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ABSTRACT

The long-standing theory that a colour-naming system evolves under the dual pres-
sure of efficient communication and perceptual mechanism is supported by more
and more linguistic studies including the analysis of four decades’ diachronic data
from the Nafaanra language. This inspires us to explore whether artificial intel-
ligence could evolve and discover a similar colour-naming system via optimising
the communication efficiency represented by high-level recognition performance.
Here, we propose a novel colour quantisation transformer, CQFormer, that quan-
tises colour space while maintaining the accuracy of machine recognition on the
quantised images. Given an RGB image, Annotation Branch maps it into an index
map before generating the quantised image with a colour palette, meanwhile the
Palette Branch utilises a key-point detection way to find proper colours in palette
among whole colour space. By interacting with colour annotation, CQFormer is
able to balance both the machine vision accuracy and colour perceptual structure
such as distinct and stable colour distribution for discovered colour system. Very
interestingly, we even observe the consistent evolution pattern between our artifi-
cial colour system and basic colour terms across human languages. Besides, our
colour quantisation method also offers an efficient quantisation method that ef-
fectively compresses the image storage while maintaining a high performance in
high-level recognition tasks such as classification and detection. Extensive exper-
iments demonstrate the superior performance of our method with extremely low
bit-rate colours. We will release the source code upon acceptance.

1 INTRODUCTION

Hath not a Jew eyes?
Hath not a Jew hands, organs,dimensions, senses, affections, passions?

William Shakespeare ”The Merchant of Venice”

Does artificial intelligence share the same perceptual mechanism for colours as human beings? We
aim to explore this intriguing problem through AI simulation in this paper.

Colour involves the visual reception and neural registering of light stimulants when the spectrum
of light interacts with cone cells in the eyes. Physical specifications of colour also include the
reflective properties of the physical objects, geometry incident illumination, etc. By defining a
colour space (Forsyth & Ponce, 2002), people could identify colours directly according to these
quantifiable coordinates.

Compared to the pure physiological nature of hue categorisation, the complex phenomenon of colour
naming or colour categorisation spans multiple disciplines from cognitive science to anthropology.
Solid diachronic research (Berlin & Kay, 1969) also suggests that human languages are constantly
evolving to acquire new colour names, resulting in an increasingly fine-grained colour naming sys-
tem. This evolutionary process is hypothesised to be under the pressure of both communication
efficiency and perceptual structure. Communication efficiency requires shared colour partitioning
to be communicated accurately with a lexicon as simple and economical as possible. Colour per-
ceptual structure is relevant to human perception in nature. For example, the colour space distance
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Figure 1: (a) the theoretical limit of efficiency for colour naming (black curve) and cases of the
WCS probability map of human colour language copied from Zaslavsky et al. (2022). (b) the colour
size (from 1-bit to 6-bit)-accuracy curve on the tiny-imagenet-200 (Le & Yang, 2015) dataset. The
WCS probability maps generated by our CQFormer are also shown along the curve. (c) the colour
naming stimulus grid used in the WCS (Kay et al., 2009). (d) the three-term WCS probability map
of CQFormer after embedding 1978 Nafaanra three-colour system ((light (’fiNge’), dark (’wOO’),
and warm or red-like (’nyiE’)) into the latent representation. (e) the four-term WCS probability
map of CQFormer evolved from (d). The evolved fourth colour, yellow-green, is consistent with the
prediction of basic colour term theory (Berlin & Kay, 1969)

between nearby colours should correspond to their perceptual dissimilarity. This structure of percep-
tual colour space has long been used to explain colour naming patterns across languages. A recent
analysis of human colour naming systems, especially in Nafaara, contributes the very direct evidence
to support this hypothesis through the employment of Shannon’s communication model (Shannon,
1948). Very interestingly, this echos the research on colour quantisation, which quantises colour
space to reduce the number of distinct colours in an image.

Traditional colour quantisation methods (Heckbert, 1982; Gervautz & Purgathofer, 1988; Floyd &
Steinberg, 1976) are perception-centred and generate a new image that is as visual perceptually sim-
ilar as possible to the original image. These methods group similar colours in the colour space and
represent each group with a new colour, thus naturally preserving the perceptual structure. Instead
of prioritising the perceptual quality, Hou et al. (Hou et al., 2020) proposed a task-centred/machine-
centred colour quantisation method, ColorCNN, focusing on maintaining network classification ac-
curacy in the restricted colour spaces. While achieving an impressive classification accuracy on
even a few-bit image, ColorCNN only identifies and preserves machine-centred structure, without
directly clustering similar colours in the colour space. Therefore, this pure machine-centred strategy
sacrifices perceptual structure and often associates nearby colours with different quantised indices.

Zaslavsky et al. (Zaslavsky et al., 2022) measure the communication efficiency in colour naming by
analysing the informational complexity based on the information bottleneck (IB) principle. Here,
we argue that the network recognition accuracy also reflects the communication efficiency when
the number of colours is restricted. Since the human colour naming is shaped by both perception
structure and communication efficiency (Zaslavsky et al., 2019a), we integrate the need for both
perception and machine to propose a novel end-to-end colour quantisation transformer, CQFormer,
to discover the artificial colour naming systems.

As illustrated in Fig. 1.(b), the recognition accuracy increases with the number of colours in our
discovered colour naming system. Surprisingly, the complexity-accuracy trade-offs are similar to the
numerical results (Fig. 1.(a)) independently derived from linguistic research (Zaslavsky et al., 2022).
What is more, after embedding 1978 Nafaanra three-colour system (Nafaanra-1978, Fig. 1.(d)) into
the latent representation of CQFormer, our method automatically evolves the fourth colour closed to
yellow-green, matching the basic colour terms theory (Berlin & Kay, 1969) summarised in different
languages. Berlin and Kay found universal restrictions on colour naming across cultures and claimed
languages acquire new basic colour category in a strict chronological sequence. For example, if a
culture has three colours (light (’fiNge’), dark (’wOO’), and warm or red-like (’nyiE’) in Nafaanra),
the fourth colour it evolves should be yellow or green, exactly the one (Fig. 1.(e)) discovered by our
CQFormer.

The pipeline of CQFormer, shown in Fig. 2, comprises two branches: Annotation Branch and Palette
Branch. Annotation Branch annotates each pixel of the input RGB image with the proper quantised
colour index before painting the index map with the corresponding colour in the colour palette. We
localise the colour palette in the whole colour space with a novel Palette Branch which detects the
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key-point with explicit attention queries of transformer. During the training stage, as illustrated in
the red line and black line of Fig. 2, Palette Branch interacts with an input image and reference
palette queries to maintain the perceptual structure by reducing the perceptual structure loss. This
perception-centred design groups similar colours and ensures the colour palette sufficiently repre-
sents the colour naming system defined by the World Color Survey (WCS) colour naming stimulus
grids. As shown in Fig. 2.(b), each item in colour palette (noted by an asteroid) lies in the middle of
corresponding colour distribution in the WCS colour naming probability map. Finally, the quantised
image is passed to a high-level recognition module for machine accuracy tasks such as classification
and detection. Through the joint optimisation of CQFormer and consequent high level module, we
are able to balance both perception and machine. Apart from automatically discovering the colour
naming system, our CQFormer also offers an effective solution to extremely compress the image
storage while maintaining a high performance in high-level recognition tasks.

Our contributions could be summarised as following:

• We propose a novel end-to-end colour quantisation transformer, CQFormer, to artificially
discover colour naming system by considering the needs of both perception and machine.
The discovered colour naming system shows similar pattern as human language on colour.

• We propose a novel colour palette generation method that takes the colour quantisation as
an attention-based key-point detection task, inputs independent attention queries to gener-
ate 3D coordinates, and then automatically finds the selected colour in the whole colour
space.

• Our colour quantisation achieves superior performance on both classification and object
detection with extremely low bit-rate colours. The source code will be released to facilitate
the community.

2 RELATED WORKS

Colour Quantisation Methods: Traditional colour quantisation (Orchard & Bouman, 1991; Deng
et al., 1999; Liang et al., 2003; Wu, 1992) reduces the colour space while maintaining visual fi-
delity. These perception-centred methods usually cluster colours to create a new image as visually
perceptually similar as possible to the original image. For example, MedianCut (Heckbert, 1982)
and OCTree, (Gervautz & Purgathofer, 1988) are two representative clustering-based algorithms.
Dithering (Floyd & Steinberg, 1975) eliminates visual artefacts by including a noise pattern. The
colour-quantised images can be expressed as indexed colour (Poynton, 2012), and encoded with
PNG (Boutell, 1997). Recently, Hou et al. propose a pure machine-centred CNN-based colour
quantisation method, ColorCNN (Hou et al., 2020), which effectively maintains the informative
structures under an extremely constrained colour space. In addition to colour quantisation, Cam-
poseco et al. also design a task-centred image compression method for localisation in 3D map
data (Camposeco et al., 2019). Since human colour naming reflects both perceptual structure and
communicative need, our CQFormer also considers both perception and machine to artificially dis-
cover the colour naming system.

World Color Survey: The World Color Survey (WCS) (Kay et al., 2009) comprises colour name
data from 110 languages of non-industrialised societies (Zaslavsky et al., 2019b), with respect to the
stimulus grid shown in Fig. 1(c). There are 320 colour chips in colour naming stimulus grids, and
each chip is at its maximum saturation for that hue/lightness combination, while columns correspond
to equally spaced Munsell hues and rows to equally spaced Munsell values. Participants were asked
to name the colour of each chip to record the colour naming system.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

For an image-label pair (x, y) in dataset D, the recognition network fθ(·) encodes input image x to
predict its label ŷ (i.e. class probability in classification task). fθ(·) can be optimised by minimising
the loss between prediction ŷ = fθ(x) and ground truth y, defined as machine-centred loss LM , to
find the appropriate parameter θ⋆:
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Figure 2: Structure of CQFormer (3-colour quantisation). Red lines are only for training stage;
Purple lines are only for testing stage; black lines are both used in both stage. (a) is the detailed
structure of PAM. (b) is WCS colour probability map counted across all pixels of the input image.

θ⋆ = argmin
θ

∑
(x,y)∈D

LM (y, fθ(x)) . (1)

We aim to discover the artificial colour naming system by meeting the need for both machine accu-
racy and human perception. Therefore, CQFormer not only strives for recognition accuracy but also
maintains the perceptual structure. The function in Eq. 1 can be rewritten as follow:

ψ⋆, θ⋆ = argmin
ψ,θ

∑
(x,y)∈D

LM (y, fθ (gψ(x))) + LP , (2)

where ψ, θ respectively denotes the parameter of CQFormer g and the following high level recog-
nition network f . We jointly optimise g and f to find optimal parameters ψ⋆ and θ⋆. LP is the
perceptual structure loss that is perception-centred and will be introduced in detail in Sec. 3.3.

3.2 CQFORMER ARCHITECTURE

Overall Architecture. An overview of the CQFormer is depicted in Fig. 2, which mainly consists
of two branches: (1) Annotation Branch to annotate each pixel of an input RGB image with a proper
quantised colour index , and (2) Palette Branch to acquire a suitable colour palette.

Given an input image x ∈ RH×W×3, Annotation Branch generates a probability map mτ (x) ∈
RH×W×C during training stage or a one-hot colour index map One-hot(M(x)) ∈ RH×W×C dur-
ing testing stage. H andW denotes height and width of the input image x. C represents the number
of quantised colours, and τ > 0 denotes the temperature parameter of the Softmax function (He
et al., 2018). In Palette Branch, we first define reference palette queries Q ∈ RC×d consisting of
C learnable vectors of dimension d. Each vector represents an automatically mined colour. The Q
interacts with the keys K ∈ R(HW

16 )×d and values V ∈ R(HW
16 )×d generated from the input image

x to produce the colour palette P (x) ∈ RC×3 that consists of C triples of (R,G,B). Each triple
represents one of the machine-discovered C colours. Finally, CQFormer outputs the quantised im-
age by calculating a matrix multiplication between mτ (x) and P (x) during the training stage. For
testing stage, we get it from One-hot(M(x)) and P (x). Then, we feed the colour-quantised image
into the high-level recognition module for recognition tasks, i.e., classification and object detection.

Annotation Branch. The first component of Annotation Branch is a UNeXt (Valanarasu & Patel,
2022) encoder that outputs per-pixel categories. Given the input image x, the encoder generates a
class activation map xactivation ∈ RH×W×C with crucial and semantically rich features.

(1) Testing stage: We then use the class activation map xactivation as the input to a Softmax function
over C channels followed by a argmax function to obtain a colour index map M(x) ∈ RH×W :

M(x) = argmax
C

(Softmax(xactivation)). (3)
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After that, a one-hot colour index map One-hot(M(x)) ∈ RH×W×C is generated from the M(x)
using a one-hot function One-hot(·) and finally we utilise the One-hot(M(x)) and the colour
palette P (x) to generate the test-time colour-quantised image x̄ via a matrix multiplication:

x̄ = One-hot(M(x))⊗ P (x), (4)
where ⊗ represents matrix multiplication.

(2) Training stage: Since the argmax function is not differentiable, we utilise the Softmax function
instead of the argmax. To avoid over-fitting, we add a temperature parameter τ (He et al., 2018)
to the Softmax function, forcing the probability map’s distribution closer to a one-hot vector, and
obtain the probability map mτ (x) with the temperature parameter τ . The mτ (x) is computed as:

mτ (x) = Softmax(
xactivation

τ
). (5)

As extensively discussed in He et al. (2018), when in a low temperature (0 < τ < 1), the output
is similar to a one-hot vector with large diversity; while in a high temperature (τ > 1), the output
distribution is similar to a uniform distribution with small diversity. Therefore, we fix the 0 < τ < 1
to approximate the One-hot(M(x)) using mτ (x) during the training procedure. The train-time
colour-quantised image x̃ is generated as:

x̃ = mτ (x)⊗ P (x). (6)
Palette Branch. We locate the representative colours by an attention-based key-point detection
strategy, which is originally designed to utilise transformer queries to automatically find key-point
location (i.e. bounding-box (Carion et al., 2020), human pose (Li et al., 2021)) by attention mecha-
nism. In other words, we reformulate the problem of colour quantisation as a 3D spatial key-point
localisation task among the whole RGB colour space. Given the input image x, we first extract a
high-dimensional and lower resolution feature F0 ∈ RH

4 ×W
4 ×d by two stacked convolutional layers.

After that, the F0 is fed into a palette acquisition module (PAM) to acquire the colour palette P (x).
As shown in Fig. 2(a), we use a depth-wise convolution (DWConv) (Chu et al., 2021) with a resid-
ual connection to complete position encoding, which is suitable for different input resolutions. After
that, since the cross attention block expects sequence as input, we collapse the spatial dimensions
into one dimension and obtain the flattened feature map F1 ∈ R(HW

16 )×d:
F1 = Flatten(DWConv(F0) + F0). (7)

Different from DETR (Carion et al., 2020), where Q, K and V are generated from the same input,
our Q are explicit learnable embeddings, called reference palette queries, representing each auto-
matically mined colour. K and V are the features extracted from F1 via a Layernorm (LN), which
is followed by two fully connected layers (FCs). Generally, we have Q ∈ RC×d, K,V ∈ R(HW

16 )×d.
The attention matrix Fattn ∈ RC×d is computed by the cross-attention (CA) mechanism as

Fattn = Attention(Q,K,V) = Softmax(QK⊤/
√
d)V. (8)

Next, a multi-layer perceptron (MLP) that has two FCs with GELU non-linearity between them is
utilised for further feature transformations. The LN is added before MLP, and the residual connec-
tion is employed only for MLP. The whole process is formulated as

FMLP = MLP(LN(Fattn)) + Fattn, (9)
where the FMLP ∈ RC×d is the MLP features. Finally, the FMLP would pass through a feed
forward network (FFN), which has the same architecture as MLP, followed by a Sigmoid function
to get the final C sets of 3D coordinates xcoord ∈ [0, 1]C×3, which corresponds to values from 0 to
255 in the whole RGB colour space. Hence, we take 255 × of the xcoord as the colour palette P (x):

P (x) = 255× Sigmoid(FFN(FMLP )). (10)
High-Level Recognition Module. High-level recognition module takes the generated x̄ or x̃ as
inputs, and we adopt the popular Resnet (He et al., 2016) as the classifier and the Faster-RCNN (Ren
et al., 2015) as the detector.

3.3 PERCEPTUAL STRUCTURE LOSS

The CQFormer is trained in an end-to-end fashion using a machine-centred loss LM . To balance
the machine accuracy and perceptual structure, we also add a perceptual structure loss LP includ-
ing perceptual similarity loss LPerceptual, diversity regularisation RDiversity and intra-cluster colour
similarity regularisation RColour. The perceptual structure loss can be summarised as follows:

LP = αRColour + βRDiversity + γLPerceptual, (11)
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where α , β and γ are the weights that control the contributions of RColour, RDiversity, and
LPerceptual, respectively. We combine the LM and the LP as the total loss L, and then minimise L
for the clssification and detection task:

L = LM + LP . (12)
Additionally, we define WCS colour probability map mWCS ∈ R8×40×C on the colour naming
stimulus grids in the WCS and use it to calculate RColour. As shown in Fig. 2.(b), the horizontal
axis represents the Munsell hue ranging from 0◦ to 360◦, and the vertical axis denotes the Munsell
value ranging from 0 to 1. Each grid is associated with the equally spaced (hue, value) coordinate
and a grid’s colour index c with the C corresponding occurrence frequencies. The map for human
language is collected by the participants’ colour perception in WCS (see in Fig. 3(c)), and the ma-
chine one is counted across the pixels’ colour index in the datasets (see in Fig. 1(d), (e) ,Fig. 2.(b)).
Precisely, we first map the colour index of each pixel to the grid with the same (hue, value) coor-
dinate as the pixel and then count the frequency of occurrence of each colour index in each grid.
Finally, we take the colour index with the most considerable frequency as the grid’s colour index.

Perceptual Similarity Loss: The perceptual similarity loss LPerceptual is a mean squared error
(MSE) loss between the quantised image x̃ and the input image x, which makes the x̃ or x̄ per-
ceptually similar to the x. In particular, the LPerceptual ensures each item of the P (x) (noted by
asteroids in Fig. 2(b)) lies in the centre of corresponding colour distribution in the WCS colour
naming probability map. The LPerceptual is formulated as:

LPerceptual = LMSE(x̃,x), (13)
Diversity Regularisation: To encourage the CQFormer to select at least one pixel of all C colours,
we adopt the diversity regularisation term RDiversity proposed by Hou et al.. Diversity is a simple
yet efficient metric that serves as an unsupervised signal to maintain colour diversity in the quantised
image by maximising the maximum probability of each channel. The RDiversity is calculated as:

RDiversity = log2 C ×

(
1− 1

C
×
∑
c

max
(u,v)

[mτ (x)]u,v

)
(14)

Intra-cluster Colour Similarity Regularisation: The CQFormer associates each pixel of the x
with a colour index, and the pixels with the index c form a cluster Clusterc covering a part of the
mWCS (see the different colour grids in Fig. 2.(b)). To make sure the pixels in the same cluster
are perceptually similar in colour as possible, we propose the intra-cluster colour similarity regu-
larisation RColour and calculate it in the WCS’s Munsell HSV colour space. At first, we calculate
the centroid colour value µc of Clusterc. Then, we compute the squared colour distance Dist2HSV
between all pixels in Clusterc and µc in the conical representation of HSV. Finally, we calculate
the mean value of Dist2HSV for each cluster and obtain the RColour:
Dist2HSV{[h1, s1, v1], [h2, s2, v2]} = (v2 − v1)

2
+ s21v

2
1 + s22v

2
2 − 2s1s2v1v2 cos (h2 − h1) . (15)

RColour =
1

C
×
∑
c

1

Nc

Nc∑
i=1

Dist2HSV{xc[i], µc}, (16)

where Nc is the number of all pixels in Clusterc, and xc[i] represents the Munsell HSV value of
the i-th pixel in Clusterc.

3.4 COLOUR EVOLUTION

To discover the colour naming system, we explore the colour evolution based on the classification
task using the CQFormer cascaded with the Resnet-18 (He et al., 2016) without any pre-train models.
It consists of two successive stages. Since there are various colour naming systems associated with
corresponding languages, the first embedding stage aims to embed the colour perceptual knowledge
of a certain language into the latent representation of the CQFormer. For example, CQFormer
first learns and matches the Nafaanra with three colours. Specifically, we design two embedding
solutions to either distil full colour probability map embedding or only representative colours to
CQFormer. The second evolution stage then lets CQFormer evolve more colours, i.e. splitting the
fourth colour from the learned three colour system under the pressure of accuracy without restriction.

Embedding Stage: (1) Colour Probability Map Embedding: This embedding forces our CQFormer
to match the identical WCS colour probability map of a certain language. At first, we train CQ-
Former to have the same colour number C of the designed human colour system. As illustrated in
Fig. 3, for each pixel in the input image, we collect the pixel’s spatial position coordinate (i, j) in
the input image, and locate its Munsell H and V value at the mWCS of certain language to find its
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corresponding C probability values pHuman(i, j) ∈ RC of human colour categories (e.g. 9% for
’fiNge’, 4% for ’wOO’, and 87% for ’nyiE’ in the little red square of Fig. 3(c)). After perform-
ing the above operations on all pixels of the input image, a set of probability values is generated
{pHuman(i, j) | i ∈ [0, H), j ∈ [0, w)}. We arrange each pHuman(i, j) in this set according to its
spatial position (i, j) and obtain a new H ×W × C matrix regarded as human language probabil-
ity map mHuman(x). Then we force the mτ (x) to match the mHuman(x) with a cross-entropy loss
LCE . Here we utilise the argmax onmHuman(x) for efficient embedding and replace the loss func-
tion in Eq. 12 with Eq. 17 . In this knowledge distillation way, our CQFormer successfully inherits
the colour naming system of human language, which is used in the subsequent colour evolution
stage.

L = LM + LCE(mτ (x), argmax(mHuman(x))). (17)

Figure 3: The procedure of colour probability map
embedding. (a) the origin RGB image. (b) the
WCS colour naming stimulus grids. (c) themWCS

of Nafaanra-1978. (d) the human colour index
map argmax(mHuman(x)) for Nafaanra-1978.

(2) Central Colour Embedding: Alternatively,
we could distil less information of human
colour naming system. Here, we only em-
bed representative colours and their C cen-
tral colour H and V coordinates µHuman,c ∈
R2, c ∈ [0, C) in human’s mWCS (noted by as-
teroids in Fig. 3(c)). Specifically, we utilise it
to draw the three mWCSs in Fig. 1(b). By op-
timising the loss function in Eq. 12, where we
replace the µc in RColour with aforementioned
µHuman,c and ignore the S value of HSV, we
obtain the embedded CQFormer with the central colour.

Colour Evolution Stage: After inheriting the existing colour naming system of human language,
the CQFormer could evolve to acquire fine-grained new colour on top of the embedded model. In
this stage, we remove the restriction of the number of colours C and encourage the CQFormer to
evolve more colours under the pressure of accuracy.

4 EXPERIMENTS

We evaluate our CQFormer on mainstream benchmark datasets of both image classification
(Sec. 4.2) task and object detection task (Sec. 4.3). Additionally, we specifically design a colour
evolution experiment (Sec. 4.4) to demonstrate how our CQFormer automatically evolves to in-
crease fine-grained colours. For ablation study, visualisation and detailed results, please refer to
Appendix Sec. 6.

4.1 DATASETS AND EXPERIMENT SETUP

Datasets: For classification, we utilise CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky
et al., 2009), STL10 (Coates et al., 2011) and tiny-imagenet-200 (Tiny200) (Le & Yang, 2015)
dataset. Both CIFAR10 and CIFAR100 contain 60000 images, covering 10 and 100 classes of
general objects, respectively. The STL10 consists of 13000 images (5000 for training and 8000 for
testing) with 10 classes. The Tiny200 is a subset of ImageNet (Deng et al., 2009) and contains 200
categories with 110k images. All train images are random cropped, random horizontal flipped and
resized into their respective original resolutions. For object detection, we utilise MS COCO (Lin
et al., 2014) dataset, which contains ∼118k images with bounding box annotation in 80 categories.
Here, we use COCO train2017 set as the train set and use COCO val2017 set as the test set.

Evaluation Metrics: For classification, we report top-1 classification accuracy as the evaluation
metric. For object detection, we report average precision (AP) value in COCO evaluation setting.

Implement Details:

(i) Upper bound: We utilise the performance of classifier/detector without additional colour quanti-
sation methods in full colour space (24 bit) as the upper bound. For classification upper bound, we
adopt Resnet-18 (He et al., 2016) network. For detection upper bound, we adopt Faster-RCNN (Ren
et al., 2015) network with ResNet-50 (He et al., 2016) backbone and FPN (Lin et al., 2017) neck.

(ii)Training Settings: All colour quantisation experiments are finished at quantisation levels from
1-bit to 6-bit, i.e. C ∈ {2, 4, 8, 16, 32, 64}. For classification, we cascade CQFormer with the
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Figure 4: Top-1 classification accuracy of colour-quantised images on four datasets with Resnet-
18 (He et al., 2016) networks.

classifier and jointly train them without any pre-trained models on a single GeForce RTX A6000
GPU. We set the temperature parameter τ = 0.01 and the α = 1, β = 0.3 , γ = 1. We employ
an SGD optimiser for 60 epochs using the Cosine-Warm-Restart (Loshchilov & Hutter, 2016) as the
learning rate scheduler. A batch size of 128 (STL10 is set to 32), an initial learning rate of 0.05,
a momentum is 0.5, a weight decay is 0.001 are used. For detection, only the Resnet-50 backbone
of the detector is initialised with Imagenet (Deng et al., 2009) pre-train weights. We also cascade
and jointly train the combination for 12 epochs on 4 Tesla V100 GPUs, with the α = 0, β = 1 ,
γ = 0.1, and batch size is set to 8. We also adopt the SGD optimiser with an initial learning rate
0.01, momentum 0.9 and weight decay 0.0001, learning rate decay to one-tenth at 8 and 11 epochs.

Comparison Methods: As illustrated in Fig. 4, we compare with three traditional perception-
centred methods: MedianCut (solid green line) (Heckbert, 1982) , MedianCut+Dither (solid orange
line) (Floyd & Steinberg, 1976) and OCTree (solid grey line) (Gervautz & Purgathofer, 1988), and
a task-centred CNN-based method ColorCNN (solid yellow line) (Hou et al., 2020). Specifically,
for task-centred ColorCNN, we adopt the same training strategy as we did for CQFormer. For the
traditional colour quantisation methods, we conduct comparative experiments as described in the
ColorCNN (Hou et al., 2020).
Table 1: Object detection results on MS COCO dataset (Lin et al., 2014) with Faster-RCNN Ren
et al. (2015) detector, here we report the average precision (AP) value.

Method 1-bit 2-bit 3-bit 4-bit 5-bit 6-bit Full Colour (24-bit)
Upper bound - - - - - - 37.2
Median Cut (w/o D) (Heckbert, 1982) 6.5 9.7 11.4 14.0 16.8 18.1 -
Median Cut (w D) (Floyd & Steinberg, 1976) 7.3 8.8 11.2 13.4 14.8 15.6 -
OCTree (Gervautz & Purgathofer, 1988) 8.7 9.0 9.8 10.9 13.4 14.5 -
CQFormer 8.9 11.2 12.8 14.5 16.6 19.4 -

4.2 CLASSIFICATION TASK EVALUATION

Fig. 4 presents comparisons to the state-of-the-art methods on the four datasets. Our proposed
CQFormer (solid blue line) has a consistent and obvious improvement over all other methods in
extremely low-bit colour space (less than 3-bit). Moreover, our CQFormer archives a superior per-
formance than the task-centred method ColorCNN (Hou et al., 2020) under all colour quantisation
levels from 1-bit to 6-bit. As the number of the quantised colours increases, the accuracy of the
CQFormer continues to improve, which is similar to the complexity-accuracy trade-offs (Fig. 1(a))
independently derived from linguistic research (Zaslavsky et al., 2022).

Similar to the task-centred ColorCNN, we are also inferior to the traditional method under a large
colour space (greater than 4-bit), which is an inherent limitation of the CQFormer. As extensively
discussed in Hou et al. (2020), this is very normal since traditional methods clusters all pixels to
enforce intra-cluster similarity to make a collective decision. Actually, this also explains why our
method consistently outperforms pure machine-centred ColorCNN as our method considers the per-
ceptual structure. In addition, we are quite satisfied with the current superior performance on limited
colour numbers, as most human languages only use fewer than 3-bit colour terms. This implies that
discovering more colours not only compromises the principle of efficiency but also goes contrary
to the expectation of better perceptual effects. In other words, the performance of the CQFormer
on limited colour categories may hint at the optimal outcome restricted by the unique neurological
structure of human vision and cognition, which are, in turn reflected in a wide array of languages.
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4.3 DETECTION TASK EVALUATION

Table. 1 shows the object detection results on MS COCO dataset Lin et al. (2014) with Faster-
RCNN Ren et al. (2015) detector, we report the average precision value (AP) of CQFormer and the
comparison methods. We could see that our CQFormer also gains superior performance in object
detection task in most colour sizes. We also evaluate CQFormer with more recent SOTA object
detectors. For more details, please refer to the Appendix part.

4.4 COLOUR EVOLUTION EVALUATION

Settings: This experiment is based on the classification task on CIFAR10 (Krizhevsky et al., 2009)
dataset using CQFormer and Resnet-18 (He et al., 2016) without any pre-train models. As intro-
duced in Sec. 3.4, in the first embedding stage, we embed the Nafaanra-1978 (Fig. 3(c)) using the
colour probability map embedding. Here we set C = 4, τ = 0.1 α = β = γ = 0, and force the
fourth colour to be split from light (’fiNge’), dark (’wOO’), and warm or red-like (’nyiE’), respec-
tively. Therefore, the number of quantised colours output by CQFormer is still 3, and we optimise
the loss function in Eq. 17 for the initial 40 epochs. In the second colour evolution stage, we make
the CQFormer inherit the parameters from the first stage and remove the restriction on the last two
colour indexes. The β is changed as 1, and the loss function in Eq. 12 is minimised for the subse-
quent 20 epochs.

During the first stage, the WCS colour probability map generated by the embedded CQFormer is
shown in Fig.1(d), and similar to Nafaanra-1978 in Fig.3(c). During the second stage, the CQFormer
automatically evolves the fourth colour that is split from dark (’wOO’) and close to yellow-green
(see in Fig. 1(e)), matching the basic colour terms theory (Kay & McDaniel, 1978). However, we
are not able to see the fourth colour split from either light (’fiNge’) or warm/red-like (’nyiE’) in the
mWCS, since only 3.7% (if split from light (’fiNge’)) and 5.9% (if split from warm/red-like (’nyiE’))
of all pixels are assigned to the fourth colour, compared with 23.5% (if split from dark (’wOO’)).
Very interestingly, this phenomenon echoes the evolution of the information bottleneck (IB) colour
naming systems (Zaslavsky et al., 2018), where the fourth colour should be spilt from dark in the
”dark-light-red” colour scheme. In other words, similar to human language, the colour naming of AI
also evolves under the pressure of accuracy and the discovered colour naming system shows similar
pattern as human language on colour. (Zaslavsky et al., 2022).

5 LIMITATION AND DISCUSSION

While the complexity-accuracy tradeoff of machine-discovered colour terms, as shown in Fig. 1(b),
is quite similar to the numerical limit of categorical counterparts for human languages, the current
work is still preliminary. As shown in Fig. 1, the newly discovered WCS colour probability map
is still quite different from the human one. A more accurate language evolution replication needs
to consider more complex variables such as environmental idiosyncrasies, cultural peculiarities,
functional necessities, technological maturity, learning experience, and intercultural communication.

Another promising direction would be associating the discovered colours with human colour terms.
This would involve much research on Nature Language Processing, and we hope to discuss it with
experts from different disciplines in future works. Last but not least, the AI simulation outcome con-
tributes to the long-standing universalist-relativist debate of the linguistic community on colour cog-
nition. Though not entirely excluding the cultural specificities of the colour schemes, the machine
finding strongly supports the universalist view that an innate, physiological principle constraints,
if not determine, the evolutionary sequence and distributional possibilities of basic colour terms in
communities of different cultural traditions. The complexity-efficiency principle is confirmed by
the finding that the numerical limitation of colour categories could lead to superior performance on
colour-specific tasks, contrary to the intuitive expectation that complexity breeds perfection. The
independent AI discovery of the ”green-yellow” category on the basis of the fundamental tripartite
”dark-light-red” colour scheme points to the congruence of neural algorithms and human cognition
and opens a new frontier to test contested hypothesis in the social sciences through machine simu-
lation. We would be more than delighted if this tentative attempt would prove to be a bridge to link
scholars of different disciplines for more collaboration and generate more fruitful results.
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6 APPENDIX

6.1 ABLATION STUDY

Table 2: Ablation study results under 1-bit colour quantisation, Tiny200 Le & Yang (2015) dataset,
Renset18 He et al. (2016) classifier.

τ RColour RDiversity LPerceptual Palette Branch Accuracy
" " " " " 45.1
% " " " " 6.9
" % " " " 43.9
" " % " " 43.7
" " " % " 44.6
" % % % " 37.3
" " " " % 30.4

Table 3: Ablation study results of robustness under under different colour quantisation levels from
1-bit to 4-bit, CIFAR10 Krizhevsky et al. (2009) dataset, Renset18 He et al. (2016) classifier.

1 bit 2 bit 3 bit 4 bit
CQFormer 80.7 83.1 83.8 85.2

CQFormer (with colour jitter) 79.3 81.6 83.4 84.6
CQFormer(with Gaussian blur ) 80.6 81.7 81.9 83.6

Figure 5: (a) is the original image.
(b) is the quantised image with Palette
Branch. (c) is the quantised image us-
ing a set of centroids instead of Palette
Branch.

As shown in Table 2, we ablate the important elements in
our CQFormer , using Tiny200 (Le & Yang, 2015) classi-
fication dataset under 1-bit colour quantisation. We inves-
tigate the effectiveness of the temperature parameter by
setting τ = 1.0, perceptual structure loss by setting any
terms of α, β and γ as 0 and Palette Branch by replacing
it with a set of centroids in colour space. We also inves-
tigate the robustness of CQFormer by adding colour jit-
ter and Gaussian blur using CIFAR10 (Krizhevsky et al.,
2009) classification dataset under different colour quan-
tisation levels from 1-bit to 4-bit. Results are shown in
Table. 2 and Table. 3

Influence of temperature parameter: Without the tem-
perature parameter, a severe accuracy drop (-38.8%)
has occurred, which shows that the temperature pa-
rameter in our CQFormer can further approximate the
One-hot(M(x)) using mτ (x) during training stage to
boost classification accuracy.

Influence of perceptual structure loss: With the
RColour, RDiversity and LPerceptual, our CQFormer im-
prove the top-1 accuracy by 1.2%, 1.4% and 0.5%, re-
spectively. When we remove all of them, a considerable
accuracy drop of -7.8% has occurred. It demonstrates that
the perceptual structure loss contributes to better machine
accuracy besides maintaining perceptual similarity.

Influence of Palette Branch: If we remove Palette Branch and make the CQFormer just learn a
set of centroids in RGB colour space, the accuracy is 30.4%, resulting in a severe drop of 14.7%.
As shown in Fig. 5, it would make all the images have the same colour palette rather than the
same amount of colours, resulting in a loss of perceptual similarity, e.g. the blue sky in Col.(c) is
represented as light yellow. Therefore, our Palette Branch ensures that reference palette queries are
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sent to interact with the image and creates the colour palette using both machine preference and
image perception features, which maintains the colour specificity of each image.

Robustness of CQFormer: We add a colour jitter and Gaussian blur to the colour-quantised image.
Results are shown in Table. 3. For example, on the CIFAR10 classification dataset, we achieve
79.3%, 81.6%, 83.4%, and 84.6% top-1 accuracy with a colour jitter from 1-bit to 4-bit colour
quantisation. The colour jitter causes a little drop of 1.4%, 1.5%, 0.4%, and 0.6%, respectively.
Therefore, our CQFormer is robust enough to overcome different noises.

6.2 OBJECT DETECTION WITH OTHER DETECTOR

Table 4: Object detection results on MS COCO dataset (Lin et al., 2014) with Sparse-RCNN Sun
et al. (2021) detector, here we report the average precision (AP) value.

Method 1-bit 2-bit 3-bit 4-bit 5-bit 6-bit Full Colour (24-bit)
Upper bound - - - - - - 45.0
Median Cut (w/o D) (Heckbert, 1982) 11.5 12.7 15.4 17.0 20.4 23.2 -
Median Cut (w D) (Floyd & Steinberg, 1976) 12.3 13.8 15.2 19.6 21.8 25.6 -
OCTree (Gervautz & Purgathofer, 1988) 10.7 13.4 13.2 16.7 18.9 22.8 -
CQFormer 13.9 16.5 18.8 21.5 27.5 29.8 -

To evaluate our CQFormer’s generalization on another object detector, we use the recent SOTA
object detector Sparse-RCNN Sun et al. (2021) for evaluation. We jointly train our CQFormer
with Sparse-RCNN for 36 epochs on 4 Tesla V100 GPUs and adopt AdamW optimizer. The initial
learning rate is set to 1.25e−6, and the learning rate would decay to one-tenth at 24 epochs. The
dataset and other training settings are the same as Faster-RCNN experiments in Sec. 4.3.

6.3 THE RELATIONSHIP BETWEEN THE IB COLOR NAMING MODEL AND CQFORMER

Figure 6: (a) is the IB color naming model proposed by Zaslavsky et al..(b) is our colour quantisation
model.

Fig. 6(a) is the information bottleneck (IB) color naming model proposed by Zaslavsky et al..
A straightforward communication scenario, which can be derived from Shannon’s communication
model (Shannon, 1948), serves as the foundation for this theoretical framework.

Fig. 6(b) is our colour quantisation model. The motivation of our colour quantisation model archi-
tecture is driven by the IB color naming model (Zaslavsky et al., 2018). As illustrated in (b), the
speaker represents the CQFormer, and the listener represents the classifier. We focus on the case
where a colour quantiser (CQFormer) and a classifier communicate about colours. The CQFormer
has a ”mental” representation, i.e. a full-colour image x associated with a prior label y drawn from
a prior distribution, and communicates this representation by encoding it into a colour-quantised
image x̄ according to the perceptual similarity. The classifier receives x̄ and attempts to infer from
it the full-colour image’s label y by predicting the label ŷ and constructing another distribution that
approximates y.

There exists a problem that both the speaker and listener in Fig. 6 (a) have a knowledge of colour
naming/recognition at the same time. In contrast, the untrained CQFormer and classifier lack knowl-
edge of colour quantisation and image classification. Therefore, we jointly train both the CQFormer
and classifier simultaneously to add prior knowledge of colour quantisation and image classifica-
tion under a specific bit of colour. Finally, similar to the theoretical limit of semantic efficiency in
(Zaslavsky et al., 2018), we obtain optimal image classification accuracy under the specific bit of
colour.

13



Under review as a conference paper at ICLR 2023

6.4 DETAILED CLASSIFICATION RESULT

Table. 5 shows the detailed classification result, where the results are the same to Fig. 4.

Table 5: Top-1 classification accuracy of colour-quantised images on four datasets with three net-
works. We observe that our CQFormer is significantly superior to MedianCut (Heckbert, 1982),
OCTree (Gervautz & Purgathofer, 1988), MedianCut+Dither (Floyd & Steinberg, 1976) and Color-
CNN (Hou et al., 2020) under low-bit (less than 3-bit) quantisation levels.

Evaluating Datasets Methods
Colour size

1-bit 2-bit 3-bit 4-bit 5-bit 6-bit Full Colour (24-bit)

CIFAR10 (Krizhevsky et al., 2009)

baseline - 94.6

MedianCut (Heckbert, 1982) 28.1 59.5 77.8 86.7 90.9 92.9

-

MedianCut+Dither (Floyd & Steinberg, 1976) 20.2 41.7 59.7 74.3 83.7 89.8

OCTree (Gervautz & Purgathofer, 1988) 22.7 40.0 60.6 77.9 85.7 90.8

ColorCNN (Hou et al., 2020) 53.5 70.5 78.1 80.1 79.2 80.5

CQFormer 80.7 83.1 83.8 85.2 84.4 85.8

CIFAR100 (Krizhevsky et al., 2009)

baseline - 76.3

MedianCut (Heckbert, 1982) 11.0 26.0 43.8 57.9 66.5 71.3

-

MedianCut+Dither (Floyd & Steinberg, 1976) 4.2 10.6 25.0 40.1 53.6 63.6

OCTree (Gervautz & Purgathofer, 1988) 6.2 13.1 26.8 45.5 57.5 66.4

ColorCNN (Hou et al., 2020) 17.6 32.9 41.5 46.1 49.3 50.7

CQFormer 50.6 57.7 57.2 60.3 60.2 60.6

STL10 (Coates et al., 2011)

baseline - 84.3

MedianCut (Heckbert, 1982) 19.9 54.8 74.8 81.3 83.0 84.0

-

MedianCut+Dither (Floyd & Steinberg, 1976) 17.7 45.3 64.5 73.9 79.3 82.0

OCTree (Gervautz & Purgathofer, 1988) 16.4 31.0 50.2 66.5 78.5 82.6

ColorCNN (Hou et al., 2020) 41.1 65.1 66.9 69.45 68.0 66.9

CQFormer 54.2 68.8 71.9 72.5 72.6 72.8

Tiny200 (Le & Yang, 2015)

baseline - 69.1

MedianCut (Heckbert, 1982) 7.0 24.4 46.5 56.2 60.4 62.5

-

MedianCut+Dither (Floyd & Steinberg, 1976) 4.2 18.7 40.2 52.0 58.6 62.2

OCTree (Gervautz & Purgathofer, 1988) 3.5 10.3 26.4 45.1 56.8 61.6

ColorCNN (Hou et al., 2020) 9.3 33.9 43.4 46.7 47.8 48.7

CQFormer 45.1 51.2 53.1 54.5 56.4 55.5

6.5 VISUALISATION

As shown in Fig. 7, our CQFormer effectively preserves more perceptual structure and similarity.
For instance, aeroplane wings, textures of architecture and vehicle windows.
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Figure 7: Visualisation of 1-bit and 2-bit colour quantisation.
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