
Learning to Flow from Generative Pretext Tasks for
Neural Architecture Encoding

Sunwoo Kim1, Hyunjin Hwang1, Kijung Shin1,2

1Kim Jaechul Graduate School of AI, 2School of Electrical Engineering
Korea Advanced Institute of Science and Technology (KAIST)

{kswoo97, julia510, kijungs} @ kaist.ac.kr

Abstract

The performance of a deep learning model on a specific task and dataset depends
heavily on its neural architecture, motivating considerable efforts to rapidly and
accurately identify architectures suited to the target task and dataset. To achieve
this, researchers use machine learning models—typically neural architecture en-
coders—to predict the performance of a neural architecture. Many state-of-the-art
encoders aim to capture information flow within a neural architecture, which re-
flects how information moves through the forward pass and backpropagation, via a
specialized model structure. However, due to their complicated structures, these
flow-based encoders are significantly slower to process neural architectures com-
pared to simpler encoders, presenting a notable practical challenge. To address
this, we propose FGP, a novel pre-training method for neural architecture encoding
that trains an encoder to capture the information flow without requiring specialized
model structures. FGP trains an encoder to reconstruct a flow surrogate, our pro-
posed representation of the neural architecture’s information flow. Our experiments
show that FGP boosts encoder performance by up to 106% in Precision@1%,
compared to the same encoder trained solely with supervised learning.

1 Introduction

Deep learning has achieved outstanding performance across diverse machine learning tasks, includ-
ing those in computer vision [9, 57]. However, a particular neural architecture (i.e., deep-learning
model) that performs well on one task or dataset may underperform on others, highlighting the
importance of choosing an architecture suited to the target task and dataset [29, 11, 35]. A naive ap-
proach—exhaustively training and evaluating each neural architecture—incurs substantial costs since
each architecture requires expensive computational resources and time for training and evaluation on
the target task and dataset.

A promising approach for alleviating expensive training and evaluation costs is to use machine learning
techniques to predict the performance of neural architectures. Due to their effectiveness, performance
predictors are widely leveraged for neural architecture search to find good neural architectures rapidly
and accurately [10, 45, 16, 33]. Recently, various neural architecture encoders, which are typically
deep learning models, have been developed to be used for performance predictors [34, 49, 15, 32].

The focus of many state-of-the-art neural architecture encoders [34, 15] lies in capturing the infor-
mation flow within a neural architecture—a concept that describes how input data is propagated in
the forward pass and how gradients flow during the backpropagation. To capture the information
flow, these flow-based encoders use complex model structures, especially graph neural networks with
asynchronous message passing [40], specially designed to capture the flow within an architecture.

Challenge 1. However, these flow-based encoders face a practical challenge related to efficiency.
The complicated structures of flow-based encoders result in significantly longer processing times

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

P
e

rf
o

rm
a
n

c
e

 p
re

d
ic

ti
o

n
 t

a
s
k

re
s
u

lt
s
 (

m
e

tr
ic

:
K

e
n

d
a

ll
’s

 t
a

u
,

h
ig

h
e

r
th

e
 b

e
tt

e
r)

Neural architecture processing time (sec.)

-14%

x57

-5%

x43

NAS-Bench-101 dataset NAS-Bench-201 dataset

Flow-based encoder

(FlowerFormer)

Non-flow-based encoder

(ResGatedGCN)

(a) The total processing time of FlowerFormer [15] and
ResGatedGCN [3] for the 14K and 15K architectures in

Nas-Bench-10 and NAS-Bench-201, respectively.

H

O

?

OO

H

out

in

1x1

3x3

3x3 mp?

Generative pretext task

on a molecule

Generative pretext task

on a neural architecture

(b) Example generative pretext tasks: deep
learning models are trained to predict the

masked atoms or operations (colored in gray).

Figure 1: Remaining challenges in neural architecture encoding. Challenge 1: Regarding model
structures, as shown in (a), flow-based encoders, though more effective, are considerably slower than
non-flow-based encoders. Challenge 2: Regarding pretext objectives, in (b), while a deep learning
model learns chemical rules by identifying masked atoms in a molecule, it gains no clear training
guidance when identifying masked operations in a neural architecture, where most operations are
possible options due to the absence of explicit rules.
compared to the simpler structures of non-flow-based encoders. In particular, flow-based encoders
sequentially perform message passing according to the graph’s topological order (see Section 3.2.1),
instead of computing all messages simultaneously as in non-flow-based encoders; this sequential
process results in significantly greater computation time. Specifically, as shown in Figure 1 (a),
a flow-based encoder (spec., FlowerFormer [15]) is up to 57 times slower than non-flow-based
encoders [3, 47] (refer to Appendix B.1 for further results). Since performance predictors aim to
quickly identify effective neural architectures, this slower processing time poses a considerable
practical bottleneck when using flow-based encoders.

Another line of research focuses on the effective pre-training of neural architecture encoders. Neural
architecture encoders require sufficient training data—architectures paired with their ground-truth
performance on the target task and dataset—since deep learning models are often vulnerable to the
overfitting issue. However, obtaining enough neural architectures along with their performance entails
heavy costs. To address this, various generative pre-training methods for neural architecture encoding
have been explored [48, 17]. Note that in various domains, it is known that by using well-designed
generative pretext tasks, deep learning models can capture data patterns [12, 6, 13, 19] that lead to
performance improvements in label-scarce scenarios [55, 53, 18].

Challenge 2. However, existing generative pre-training methods, which are often adapted from other
domains [48, 17], may be sub-optimal for neural architecture encoding. Consider a generative pretext
task that involves predicting masked parts of the input, used for both neural architectures [17] and
molecules [13]. In Figure 1 (b), only a limited set of atoms can occupy the masked area due to
chemical rules, which deep learning models learn through this task. In contrast, such rules are largely
absent in neural architectures; as shown in Figure 1 (b), most operations are possible options for the
masked part. This characteristic makes it unclear what specific advantage the model gains from this
generative pretext task in the context of neural architecture.

To address both key challenges, we propose a novel and specialized generative pre-training method for
neural architecture encoding, FGP (Flow-based Generative Pre-training). FGP enables an encoder to
capture the information flow within a neural architecture, even if the encoder structure is not specially
designed to capture the information flow (e.g., the non-flow-based encoders [47, 3]). We train an
encoder to reconstruct flow surrogate, a proposed representation of a neural architecture’s information
flow, allowing the encoder to capture the information flow of the architecture. FGP addresses the two
practical challenges outlined earlier: (1) it enables encoders to become flow-aware without requiring
a specialized model structure that would increase computational time significantly, and (2) it provides
clear training guidance to the encoder, allowing it to effectively learn the information flow within a
neural architecture through our pretext task.

We demonstrate the effectiveness of our pre-training method compared to baseline pre-training
methods across multiple downstream tasks, including performance prediction and neural architecture
search. Specifically, compared to the strongest baseline method [56], FGP shows up to 46.5% gain in
terms of Precision@1% in performance prediction. Our key contributions are as follows:

2

• We propose a novel generative pre-training method, FGP, for neural architecture encoding. FGP
trains a neural architecture encoder to learn the information flow within a neural architecture even
without a specialized encoder structure (Section 3).

• In the performance prediction experiment, FGP outperforms the baseline pre-training methods in
23 out of 27 settings, demonstrating its efficacy (Section 4.2).

• In the neural architecture search (NAS) experiment—a key application of neural architecture
encoders—FGP outperforms the baseline pre-training methods (Section 4.3).

Our code and datasets are available at https://github.com/kswoo97/FGPAnom.

2 Related Work and Preliminaries

In this section, we first review related studies, followed by an outline of the preliminary concepts
essential to our study.

2.1 Related work

2.1.1 Neural architecture encoding.

Neural architecture encoding aims to learn good representations of neural architectures [49, 15, 34,
32, 50]. Its notable application is neural architecture performance prediction, which can reduce the
cost of finding a proper neural architecture for the target task and dataset.

Neural architectures, including Transformers [5] and convolutional neural networks [51], can be
expressed as graphs where nodes represent operations (e.g., 3x3 conv and max pooling) and edges
represent connections between them. Therefore, graph neural networks (GNNs) [3, 47, 23] are widely
used as neural architecture encoders [42, 43, 48, 4, 10]. GNNs encode a neural architecture graph by
aggregating and transforming features from the neighborhood of each node.

Recent works have increasingly focused on capturing the information flow within a given neural
architecture by using specialized model structures [32, 34, 15]. A representative example is Flow-
erFormer [15], a state-of-the-art neural architecture encoder that employs sequential information
processing to imitate the forward-pass and backpropagation in a neural architecture. Although more
effective, these flow-based encoders require significantly more processing time, due to their sequential
processing, compared to simpler GNN-based encoders (refer to Figure 1 (a)).

2.1.2 Pre-training for neural architecture encoding.

Due to the high cost of obtaining a neural architecture’s ground-truth performance on the target
task and dataset (i.e., the architecture’s ‘label’), it is essential to train accurate performance pre-
dictors—typically using neural architecture encoders—in label-scarce scenarios, as discussed in
Section 1. To this end, generative pre-training methods [22, 12], known for enhancing the generaliza-
tion capabilities of deep learning models [55, 53, 18], have been adopted. These methods leverage
unlabeled neural architectures (i.e., those with unknown ground-truth performance) to pre-train a
neural architecture encoder and fine-tune the encoder on the target downstream task, such as the
performance prediction tasks [48, 17].

Arch2vec [48] is based on a variational graph autoencoder [22], which trains a neural architecture
encoder to reconstruct edges in graphs representing neural architectures. GMAE [17] builds on
masked autoencoder [12], where certain operations within a neural architecture are masked, and the
encoder is trained to predict these masked operations.

In contrast, Zhao et al. [56] leveraged zero-cost proxies [1, 25, 14], which are neural architecture’s
statistics correlated with its ground-truth performance. They trained a neural architecture encoder to
predict the zero-cost proxies of a neural architecture, enabling it to learn which types of architectures
are more likely to yield high performance.

2.2 Preliminary

Neural architecture graph. A neural architecture is often modeled as a directed acyclic graph G =
(V, E), defined by a set of nodes V = {v1, · · · , v|V|} that represent operations, and a set of directed

3

https://github.com/kswoo97/FGPAnom

edges E ⊆ {(vi, vj) : vi, vj ∈ V} that represent connections between consecutive operations (refer to
Figure 2 for an example). Specifically, when operation vj follows operation vi, the two are connected
by a directed edge (vi, vj), with vi as the source and vj as the destination. Each node is assigned a
feature vector, typically a one-hot encoded vector indicating its operation type (refer to Figure 2).

in

1x1

out

3x3

1x1

1x1mp

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟓

𝒗𝟒
𝒗𝟔

𝒗𝟕

(a) An architecture
from NAS-Bench-101.

Edges 𝓔
(𝒗𝟏, 𝒗𝟐), (𝒗𝟏, 𝒗𝟔), (𝒗𝟏, 𝒗𝟕), (𝒗𝟐, 𝒗𝟑), (𝒗𝟐, 𝒗𝟒),

(𝒗𝟑, 𝒗𝟒), (𝒗𝟑, 𝒗𝟓), (𝒗𝟒, 𝒗𝟓), (𝒗𝟓, 𝒗𝟔), (𝒗𝟔, 𝒗𝟕)

Node features (𝑿)

in 1x1 3x3 mp out

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒗𝟓

𝒗𝟔

𝒗𝟕

(b) Graph representation of the ex-
ample neural architecture in (a).

Figure 2: Graph modeling of a neural architecture.
An example of how a neural architecture is modeled as
a directed acyclic graph.

We denote the feature vector matrix as
X ∈ {0, 1}|V|×|O|, where O represents the
set of all possible operations. The i-th row
of X, denoted by Xi,:, corresponds to the
feature vector of node vi. Therefore, a neu-
ral architecture can also be expressed as
G = (X, E).
Neural architecture encoders. Neural ar-
chitecture encoders transform a neural ar-
chitecture graph G = (X, E) into its vector
representation (i.e., embedding). Formally,
given G as an input, a neural architecture
encoder fθ produces a vector z ∈ Rd (i.e.,
fθ(X, E) = z). For encoders that give em-
beddings for each operation [47, 15] (i.e.,
fθ(X, E) = Z′ ∈ R|V|×d), we apply mean
pooling to obtain z, as in [15].

3 Proposed method

In this section, we introduce our proposed generative pre-training method for neural architecture
encoding, FGP (Flow-based Generative Pre-training). FGP trains a neural architecture encoder to
learn the information flow within a given neural architecture, even if the encoder lacks a specialized
structure for capturing this flow.

3.1 Motivation, challenge, and overview

Motivation. Information flow refers to how input data propagates through a neural network during the
forward pass and how gradients are transmitted back during the backpropagation. This concept plays
a fundamental role in understanding how a neural network learns and makes predictions, making it
a critical feature of neural architectures [32, 34, 15]. Although state-of-the-art neural architecture
encoders successfully capture the information flow through specialized model structures [34, 15],
complexity leads to significantly longer processing times compared to simpler, non-flow-based
encoders (refer to Figure 1 (a)). Therefore, we anticipate that training a simple neural architecture
encoder—especially without a specialized structure for information flow—to learn this flow can
address the computational efficiency issue while enhancing the encoder’s overall effectiveness.

Challenge. The main challenge in learning the information flow is defining an appropriate training
objective. To address this, we introduce flow surrogate, a vector representing the information flow
within a neural architecture. This surrogate serves as a pre-training objective, guiding the encoder to
understand the information flow in neural architectures. We obtain the surrogate by passing random
vectors through a directed acyclic graph that represents an architecture, which is a highly simplified
simulation of a neural network’s forward pass and backpropagation.1 Notably, each architecture
has its own flow surrogate, which can be obtained with a one-time computational effort without
any learning procedure. This does not require prior knowledge of the architecture’s ground-truth
performance on the target task. We detail the process of obtaining the flow surrogate (i.e., pre-training
objective) in Section 3.2.

Overview. We now provide an overview of FGP. Given a set of unlabeled neural architectures
(i.e., architectures with unknown ground-truth performance on the target task and dataset), we first
express each architecture as a graph (i.e., neural architecture graph), as outlined in Section 2.2. Next,
we obtain each architecture’s flow surrogate (i.e., pre-training objective), as detailed in Section 3.2.
Lastly, we train a neural architecture encoder to learn the information flow by reconstructing the
obtained flow surrogate, as detailed in Section 3.3.

1We analyze the alternatives and reliability of using random vectors in Appendix B.9.

4

in

1x1

3x3

out

in 1x1 3x3 out

Operation nodes and

respective embeddings

(random vectors)

Neural architecture graph

Message

conversion

Initialization Conversion based on ‘1x1’ and ‘3x3’

convolution operations

Conversion based on ‘out’ operation

Conversion based on ‘1x1’ and ‘3x3’

convolution operations
Reversing all edgesConversion based on ‘in’ operation and

obtaining the flow surrogate
Flow surrogate

(pre-training objective)

Process 1: Mimicking the forward pass

Process 2. Mimicking the backpropagation

Legend

Forward-pass

messages
Backpropagation

messages

Figure 3: Generation of the proposed pre-training objective. Red edges mark active computation
for the current step; gray edges indicate inactive computation. Starting from ‘in’ (input), a message
(spec., randomly-drawn embedding of ‘in’) flows through the ‘1x1’ and ‘3x3’ operations, where it
is converted depending on each operation type. The two converted messages are summed and flow
to ‘out’ (output) for further conversion. This process is then reversed, and the message flows back
through the operations until it returns to ‘in’. The resulting message, called the architecture’s flow
surrogate, serves as the pre-training objective.

3.2 Proposed pre-training objective

We describe the process for obtaining the flow surrogate, our proposed representation of a neural
architecture’s information flow, which serves as our pre-training objective. We sequentially propagate
random vectors through a directed acyclic graph that represents a neural architecture. Specifically, the
random vectors, called messages, are passed between nodes (operations) along edges (connections
between operations). When a node receives messages from other nodes, its message is converted
based on its specific operation type, capturing unique operational characteristics. Notably, to simulate
both the forward pass and backpropagation in a highly simplified manner, we: (1) propagate messages
in the forward direction along the edges to model the forward pass, and (2) repeat the process in
the reverse direction to model backpropagation. An overview is in Figure 3. After completing both
propagation steps, the final converted message(s) serve as the flow surrogate for the corresponding
neural architecture. We detail this process in three steps: (1) assigning a topological order, (2)
mimicking the forward pass, and (3) mimicking the backpropagation. Note that this process resembles
how flow-based encoders generate outputs. However, in our approach, the process is used only once
per architecture (with random vectors) to obtain pre-training objectives and not repeated for training.

3.2.1 Assigning topological order

in

1x1 3x3

mp

out

𝒗𝟏

𝒗𝟑𝒗𝟐

𝒗𝟒

𝒗𝟓 Order-4 node (𝓥 𝟒 = 𝒗𝟓)

Order-3 node (𝓥 𝟑 = 𝒗𝟒)

Order-2 nodes (𝓥 𝟐 = 𝒗𝟐, 𝒗𝟑)

Order-1 node (𝓥 𝟏 = 𝒗𝟏)

Figure 4: Example of topological order
assignment in a neural architecture
graph. Assignment results are (V(1) =
{v1}, V(2) = {v2, v3}, V(3) = {v4},
and V(4) = {v5}), and T = 4.

For a given neural architecture, we first obtain its graph
expression G = (X, E), as outlined in Section 2.2. Recall
that this graph is a directed acyclic graph. In this graph,
we assign a topological order to each node, indicating the
sequence in which each node receives the information flow.
An example of topological order assignment is provided in
Figure 4. Order-1 nodes are defined as nodes without any
incoming edges. After finding order-1 nodes, we remove
them and the edges where they serve as source nodes
from the graph. Next, order-2 nodes are those that, in the
modified graph, have no incoming edges. We repeat this
process until all nodes have been assigned an order. We denote a set of order-t nodes as V(t), and
denote the last order as T . Thus, the node set V is split into disjoint subsets V(1), . . . ,V(T).

3.2.2 Mimicking the forward pass

Once the topological order assignment (Section 3.2.1) is complete, we model the forward pass of
a neural architecture. To this end, we propagate forward-pass messages from node to node along

5

the edges of the neural architecture graph. Here, the forward-pass message of a node represents the
hidden state at the corresponding node (i.e., operation) within the neural architecture, and each node
has a distinct forward-pass message. We refer to these forward-pass messages as fp-messages. When
a node vi receives fp-messages from other nodes along edges, the fp-message of vi is converted
according to the incoming fp-messages and the operation type of vi. The process of propagation and
conversion proceeds in the order of V(1),V(2), . . . ,V(T), until the fp-messages of order-T nodes (i.e.,
vj ∈ V(T)) are converted. An example is provided in the ‘Process 1’ box of Figure 3.

We denote a fp-message of a node vi as fi ∈ Rk. Also, each node vi ∈ V has an embedding, denoted
by hi ∈ Rk, based on its operation type. Specifically, by using a matrix P ∈ R|O|×k randomly
sampled from N (0, σ2), we compute the node embedding matrix H = PX, where its i−th row
corresponds to vi’s embedding (i.e., Hi,: = hi). Note that nodes performing the same operation
share the same embedding across all architectures. Additionally, we set the fp-messages of the
order-1 nodes, which do not have any incoming edges, with a randomly initialized vector r ∈ Rk

(i.e., fj = r,∀vj ∈ V(1)). Note that fp-messages of all order-1 nodes are initialized as r in every
neural architecture.

We formalize the propagation and conversion process at node vi ∈ V(t). When multiple fp-messages
arrive at vi (e.g., ‘out’ operation node in Figure 3), we first aggregate these arriving fp-messages
using sum pooling as mi =

∑
vj∈N (i) fj , where N (i) = {vj : (vj , vi) ∈ E}. In this process, using

mean or max (rather than sum) pooling for neighbor aggregation yields lower performance than our
approach (refer to Appendix B.11).

Next, we convert the pooled fp-messages mi ∈ Rk according to the operation of vi, obtaining the
converted fp-message of vi, denoted by fi ∈ Rk, as fi = αmi + (1− α)ReLU ([hi∥mi]W), where
[a∥b] is a concatenation of vectors a and b, W ∈ R2k×k is a fixed projection matrix, and α ∈ [0, 1]
is a weighing hyperparameter. Here, W and α are shared across all architectures and nodes. When
the fp-messages of order-T nodes (i.e., vj ∈ V(T)) are converted, the process of mimicking the
forward pass is complete.

3.2.3 Mimicking the backpropagation

Once the process of mimicking the forward pass (Section 3.2.2) is done, we do a reverse propagation
process. This process aims to mimic the backpropagation step in a neural network. To this end,
we propagate backpropagation messages, which we call bp-messages. The bp-message of a node
represents the gradient at the corresponding node (i.e., operation) within the neural architecture, and
each node has a distinct bp-message. The overall process (i.e., propagation and conversion) is similar
to that for mimicking the forward pass (Section 3.2.2), but this process proceeds in the order of
V(T),V(T−1), . . . ,V(1), until the bp-messages of order-1 nodes (i.e., vj ∈ V(1)) are converted. An
example is in the ‘Process 2’ box of Figure 3. We denote the bp-message of node vi as bi ∈ Rk.
Furthermore, each order-T node’s bp-message is initialized to the corresponding node’s fp-message
(i.e., bj = fj ,∀vj ∈ V(T)), to mimic the dependence of backpropagation on the forward pass.

We formalize the propagation and conversion process at node vi ∈ V(t). Here, bp-messages arrive
from the nodes at the endpoints of vi’s outgoing edges, and when multiple bp-messages arrive at vi
(e.g., ‘in’ operation node in Figure 3), we aggregate these incoming bp-messages using sum pooling
as follows: m′

i =
∑

vj∈K(i) bj , where K(i) = {vj : (vi, vj) ∈ E}.

We then convert the pooled bp-messages m′
i ∈ Rk according to the operation of vi, obtaining the

converted bp-message of vi, denoted by bi ∈ Rk, as bi = αm′
i + (1−α)ReLU ([hi∥m′

i]W). When
the bp-messages of order-1 nodes (i.e., vj ∈ V(1)) are converted, the process of mimicking the
backpropagation is complete.

After mimicking the forward-pass and backpropagation, we sum the bp-messages of the order-1
nodes to obtain the flow surrogate s ∈ Rk (i.e., s =

∑
vi∈V(1) bi). The resulting vector s serves

as the pre-training objective for the corresponding architecture, the flow surrogate representing the
information flow within G. Although this process can be repeated over multiple rounds, such methods
underperform compared to our approach, as detailed in Appendix B.10. Further discussion of the
surrogate’s expressiveness and theoretical properties is in Appendices B.12 and B.13, respectively.

6

3.3 Proposed flow generative pre-training

We now present the details of FGP, our flow generative pre-training method for neural architecture
encoding. As outlined in Section 3.1, FGP trains a neural architecture encoder to reconstruct the
flow surrogate (i.e., pre-training objective) s ∈ Rk (Section 3.2) of a given neural architecture
(Section 3.2). Then, any encoder, without requiring a specialized model structure, is trained to
capture the information flow through three steps: (1) encoding, (2) decoding, and (3) computing the
pre-training loss.

Encoding and decoding. For a given neural architecture, we start by deriving its graph expression
G = (X, E), as described in Section 2.2. We then encode this graph into an embedding z ∈ Rd

using a neural architecture encoder fθ (i.e., fθ(X, E) = z), which we aim to train. After, we decode
the embedding by using an MLP decoder gϕ to obtain the reconstructed surrogate ŝ ∈ Rk (i.e.,
gϕ(z) = ŝ), ensuring the encoder focuses on learning generalizable representations while the decoder
handles task-specific transformations.

Pre-training loss. Then, we compute the reconstruction loss Lrec by measuring the squared ℓ2-
distance between the original surrogate s (Section 3.2) and the reconstructed surrogate ŝ (i.e., Lrec =
∥s − ŝ∥22). Notably, FGP can be combined with auxiliary learning objectives, such as predicting
zero-cost proxies of a neural architecture [1, 27]. The overall training loss is L = λ1Lrec + λ2Laux,
where λ1 and λ2 are loss-weighing hyperparameters. Details on our usage of auxiliary learning
objectives are provided in Appendix D.2. The learnable parameters θ and ϕ are optimized to minimize
L via gradient descent. After pre-training, the trained encoder fθ can be fine-tuned to perform certain
downstream tasks, such as neural architecture’s performance prediction.

4 Experiment
In this section, we demonstrate the effectiveness of FGP in several applications, including perfor-
mance prediction and neural architecture search. Specifically, we answer the following questions:

• RQ1. How effective is FGP in predicting the performance of neural architectures?
• RQ2. How effective is FGP in neural architecture search?
• RQ3. Can the proposed flow surrogate well represent the ground-truth performance of architectures?
• RQ4. Are all the key components of FGP essential?
• RQ5. How long does it take to train an encoder by FGP?

4.1 Experimental setup

Datasets and splits. We leverage three computer vision neural architecture datasets, which are
NAS-Bench-101 (NB-101) [51], NAS-Bench-201 (NB-201) [8], and NAS-Bench-301 (NB-301) [39]
datasets. In addition, we provide results on other domain datasets (spec., natural language processing
and graph representation learning) in Appendix B.6. For NB-101 and NB-201 datasets, we follow
the training and test splits provided in [34, 15]. For the NB-301 dataset, since the baseline method
ZC-Proxy [56] requires certain numerical properties of architectures, we use a subset of the original
NB-301 dataset where these properties are available. We sample 40 architectures from the test set to
create a validation set, following the approach in [15]. Further details are provided in Appendix A.1.

Backbone encoders. We use 3 backbone graph-based neural architecture encoders, ResGat-
edGCN [3], GIN [47], and FlowerFormer [15]. Specifically, ResGatedGCN and GIN are GNN-based
encoders, which do not have a specialized structure for capturing the information flow (i.e., non-flow-
based encoders). In contrast, FlowerFormer is the SOTA flow-based encoder with a specialized design
to capture the flow. Moreover, we present analysis for non-graph-based models in Appendix B.14.

Baseline methods. We use five baselines: an encoder trained solely on supervised learning (N/A)
and four pre-training methods for neural architecture encoding, which are the (1) graph-contrastive-
learning method (GraphCL [52]) and (2) generative methods based on connections (Arch2vec [48]),
operations (GMAE [17]), and zero-cost proxies (ZC-Proxy [56]).

Pre-training, fine-tuning, and evaluation protocol. For each dataset and neural architecture encoder,
we first pre-train the encoder using a specific pre-training method across the whole dataset (i.e., both
training and test sets). Note that ground-truth performances of any architectures are not used during

7

Table 1: Performance prediction results. Mean and standard deviation on each dataset and metric.
The best performance is highlighted in blue . N/A denotes an encoder solely trained with supervised
learning, without any pre-training method. Gain from N/A denotes the performance improvement of
FGP compared to N/A. All values are multiplied by 100 to save space in the table. FGP outperforms
the baseline pre-training methods in 23 out of 27 settings.

Encoder Pre-training
method

Kendall’s Tau Precision@1% Precision@5%
NB-101 NB-201 NB-301 NB-101 NB-201 NB-301 NB-101 NB-201 NB-301

ResGatedGCN

N/A 65.0 (7.8) 73.4 (1.5) 54.4 (4.1) 18.2 (7.9) 29.7 (11.8) 18.4 (2.6) 46.2 (12.2) 51.7 (4.2) 40.6 (1.7)
GraphCL 66.9 (5.0) 73.7 (1.9) 54.6 (3.5) 21.3 (8.8) 31.6 (12.2) 20.4 (1.7) 46.5 (8.3) 52.3 (5.6) 39.7 (2.3)
Arch2vec 65.8 (5.9) 74.1 (1.2) 57.7 (3.0) 21.8 (13.4) 28.3 (11.3) 25.5 (3.0) 44.9 (9.8) 52.5 (5.1) 42.9 (3.0)
GMAE 68.1 (4.7) 74.8 (1.2) 57.0 (2.7) 21.8 (11.7) 35.1 (11.2) 22.2 (5.1) 49.9 (6.3) 57.8 (5.4) 41.8 (3.5)

ZC-Proxy 68.3 (6.7) 79.9 (0.8) 57.9 (2.5) 26.2 (6.2) 44.3 (11.0) 23.0 (3.1) 52.1 (6.3) 61.5 (3.0) 42.6 (3.2)

FGP 74.8 (4.8) 82.2 (0.7) 58.4 (2.4) 37.5 (13.0) 48.9 (8.1) 23.2 (4.6) 61.7 (3.6) 62.3 (2.5) 43.2 (2.3)
Gain from N/A +15.1% +12.0% +7.4% +106.0% +64.6% +26.1% +33.6% +20.5% +6.4%

GIN

N/A 62.8 (5.9) 65.7 (1.4) 52.3 (2.7) 26.9 (14.9) 25.0 (11.8) 19.2 (3.5) 48.1 (12.0) 47.6 (5.5) 38.9 (1.3)
GraphCL 64.9 (3.8) 66.9 (0.9) 52.4 (2.8) 32.3 (18.9) 18.9 (6.2) 20.2 (3.4) 50.2 (6.3) 45.0 (3.0) 39.6 (1.4)
Arch2vec 63.7 (2.5) 68.0 (0.7) 55.0 (1.7) 30.0 (19.0) 18.6 (7.4) 21.2 (3.1) 49.4 (6.4) 45.6 (2.8) 40.7 (1.7)
GMAE 66.4 (4.2) 70.6 (2.2) 55.3 (1.6) 31.0 (13.4) 27.8 (14.4) 20.8 (3.1) 52.9 (3.0) 49.7 (5.0) 41.5 (1.9)

ZC-Proxy 65.2 (8.3) 75.3 (2.3) 53.0 (3.0) 22.7 (12.4) 29.0 (14.3) 18.2 (4.4) 49.9 (13.0) 50.4 (7.2) 38.2 (2.6)

FGP 67.8 (3.7) 79.2 (1.7) 55.2 (2.2) 33.2 (10.0) 35.6 (12.7) 23.5 (2.2) 55.8 (3.8) 54.1 (3.6) 42.0 (2.2)
Gain from N/A +8.0% +20.6% +5.5% +23.4% +42.4% +22.4% +16.0% +13.7% +8.0%

FlowerFormer

N/A 74.0 (3.6) 77.3 (1.5) 55.6 (4.7) 35.3 (13.9) 35.6 (14.1) 19.4 (4.5) 56.4 (5.2) 56.2 (4.3) 40.7 (4.2)
GraphCL 69.4 (4.7) 77.0 (3.2) 55.7 (3.9) 35.3 (7.7) 34.1 (14.9) 21.2 (2.6) 57.5 (2.5) 55.7 (6.3) 41.9 (1.9)
Arch2vec 76.0 (2.8) 77.8 (1.8) 59.2 (2.9) 38.4 (9.1) 33.3 (15.0) 24.2 (3.0) 59.8 (3.9) 57.5 (6.0) 44.3 (2.6)
GMAE 74.3 (3.2) 78.7 (1.1) 58.9 (3.2) 33.6 (9.6) 36.4 (16.2) 26.3 (5.2) 56.2 (5.0) 58.7 (5.9) 44.5 (1.8)

ZC-Proxy 74.6 (3.9) 82.3 (1.2) 58.5 (2.2) 37.8 (5.7) 45.0 (6.6) 25.3 (2.9) 58.1 (3.3) 60.8 (3.8) 41.9 (1.8)

FGP 76.3 (3.6) 83.6 (1.7) 60.1 (2.9) 40.6 (13.1) 48.3 (3.3) 24.2 (5.4) 58.9 (4.0) 65.0 (4.5) 45.0 (1.4)
Gain from N/A +3.1% +8.2% +8.1% +15.0% +35.7% +24.7% +4.4% +15.7% +10.6%

this pre-training stage, and despite this fact, it is also possible to use only the training set even for
pre-training (see Appendix B.3). Following pre-training, we fine-tune the encoder using only the
training set to optimize it for the performance prediction task, using the ground-truth performance of
the training set in this phase. After fine-tuning, we evaluate the encoder on the test set using three
evaluation metrics: Kendall’s tau [38], Precision-@1%, and Precision-@5%, all widely adopted for
this evaluation process [34, 15]. We employ three distinct dataset splits and three model initializations,
resulting in a total of nine experimental configurations. Further details are in Appendix A.

4.2 RQ1: Performance prediction experiments

We assess FGP in the performance prediction task compared to the baseline pre-training methods.

Setup. In practice, only a small subset of the full neural architecture search space has known ground-
truth performance values due to the high cost of training and evaluating architectures. To simulate this
circumstance, we use 1% of the training set for fine-tuning neural architecture encoders—a common
setting in neural architecture encoding research [34, 15]. In addition, analyses under varying (1)
pre-training dataset sizes and (2) training dataset sizes are in Appendix B.4 and B.2, respectively.

Results. As shown in Table 1, FGP outperforms all baselines in 23 out of 27 settings, demonstrating
the effectiveness of learning information flow through pre-training in performance prediction. Note
that the performance improvement achieved by FGP in the performance prediction task is not
restricted to a specific dataset or encoder. While the improvement is greater in the non-flow-based
encoders (i.e., ResGatedGCN and GIN), it can also improve the performance of the flow-based
encoder (i.e., FlowerFormer); we further explore the potential reasons behind the improvement of
FlowerFormer in Appendix B.16.

4.3 RQ2: Neural architecture search experiments

Performance prediction is often integrated into neural architecture search (NAS) to automatically
identify neural architectures suitable to the target task and dataset. Accordingly, we evaluate the
efficacy of FGP in NAS, assessing its performance against those of existing pre-training methods.

Setup. As in [15], we use NPENAS [42] as our backbone NAS algorithm, which uses a performance
predictor to evaluate neural architectures in the search process. Note that an accurate performance
predictor enhances search efficacy, leading to the discovery of higher-performing architectures.

8

NAS steps (# of trained neural architectures)

T
e

s
t

e
rr

o
r

o
f

th
e

 t
o

p
-1

n
e

u
ra

l
a

rc
h

it
e

c
tu

re

Lower the

better

Arch2vec

GMAE

ZC-Proxy

GraphCL

FGP (Ours)

Figure 5: NAS results. The mean test error
of the top-1 architecture across 10 trials is
reported. The backbone NAS algorithm NPE-
NAS [42] adopts pre-trained performance pre-
dictors, with each line representing a distinct
pre-training approach.

To assess each pre-training method, we (1) pre-train a
performance predictor on neural architectures within
the designated search space and (2) initialize NPE-
NAS’s predictor with this pre-trained model at the be-
ginning of each search. We run 10 trials with different
initializations. NAS-Bench-201 and ResGatedGCN
serve as the search space and performance predictor,
respectively. Further details are in Appendix A.5.

Results. As shown in Figure 5, the NAS method,
equipped with a performance predictor pre-trained
using FGP, identifies the more effective neural archi-
tecture than all competitors, each employing a dis-
tinct pre-training method. Notably, FGP consistently
performs best at every NAS step.

4.4 RQ3: Flow surrogate analysis
NB-101 NB-201 NB-301

High-performance

neural architectures

Low-performance

neural architectures

Figure 6: Pre-training objective visualization. PCA
visualization of flow surrogates (i.e., pre-training ob-
jective), where colors represent the performance of the
corresponding architecture.

We provide a qualitative analysis of the re-
lation between the flow surrogate of neural
architecture (Section 3.2) and the ground-
truth performance of the corresponding ar-
chitecture. Specifically, we aim to ver-
ify whether our flow surrogate well rep-
resents the architecture’s ground-truth per-
formance, separating architectures with dif-
fering performance..

Setup. We visualize the distribution of the
flow surrogate by using PCA. We color
each data point according to the corre-
sponding neural architecture’s ground-truth performance.

Results. As shown in Figure 6, the proposed flow surrogate effectively represents the performance
of neural architectures, distinguishing high-performing architectures from low-performing ones in
separate regions. This visualization indicates that our pre-training objective, flow surrogate, can well
guide a neural architecture encoder in identifying architectures likely to achieve high performance.

4.5 RQ4: Ablation study

We demonstrate the necessity of the key components of FGP in achieving high performance.

Figure 7: Ablation study. Performance of the variants
of FGP. All values are multiplied by 100 to save space.
The best performance is highlighted in blue .

Variants
of FGP

Kendall’s Tau Precision@1%
NB-101 NB-201 NB-301 NB-101 NB-201 NB-301

w/o Lgen 68.3 (6.7) 79.9 (0.8) 57.9 (2.5) 26.2 (6.2) 44.3 (11.0) 23.0 (3.1)

w/o Laux 71.5 (5.6) 74.5 (0.7) 58.0 (2.7) 35.6 (8.7) 36.5 (2.2) 23.6 (3.2)

w/o Forward 73.5 (4.3) 81.4 (0.7) 57.1 (3.6) 36.3 (9.2) 44.6 (9.0) 23.4 (4.1)

w/o Backward 72.4 (4.8) 81.4 (0.6) 57.5 (2.5) 31.0 (9.8) 43.3 (9.1) 24.2 (2.7)

FGP 74.8 (4.8) 82.2 (0.7) 58.4 (2.4) 37.5 (13.0) 48.9 (8.1) 23.2 (4.6)

Setup. We use four variants of FGP:

• V1. This does not perform the flow sur-
rogate reconstruction (w/o Lgen).

• V2. This does not use the auxiliary train-
ing objective (w/o Laux).

• V3. This skips mimicking the forward
pass (Section 3.2.2) in obtaining the flow
surrogate (w/o Forward).

• V4. This skips mimicking the backpropagation. (Section 3.2.3) in obtaining the flow surrogate
(w/o Backward).

We use ResGatedGCN as our backbone encoder and evaluate under the performance prediction task.
Other settings are the same as in Section 4.2.

Results. As shown in Table 7, FGP achieves superior performance over its four variants in five out
of six settings, underscoring the necessity of its core components for achieving high performance.

9

P
e

rf
o

rm
a
n

c
e

 p
re

d
ic

ti
o

n
 t

a
s
k

re
s
u

lt
s
 (

m
e

tr
ic

:
K

e
n

d
a

ll
’s

 t
a

u
)

Pre-training time + Neural architecture

processing time (sec.)

+6.3%

x4.3 ResGatedGCN (Non-Flow-

based) w/o FGP

ResGatedGCN (Non-Flow-

based) w/ FGP

FlowerFormer (Flow-based)

w/o FGP

FlowerFormer (Flow-based)

w/ FGP

Dataset:

NB-201

(a) Encoders’ runtime (pre-training time included) and
performance-prediction results (×100).

P
re

-t
ra

in
in

g
 t

im
e

 (
s

e
c

.)

NB-101 NB-201 NB-301

Arch2vec

GMAE

ZC-Proxy

GraphCL

FGP (Ours)

(b) Total pre-training time for each method using the
ResGatedGCN backbone.

Figure 8: Speed analysis. (a) Pre-training the non-flow encoder (ResGatedGCN) with FGP improves
both performance and speed over the flow-based encoder (FlowerFormer) without FGP. (b) FGP is
the second-fastest among the pre-training methods for neural architecture encoding.

4.6 RQ5: Speed analysis

We provide a speed analysis of FGP.

Setup. We analyze (1) the total runtime and performance prediction results with (w/) and without
(w/o) FGP pre-training for the flow-based encoder (FlowerFormer) and the non-flow-based encoder
(ResGatedGCN) and (2) the pre-training runtime of each pre-training method, equipped with Res-
GatedGCN. We set the batch size and pre-training epochs to 256 and 200, respectively. Also, a
comparison of all methods under equal runtime is in Appendix B.5.

Results. First, as shown in Figure 8 (a), pre-training the non-flow-based encoder (ResGatedGCN)
with FGP shows both performance and speed gain over the flow-based encoder (FlowerFormer)
without FGP in performance prediction. That is, despite this performance superiority, the total
runtime for the pre-training and architecture processing of ResGatedGCN remains significantly
shorter than the processing time alone of FlowerFormer. Second, as shown in Figure 8 (b), FGP
is the second-fastest pre-training method, comparable to the fastest one, ZC-Proxy. Thus, despite
the large performance gain compared to the baselines, FGP does not impose a significantly greater
computational burden.

5 Conclusion

In this work, we propose a novel generative pre-training method for neural architecture encoding,
called FGP, which enables a neural architecture encoder to learn the information flow within a neural
architecture, even without a specialized model structure. To this end, FGP trains a neural architecture
encoder to reconstruct the flow surrogate, our proposed pre-training objective, based on information
flow. Our extensive experiments demonstrate the efficacy of FGP in performance prediction and
neural architecture search. Code and datasets are in https://github.com/kswoo97/FGPAnom.

Acknowledgements

This work was supported by Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2022-II220871,
Development of AI Autonomy and Knowledge Enhancement for AI Agent Collaboration, 60%)
(No. RS-2022-II220157, Robust, Fair, Extensible Data-Centric Continual Learning, 20%) (No.
RS-2024-00457882, AI Research Hub Project, 10%) (No. RS-2019-II190075, Artificial Intelligence
Graduate School Program (KAIST), 10%).

10

https://github.com/kswoo97/FGPAnom

References
[1] M. S. Abdelfattah, A. Mehrotra, Ł. Dudziak, and N. D. Lane. Zero-cost proxies for lightweight

nas. In ICLR, 2021.

[2] U. A. Bakshi and L. A. V. Bakshi. Electrical circuit analysis. Technical Publications, 2020.

[3] X. Bresson and T. Laurent. Residual gated graph convnets. arXiv preprint arXiv:1711.07553,
2017.

[4] Y. Chen, Y. Guo, Q. Chen, M. Li, W. Zeng, Y. Wang, and M. Tan. Contrastive neural architecture
search with neural architecture comparators. In CVPR, 2021.

[5] K. T. Chitty-Venkata, M. Emani, V. Vishwanath, and A. K. Somani. Neural architecture search
for transformers: A survey. IEEE Access, 10:108374–108412, 2022.

[6] J. Delvin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, 2019.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

[8] X. Dong and Y. Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In ICLR, 2020.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In ICLR, 2021.

[10] L. Dudziak, T. Chau, M. Abdelfattah, R. Lee, H. Kim, and N. Lane. Brp-nas: Prediction-based
nas using gcns. In NeurIPS, 2020.

[11] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine
Learning Research, 20(55):1–21, 2019.

[12] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022.

[13] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec. Strategies for
pre-training graph neural networks. In ICLR, 2019.

[14] Y.-C. Huang, W.-H. Li, C.-H. Tsou, J.-C. Chen, and C.-S. Chen. Up-nas: Unified proxy for
neural architecture search. In CVPR, 2024.

[15] D. Hwang, H. Kim, S. Kim, and K. Shin. Flowerformer: Empowering neural architecture
encoding using a flow-aware graph transformer. In CVPR, 2024.

[16] G. Jawahar, M. Abdul-Mageed, L. V. Lakshmanan, and D. Ding. Llm performance predictors
are good initializers for architecture search. In ACL, 2024.

[17] K. Jing, J. Xu, and P. Li. Graph masked autoencoder enhanced predictor for neural architecture
search. In IJCAI, 2022.

[18] S. Kim, S. Kang, F. Bu, S. Y. Lee, J. Yoo, and K. Shin. Hypeboy: Generative self-supervised
representation learning on hypergraphs. In ICLR, 2024.

[19] S. Kim, S. Y. Lee, F. Bu, S. Kang, K. Kim, J. Yoo, and K. Shin. Rethinking reconstruction-based
graph-level anomaly detection: limitations and a simple remedy. In NeurIPS, 2024.

[20] S. Kim, S. Y. Lee, Y. Gao, A. Antelmi, M. Polato, and K. Shin. A survey on hypergraph neural
networks: an in-depth and step-by-step guide. In KDD, 2024.

[21] S. Kim, S. Y. Lee, J. Yoo, and K. Shin. ’hello, world!’: Making gnns talk with llms. In EMNLP,
2025.

[22] T. N. Kipf and M. Welling. Variational graph auto-encoders. In NeurIPS Bayesian Deep
Learning Workshop, 2016.

[23] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

[24] N. Klyuchnikov, I. Trofimov, E. Artemova, M. Salnikov, M. Fedorov, A. Filippov, and E. Bur-
naev. Nas-bench-nlp: neural architecture search benchmark for natural language processing.
IEEE Access, 10:45736–45747, 2022.

11

[25] A. Krishnakumar, C. White, A. Zela, R. Tu, M. Safari, and F. Hutter. Nas-bench-suite-zero:
Accelerating research on zero cost proxies. In NeurIPS, 2022.

[26] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[27] J. Lee and B. Ham. Az-nas: Assembling zero-cost proxies for network architecture search. In
CVPR, 2024.

[28] W. Lin, X. Peng, Z. Yu, and T. Jin. Hypergraph neural architecture search. In AAAI, 2024.

[29] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In ICLR, 2019.

[30] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In ICLR, 2019.

[31] S. Lu, J. Li, J. Tan, S. Yang, and J. Liu. Tnasp: A transformer-based nas predictor with a
self-evolution framework. In NeurIPS, 2021.

[32] X. Ning, Y. Zheng, T. Zhao, Y. Wang, and H. Yang. A generic graph-based neural architecture
encoding scheme for predictor-based nas. In ECCV, 2020.

[33] X. Ning, C. Tang, W. Li, Z. Zhou, S. Liang, H. Yang, and Y. Wang. Evaluating efficient
performance estimators of neural architectures. In NeurIPS, 2021.

[34] X. Ning, Z. Zhou, J. Zhao, T. Zhao, Y. Deng, C. Tang, S. Liang, H. Yang, and Y. Wang. Ta-gates:
An encoding scheme for neural network architectures. In NeurIPS, 2022.

[35] Y. Ou, Y. Feng, and Y. Sun. Towards accurate and robust architectures via neural architecture
search. In CVPR, 2024.

[36] J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–252, 1977.

[37] Y. Qin, Z. Zhang, X. Wang, Z. Zhang, and W. Zhu. Nas-bench-graph: Benchmarking graph
neural architecture search. In NeurIPS, 2022.

[38] P. K. Sen. Estimates of the regression coefficient based on kendall’s tau. Journal of the American
statistical association, 63(324):1379–1389, 1968.

[39] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter. Nas-bench-301 and the
case for surrogate benchmarks for neural architecture search. In ICLR, 2021.

[40] V. Thost and J. Chen. Directed acyclic graph neural networks. In ICLR, 2021.

[41] Z. Tong, Y. Liang, C. Sun, X. Li, D. Rosenblum, and A. Lim. Digraph inception convolutional
networks. In NeurIPS, 2020.

[42] C. Wei, C. Niu, Y. Tang, Y. Wang, H. Hu, and J. Liang. Npenas: Neural predictor guided
evolution for neural architecture search. IEEE Transactions on Neural Networks and Learning
Systems, 34(11):8441–8455, 2022.

[43] W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, and P.-J. Kindermans. Neural predictor for neural
architecture search. In ECCV, 2020.

[44] C. White, W. Neiswanger, S. Nolen, and Y. Savani. A study on encodings for neural architecture
search. In NeurIPS, 2020.

[45] C. White, A. Zela, R. Ru, Y. Liu, and F. Hutter. How powerful are performance predictors in
neural architecture search? In NeurIPS, 2021.

[46] F. Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics:
Methodology and distribution, pages 196–202. Springer, 1992.

[47] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In ICLR,
2019.

[48] S. Yan, Y. Zheng, W. Ao, X. Zeng, and M. Zhang. Does unsupervised architecture representation
learning help neural architecture search? In NeurIPS, 2020.

[49] Y. Yi, H. Zhang, W. Hu, N. Wang, and X. Wang. Nar-former: Neural architecture representation
learning towards holistic attributes prediction. In CVPR, 2023.

[50] Y. Yi, H. Zhang, R. Xiao, N. Wang, and X. Wang. Nar-former v2: rethinking transformer for
universal neural network representation learning. In NeurIPS, 2023.

[51] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In ICML, 2019.

12

[52] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive learning with
augmentations. In NeurIPS, 2020.

[53] Y. Yuan, C. Shao, J. Ding, D. Jin, and Y. Li. Spatio-temporal few-shot learning via diffusive
neural network generation. In ICLR, 2024.

[54] X. Zhai, J. Puigcerver, A. Kolesnikov, P. Ruyssen, C. Riquelme, M. Lucic, J. Djolonga, A. S.
Pinto, M. Neumann, A. Dosovitskiy, et al. A large-scale study of representation learning with
the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

[55] R. Zhang, X. Hu, B. Li, S. Huang, H. Deng, Y. Qiao, P. Gao, and H. Li. Prompt, generate, then
cache: Cascade of foundation models makes strong few-shot learners. In CVPR, 2023.

[56] J. Zhao, X. Ning, E. Liu, B. Ru, Z. Zhou, T. Zhao, C. Chen, J. Zhang, Q. Liao, and Y. Wang.
Dynamic ensemble of low-fidelity experts: Mitigating nas “cold-start”. In AAAI, 2023.

[57] L. Zhu, B. Liao, Q. Zhang, X. Wang, W. Liu, and X. Wang. Vision mamba: Efficient visual
representation learning with bidirectional state space model. In ICML, 2024.

13

A Experimental details

Table 2: Dataset statistics. Total counts of training and test data, along with the average time (in
seconds) required to obtain the proposed flow surrogate (defined in Section 3.2).

Dataset # of train # of test Time for surrogate (secs.)

Nas-Bench-101 [51] 7,290 7,290 0.002
Nas-Bench-201 [8] 7,813 7,812 0.002
Nas-Bench-301 [39] 5,611 5,610 0.005

A.1 Dataset details

In this section, we elaborate on the leveraged three convolution neural architecture datasets. Dataset
statistics are provided in Table 2. Specifically, we represent each architecture based on an operation-
on-node type graph [34], where each operation corresponds to a node, and each edge represents a
connection between two operations.

• NAS-Bench-101 [51]. This dataset includes 423K convolutional neural architectures, where each
data point represents a specific neural architecture along with its test accuracy on the CIFAR-10
image classification task [26]. We leverage a subset of the entire search space provided by Hwang
et al. [15], Ning et al. [34].

• NAS-Bench-201 [8]. This dataset includes 15K convolutional neural architectures, where each
data point represents a specific neural architecture along with its test accuracy on the CIFAR-10
image classification task [26].

• NAS-Bench-301 [39]. This dataset includes 1016 convolutional neural architectures, where each
data point represents a specific neural architecture along with its surrogate performance (i.e., an
estimated performance produced by a performance predictor) on the CIFAR-10 image classification
task [26]. Each architecture is represented by two graphs: a normal cell and a reduction cell.
Following Siems et al. [39], we connect the output node of the normal cell graph to the input nodes
of the reduction cell, creating a single unified graph that represents the architecture. We leverage a
subset of the entire search space provided by Abdelfattah et al. [1], where zero-cost proxies are
publicly available.

For non-flow-based neural architecture encoders (i.e., ResGatedGCN [3] and GIN [47]), which lack
specialized message passing for directed acyclic graphs, we transform each neural architecture graph
into an undirected graph by adding a reverse edge for every existing graph.

A.2 Machines and implementation

We conducted our experiments on a machine with NVIDIA RTX 8000 D6 GPUs (48GB memory) and
two Intel Xeon Silver 4214R processors. FGP is primarily implemented using the Pytorch (v1.12.1)
and Pytorch Geometric (v2.2.0) libraries. We used AdamW [30] as the learning optimizer.

A.3 Fine-tuning protocol

In this section, we detail our fine-tuning protocol. For a given neural architecture encoder fθ, which
is randomly initialized or pre-trained with a particular pre-training method, we fine-tune the neural
architecture encoder to perform the performance prediction task.

Regression. Recall that a neural architecture encoder outputs a d−dimensional vector z(i) ∈ Rd,
representing a given neural architecture G(i). To estimate the performance of the corresponding neural
architecture, denoted as y(i) ∈ R, we employ a feed-forward-network-based regressor rξ : Rd 7→ R.
The performance estimate ŷ(i) is obtained by projecting z(i) using this regressor (i.e., ŷ(i) = rξ(z

(i))).

Learning objective. Similar to our use of a zero-cost proxy (refer to Appendix D.2), to train a
model to predict which architectures are ‘more likely’ to perform well, we leverage a margin-ranking

14

loss. For two neural architectures G(i) and G(j) within the same batch, we compute the following
prediction loss:

Lfine =
∑

(i,j):y(i)>y(j)

max (0,m′ − (ŷ(i) − ŷ(j))), (1)

where m′ is a margin hyperparameter. The parameters θ and ξ are trained to minimize Lfine (Eq. 1)
via gradient descent. This updating process continues until it satisfies the validation stopping criterion
or reaches the maximum number of fine-tuning epochs.

A.4 Hyperparameters

Neural architecture encoders. For ResGatedGCN [3] and GIN [47], whose best hyperparameter
configurations are not publicly provided, we tuned their hidden dimensions and maximum fine-tuning
epochs within {64, 128, 256} and {300, 400, 500}, according to the validation set performance on the
performance prediction task. We fixed their number of layers, fine-tuning learning rate, and fine-tuning
weight decay, as 3, 10−3, and 10−6, respectively. After finding the hyperparameter configuration
that gives the best validation performance, the chosen configuration is used across all the methods
(i.e., the same encoder structure and pre-training scheme are leveraged across different pre-training
methods). For FlowerFormer [15], we follow the hyperparameter configurations provided in their
official implementation https://github.com/y0ngjaenius/CVPR2024_FLOWERFormer.

Pre-training methods. For every pre-training method, including the baseline methods and our
proposed method FGP, we tuned the following hyperparameters:

• Learning rate within {10−3, 5× 10−4, 10−4},

• Projection head dimension within {32, 64, 128, 256},

• Projection head number of layers within {1, 2, 3},

• Weight decay within {10−6, 0.0}.

Additionally, for FGP, we tuned the learning objective coefficients (λ1, λ2) within
{(12 ,

1
2), (

1
3 ,

2
3), (

2
3 ,

1
3)}.

A.5 Details regarding neural architecture search

In this section, we provide details regarding our neural architecture search experiment (Section 4.3).
Note that the process below is based on NPENAS [42].

We first pre-train a neural architecture encoder using a designated pre-training strategy, such as FGP.
At the start of each round, the encoder is initialized with the pre-trained weights. The search begins
with 20 neural architectures, each with known ground-truth performance. Using these, we fine-tune
the encoder to predict performance. For each of the 20 architectures, we generate 5 valid candidates
via mutation. Among the mutated architectures, we select the top 20 based on predicted performance
and evaluate them. The selected architectures and their performances are added to the budget. With
the updated pool, now containing 40 evaluated architectures, we repeat the process until the budget
reaches a predefined size.

B Additional experimental results

B.1 Analysis of encoding time of diverse architecture encoders

In this section, we provide further details regarding the encoding time analysis, which is provided in
Figure 1. Specifically, we provide detailed mean encoding time per architecture for the flow-aware
neural architecture and the simple GNN-based neural architecture.

Setup. We compare the encoding time of a flow-aware encoder (i.e., FlowerFormer) with non-
flow-aware encoders (i.e., ResGatedGCN and GIN). Specifically, we measure the time required to
generate representations for all neural architectures—both training and test—and report the average
per architecture.

15

https://github.com/y0ngjaenius/CVPR2024_FLOWERFormer

Table 3: Performance prediction results on various training set ratios. Mean and standard
deviation on each dataset and metric. The best performance is highlighted in blue . All values are
multiplied by 100. N/A denotes an encoder solely trained with supervised learning, without any
pre-training. Gain from N/A denotes the performance improvement of FGP compared to N/A. FGP
outperforms the baselines in 14/18 cases.

Training
set ratio

Pre-training
method

Kendall’s Tau Precision@1% Precision@5%
NB-101 NB-201 NB-301 NB-101 NB-201 NB-301 NB-101 NB-201 NB-301

5%

N/A 75.8 (3.4) 84.6 (0.7) 67.2 (1.1) 42.9 (11.3) 54.3 (3.7) 31.9 (2.9) 64.5 (3.6) 69.4 (2.8) 51.9 (3.4)
GraphCL 76.0 (5.0) 85.4 (0.7) 66.4 (1.1) 42.8 (8.6) 57.0 (3.0) 29.9 (3.8) 63.4 (6.3) 69.8 (2.8) 50.6 (1.9)
Arch2vec 76.9 (3.7) 85.3 (0.7) 68.4 (1.3) 42.0 (12.8) 56.7 (5.0) 34.5 (5.4) 65.1 (3.1) 70.2 (3.1) 53.2 (4.3)
GMAE 76.2 (4.7) 87.0 (0.5) 67.8 (1.8) 41.7 (8.1) 59.0 (5.4) 35.4 (4.9) 62.5 (5.6) 73.6 (1.2) 53.1 (3.5)

ZC-Proxy 78.0 (4.1) 87.7 (0.4) 66.6 (1.2) 42.7 (7.5) 56.4 (4.6) 33.9 (4.4) 67.3 (3.0) 72.2 (3.2) 51.7 (4.7)

FGP 79.4 (3.3) 88.0 (0.4) 68.6 (2.4) 45.8 (11.0) 59.7 (5.4) 34.8 (4.6) 66.8 (3.2) 73.6 (2.2) 53.3 (5.0)
Gain from N/A +4.7% +4.0% +2.1% +6.8% +9.9% +9.1% +3.6% +6.1% +2.7%

10%

N/A 77.3 (5.1) 88.3 (0.3) 69.9 (1.2) 43.2 (8.9) 57.9 (2.2) 35.4 (5.2) 65.8 (4.0) 74.0 (1.0) 56.6 (2.0)
GraphCL 77.3 (5.9) 88.9 (0.3) 69.1 (2.3) 42.7 (9.0) 58.6 (4.1) 35.6 (3.7) 66.3 (3.8) 73.3 (1.3) 55.3 (2.8)
Arch2vec 78.3 (5.1) 88.8 (0.4) 71.2 (1.8) 43.2 (11.6) 57.0 (3.3) 37.2 (5.6) 66.5 (4.3) 73.9 (1.1) 56.7 (4.0)
GMAE 78.1 (5.9) 89.9 (0.4) 70.8 (1.0) 45.5 (10.6) 61.3 (5.1) 38.8 (4.8) 67.6 (3.6) 75.4 (0.7) 58.6 (1.5)

ZC-Proxy 79.0 (4.8) 89.7 (0.2) 70.2 (0.9) 44.0 (9.0) 58.2 (1.3) 37.4 (4.4) 67.2 (3.0) 74.5 (1.4) 56.8 (1.4)

FGP 79.9 (4.3) 89.9 (0.3) 71.5 (0.6) 45.8 (10.2) 58.4 (1.0) 38.9 (5..0) 67.8 (3.4) 76.0 (1.0) 56.9 (2.4)
Gain from N/A +3.4% +1.8% +2.3% +6.0% +1.0% +9.8% +3.0% +2.7% +0.1%

Table 4: Detailed mean encoding time per architec-
ture of each neural architecture encoder

NB-101 NB-201
ResGatedGCN 0.0021 0.0022

GIN 0.0013 0.0014
FlowerFormer 0.1242 0.0849

Results. As shown in Table 4, FlowerFormer,
a flow-aware encoder, takes at most 94x more
encoding time compared to GIN, which is a sim-
ple GNN encoder that does not have a special-
ized architecture to capture the information flow.
This result supports our claim that flow-aware
encoders are significantly slower than simple
GNN-based encoders.

B.2 Analysis under varying training set size

In this section, we present additional experimental results across different training set ratios. In
the main paper, we focus on a scenario where only 1% of the training set is used for fine-tuning,
simulating a label-scarce scenario (i.e., a limited number of architecture-performance pairs available).
Recall that this is because obtaining architecture-performance pairs involves significant computational
costs, making it crucial to develop a pre-training method that enhances neural architecture encoders
in label-scarce scenarios. Furthermore, we evaluate each method in scenarios where additional
architecture-performance pairs are available, corresponding to a larger training set ratio.

Setup. We explore two additional settings for fine-tuning: using (1) 5% and (2) 10% of the training
set, respectively. We use ResGatedGCN [3] as the backbone neural architecture encoder. Other
experimental settings are the same as those used in our neural architecture performance prediction
experiments (Section 4.2).

Results. As shown in Table 3, FGP outperforms all baseline methods in 14 out of 18 settings. This
result demonstrates that the superiority of FGP over existing pre-training methods is not restricted to
a specific training set ratio setting.

B.3 Analysis under using only the training set, including for pre-training

In this section, we present additional experiment results when we only leverage the training dataset
to perform pre-training. In the main paper, we leverage the test dataset with the training during the
pre-training, since architectures within the search space can be obtained with negligible cost. In the
new setting, we aim to determine whether an encoder pre-trained with FGP can generalize to unseen
neural architectures.

Setup. We do not use the test dataset for pre-training, and therefore, each test architecture becomes
an unseen architecture. We use ResGatedGCN [3] as the backbone neural architecture encoder. Other
experimental settings are the same as those used in our neural architecture performance prediction
experiments (Section 4.2).

Results. As shown in Table 5, FGP outperforms all baseline methods in all the settings. This result
demonstrates that the encoder trained with FGP generalizes well to unseen neural architectures.

16

Table 5: Performance prediction results when using only the training dataset even for pre-
training. Mean and standard deviation on each dataset and metric. The best performance is
highlighted in blue . All values are multiplied by 100. N/A denotes an encoder solely trained with
supervised learning, without any pre-training. Gain from N/A denotes the performance improvement
of FGP compared to N/A. FGP outperforms the baseline methods in all the settings.

Pre-training
method

Kendall’s Tau Precision@1% Precision@5%
NB-101 NB-201 NB-101 NB-201 NB-101 NB-201

N/A 65.0 (7.8) 73.4 (0.7) 18.2 (7.9) 29.7 (3.7) 46.2 (12.2) 51.7 (4.2)
GraphCL 65.2 (6.4) 74.3 (1.6) 20.1 (12.6) 36.4 (9.7) 44.4 (11.3) 54.5 (1.7)
Arch2vec 63.2 (7.8) 73.5 (1.9) 18.5 (9.3) 31.7 (11.9) 42.4 (12.4) 53.3 (5.7)
GMAE 67.3 (5.2) 75.2 (1.4) 25.5 (10.1) 34.8 (9.9) 51.0 (7.0) 56.8 (4.9)

ZC-Proxy 69.8 (5.1) 79.8 (1.3) 29.8 (11.1) 39.2 (12.8) 56.4 (3.5) 58.9 (8.2)

FGP 73.5 (5.5) 81.4 (7.7) 37.0 (10.9) 45.1 (7.9) 60.1 (4.0) 61.5 (2.8)
Gain from N/A +13.1% +10.8% +103.3% +51.9% +30.1% +19.0%

K
e

n
d

a
ll
’s

 T
a

u

NAS-Bench-101 NAS-Bench-201

Ratio of the training set used for pre-training

GMAE

ZC-Proxy

FGP (Ours)

Figure 9: Performance under varying size of pre-training dataset. Performance prediction results
when 20/40/60/80/100% of the training set is used for pre-training of each method. FGP consistently
outperforms the two strongest baseline methods (GMAE and ZC-Proxy) across all the settings.
B.4 Analysis under varying pre-training set size

In this section, we present additional experimental results with varying pre-training dataset sizes,
demonstrating that the effectiveness of FGP is not restricted to a specific data size.

Setup. We randomly sample 20%/40%/60%/80%/100% of the training set and use the sampled
neural architectures for pre-training of a neural architecture, based on each pre-training strategy. We
use ResGatedGCN as the backbone neural architecture encoder, and the two strongest pre-training
method (i.e., ZC-Proxy and GMAE) as baseline methods. Other setups are the same as those used in
our neural architecture performance prediction experiments (Section 4.2).

Results. As shown in Figure 9, the superiority of FGP holds under varying size of pre-training
dataset size, demonstrating that the effectiveness of FGP is not limited to a particular dataset size.

B.5 Analysis under a fixed pre-training time

Recall that in Section 4.6, we provide analysis regarding the runtime of FGP and other baseline
methods. In this section, we provide a performance comparison of pre-training methods under the
fixed pre-trainig time.

Setup. We train a neural architecture for 100/200/300/400/500 seconds, by using each pre-training
method. When the corresponding time limit is reached, we execute the pre-training process and fine-
tune and evaluate the pre-trained encoder for the performance prediction task. We use ResGatedGCN
as the backbone neural architecture encoder, and the two strongest pre-training method (i.e., ZC-Proxy
and GMAE) as baseline methods. Other setups are the same as those used in our neural architecture
performance prediction experiments (Section 4.2).

Results. As shown in Figure 10, the superiority of FGP holds under varying pre-training time split,
demonstrating that the effectiveness of FGP is not limited to a particular dataset size.

17

K
e

n
d

a
ll
’s

 T
a

u

NAS-Bench-101 NAS-Bench-201

Pre-training time (seconds)

GMAE

ZC-Proxy

FGP (Ours)

Figure 10: Performance under the fixed pre-training time. Performance prediction results under
the fixed pre-training time of each pre-training method. FGP consistently outperforms the two
strongest baseline methods (GMAE and ZC-Proxy) across all the settings.

Table 6: Performance prediction results under various domains. Mean and standard deviation on
each dataset and metric. The best performance is highlighted in blue . All values are multiplied by
100. Since zero-cost proxy values for the NB-Graph dataset are not publicly available, we could not
run the ZC-Proxy baseline on the NB-Graph dataset, which is marked by ‘-’. FGP outperforms the
baselines on natural language processing datasets and graph representation learning datasets.

Pre-training
method

Kendall’s Tau Precision@1% Precision@5%
NB-NLP NB-Graph NB-NLP NB-Graph NB-NLP NB-Graph

N/A 28.5 (6.1) 37.1 (6.3) 2.9 (1.4) 4.3 (2.3) 14.8 (6.9) 17.1 (4.1)
GraphCL 28.7 (5.3) 38.3 (13.3) 3.1 (1.3) 3.8 (1.5) 14.9 (6.1) 16.1 (4.3)
Arch2vec 28.4 (5.7) 38.8 (9.6) 3.0 (1.2) 3.2 (2.1) 15.1 (5.2) 15.9 (5.1)
GMAE 28.9 (6.6) 37.7 (8.6) 2.2 (1.0) 2.8 (2.1) 15.7 (5.3) 14.5 (4.7)

ZC-Proxy 28.7 (5.6) - 2.9 (2.3) - 15.5 (3.8) -

FGP 29.7 (4.8) 41.1 (8.6) 4.3 (2.5) 5.3 (1.1) 16.2 (7.1) 18.3 (3.5)

B.6 Analysis under various domains

In this section, we explore the effectiveness of FGP in domains beyond computer vision, which are
natural language processing and graph representation learning.

Setup. We use two additional benchmark datasets: (1) NAS-Bench-NLP [24], a dataset that consists
of natural language processing models, and (2) NAS-Bench-Graph [37], a dataset that consists of
graph representation learning models.

Results. As shown in Table 6, FGP outperforms the baselines in 5 out of 6 settings, demonstrate that
the effectiveness of FGP does not limit to a computer vision domain.

B.7 Analysis under another task

Recall that NAS-Bench-101, NAS-Bench-201, and NAS-Bench-301 are benchmark datasets con-
taining image classification performances of various architectures. In this section, we assess each
method’s effectiveness in predicting architecture performance on a different task—dataset transfer-
ability—using a new dataset.

Setup. Since no benchmark directly covers the transferability of architectures, we built a small neural
architecture benchmark dataset. To this end, we build two datasets: (1) TinyImageNet (TIN) [7] →
DTD [54] and (2) TinyImageNet (TIN) [7] → OxfordPet [54]. To this end, we randomly sampled 100
architectures from NAS-Bench-101, pre-trained each on TinyImageNet, and fine-tuned each on DTD
or OxfordPet. We used each architecture’s test accuracy on the target dataset as the architecture’s
transferability score. Architectures were split 50/50 into train/test sets. ResGatedGCN is used as a
backbone neural architecture encoder. An architecture encoder was first pre-trained with a pre-training
method (without transferability scores), then fine-tuned on the training set with transferability scores,
and finally evaluated on the test set.

18

Table 7: Performance prediction results under a new downstream task. Mean and standard
deviation on each dataset and metric. N/A denotes a performance of an encoder without pre-training.
All values are multiplied by 100. The best performance is highlighted in blue . The superiority of
FGP over baseline methods holds valid under a new downstream task, dataset transfer.

Kendall’s Tau Precision@10%
TIN → DTD TIN → OxfordPet TIN → DTD TIN → OxfordPet

N/A 62.7 (4.6) 60.3 (4.4) 50.0 (31.1) 63.9 (12.4)
GMAE 63.4 (3.8) 61.0 (3.7) 55.5 (25.8) 63.9 (12.4)
ZC-Proxy 64.1 (4.9) 60.8 (8.1) 47.0 (29.7) 61.1 (11.7)
FGP 65.3 (4.3) 64.1 (3.1) 63.9 (12.4) 66.7 (11.7)

Table 8: Performance prediction results under a new neural architecture encoder. Mean and
standard deviation on each dataset and metric. N/A denotes a performance of an encoder without
pre-training. All values are multiplied by 100. The best performance is highlighted in blue . The
superiority of FGP over baseline methods holds valid under a new encoder, DiGCN.

Kendall’s Tau Precision@1% Precision@5%
NB-101 NB-201 NB-101 NB-201 NB-101 NB-201

N/A 65.2 (4.4) 65.7 (1.5) 25.6 (5.5) 14.1 (4.8) 49.0 (1.1) 43.9 (2.6)
GMAE 65.1 (3.9) 66.0 (1.4) 26.3 (5.4) 16.2 (5.2) 49.5 (2.7) 44.2 (2.1)
ZC-Proxy 66.9 (4.3) 72.1 (1.3) 26.0 (3.9) 18.8 (4.7) 50.5 (5.7) 47.1 (1.9)
FGP 73.3 (3.7) 77.9 (2.0) 37.3 (8.6) 23.8 (8.1) 57.5 (5.6) 50.9 (5.8)

Results. As shown in Table 7, FGP outperforms all the baseline methods in all settings, demonstrating
that its superiority extends beyond predicting image classification performance to also include
architecture transferability prediction.

B.8 Analysis under a new neural architecture encoder

In this section, we explore the effectiveness of FGP under a new directed-graph-based neural
architecture encoder.

Setup. We use DiGCN [41], a directed-graph-specialized neural architecture, as the backbone neural
architecture encoder, and the two strongest pre-training methods (i.e., ZC-Proxy and GMAE) as
baseline methods. Other setups are the same as those used in our neural architecture performance
prediction experiments (Section 4.2).

Results. As shown in Table 8, FGP outperforms the baselines in all settings, demonstrate that the
effectiveness of FGP is not limited to a particular neural architecture encoder.

Setup. We use two additional benchmark datasets: (1) NAS-Bench-NLP [24], a dataset that consists
of natural language processing models, and (2) NAS-Bench-Graph [37], a dataset that consists of
graph representation learning models.

Results. As shown in Table 6, FGP outperforms the baselines in 5 out of 6 settings, demonstrate that
the effectiveness of FGP does not limit to a computer vision domain.

B.9 Analysis regarding the usage of random vectors

In this section, we present additional experiment results regarding the usage of random vectors and
matrices for our flow surrogate (Section 3). We analyze two questions: (Q1) Do the values of random
vectors and matrices significantly impact the effectiveness of FGP in downstream tasks? (Q2) Does
using random vectors and matrices for flow surrogates perform better than using representations of
architectures obtained from flow-aware encoders?

B.9.1 Q1. Various random initializations

Setup. We use five different random initializations of vectors and matrices to compute flow surrogates.
Then, we compare the performance of each initialization in the performance prediction task. To this
end, we use ResGatedGCN [3] as the backbone neural architecture encoder. Other setups are the
same as those used in our neural architecture performance prediction experiments (Section 4.2).

19

NB-101 Kendall’s Tau NB-101 Precision@1% NB-201 Kendall’s Tau NB-201 Precision@1%

Figure 11: Statistical test across diverse random initialization for flow surrogates. p-values from
the Wilcoxon Signed-Rank tests [46] between pairs of performance sets, each obtained from different
initializations, are reported. At the significance level of α = 0.05, none of the pairs provide sufficient
statistical evidence to reject the null hypothesis. Thus, different random initializations for the flow
surrogate yield the same performance distribution.

Table 9: Performance prediction results under different derivations of flow surrogates. Mean and
standard deviation on each dataset and metric. All values are multiplied by 100. The best performance
is highlighted in blue . Using random vectors to obtain flow surrogates outperforms using trained
TA-GATEs as flow surrogates.

Flow surrogates Kendall’s Tau Precision@1% Precision@5%
NB-101 NB-201 NB-101 NB-201 NB-101 NB-201

TA-GATEs [34] 72.2 (5.6) 74.7 (11.4) 29.2 (7.2) 40.3 (8.5) 54.4 (7.3) 60.1 (5.1)
Random vectors propagated as in Section 3 74.8 (4.8) 82.2 (0.7) 37.5 (13.0) 48.9 (8.1) 61.7 (3.6) 62.3 (2.5)

We leverage the Wilcoxon-Signed-Rank test [46] to statistically compare the effects of different
initialization. For each initialization setting, we conduct 9 performance prediction trials using
flow surrogates generated with the corresponding initialization. For each pair of initializations, we
apply the Wilcoxon Signed-Rank test to compare the performance sets derived from the respective
initialization. The null hypothesis posits that the two performance distributions are identical, while
the alternative hypothesis suggests they are distinct. We set the significance level at α = 0.05. If
the p-value of the test exceeds α, we lack sufficient statistical evidence to reject the null hypothesis,
indicating that the performance sets from different initializations follow the same distribution.

Results. As shown in Figure 11, every p-value is smaller than 0.05, resulting in we do not have
sufficient statistical evidence to reject the null hypothesis. These test results indicate that the
performance sets derived from different random initializations of vectors and matrices for flow
surrogates share the same distribution.

B.9.2 Q2. Other choices for flow surrogates

Setup. For flow surrogates, we use architecture embeddings obtained by the flow-aware neural
architecture encoder, TA-GATEs [34], trained through supervised learning. In each experimental
trial, we first train TA-GATEs using the training dataset. Next, the trained TA-GATEs are employed
to obtain neural architecture representations for every neural architecture in the search space. Finally,
these representations serve as flow surrogates for their corresponding neural architectures, which are
then leveraged to pre-train another neural architecture encoder, ResGatedGCN with FGP.

Results. As shown in Table 9, flow surrogates derived using random vectors and matrices (as
described in Section 3) outperform those derived using TA-GATEs, highlighting the effectiveness
of flowing random vectors. We hypothesize that this result stems from the potential overfitting of
flow-aware encoders to the training dataset, causing them to focus on specific architectural patterns
present in the training data. In contrast, using random vectors likely avoids this bias, enabling the
capture of broader patterns that are not limited to a specific subset of the dataset.

B.10 Analysis regarding alternative design choices of FGP

Recall that the proposed flow surrogate is achieved after a single round of sequential message passing
(refer to Section 3.2). However, it is possible to perform message passing for multiple rounds. In this
section, we analyze the effectiveness of flow-surrogate variants, that is achieved via multiple rounds
of sequential message passing.

20

Table 10: Performance prediction results under variants of the flow surrogate. Mean and standard
deviation on each dataset and metric. All values are multiplied by 100. The best performance is
highlighted in blue . Using only a single round flow surrogate yields the best performance.

Propagation rounds Kendall’s Tau Precision@1% Precision@5%
NB-101 NB-201 NB-101 NB-201 NB-101 NB-201

Using only round 1 (Ours) 74.8 (4.8) 82.2 (0.7) 37.5 (13.0) 48.9 (8.1) 61.7 (3.6) 62.3 (2.5)
Using rounds 1 and 2 71.7 (5.4) 80.6 (0.5) 36.7 (5.9) 46.0 (6.0) 58.8 (3.4) 62.0 (1.9)
Using rounds 1, 2, and 3 70.7 (4.7) 81.6 (0.8) 34.0 (8.9) 47.3 (0.6) 58.2 (4.1) 62.5 (1.0)

Table 11: Performance prediction results under various pooling functions. Mean and standard
deviation on each dataset and metric. All values are multiplied by 100. The best performance is
highlighted in blue . Kendall’s Tau is used as an evaluation metric. Sum pooling outperforms other
pooling functions.

Mean (variant 1) Max (variant 2) Sum (Ours)

NB-101 71.6 (5.8) 71.1 (6.4) 74.8 (4.8)
NB-201 81.7 (1.0) 81.5 (0.9) 82.2 (0.7)

Setup. We use two variants:

• (Variant 1) This variant uses two surrogates: (1) a flow surrogate obtained via a single message
passing round and (2) a flow surrogate obtained via two consecutive message passing rounds. It
uses different projection heads for respective flow surrogate reconstruction. Reconstruction is
performed in a joint manner.

• (Variant 2) This variant uses three surrogates: a flow surrogate obtained via (1) a single message
passing round, (2) a flow surrogate obtained via two consecutive message passing rounds, and (3) a
flow surrogate obtained via three consecutive message passing rounds. It uses different projection
heads for respective flow surrogate reconstruction.

All methods use ResGatedGCN as a backbone neural architecture encoder. Other setups are the same
as those used in our neural architecture performance prediction experiments (Section 4.2).

Results. As shown in Table 10, a flow surrogate achieved via a single round of message passing,
which is our proposed method, outperforms the alternatives in five out of six settings, justifying our
design choice of flow surrogate.

B.11 Alternative pooling strategies

Note that we use the sum pooling to aggregate the messages from the neighbors (Section 3.2). In this
section, we analyze the alternative pooling functions that are widely used in GNN literature.

Setup. We use the two strategies: (1) mean pooling and (2) max pooling. Specifically, we replace
the sum pooling function with one of the two functions and use the resulting flow surrogate as the
final flow surrogate. We use ResGatedGCN as the backbone neural architecture encoder, and other
settings are the same as in Section 4.2.

Results. As shown in Table 11, sum pooling, which FGP uses to obtain flow surrogate, outperforms
alternative strategies, demonstrating the effectiveness of our design choice for pooling function.

B.12 Expressiveness of our flow surrogate

In this section, we provide preliminary analysis regarding the expressiveness of our flow surrogate.

Setup. We analyze whether our flow surrogate can discriminate architectures containing different
operations. We conduct three binary classification tasks to determine whether a given neural architec-
ture includes: (1) a 1×1 convolution operation, (2) a 3×3 convolution operation, and (3) a pooling
operation. We use flow surrogate representations as input features and train an MLP as the classifier,
performing 10 trials. The architectures are split into 80% for training and 20% for testing.

21

Table 12: Operation classification results. Mean and standard deviation on each dataset and metric.
All values are multiplied by 100. In every case, flow surrogates achieve accuracy higher than 92.

1× 1 Conv. 3× 3 Conv. Pooling

NB-101 93.2 (0.3) 99.9 (0.1) 92.1 (0.7)
NB-201 98.9 (0.3) 99.9 (0.1) 1.0 (0.1)

Table 13: Performance under diverse backbone architecture encoders. Mean and standard
deviation on each dataset and metric. All values are multiplied by 100. Kendall’s Tau is used as
an evaluation metric. The best performance is highlighted in blue . Since the MLP-based model
does not return node embeddings, GMAE is not applicable. Across diverse backbone encoders, FGP
consistently outperforms the baseline methods.

Backbone Datasets w/o pre-training GMAE ZC-Proxy FGP

MLP-based NB-101 42.5 (5.4) - 49.8 (7.3) 65.2 (4.1)
NB-201 59.6 (2.2) - 70.2 (1.8) 72.3 (1.3)

Transformer-based NB-101 62.7 (3.6) 63.2 (4.5) 64.1 (8.5) 69.7 (6.3)
NB-201 63.2 (2.0) 65.7 (2.4) 69.2 (3.2) 74.3 (1.5)

Results. As shown in Table 12, our flow surrogate achieves higher than 92% accuracy in all the
cases. This result suggests that our flow surrogate can effectively distinguish architectures containing
different operations, achieving

B.13 Theoretical properties of our flow surrogate

In this section, we investigate the theoretical properties of our flow surrogate. In a nutshell, we provide
a preliminary theoretical analysis demonstrating that our flow-surrogate computation is invariant to
node permutations (i.e., node indexing), a desirable property when representing the information flow
of a neural architecture to ensure effective downstream task performance.

Motivation. [15, 34] demonstrates the importance of accurately capturing information flow for the
downstream tasks (e.g., performance prediction and neural architecture search). In the NAS-Bench
datasets used in our experiments, the information flow within a neural architecture is independent
of the indexing of individual operations. Accordingly, it is desirable for the computation of flow
surrogates to be permutation-invariant with respect to these operations.

Proof sketch Thost and Chen [40] theoretically demonstrates that asynchronous message passing
on a directed acyclic graph—also used in our flow-surrogate computation—is invariant to node
permutations when the permutation-invariant pooling function is employed for neighbor aggregation.
Their theoretical result extends to our setting, indicating that our method likewise ensures permutation
invariance regarding node indexing.

B.14 Alternative backbone neural architecture encoders

Recall that we use graph-based neural architecture encoders for our experiments, given that neural
architectures are often expressed as graphs. In this section, we investigate the effectiveness of FGP
under non-graph-based neural architectures.

Setup. We use two non-graph-based neural architecture encoders: MLP-based model [44] and
Transformer-based model [31]. Specifically, we first pre-train each architecture encoder via a certain
pre-training method, and then fine-tune the pre-trained encoder with the performance prediction task.
Other settings are the same as in Section 4.2.

Results. As shown in Table 13, FGP consistently outperforms the baseline methods across diverse
non-graph-based backbone neural architecture encoders, demonstrating that the effectiveness of FGP
is not limited to a particular graph-based backbone encoder.

B.15 Hyperparameter sensitivity

In this section, we investigate the hyperparameter sensitivity of FGP.

22

Table 14: Hyperparameter sensitivity analysis. Mean and standard deviation on each dataset and
metric. All values are multiplied by 100. Kendall’s Tau is used as an evaluation metric. Across
diverse settings of λ1 and λ2, FGP consistently outperforms the baseline methods.

(λ1, λ2) = (1
2
, 1
2
) (λ1, λ2) = (1

3
, 2
3
) (λ1, λ2) = (2

3
, 1
3
) ZC-Proxy GMAE

NB-101 74.8 (4.8) 74.8 (4.4) 74.3 (4.5) 68.3 (6.7) 68.1 (4.7)
NB-201 82.2 (0.7) 82.3 (0.8) 81.7 (0.8) 79.9 (0.8) 74.8 (1.2)

Table 15: FlowerFormer analysis under diverse pre-training data size. Mean and standard
deviation on each dataset and metric. All values are multiplied by 100. Kendall’s Tau is used as an
evaluation metric. Performance of the FlowerFormer pre-trained with FGP tends to increase as the
size of the pre-training data increases.

Pre-training data ratio 0% 20% 40% 60% 80% 100%

NB-101 74.0 (3.6) 74.6 (3.8) 75.9 (1.9) 75.8 (4.0) 76.2 (5.1) 76.3 (3.6)
NB-201 77.3 (1.5) 81.1 (0.8) 82.3 (1.2) 82.4 (1.3) 82.7 (1.4) 83.5 (1.7)

Setup. We analyze the coefficients of each loss term, which are λ1 and λ2 described in Sec-
tion 3.3. As detailed in Appendix A.4, search space of the coefficients are as follows: (λ1, λ2) ∈
{(13 ,

2
3), (

1
2 ,

1
2), (

2
3 ,

1
3)}. Therefore, we measure the performance of FGP under each configuration.

We use ResGatedGCN as the backbone neural architecture encoder, and other settings are the same
as in Section 4.2.

Results. As shown in Table 14, across diverse settings of λ1 and λ2, FGP consistently outperforms
the baseline methods, demonstrating the robustness of FGP under the choice of λ1 and λ2.

B.16 Analysis regarding performance gain in FlowerFormer

Recall that FlowerFormer [15] is a flow-based encoder, which captures information flow within the
neural architecture by using its architectural design. However, as shown in Table 1, the performance
of FlowerFormer even improves with FGP. In this section, we further investigate this phenomenon.
To this end, we first present the high-level hypothesis regarding the reason behind this phenomenon,
and provide experiments that further support our hypothesis.

Hypothesis. We hypothesize that FGP enables FlowerFormer to learn a broader range of information
flow beyond what is present in labeled architectures by leveraging a large number of unlabeled
architectures, thereby enhancing its ability to capture more diverse flow patterns. When trained solely
on labeled samples, FlowerFormer tends to learn information flow patterns limited to that specific set.
In contrast, FGP leverages a much larger pool of neural architectures whose ground-truth performance
is unknown, exposing FlowerFormer to a wider range of information flow patterns. This exposure
enables FlowerFormer to learn more diverse and generalizable information flow representations.

Setup. By varying the number of neural architectures used during FGP pre-training, we aim—though
not precisely—to control the diversity of information flow patterns to which FlowerFormer is exposed.
A positive correlation between dataset size and FlowerFormer performance suggests that FGP
helps FlowerFormer encounter a broader range of information flow patterns, leading to improved
accuracy in performance prediction. We vary the proportion of the pre-training dataset used for FGP
training—0% (no pre-training), 20%, 40%, 60%, 80%, and 100%—and evaluate FlowerFormer’s
performance on the performance prediction task. Kendall’s Tau is used as the evaluation metric, and
all other settings follow those described in Section 4.2.

Results. As shown in Table 15, the performance of FlowerFormer pre-trained with FGP tends to
increase as the size of the pre-training dataset increases. This result supports our hypothesis on the
performance improvement of the flow-based encoder (FlowerFormer) with FGP.

23

C Flow surrogate details

C.1 Details of node embeddings and messages

In this section, we elaborate on the node embeddings (i.e., operation representations) hi ∈ Rk,∀vi ∈
V , messages of the order-1 nodes r, 2 and projection matrix W ∈ R2k×k.

• Node embeddings. We first randomly generate a transformation matrix P ∈ R|O|×k, where O is a
set of all the possible operations. Each entry of P is sampled from N (0, σ2) independently to each
other. Then, we multiply P with node features X, obtaining the node embedding matrix H (i.e.,
H = XP), where Hi,: = hi holds.

• Messages of the order-1 nodes. We randomly sample each element of r from the uniform
distribution U(0, 1).

• Projection matrix. We randomly sample each element of W from N (0, σ2).

C.2 Hyperparameters for obtaining flow surrogate

We provide a search space or a fixed value for each hyperparameter related to the flow surrogate:

• Standard deviation of Gaussian distribution σ. This is tuned within {10−1, 100}.

• Dimension k. This is tuned within {4, 5, · · · , 12}.

• Identity coefficient α. This is fixed as α = 0.5.

D Zero-cost proxy details

In this section, we provide further details regarding zero-cost proxy, which we use its prediction as an
auxiliary training objective of FGP.

D.1 Descriptions of zero-cost proxies

Overview. Zero-cost proxies are pruning-at-initialization metrics that represent certain characteristics
of a neural architecture [1]. For a given neural architecture, these metrics can be obtained by
simply building a deep learning model having the corresponding neural architecture (e.g., ℓ2−norm
of parameters) or performing a single forward pass and gradient computation (e.g., ℓ2−norm of
parameters’ gradients). Therefore, compared to actual model training—which requires a substantial
number of training iterations (i.e., forward passes and backpropagation)—obtaining zero-cost proxies
is significantly more economical [1].

Usage of zero-cost proxies. Numerous studies on Neural Architecture Search (NAS) have demon-
strated that these metrics exhibit a strong correlation with the ground-truth performance of neural
architectures [1, 56, 14]. Consequently, various NAS approaches leverage zero-cost proxies to quickly
assess the potential effectiveness of candidate architectures for the target task and dataset [14, 27].
Similarly, Zhao et al. [56] proposed pre-training a neural architecture encoder to predict the zero-cost
proxies of a neural architecture, enabling the encoder to identify architectures more likely to achieve
high performance. Note that this zero-cost-prediction-based pre-training [56] has been leveraged
as our baseline method, which is called ZC-Proxy. Specifically, ZC-Proxy pre-trains the encoder
following the scheme described in Appendix D.2.

D.2 Our usage of zero-cost proxy

Overview. Motivated by the recent success of zero-cost proxies in NAS, we use predicting a zero-cost
proxy of a neural architecture as an auxiliary learning objective Laux. We use Jacobian Covariance
zero-cost proxy [1], measuring how well a neural architecture distinguishes distinct inputs. We train
a neural architecture encoder to predict the Jacobian Covariance of a given neural architecture. For
NAS-Bench-101 [51] and NAS-Bench-301 [39], we use proxies provided by Krishnakumar et al.
[25]. For NAS-Bench-201 [8], we use proxies provided by Abdelfattah et al. [1].

2Note that all the order-1 nodes share the same embedding r.

24

Usage. Consider z(i) ∈ Rd, an embedding of a neural architecture G(i), obtained by a neural
architecture encoder fθ. We use a zero-cost-proxy regressor uρ to predict the architecture’s zero-cost
proxy, denoted as c(i) ∈ R. Specifically, the predicted zero-cost proxy ĉ(i) ∈ R is obtained as follows:
ĉ(i) = uρ(z

(i)). Since the objective of learning zero-cost proxies is to train a model to identify which
architectures are more likely to perform better, we adopt a ranking-based loss. This loss encourages
the model to focus on relative performance, specifically identifying which architecture outperforms
another. To achieve this, we use margin ranking loss, which is widely used in training a neural
architecture encoder [34, 15]. The loss function is formalized as:

Laux =
∑

(i,j):c(i)>c(j)

max (0,m− (ĉ(i) − ĉ(j))), (2)

where G(i) and G(j) are two neural architectures within the same batch, and m is a margin hyperpa-
rameter. The parameters θ and ρ are optimized using gradient descent to minimize the auxiliary loss
Laux (Eq. 2).

E Discussions

In this section, we discuss limitations and broader impacts of our research.

E.1 Limitations and potential future works

While our work demonstrates empirical effectiveness in neural architecture encoding across various
benchmark datasets and applications (Section 4), the theoretical properties of FGP remain under-
explored—specifically, what types of flows it can or cannot capture. While we provide preliminary
analysis regarding these concepts in Appendices B.12 and B.13, a further rigorous and in-depth
analysis regarding them would enrich our understanding of our method. Thus, further theoretical
investigation into our flow surrogate offers promising directions for improvement. In addition, given
findings that LLMs understand graphs and produce interpretable graph representations [21], incor-
porating them into FGP is a promising path to improve interpretability. Moreover, several recent
methods represent neural architectures in diverse formats, such as hypergraph [28], which model
interactions among multiple nodes [20]. Therefore, extending FGP to such approaches would be an
interesting direction.

E.2 Broader impacts

While our work focuses on neural architecture encoding, our approach has the potential to generalize
to other data structures that exhibit a notion of flow, such as electrical circuits [2] and Petri Nets [36].
Accordingly, our flow surrogate presents practical opportunities for representing such structures in
these domains.

25

F NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We propose a generative-pretraining method for neural architecture encoding.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss them in Appendix E.
Guidelines:

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: We discuss them in Appendix B.13.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present detailed experimental settings and hyperparameters, together with the
source code.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We make all our code and datasets publicly available through https://github.
com/kswoo97/FGPAnom.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We provide detailed settings and hyperparameter search space of our experiments.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide mean and standard deviation of our experimental results obtained via
multiple trials.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We provide detailed information regarding the machines used in our experiments.

9. Code of ethics

26

https://github.com/kswoo97/FGPAnom
https://github.com/kswoo97/FGPAnom

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We carefully checked the NeurIPS Code of Ethics, and believe that we did not violate
any of the ethical terms.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We discuss them in Appendix E.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: We believe that our work does not pose such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We adequately cited existing works.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide detailed README instructions for our code in https://github.com/
kswoo97/FGPAnom.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: We do not contain any crowdsourcing and human-subjects-related experiments.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: We do not contain any crowdsourcing and human-subjects-related experiments.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only used LLMs to improve the writing.

27

https://neurips.cc/public/EthicsGuidelines
https://github.com/kswoo97/FGPAnom
https://github.com/kswoo97/FGPAnom

	Introduction
	Related Work and Preliminaries
	Related work
	Neural architecture encoding.
	Pre-training for neural architecture encoding.

	Preliminary

	Proposed method
	Motivation, challenge, and overview
	Proposed pre-training objective
	Assigning topological order
	Mimicking the forward pass
	Mimicking the backpropagation

	Proposed flow generative pre-training

	Experiment
	Experimental setup
	RQ1: Performance prediction experiments
	RQ2: Neural architecture search experiments
	RQ3: Flow surrogate analysis
	RQ4: Ablation study
	RQ5: Speed analysis

	Conclusion
	Experimental details
	Dataset details
	Machines and implementation
	Fine-tuning protocol
	Hyperparameters
	Details regarding neural architecture search

	Additional experimental results
	Analysis of encoding time of diverse architecture encoders
	Analysis under varying training set size
	Analysis under using only the training set, including for pre-training
	Analysis under varying pre-training set size
	Analysis under a fixed pre-training time
	Analysis under various domains
	Analysis under another task
	Analysis under a new neural architecture encoder
	Analysis regarding the usage of random vectors
	Q1. Various random initializations
	Q2. Other choices for flow surrogates

	Analysis regarding alternative design choices of FGP
	Alternative pooling strategies
	Expressiveness of our flow surrogate
	Theoretical properties of our flow surrogate
	Alternative backbone neural architecture encoders
	Hyperparameter sensitivity
	Analysis regarding performance gain in FlowerFormer

	Flow surrogate details
	Details of node embeddings and messages
	Hyperparameters for obtaining flow surrogate

	Zero-cost proxy details
	Descriptions of zero-cost proxies
	Our usage of zero-cost proxy

	Discussions
	Limitations and potential future works
	Broader impacts

	NeurIPS Paper Checklist

