series. Xu et al. [51] applied the SPCI framework to non-conformity scores defined
as the radius of ellipsoidal uncertainty sets, leveraging sequential correlations of the non-conformity
scores to handle multi-dimensional outcomes.

Fang et al. [17] used normalizing flow for CP with multi-dimensional outcomes of exchangeable data.
They defined non-conformity scores as the distances from the origin and employed split conformal
prediction to construct prediction regions. While their study shares some methodological similarities
with ours, it differs in two significant aspects: they used discrete normalizing flows and focused
exclusively on exchangeable data.

A.3 Conformal Prediction for Time Series and Multi-dimensional Data

Applying CP to time series and multi-dimensional data is challenging due to temporal dependencies
and high-dimensional outputs. To address this, recent works have extended CP beyond exchange-
ability by incorporating sequential correlations through weighted or context-aware non-conformity
scores [50, 47, 43, 25], including neural architectures such as Transformers [26] and Hopfield net-
works [3]. For multi-dimensional outcomes, approaches include coordinate-wise prediction with
Bonferroni correction [41, 13], and structured uncertainty sets such as copulas [30, 42] and ellip-
soids [31, 22, 51]. Fang et al. [17] further explored multi-dimensional CP using normalizing flows,
though their method was limited to exchangeable settings and discrete flows.

A.4 Probabilistic Forecasting using Deep Learning

Probabilistic forecasting is a method of prediction that estimates the distribution of outcomes. Unlike
typical time series forecasting, which outputs a point prediction, probabilistic forecasting can be used
for uncertainty quantification since it outputs the distribution of the outcomes. With recent advances
in deep learning, numerous probabilistic forecasting methods have been developed. Among these,
DeepAR [37] and Temporal Fusion Transformer (TFT) [27] are widely used methods. DeepAR
leverages RNNs and TFT utilizes attention mechanisms to capture the temporal dependencies for
probabilistic forecasting. Rasul et al. [35] also applied conditional normalizing flows for probabilistic
forecasting, similar to our approach, but they used a discrete set of normalizing flow layers [12]
instead of continuous transformation.

B Problem Setup

We consider a sequence of observations {(xi, yi) : i = 1, 2, . . .}, where xi ∈ Rdx represents dx-
dimensional feature, and yi ∈ Rdy represents dy-dimensional continuous scalar outcome. We assume
that we have a base predictor f̂ that provides a point prediction ŷi for yi, given by ŷi = f̂(xi). The
base predictor f̂ can be any black-box model and is not subject to any specific constraints.
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Suppose that the first T examples, {(xi, yi)}Ti=1, are used for training and validation. Our goal is
to sequentially construct a prediction region Ĉi−1(zi) for each new observation, beginning at time
T + 1. Here, zi denotes the features used to construct Ĉi−1. In the simplest setting, zi consists only
of xi, but it may also include additional contextual information such as past features or outcomes.

We aim to construct prediction regions that satisfy the following marginal coverage:

P
(
yi ∈ Ĉi−1(zi)

)
≥ 1− α, ∀i, (9)

and ideally the stronger conditional coverage:

P
(
yi ∈ Ĉi−1(zi) | zi

)
≥ 1− α, ∀i, (10)

where α ∈ [0, 1] denotes a pre-specified significance level. Although trivially large prediction
regions can always satisfy marginal coverage, they do not provide useful information for uncertainty
quantification. Therefore, the objective is to construct efficient prediction regions—the regions that
are as small as possible while still guaranteeing the marginal coverage [45]. Throughout this paper,
we distinguish between the indices i and t to avoid confusion: the subscript i refers to the discrete
time index of the sequence of observations, while the subscript t refers to continuous time in ODEs.

C Preliminary: Guided Flow

A flow is a time-dependent mapping ψ : [0, 1]× Rd → Rd that evolves a random variable X0 ∈ Rd
from a source distribution p to Xt = ψt(X0) ∈ Rd for time t ∈ [0, 1]. The flow ψ is defined by a
vector field u : [0, 1]× Rd → Rd through the following ordinary differential equation (ODE):

d

dt
ψt(x0) = ut(ψt(x0)), (flow ODE)

ψ0(x0) = x0. (initial condition)
(11)

The flow ψ push-forward the source distribution p to the time-dependent probability density (i.e.
probability path) (pt)0≤t≤1 as:

([ψt]∗p)(xt) = p(ψ−1
t (xt)) det

∣∣∣∣∂ψ−1
t

∂xt
(xt)

∣∣∣∣ , (12)

where ∗ denotes the push-forward operator, and xt = ψt(x0). By appropriately designing the vector
field ut that generates the probability path pt to interpolate between the source distribution p0 = p
and the target distribution p1 = q, the resulting flow ψ transforms samples from p to q. Whether a
vector field ut generates a valid probability path pt can be verified using the continuity equation.

A guided flow models the conditional distribution q(x1 | h) by learning a guided vector field defined
by the following ODE:

d

dt
ψt|h(x0 | h) = ut|h

(
ψt|h(x0 | h) | h

)
, (guided flow ODE)

ψt=0|h(x0 | h) = x0, (initial condition)
(13)

where x0 is from the source distribution, x1 is the data from conditional distribution, and h ∈ Rdh
denotes the guidance. The marginal probability path for the guided flow is defined as:

pt|h(x | h) =
∫
pt|x1

(x | x1) q(x1 | h) dx1, (14)

where pt|x1
(x | x1) is a probability path interpolating between p0|x1

(x | x1) = p and p1|x1
(x |

x1) = δx1 , with δx1 denoting the Dirac delta distribution centered at x1 from q(x | h). Therefore,
pt|h(x1 | h) interpolates between the source distribution p0|h(x | h) = p and p1|h(x | h) = q(x1 | h).

The corresponding guided vector field that generates pt|h(x | h) is given by:

ut|h(x | h) =
∫
ut|x1

(x | x1)
pt|x1

(x | x1)q(x1 | h)
pt|h(x | h)

dx1. (15)
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The validity of ut(x | h) in generating the guided probability path pt|h(x | h) can be verified using
the continuity equation (see Proposition E.1). The resulting guided flow enables sampling from the
conditional distribution q(x1 | h).
When using an affine probability path with a Gaussian source distribution, the interpolating probability
paths remain Gaussian. This yields the Gaussian probability path:

pt|x1
(x | x1) = N (x | αtx1, σ2

t Id), (16)

where N denotes the Gaussian kernel and Id ∈ Rd×d denotes the identity matrix. αt, σt : [0, 1] →
[0, 1] are interpolating scheduler, which are smooth functions satisfying α0, σ1 = 0, α1, σ0 = 1,
and d

dtαt −
d
dtσt > 0 for t ∈ (0, 1). Under the Gaussian probability path, the guided vector field

ut|h(x | h) can be reformulated as:

ut|h(x | h) = ut(x) + bt∇x log ph|t(h | x), (17)

where ut(x) is a vector field trained without the guidance, bt is a scalar constant, and log ph|t(h | x)
is a time-dependent classifier predicting the guidance h given x ∼ pt(x). A detailed derivation is
provided in Proposition E.2. Early approaches [11, 40] proposed training a separate classifier for
∇ log ph|t(h | x), and found that a guidance scale w > 1 to amplify the signal from the classifier is
beneficial in practice:

ũt|h(x | h) = ut(x) + wbt∇x log ph|t(h | x). (18)

Using the identity ∇x log pt|h(xt | h) = ∇x log pt(xt) +∇x log ph|t(h | xt), equation (18) can be
equivalently rewritten as:

ũt|h(x | h) = (1− w)ut|h(x) + wut|h(x | h). (19)

Instead of modeling ut(xt) and ut(xt | h) separately, Ho and Salimans [20] proposed classifier-free
guidance (CFG) to use a unified vector field to model both by assigning a null condition ∅ to represent
the unguided vector field. In CFG, the unconditional vector field ut(xt) is represented as ut(x | ∅),
allowing equation (19) to be formulated as:

ũt|h(x | h) = (1− w)ut|h(x | ∅) + wut|h(x | h). (20)

D Theoretical Analysis

In this section, we present a theoretical analysis of our method, establishing an exact non-asymptotic
marginal coverage and a finite-sample bound on conditional coverage. We assume that yi ∈ Rdy is
generated from an unknown true function f with additive noise ϵi ∈ Rdy according to yi = f(xi)+ϵi.
We further assume that the domains of xi and yi are compact, which ensures that the encoder output
is also compact, as formalized in Assumption D.1 and Remark D.2. Detailed proofs are presented in
Appendix E.
Assumption D.1 (Compact feature and outcome domains). The feature and outcome domains are
compact. That is, xi ∈ X ⊂ Rdx and yi ∈ Y ⊂ Rdy , where X and Y are compact sets.
Remark D.2. Under Assumption D.1, if the encoder g : Rk×dx → Rdh is a continuous function
mapping an input sequence [xi−k:i−1] of context length k to a representation h ∈ Rdh , then the
image of the encoder H ⊂ Rdh is compact.
Assumption D.3 (Flow existence, uniqueness, and Lipschitz continuity). The guided vector field
ut(x | h) is continuously differentiable in x and uniformly Lipschitz continuous in x for all t ∈ [0, 1]
and h ∈ H. That is, there exists a constant Lu > 0 such that

∥ut(x | h)− ut(x
′ | h)∥ ≤ Lu∥x− x′∥, ∀t, h, x, x′. (21)

Consequently, the guided flow ψt defined by this vector field ut is uniformly Lipschitz continuous in
x for all t ∈ [0, 1] and h ∈ H. That is, there exists a constant Lψ > 0 such that

∥ψt(x|h)− ψt(x
′|h)∥ ≤ Lψ∥x− x′∥, ∀t, h, x, x′. (22)

Remark D.4. Assumption D.3 ensures the existence and uniqueness of solutions to the guided flow
ODE. Lemma E.5 establishes that Lipschitz continuity of the vector field implies Lipschitz continuity
of the flow. In practice, the vector field can be modeled using neural network architectures that satisfy
this assumption, such as multi-layer perceptrons (MLP) with smooth activation functions.
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D.1 Marginal Coverage

We first establish that prediction sets generated by our method achieve exact non-asymptotic marginal
coverage. This result relies on a fundamental property of flows: probability mass preservation
under push-forward operations. When any measurable set is transformed through the push-forward
operation of a flow, its probability mass is preserved. Lemma D.5 formalizes this property and
suffices to prove the exact non-asymptotic marginal coverage stated in Proposition 2.1.
Lemma D.5 (Probability mass preserving property of flows). Let X ∼ pX be a continuous random
variable on Rd, and let ψ : Rd → Rd be a C1 diffeomorphism. Define Y := ψ(X) with density pY
given by the push-forward of pX under ψ. Then, for any measurable set A ⊂ Rd, the transformed set
A′ := ψ(A) satisfies:

P(X ∈ A) = P(Y ∈ A′) (23)

D.2 Conditional Coverage

We next establish a finite-sample bound on conditional coverage. Let the non-conformity score based
on the prediction residual be defined as ê(yi) = ||ψ−1(ϵ̂i | hi)||, and the non-conformity score based
on the true noise be defined as e(yi) = ||ψ−1(ϵi | hi)||. For notational simplicity, we denote ê(yi) by
êi and e(yi) by ei. The guided flow ψ is trained on {(xi, yi)}Ti=1 until convergence and then fixed
for computing e and ê. We define the empirical cumulative distribution function (CDF) of ê and e as:

F̂T+1(u) =
1

T

T∑
i=1

1{êi ≤ u}, F̃T+1(u) =
1

T

T∑
i=1

1{ei ≤ u}. (24)

Since the source distribution of the flow is set to be identical across time, the marginal distribution
for ei and êi can be considered to be identical for all i. We denote Fe(u) = P(e ≤ u) as the CDF of
the true non-conformity scores. Although the marginal distribution of ei is identical for all i, they can
be dependent through hi. Therefore, we analyze two cases: (1) when {ei}Ti=1 are i.i.d., and (2) when
{ei}Ti=1 are stationary and strongly mixing. We first establish a finite-sample bound on conditional
coverage under the assumption of i.i.d. non-conformity scores.
Assumption D.6 (i.i.d. non-conformity scores). The true non-conformity scores {ei}Ti=1 are i.i.d.
Assumption D.7 (Bi-Lipschitz flow). We assume that the guided flow ψt(x | h) is bi-Lipschitz
continuous in x for all t ∈ [0, 1] and h ∈ H. That is, there exist constants Lψ > 0 and Lψ−1 > 0
such that

∥ψt(x | h)− ψt(x
′ | h)∥ ≤ Lψ∥x− x′∥, ∀t, h, x, x′, (25)

and
∥ψ−1

t (x | h)− ψ−1
t (x′ | h)∥ ≤ Lψ−1∥x− x′∥, ∀t, h, x, x′. (26)

Remark D.8. Lemma E.6 shows that bi-Lipschitz guided vector field results in bi-Lipschitz guided
flow. Therefore, the vector field ut(x | h) can be modeled using neural network architectures that
satisfy this assumption. For example, one can use invertible Residual Networks (iResNet) [5, 9] with
smooth activation functions.
Assumption D.9 (Lipschitz continuous of the CDF of the true non-conformity scores). Assume that
Fe(x) is Lipschitz continuous with Lipschitz constant LT+1 > 0, and that Fe is strictly increasing in
x.
Assumption D.10 (Estimation quality). Define ∆i = ϵ̂i − ϵi. There exists a sequence {δT }T≥1 such
that

1

T

T∑
i=1

∥∆i∥2 ≤ δ2T , ∥∆T+1∥ ≤ δT . (27)

Lemma D.11 (Convergence of empirical CDF of i.i.d. {ei}Ti=1). Under Assumption D.3 and D.6,

for any T , there exists an event AT with probability at least 1−
√

log(16T )
T , such that conditioned on

AT ,

sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≤√ log(16T )

T
. (28)
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Lemma D.12 (Norm concentration of isotropic Gaussian random vectors). Let Xi ∼ N (0, γId)
be an isotropic Gaussian random vector in Rd, and ∥ · ∥ be 2-norm. Then for any δ ∈ (0, 1), with
probability at least 1− δ, we have:

max
1≤i≤T

∥Xi∥ ≤MT , (29)

where MT =
√
γ
(√

d+
√
2 log(T/δ)

)
.

Lemma D.13 (Distance between the empirical CDF of {ei}Ti=1 and {êi}Ti=1). Under Assumption D.7,
D.9, and D.10, with probability 1− δ, F̂T+1(x) and F̃T+1(x) satisfy

sup
x

∣∣∣F̂T+1(x)− F̃T+1(x)
∣∣∣ ≤ (2LT+1 + 1)C+2 sup

x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ , (30)

where C =
√
MTLψ−1δT + L2

ψ−1δ2T .

As a result of Lemma D.11 and D.13, Theorem 2.2 establishes the finite-sample bound for conditional
coverage under i.i.d. non-conformity scores.

Definition D.14. A sequence of random variables {Xn} is said to be strictly stationary if for every
k ≥ 1, any integers n1, . . . , nk, and any integer h, the joint distribution of the random variables
(Xn1

, . . . , Xnk
) is the same as the joint distribution of (Xn1+h, . . . , Xnk+h).

Definition D.15. A sequence of random variables {Xn} is said to be strongly mixing (or α-mixing)
if the mixing coefficients α(k) defined by

α(k) = sup
n∈N

sup
A∈Fn

1 , B∈F∞
n+k

|P(A ∩B)− P(A)P(B)| (31)

satisfy α(k) → 0 as k → ∞, where Fb
a denotes the σ-algebra generated by {Xa, . . . , Xb}.

Assumption D.16 (Strictly stationary and strongly mixing non-conformity scores). Assume that
the sequence {ei}Ti=1 is strictly stationary and strongly mixing, with mixing coefficients satisfying
0 <

∑
k>0 α(k) < M <∞.

Lemma D.17 (Convergence of empirical CDF of stationary and strongly mixing {ei}Ti=1). Under
Assumption D.16, for any T , there exists an event AT with probability at least 1− (M(log T )2

2T )1/3,
such that conditioned on AT ,

sup
x

|F̃T+1(x)− Fe(x)| ≤
(M2 )1/3(log T )2/3

T 1/3
. (32)

The bounds in Theorem 2.2 and Corollary 2.3 depend on the sample size T and the estimation error
δT . Both bounds converge to 1 − α as T → ∞, provided that δT = O(T−a) for some a > 0.
Intuitively, with sufficiently large training data and an accurate base predictor f̂ , the conditional
coverage is guaranteed. The condition on δT can be satisfied by a broad class of estimators. For
example, sieve estimators based on general neural networks achieve δT = op(T

−1/4) when f is
sufficiently smooth [10]. The Lasso estimator and Dantzig selector achieve δT = op(T

−1/2) when f
is a sparse high-dimensional linear model [6].

E Proofs

Proposition E.1. Let ut|x1
(x | x1) be the vector field generating the probability path pt|x1

(x | x1).
Then, the vector field ut|h(x | h) is a valid vector field generating pt|h(x | h).

Proof. Since ut|x1
(x | x1) generates the probability path pt|x1

(x | x1), the continuity equation holds
for each x1:

∂pt|x1
(x | x1)
∂t

+ div
(
ut|x1

(x | x1)pt|x1
(x | x1)

)
= 0. (33)
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The time derivative of pt|h(x | h) is:

∂pt|h(x | h)
∂t

=
∂

∂t

∫
pt|x1

(x | x1)q(x1 | h) dx1

=

∫
∂pt|x1

(x | x1)
∂t

q(x1 | h) dx1

= −
∫

div
(
ut|x1

(x | x1)pt|x1
(x | x1)

)
q(x1 | h) dx1

= −div
(∫

ut|x1
(x | x1)pt|x1

(x | x1)q(x1 | h) dx1
)
.

(34)

Since the marginal guided vector field is defined as:

ut|h(x | h) :=
∫
ut|x1

(x | x1)
pt|x1

(x | x1)q(x1 | h)
pt|h(x | h)

dx1, (35)

we can rewrite as:

ut|h(x | h)pt|h(x | h) =
∫
ut|x1

(x | x1)pt|x1
(x | x1)q(x1 | h) dx1. (36)

Substituting equation (36) into equation (34), we have:
∂pt|h(x | h)

∂t
= −div

(
ut|h(x | h)pt|h(x | h)

)
, (37)

which is the continuity equation for pt|h(x | h) under the vector field ut|h(x | h). Therefore,
ut|h(x | h) is a valid vector field generating pt|h(x | h).

Proposition E.2. With a given Gaussian probability path pt|x1
(x | x1) = N (x | αtx1, σ2

t Id), the
guided vector field ut|h(x | h) can be reformulated as:

ut|h(x | h) = ut(x) + bt∇x log ph|t(h | x). (38)

Proof. By the definition of the guided marginal probability path:

pt|h(x | h) =
∫
pt|x1

(x | x1)q(x1 | h)dx1, (39)

where pt|x1
(x | x1) = N (x | αtx1, σ2

t I). We express the score function as

∇x log pt|h(x | h) =
∇xpt|h(x | h)
pt|h(x | h)

(40)

=

∫
∇xpt|x1

(x | x1)q(x1 | y)dx1
pt|h(x | h)

(41)

=

∫
∇x log pt|x1

(x | x1)
pt|x1

(x | x1)q(x1 | y)
pt|h(x | h)

dx1. (42)

Since pt|x1
(x | x1) = N (x | αtx1, σ2

t I), we have:

ut(x | x1) =
α̇t
σt

(x− αtx1) + α̇tx1 (43)

=
α̇t
σt
x− α̇t

σt
αtx1 + α̇tx1 (44)

=
α̇t
σt
x+ (α̇t −

α̇t
σt
αt)x1 (45)

=
α̇t
αt
x+ (α̇tσt − αtσ̇t)

1

αtσt
(x− αtx1) (46)

=
α̇t
αt
x+ (α̇tσt − αtσ̇t)

σt
αt

∇ log pt(x | x1), (47)
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where α̇t denotes d
dtαt, and σ̇t denotes d

dtσt. The last equality holds since ∇x log pt|x1
(x | x1) =

− 1
σ2
t
(x− αtx1).

The guided velocity field is defined as:

ut|h(x | h) =
∫
ut|x1

(x | x1)
pt|x1

(x | x1)q(x1 | h)
pt|h(x | h)

dx1. (48)

Therefore,
ut|h(x | h) = atx+ bt∇x log pt(x | h), (49)

where at = α̇t

αt
, and bt = (α̇tσt − αtσ̇t)

σt

αt
.

By using the identity ∇x log pt|h(x | h) = ∇x log ph|t(h | x) +∇x log pt(x), we have:

ut(x | h) = atx+ bt
(
∇ log ph|t(h | x) +∇ log pt(x)

)
= ut(x) + bt∇x log ph|t(h | x). (50)

Proposition E.3. The log-determinant Jacobian ODE defined in equation (6) is equivalent to the
divergence of the guided vector field.

Proof. The Jacobian ODE is defined as:

d

dt
Jψt|h(x | h) =

∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

∂ψt|h(x | h)
∂x

=
∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

Jψt|h(x | h), (51)

with the initial condition:
Jψt=0|h(x | h) = I. (52)

By using Jacobi’s formula,

d

dt
det Jψt|h(x | h) = det Jψt|h(x | h) · tr

(
J−1
ψt|h

(x | h) d
dt
Jψt|h(x | h)

)
. (53)

Substituting equation (51) into equation (53), we obtain:

d

dt
det Jψt|h(x | h) = detJψt|h(x | h) · tr

(
∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

)
. (54)

Therefore,
d

dt
log |det Jψt|h(x | h)| = tr

(
∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

)
. (55)

Since the trace of the Jacobian of a vector field corresponds to its divergence, we have:

tr
(
∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

)
= div

(
ut|h(ψt|h(x | h))

)
, (56)

where div(·) denotes the divergence operator.

Therefore, the log-determinant of the Jacobian ODE is defined as:

d

dt
log |det Jψt|h(x | h)| = div

(
ut|h(ψt|h(x | h))

)
(57)

with the initial condition:
log |det Jψt=0|h(x | h)| = 0. (58)

Theorem E.4 (Closed and connected sets under a continuous map, Munkres [33]). Let Z and Y be
topological spaces, and let ψ : Z → Y be a continuous map. If E ⊂ Z is closed and connected, then
ψ(E) ⊂ Y is also closed and connected.
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Lemma E.5 (Lipschitz continuous of the guided flow). Let ψt denote the guided flow defined by a
guided vector field ut. If the guided vector field ut(x | h) is Lipschitz continuous in x uniformly over
t ∈ [0, 1] and h ∈ H, i.e., there exists a constant Lu > 0 such that

∥ut(x | h)− ut(x
′ | h)∥ ≤ Lu∥x− x′∥ ∀x, x′, t, h, (59)

then the guided flow ψt(x | h) is Lipschitz continuous in x over t ∈ [0, 1] and h ∈ H. That is, there
exists a constant Lψ > 0 such that

∥ψt(x | h)− ψt(x
′ | h)∥ ≤ Lψ∥x− x′∥ ∀x, x′, t, h. (60)

Proof. Let d(t) = ∥ψt(x | h)− ψt(x
′ | h)∥

Since the guided vector field is Lipschitz continuous, there exists Lu such that

∥ut(x | h)− ut(x
′ | h)∥ ≤ Lu∥x− x′∥, ∀t, h, x, x′. (61)

This is equivalent to

∥ut(ψt(x | h) | h)− ut(ψt(x
′ | h) | h)∥ ≤ Lu∥ψt(x | h)− ψt(x

′ | h)∥, ∀t, h, x, x′. (62)

Let z(t) = ψt(x | h)− ψt(x
′ | h), then

d

dt
d(t) =

1

∥z(t)∥
⟨z(t), d

dt
z(t)⟩ = ⟨ z(t)

∥z(t)∥
,
d

dt
z(t)⟩ (63)

Since d
dtz(t) = ut(ψt(x | h) | h)− ut(ψt(x

′ | h) | h), by Cauchy-Schwarz inequality,

|⟨ z(t)

∥z(t)∥
,
d

dt
z(t)⟩| ≤ ∥ut(ψt(x | h) | h)− ut(ψt(x

′ | h) | h)∥ (64)

Therefore,

d

dt
d(t) ≤ ∥ut(ψt(x | h) | h)− ut(ψt(x

′ | h) | h)∥ (65)

Since the guided vector field is Lipschitz continuous,

d

dt
d(t) ≤ Lud(t) (66)

Based on Gronwall’s inequality [18, 19],

Assuming that d(t) > 0 divide both sides by d(t). If d(t) = 0, the inequality holds.

1

d(t)

d

dt
d(t) ≤ L⇒ d

dt
log d(t) ≤ L (67)

Now integrate both sides from 0 to t:

log d(t)− log d(0) ≤ Lt⇒ log

(
d(t)

d(0)

)
≤ Lt⇒ d(t)

d(0)
≤ eLt ⇒ d(t) ≤ d(0)eLt (68)

Since d(0) = ∥ψ0(x | h)− ψ0(x
′ | h)∥ = ∥x− x′∥,

∥ψt(x | h)− ψt(x
′ | h)∥ ≤ eLut∥x− x′∥ (69)

Therefore, we know that

∥ψt(x | h)− ψt(x
′ | h)∥ ≤ eLu∥x− x′∥ ∀x, x′, t, h (70)
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Proof of Lemma D.5. The probability density function of Y = ψ(X) is given by the change-of-
variables formula:

pY (y) = pX(ψ−1(y))
∣∣det Jψ−1(y)

∣∣ , (71)

where Jψ−1(y) = ∂ψ−1(y)
∂y is the Jacobian of ψ−1.

The probability mass of the transformed set A′ = ψ(A) is:

P(Y ∈ A′) =

∫
A′
pY (y) dy. (72)

Using the change-of-variables y = ψ(x) with dy = |det Jψ(x)|dx:∫
A′
pY (y) dy =

∫
A
pY (ψ(x)) |det Jψ(x)| dx. (73)

Substituting from equation (71):∫
A
pY (ψ(x)) |det Jψ(x)| dx =

∫
A
pX(x)

∣∣det Jψ−1(ψ(x))
∣∣ |det Jψ(x)| dx. (74)

Since Jψ−1(ψ(x)) = Jψ(x)
−1, we have |det Jψ−1(ψ(x))| · | det Jψ(x)| = 1. Therefore,∫

A′
pY (y) dy =

∫
A
pX(x) dx. (75)

Lemma E.6 (bi-Lipschitz guided flow). Assume that the guided vector field is bi-Lipschitz uniformly
in x over t ∈ [0, 1] and h ∈ H, i.e., there exists Lu and lu such that

lu∥x− x′∥ ≤ ∥ut(x | h)− ut(x
′ | h)∥ ≤ Lu∥x− x′∥ ∀t, h, x, x′. (76)

Then the guided flow ψ is bi-Lipschitz. There exists Lψ and lψ such that
lψ∥x− x′∥ ≤ ∥ψt(x | h)− ψt(x

′ | h)∥ ≤ Lψ∥x− x′∥ ∀t, h, x, x′. (77)

Proof. Proof follows similarly to Lemma E.5. The upper Lipschitz bound follows from Lemma E.5.

Let z(t) = ψt(x | h)− ψt(x
′ | h) and d(t) = ∥ψt(x | h)− ψt(x

′ | h)∥ = ∥zt∥.

d

dt
∥z(t)∥2 = 2⟨z(t), d

dt
z(t)⟩ (78)

By Cauchy-Schwarz inequality,

d

dt
∥z(t)∥2 =

d

dt
d(t)2 ≥ −2∥z(t)∥∥ d

dt
z(t)∥ (79)

Since d
dtz(t) = ut(x | h) − ut(x

′ | h) and ∥ut(x | h) − ut(x
′ | h)∥ ≥ lu∥x − x′∥ = lu∥ψt(x |

h)− ψt(x
′ | h)∥,

we obtain
d

dt
d(t)2 ≥ −2lu∥z(t)∥2 = −2lud(t)

2 (80)

Using Gronwall’s inequality,

∥ψt(x | h)− ψt(x
′ | h)∥ ≥ e−lut∥x− x′∥ (81)

Therefore, we know that
∥ψt(x | h)− ψt(x

′ | h)∥ ≥ e−lu∥x− x′∥ ∀x, x′, t, h (82)

Combining with the upper Lipschitz bound, we get

e−lu∥x− x′∥ ≤ ∥ψt(x | h)− ψt(x
′ | h)∥ ≤ eLu∥x− x′∥ ∀x, x′, t, h (83)
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Lemma E.7. Under Assumption D.9, Fe(eT+1) ∼ Unif[0, 1].

Proof. Since Fe is strictly increasing and continuous under Assumption D.9, the Lemma holds for
eT+1 ∼ Fe.

Proof of Lemma D.11. The proof follows the proof of Lemma 1 in Xu and Xie [49]. Under the
assumption that {ei}T+1

i=1 are i.i.d., the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [16, 24]
implies:

P
(
sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ > sT

)
≤ 2e−2Ts2T . (84)

Choose sT =
√
W (16T )/(2

√
T ), where W (T ) denotes the Lambert W function satisfying

W (T )eW (T ) = T . Since W (16T ) ≤ log(16T ), it follows that sT ≤
√
log(16T )/T . Define

the event AT on which supx

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≤√log(16T )/T , so that we have:

sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ∣∣∣AT ≤

√
log(16T )

T
, (85)

and

P(AT ) > 1−
√

log(16T )

T
. (86)

Lemma E.8 (Gaussian concentration inequality, Theorem 5.6 in Boucheron et al. [7]). Let X ∼
N (0, Id) be a standard Gaussian random vector in Rd and let f : Rd → R be an Lf -Lipschitz
continuous function. Then, for all t > 0,

P(f(X) ≥ E[f(X)] + t) ≤ exp

(
−t2

2Lf
2

)
, (87)

Proposition E.9 (Gaussian concentration inequality with isotropic covariance). Let X ∼ N (0, γId)
be an isotropic Gaussian random vector in Rd with covariance matrix γId ∈ Rd for some γ > 0 and
let f : Rd → R be an Lf -Lipschitz continuous function. Then, for all t > 0,

P(f(X) ≥ E[f(X)] + t) ≤ exp

(
−t2

2γLf
2

)
, (88)

Proof. Let X ′ ∼ N (0, Id), and define X =
√
γX ′, so that X ∼ N (0, γId). Define the function

fγ(x) := f(
√
γx). Then fγ is

√
γLf -Lipschitz. Applying Lemma E.8 to fγ(X ′), we obtain:

P (fγ(X
′) ≥ E[fγ(X ′)] + t) ≤ exp

(
− t2

2γL2
f

)
. (89)

Since f(X) = fγ(X
′),

P(f(X) ≥ E[f(X)] + t) = P (fγ(X
′) ≥ E[fγ(X ′)] + t) ≤ exp

(
− t2

2γL2
f

)
. (90)

Proof of Lemma D.12. Let X ∼ N (0, γId) be an isotropic Gaussian random vector in Rd with
covariance matrix γId ∈ Rd for some γ > 0 and let f : Rd → R be 2-norm, i.e., f(X) = ∥X∥.

Using Proposition E.9 and since f is 1-Lipschitz continuous, we have for all t > 0:
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P(∥X∥ ≥ E[∥X∥] + t) ≤ exp

(
− t2

2γ

)
. (91)

Using Jensen’s inequality and since X ∼ N (0, γId),

E[∥X∥] ≤
√

E[∥X∥2] =
√
E[X⊤X] =

√
tr(γId) =

√
γd. (92)

Therefore, for any t > 0,

P
(
∥X∥ ≥

√
γd+ t

)
≤ exp

(
− t2

2γ

)
. (93)

By the union bound,

P
(

max
1≤i≤T

∥Xi∥ ≥
√
γd+ t

)
≤

T∑
i=1

P
(
∥Xi∥ ≥

√
γd+ t

)
≤ T · exp

(
− t2

2γ

)
. (94)

By setting T · exp
(
−t2/2γ

)
≤ δ, we obtain:

t ≥

√
2γ log

(
T

δ

)
. (95)

Therefore, with probability at least 1− δ,

max
1≤i≤T

∥Xi∥ ≤
√
γd+

√
2γ log

(
T

δ

)
. (96)

Defining MT :=
√
γ
(√

d+
√
2 log(T/δ)

)
, we conclude:

max
1≤i≤T

∥Xi∥ ≤MT . (97)

Lemma E.10 (Bound on the sum of differences between true and estimated non-conformity scores).
Under Assumption D.3, D.7, and D.10, with probability at least 1− δ,

T∑
i=1

|êi − ei| ≤ 2T (MTLψ−1δT + L2
ψ−1δ2T ). (98)

Proof. Since the encoder is fixed after convergence, it generates the same h for ϵ̂ and ϵ. Let
ŝi = ψ−1(ϵ̂i | h) and si = ψ−1(ϵi | h).
Using the identity for the difference of squared norms:

∥ŝi∥ = ∥si + (ŝi − si)∥2

= ∥si∥2 + 2⟨si, ŝi − si⟩+ ∥ŝi − si∥2,
(99)

we obtain:

∥ŝi∥2 − ∥si∥2 = 2⟨si, ŝi − si⟩+ ∥ŝi − si∥2 (100)

Therefore,
|êi − ei| =

∣∣∥ŝi∥2 − ∥si∥2
∣∣

=
∣∣2⟨si, ŝi − si⟩+ ∥ŝi − si∥2

∣∣ . (101)
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By the Cauchy-Schwarz inequality,

|⟨si, ŝi − si⟩| ≤ ∥si∥ · ∥ŝi − si∥. (102)

Since ψ−1 is Lipschitz continuous with Lipschitz constant Lψ−1 , we have:

∥ŝi − si∥ ≤ Lψ−1∥ϵ̂i − ϵi∥ = Lψ−1∥∆i∥. (103)

Substituting inequality (103) into the inner product bound in equation (102),

|⟨si, ŝi − si⟩| ≤ ∥si∥ · ∥ŝi − si∥ ≤ Lψ−1∥si∥∥∆i∥. (104)

Then, by the triangle inequality,

|êi − ei| ≤ 2Lψ−1∥si∥∥∆i∥+ L2
ψ−1∥∆i∥2. (105)

By Lemma D.12, we have with probability at least 1− δ that ∥si∥ ≤MT for all i, and by Assump-
tion D.10, ∥∆i∥ ≤ δT . Substituting these into the inequality (105),

|êi − ei| ≤ 2MTLψ−1δT + L2
ψ−1δ2T . (106)

Summing over all i = 1, . . . , T , we conclude:

T∑
i=1

|êi − ei| ≤ T
(
2MTLψ−1δT + L2

ψ−1δ2T

)
. (107)

Proof of Lemma D.13. By Lemma E.10, we have with probability at least 1− δ,

T∑
t=1

|êt − et| ≤ T
(
2MTLψ−1δT + L2

ψ−1δ2T

)
. (108)

Let C =
(
2MTLψ−1δT + L2

ψ−1δ2T

)1/2
. Then,

T∑
i=1

|êi − ei| ≤ TC2. (109)

Define S = {t : |êt − et| ≥ C}. Then,

|S| · C ≤
T∑
t=1

|êt − et| ≤ TC2, (110)

which implies |S| ≤ TC.
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We can bound the difference between the empirical CDFs of êi and ei as follows:

|F̂T+1(x)− F̃T+1(x)| ≤
1

T

T∑
t=1

|1{êt ≤ x} − 1{et ≤ x}|

≤ 1

T

(
|S|+

∑
t/∈S

|1{êt ≤ x} − 1{et ≤ x}|

)
(i)

≤ 1

T

(
|S|+

∑
t/∈S

1{|et − x| ≤ C}

)

≤ 1

T

(
|S|+

T∑
t=1

1{|et − x| ≤ C}

)
≤ C + P(|eT+1 − x| ≤ C)

+ sup
x

∣∣∣∣∣ 1T
T∑
t=1

1{|et − x| ≤ C} − P(|eT+1 − x| ≤ C)

∣∣∣∣∣
(ii)
= C + [Fe(x+ C)− Fe(x− C)]

+ sup
x

∣∣∣[F̃T+1(x+ C)− F̃T+1(x− C)
]
− [Fe(x+ C)− Fe(x− C)]

∣∣∣
(iii)

≤ (2LT+1 + 1)C + 2 sup
x

|F̃T+1(x)− Fe(x)|.
(111)

Here, (i) follows from the inequality |1{a ≤ x} − 1{b ≤ x}| ≤ 1{|b− x| ≤ |a− b|} for a, b ∈ R,
(ii) follows from the identity P(|eT+1 − x| ≤ C) = Fe(x + C) − Fe(x − C), and (iii) uses the
Lipschitz continuity of Fe(x).

Proof of Theorem 2.2. For any β ∈ [0, α],

∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1

)
− (1− α)

∣∣∣
=
∣∣∣P(êT+1 ∈

[
F̂−1
T+1(β), F̂

−1
T+1(1− α+ β)

]
| ZT+1 = zT+1

)
− (1− α)

∣∣∣
(i)
=
∣∣∣P(β ≤ F̂T+1(êT+1) ≤ 1− α+ β

)
− P (β ≤ Fe(eT+1) ≤ 1− α+ β)

∣∣∣ .
(112)

Equality (i) follows from Lemma E.7, which states that Fe(eT+1) ∼ Unif[0, 1]. This can be further
bounded by:

∣∣∣P(β ≤ F̂T+1(êT+1) ≤ 1− α+ β
)
− P (β ≤ Fe(eT+1) ≤ 1− α+ β)

∣∣∣
≤ E

∣∣∣1{β ≤ F̂T+1(êT+1) ≤ 1− α+ β
}
− 1 {β ≤ Fe(eT+1) ≤ 1− α+ β}

∣∣∣
(i)

≤ E
(∣∣∣1{β ≤ F̂T+1(êT+1)

}
− 1 {β ≤ Fe(eT+1)}

∣∣∣
+
∣∣∣1{F̂T+1(êT+1) ≤ 1− α+ β

}
− 1 {Fe(eT+1) ≤ 1− α+ β}

∣∣∣)
(113)

Here, inequality (i) follows from the fact that for any a, b ∈ R and real values x, y ∈ R,

|1{a ≤ x ≤ b} − 1{a ≤ y ≤ b}| ≤ |1{a ≤ x} − 1{a ≤ y}|+ |1{x ≤ b} − 1{y ≤ b}| . (114)

By triangle inequality,
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E
(∣∣∣1{β ≤ F̂T+1(êT+1)

}
− 1 {β ≤ Fe(eT+1)}

∣∣∣
+
∣∣∣1{F̂T+1(êT+1) ≤ 1− α+ β

}
− 1 {Fe(eT+1) ≤ 1− α+ β}

∣∣∣)
≤ E

(∣∣∣1{β ≤ F̂T+1(êT+1)} − 1{β ≤ Fe(eT+1)}
∣∣∣)︸ ︷︷ ︸

(a)

+ E
(∣∣∣1{F̂T+1(êT+1) ≤ 1− α+ β

}
− 1 {Fe(eT+1) ≤ 1− α+ β}

∣∣∣)︸ ︷︷ ︸
(b)

(115)

For term (a), we have:

E
(∣∣∣1{β ≤ F̂T+1(êT+1)} − 1{β ≤ Fe(eT+1)}

∣∣∣)
≤ P

(
|Fe(eT+1)− β| ≤ |F̂T+1(êT+1)− Fe(eT+1)|

)
.

(116)

This inequality follows from the fact that for a, b ∈ R, |1{a ≤ x} − 1{b ≤ x}| ≤ 1{|b − x| ≤
|a− b|}, and E[1{A}] = P(A).
Similarly, for term (b), we have:

E
(∣∣∣1{F̂T+1(êT+1) ≤ 1− α+ β

}
− 1 {Fe(eT+1) ≤ 1− α+ β}

∣∣∣)
≤ P

(
|Fe(eT+1)− (1− α+ β)| ≤

∣∣∣F̂T+1(êT+1)− Fe(eT+1)
∣∣∣) . (117)

Therefore,

∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1

)
− (1− α)

∣∣∣
≤ P

(
|Fe(eT+1)− β| ≤ |F̂T+1(êT+1)− Fe(eT+1)|

)
+ P

(
|Fe(eT+1)− (1− α+ β)| ≤ |F̂T+1(êT+1)− Fe(eT+1)|

) (118)

In Lemma D.11, we defined AT as the event on which

sup
x

|F̃T+1(x)− Fe(x)|
∣∣AT ≤

√
log(16T )

T
,

where P(AT ) > 1−
√

log(16T )
T . Let ACT denote the complement of the event AT . For any γ ∈ [0, 1],

we have:

P
(
|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(eT+1)|

)
≤ P

(
|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(eT+1)| | AT

)
+ P(ACT )

≤ P
(
|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(êT+1)|+ |Fe(êT+1)− Fe(eT+1)|

∣∣∣AT)
+

√
log(16T )

T
.

(119)

To bound the conditional probability above, we note that with probability 1− δ, conditioning on the
event AT ,
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|F̂T+1(êT+1)− Fe(eT+1)|+ |Fe(êT+1)− Fe(eT+1)|
∣∣AT

(i)

≤ sup
x

|F̂T+1(x)− Fe(x)|
∣∣AT + LT+1|êT+1 − eT+1|

≤ sup
x

|F̂T+1(x)− F̃T+1(x)|
∣∣AT + sup

x
|F̃T+1(x)− Fe(x)|

∣∣AT + LT+1|êT+1 − eT+1|

(ii)

≤ (2LT+1 + 1)C + 3 sup
x

|F̃T+1(x)− Fe(x)|
∣∣AT + LT+1δT

(iii)

≤ 3

√
log(16T )

T
+

(
LT+1 +

1

2

)
(2C + δT ).

(120)

Here, inequality (i) holds due to the supremum of |F̂T+1(x)−Fe(x)| over x and Lipschitz continuity
of Fe from Assumption D.9. Inequality (ii) follows from Lemma D.13. Inequality (iii) follows from
Lemma D.11.

Since Fe(eT+1) ∼ Unif[0, 1],

P
(
|Fe(eT+1)− γ| ≤

∣∣∣F̂T+1(êT+1)− Fe(êT+1)
∣∣∣+ |Fe(êT+1)− Fe(eT+1)|

∣∣∣AT)
≤ 6

√
log(16T )

T
+ 2

(
LT+1 +

1

2

)
(2C + δT ).

(121)

Therefore, by substituting inequality (121) to inequality (118), we obtain:∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1

)
− (1− α)

∣∣∣
≤ 12

√
log(16T )

T
+ 4(LT+1 +

1

2
)(2C + δT ).

(122)

Proof of Lemma D.17. The proof follows similarly in the proof of Lemma B.11 in Xu et al. [51].
Define vT (x) :=

√
T (F̃T+1(x)− Fe(x)). By using Proposition 7.1 in Rio et al. [36], we have:

E
(
sup
x

|vT (x)|2
)

≤

(
1 + 4

T∑
k=0

α(k)

)(
3 +

log T

2 log 2

)2

, (123)

where α(k) denots the k-th mixing coefficient. Under Assumption D.16, we have
∑
k≥0 α(k) ≤

M <∞. Applying Markov’s inequality yields:

P
(
sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≥ sT

)
≤

E
(
supx |vT (x)|2/T

)
s2T

≤ 1 + 4M

Ts2T

(
3 +

log T

2 log 2

)2

. (124)

By setting

sT :=

(
1 + 4M

T

(
3 +

log T

2 log 2

)2
)1/3

≈
(
M(log T )2

2T

)1/3

, (125)

we then have:

P

(
sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≤ (M(log T )2

2T

)1/3
)

≥ 1−
(
M(log T )2

2T

)1/3

. (126)

23



Define the event AT on which supx

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≤ (M(log T )2

2T

)1/3
, so that we have:

sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ∣∣∣AT ≤

(
M(log T )2

2T

)1/3

(127)

and

P(AT ) > 1−
(
M(log T )2

2T

)1/3

. (128)

Proof of Corollary 2.3. Under Assumption D.16, the result follows by combining Lemma D.13
and D.17, using an argument analogous to the proof of Theorem 2.2.

F Experiment Setup

For notational convenience, we refer to our method as FCP, which stands for Flow-based Conformal
Prediction. We evaluated FCP using two different architectures to model the guided vector field. The
first one is MLP with Softplus activation, and the second one is iResNet [5] with Softplus activation.
Both architectures are smooth and continuously differentiable, satisfying the conditions needed to
ensure the existence and uniqueness of the guided flow (Assumption D.3). Moreover, the iResNet
architecture satisfies the bi-Lipschitz condition of the guided flow, which is required to derive the
conditional coverage bound of FCP (Assumption D.7).

dopri5 [15] at absolute and relative tolerances of 1e-5 was used to solve all ODEs in FCP. A grid
search was conducted to select the optimal hyperparameters for FCP, including the number of MLP or
iResNet layers in the vector field, hidden dimensions of these layers, the number of Transformer heads
and layers, the Transformer model dimension, and the covariance scale γ of the source Gaussian
distribution. Detailed descriptions of the hyperparameter search are provided in Appendix G.

To determine an appropriate sample size N for reducing the variance in the prediction set size
estimation using quasi-Monte Carlo sampling, we computed the relative standard error of the Jacobian
determinants of ψ, defined as SE(det Jψ,h)/Avg(det Jψ,h), where det Jψ,h = {det Jψ(xj | h)}Nj=1
are the sampled Jacobian determinants conditioned on h. We selected the smallest N such that the
average relative standard error across all h falls below 0.01.

Datasets. We evaluated FCP and baselines using three real-world time series datasets: wind, traffic,
and solar datasets. The wind dataset contains wind speed records measured at 30 different wind
farms [53]. Each wind farm location provides 768 records with 5 features at each timestamp. The
traffic dataset contains traffic flow collected at 15 different traffic sensor locations [48]. Each sensor
location provides 8778 observations with 5 features at each timestamp. The solar dataset considers
solar radiation in Diffused Horizontal Irradiance (DHI) units at 9 different solar sensor locations [52].
Each location provides 8755 records with 5 features at each timestamp. For the wind and traffic
datasets, we randomly selected dy ∈ {2, 4, 8} locations to construct five sequences of dy-dimensional
time series. For the solar dataset, we randomly selected dy ∈ {2, 4} locations to construct five
sequences of dy-dimensional time series. We did not construct sequences with dy = 8 for the solar
dataset due to the limited number of unique locations, which could lead to overlapping sequences
across different trials of experiments.

Base predictor f̂ is required to provide a point prediction ŷ. We used two types of base predictors
for each dataset: (1) leave-one-out (LOO) bootstrap multivariate linear regression, and (2) recurrent
neural network (RNN) with long short-term memory (LSTM) units [21]. For each method, we
conducted five independent experiments using the five constructed sequences, across all combinations
of datasets, dimensions, and base predictors. The first 80% of each sequence was used as the training
set, while the remaining 20% was split equally into validation and test sets. A validation set was used
for the methods requiring a calibration set. For methods that did not require validation or calibration,
the validation set was merged into the training set. Note that the effective sequence length available
for evaluation varies depending on the base predictor: the RNN base predictor requires the data for
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training the base predictor itself, whereas the LOO bootstrap base predictor can utilize the entire
sequence.

Baselines. We evaluated our method against several conformal prediction methods designed for
multi-dimensional time series or i.i.d. data: MultiDimSPCI [51], conformal prediction using local
ellipsoid [31], CopulaCPTS [42], and conformal prediction using empirical and Gaussian copulas [30].
We also included two probabilistic time series forecasting methods as baselines: Temporal Fusion
Transformer (TFT) [27] and DeepAR [37]. Although TFT and DeepAR were originally developed for
time series with univariate outcome, we adapted them to our multi-dimensional setting by constructing
independent copulas using the predicted intervals for each output dimension.

Evaluation metrics. Efficient prediction sets are those that are as small as possible while satisfying
the desired coverage. Therefore, we used two evaluation metrics: empirical coverage and the average
size of the prediction sets. The empirical coverage at a target confidence level α is defined as:

1

|Dtest|
∑

{zi,yi}∈Dtest

1

(
yi ∈ Ĉi−1(zi, α)

)
, (129)

where Dtest denotes the test set. The definition of prediction set size varies depending on the geometric
structure of the prediction set. In FCP, the size of the prediction set is estimated using the determinant
of the Jacobian of the guided flow transformation, as described in equation (5).

G Implementation Details

MultiDimSPCI. We implemented MultiDimSPCI using the source code provided by the au-
thors [51]. The context window size was set to 50 for experiments on all real-world datasets similarly
to FCP. Thu number of trees was set to 15 as suggested by the implementation by authors on Github.

Comformal prediction using copulas. We implemented the method using the source code provided
by the authors [30].

Conformal prediction using local ellipsoids We implemented the method using the source code
provided by the authors [31].

CopulaCPTS We implemented the method using the source code provided by the authors [42].

Temporal Fusion Transformer We implemented Temporal Fusion Transformer (TFT) [27] using
pytorch_forecasting. A hyperparameter grid search was conducted on the training set of each
dataset with dy = 2 to determine the optimal configuration. We believe this hyperparameter search
generalizes well to higher dy within each dataset, since TFT makes predictions for each outcome
dimension independently in our setup. Performance was observed to saturate at a model dimension
of 32, with two attention heads and two layers, therefore these settings were used for all experiments.
For consistency with FCP, the context window size was fixed at 50 across all experiments. We trained
the models using the Adam optimizer [23] with a learning rate of 0.001, a maximum of 50 epochs,
and a dropout rate of 0.1. Quantile loss with q ∈ {0.025, 0.975} was used for 0.95 target coverage.

DeepAR We implemented DeepAR [37] using pytorch_forecasting. A hyperparameter grid
search was conducted on the training set of each dataset with dy = 2 to determine the optimal
configuration similarly to TFT. Performance was observed to saturate at a model dimension of 32
with two layers, therefore these settings were used for all experiments. For consistency with FCP,
the context window size was fixed at 50 across all experiments. We trained the models using the
Adam optimizer [23] with a learning rate of 0.001, a maximum of 50 epochs, and a dropout rate of
0.1. Multivariate normal distribution loss with q ∈ {0.025, 0.975} was used for 0.95 target coverage.

FCP We used multilayer perceptions (MLP) to model the guided vector field ut|h : [0, 1]× Rdh ×
Rdy → Rdy . The time variable t ∈ [0, 1] was concatenated with the input and fed into the vector
field. A hyperparameter grid search was conducted on the training set of each dataset with different
dy to determine the optimal configuration. We set the hidden dimension of the vector field identical to
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the model dimension of the encoder, so that additional layer is not required between the vector field
and the encoder. Table 2 shows the hyperparameter search space and Table 3 shows the optimized
hyperparameter configuration. The context window size for the encoder was set to 50. We trained the
model with Adam optimizer [23] with a maximum of 50 epochs for all experiments.

To determine an appropriate sample size N for the set size estimation using quasi-Monte Carlo
sampling, we computed the relative standard error of the Jacobian determinants of ψ, defined as
SE(det Jψ,h)/Avg(det Jψ,h), where det Jψ,h = {det Jψ(xj | h)}Nj=1 are the sampled Jacobian
determinants conditioned on h. We selected the smallest N such that the average relative standard
error across all h falls below 0.01. We used N = 4096 for experiments with dy = 2, N = 8192 for
experiments with dy = 4, and N = 16384 for experiments with dy = 8.

Table 2: The optimized hyperparameter settings for FCP.

Hyperparameter Search Space

Vector Field the number of layers { 2, 4, 6 }
hidden dimension { 16, 32, 64 }

Encoder

the number of layers { 2, 4, 6 }
the number of heads { 2, 4, 8 }
model dimension { 16, 32, 64 }
dropout { 0, 0.1 }

General
covariance scale γ { 1, 2, 4, 8 }
learning rate { 0.0005, 0.0001 }
batch size { 8, 16 }

Table 3: The optimized hyperparameter configuration for FCP based on the grid search.

Dataset Hyperparameter dy = 2 dy = 4 dy = 8

Wind

the number of layers of the vector field 4 4 4
the number of heads of the encoder 2 2 2
the number of layers of the encoder 4 4 4
the hidden dimension of the vector field and encoder 32 32 32
covariance scale γ 1 1 2
encoder dropout 0.1 0.1 0.1
batch size 4 4 4
learning rate 0.0005 0.0005 0.0005
null condition probability 0.05 0.05 0.05

Traffic

the number of layers of the vector field 4 4 4
the number of heads of the encoder 2 2 2
the number of layers of the encoder 4 4 4
the hidden dimension of the vector field and encoder 32 32 32
covariance scale γ 1 1 1
encoder dropout 0.1 0.1 0.1
batch size 8 8 8
learning rate 0.0001 0.0001 0.0001
null condition probability 0.05 0.05 0.05

Solar

the number of layers of the vector field 4 4 -
the number of heads of the encoder 2 2 -
the number of layers of the encoder 4 4 -
the hidden dimension of the vector field and encoder 32 32 -
covariance scale γ 1 1 -
encoder dropout 0.1 0.1 -
batch size 8 8 -
learning rate 0.0005 0.0005 -
null condition probability 0.05 0.05 -
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