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Abstract

Dynamic programming (DP) is a cornerstone for solving Markov decision pro-
cesses (MDPs) through Bellman’s optimality equations. Classical algorithms such
as policy iteration exploit their fixed-point structure but become costly in large
state—action spaces or with long-term dependencies. We propose BellNet, a para-
metric model that unrolls and truncates policy iterations, trained to minimize the
Bellman error from random value function initializations. By interpreting the MDP
transition matrix as the adjacency of a weighted directed graph, we leverage graph
signal processing to re-parameterize BellNet as a cascade of nonlinear graph filters,
offering a concise and transferable representation of policy and value iteration with
explicit control of inference complexity. Experiments in grid environments show
that BellNet approximates optimal policies in far fewer iterations than classical
methods and generalizes, without retraining, to related unseen tasks.

1 Introduction

Dynamic programming (DP), widely applied across engineering domains [1]], is often cast as a
Markov decision process (MDP) [2]. Its central task is to solve Bellman’s equations (BEQs) for
the value function (VF), which encodes long-term cumulative rewards. Since BEQs are fixed-point
equations, classical DP methods rely on iterative algorithms [2, [3]], where state transitions induce a
natural digraph structure. While effective, these algorithms can become expensive. The number of
required iterations scales rapidly with the size of the state—action space and worsens in long-horizon
problems. To mitigate this challenges, in this work we leverage algorithm unrolling [4} 5] and
graph signal processing (GSP) [6,[7] to design learnable neural architectures that reduce the iteration
burden. Algorithm unrolling reformulates iterative updates as a finite sequence of layers, retaining
the interpretability of model-based methods while introducing trainable components 8, 9].

We introduce BellNet, which unrolls the steps of policy and value iteration into a deep parametric
model. Drawing from GSP, we show that each policy iteration update can be expressed as a polynomial
in the transition matrix, which can be viewed as the adjacency of a weighted digraph, followed by a
nonlinearity. Thus, unrolled policy iteration corresponds to a cascade of nonlinear graph filters [10].
This perspective yields architectures that (i) approximate policy iteration with fewer steps, and (ii)
generalize across related environments without retraining. To summarize, our contributions are:
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C1 We introduce BellNet, an unrolled version of policy iteration structured as a cascade of
nonlinear graph filters;

C2 We put forth a learning problem, where the filter coefficients are trained to minimize the
so-termed Bellman error from random VF initializations; and

C3 We experimentally show in a grid-world setting that the learned BellNet model converges in
significantly fewer iterations and generalizes well to similar environments.

Prior work. In reinforcement learning (RL), unrolling has been used in image-based settings [[11]],
and to learn the MDP topology by interpreting the transition matrix as a graph [12} [13]. Unlike
our work, existing approaches (a) focus on value iteration; (b) address RL rather than DP, thus
they estimate transition probabilities instead of exploiting the graph structure to design the unrolled
architecture; and (c) target single tasks instead of enabling generalization across MDPs. Prior RL
works have used GSP tools to improve algorithmic efficiency. For instance, [14] postulates the
VFs lie in a low-dimensional subspace induced by the state transition digraph; [15] estimates the
optimal policy on a subset of states and extends it via graph interpolation; and [[16] applies graph
reduction to simplify the decision process. While effective, these methods are task-specific. In
contrast, BellNet is task-agnostic and applicable across different MDPs. Finally, a growing body of
work in GSP investigates the properties of graph filters, e.g., permutation equivariance, stability, or
transferability [17H22]. We empirically show that BellNet inherits some of these desirable properties,
although a deeper theoretical analysis is left for future work.

2 Preliminaries: Fundamentals of DP and GSP

DP. In DP, we consider an MDP defined by the tuple (S,.A, P, R), where S and A are discrete state
and action spaces, P € [0, 1] ISIIAIXIS] s a known transition probability matrix whose rows, indexed
by state-action pairs (s, a), define distributions over next states s’, and R € RISIXIAl contains the
rewards. Solving the MDP amounts to finding a policy 7 : S +— [0, 1] Il that maximizes the VFs,
defined as expected cumulative rewards. A policy maps each state s to a distribution over actions a,
and the VF under 7 is given by Q™ (s, a) = E; [>_;2 g v'r¢ | so = s,a0 = a], where y € [0,1) is a
discount factor and the instantaneous reward r; is the entry of R indexed by the state-action pair at
time ¢. We arrange policy probabilities in the matrix IT € [0, 1]/ and the VFs in Q, € RISI*IAI,
For convenience, we henceforth use the vectorizations r = vec(R) and q, = vec(Q, ). The BEQs
characterize the VFs q, for a fixed policy 7 [23]. Denoting P, = P(I® HT)T, where © is the
Khatri-Rao product and I the identity matrix, we have that

Qr =T +7Prqs. 1)

This fixed-point linear system of equations can be solved iteratively. Iterating until convergence is
referred to as policy evaluation in DP parlance. Greedy maximization of Q, with respect to actions
(columns) produces a new policy IT', i.e.,

, 1 if j = argmaxy Qx,

= {0 otherwise. @
This step, known as policy improvement, produces a policy IT' that is guaranteed to outperform IT
in terms of the attained VFs [3]. Crucially, if II' = I, then IT = IT* is optimal, i.e., attains the
maximum VFs Q, = Q* for all state-action pairs. This underpins policy iteration, an iterative method
that alternates policy evaluation and policy improvement to compute the optimal VFs. Interestingly,
for the optimal VFs Q*, it also holds that

Q" =r+9Pv* with o} = max Qr.- 3)

This defines a nonlinear fixed-point system that can be solved iteratively through a procedure known
as value iteration. Value iteration is equivalent to performing one step of the policy evaluation
iteration followed by policy improvement [23]].

GSP. A graph G = (V, ) is defined by a set of N nodes V and a set of edges £ C V x V. The
connectivity of G is captured by the sparse adjacency matrix A € RV*N 'where 4;; # 0 if and only
if (,7) € £, and the entry A;; denotes the weight of the edge from node ¢ to node j. A graph signal
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Figure 1: BellNet: A cascade of learnable graph filters and softmax nonlinearities that unrolls policy iteration.

is a function defined on the set of nodes, represented as a vector x € RY, where x; denotes the signal
value at node ¢. Graph filters are linear, topology-aware operators that process graph signals. They
can be expressed as matrix polynomials of the adjacency matrix A [10}24]], namely

H =377 hyAd )

where h = [hg,...,h N,l]T is the vector of filter coefficients. Since each power A7 encodes
information about the j-hop neighborhood of G, the output y = Hx can be interpreted as a diffusion
(or aggregation) of the input signal x across neighborhoods of increasing size, with the coefficients
h; weighting the contribution from each j-hop component [25]].

3 Unrolling DP via GSP

Algorithm unrolling is a foundational technique for infusing model-based inductive bias into data-
driven learning [8]. Given an iterative algorithm, unrolling builds a parametric mapping, typically
a neural network, by assigning each iteration to a corresponding block, such as a network layer.
The operations of the original algorithm are preserved and reinterpreted as layer-wise computations,
enabling the model to learn algorithm-specific behavior from data. Next, we unroll policy iteration
and draw GSP connections in the process. Each unrolled block consists of two main steps: policy
evaluation, which involves solving (T)), and policy improvement, where (2) is applied.

Policy evaluation. The BEQ (I)) is a linear system of equations. However, solving it directly is often
impractical due to the large size of state-action spaces. Instead, one typically iterates by applying
the right-hand-side (rhs) of (I)) repeatedly until convergence is reached. Additional simplifications
exploit structural properties of the MDP, such as linear dynamics [26} 27]], low-rank structure [28530],
or kernel-based representations [31}132]]. Here, instead, we propose leveraging the graph structure of
the MDP. To elucidate this connection, we expand the BEQ recursion as follows

q®) =1+ 9P,q*" D =1+ P.r + 47 (Pr) g2
= =Y (P e+ 4R (Pr) . (5)

This expression comprises an exponentially decaying bias b)) .=~k (Pw)k q? that depends on
q'?; and a graph filter H®) = Z;‘;S 47 (P,)’ applied to r. The latter characterization follows

since H®) is a polynomial of P, which represents the adjacency matrix of a weighted digraph
G. The nodes are state-action pairs while the edge weights correspond to the Markovian transition
probabilities P and the current policy I1. From this viewpoint, the powers of the discount factor ~
act as the filter coefficients in (@), i.e., h; = 77. Consequently, policy evaluation can be interpreted as
applying a graph filter to the reward. Due to the fixed-point theorem [3]], an infinite-order filter is

guaranteed to recover the true VF for policy 7, so that q, = H(®)r 4+ b(>®) = Yo (Pr)r.

Moreover, our GSP perspective enables concrete simplifications of the proposed model. While the
graph filter underlying policy evaluation is, in principle, of infinite degree, an equivalent filter with
limited degree exists.



Proposition 1. Value function q™ for a fixed policy m can be expressed as a finite-order graph filter
qr = Z;io 'Yj (P,r)jr = ZJK:O Bj (Pw)jr, 6)
with K < |S||A|. If P is diagonalizable, then K < |S]|.

Proof. By the Cayley—Hamilton theorem [33]], any matrix polynomial of P, € [0, 1]ISIIAIXISIIAI
can be reparameterized as a polynomial of degree at most K = |S||A|. If P, is diagonalizable, the
degree of its minimal polynomial is at most rank(P,) = rank(P) = |S]|, so any polynomial of P

can be expressed with order at most K = |S|. O

Beyond exact policy evaluation, our approach also encompasses approximate policy evaluation via
early stopping after a fixed number of iterations. Recall that value iteration corresponds to a single
application of the rhs of (I). In any case, early stopping is equivalent to a graph filter of some order K
and fixed coefficients h; = 7. This also introduces a non-vanishing bias term that must be accounted
for [cf. (B)]. Furthermore, the estimate ¢, may not converge to the true VF gy, so it must be reused
to initialize the next policy evaluation under the updated policy IT'. Identity (6)) can be extended to
this case by explicitly incorporating the bias term as

qr = Zf:o hi (Pt + b1 (Pr) T g0, 7)

Although the filter in (7)) is well motivated, certain problems may benefit from greater expressive capac-
ity. We therefore consider a more general layer that replaces the single bias term hx 41 (PW)KHq(O)
with a second graph filter acting on q(?), yielding

e =YK by (P e+ L 0 (PR) g, ®)

Here, {h;} szo are the coefficients of the filter applied to r, and {g; } X%} o 1 those of the additional

filter applied to q(%). Restricting the second filterto i € [K +1 — S, K 4+ 1] (with0 < S < K + 1)
ensures that this parametrization recovers as a special case when S = 0 (with gx 11 = hx11).

Policy improvement. As defined in (2)), policy improvement is a nonlinear row-wise max operation
applied to Q,, analogous to max-pooling, selecting the maximum in each row. For differentiability,
we replace the max operation with a softmax, as detailed in the next section.

4 BellNet: Learning Policy Iteration

Through the GSP lens, policy iteration is a cascade of nonlinear graph filtering operations that
converge to the optimal VFs of the MDP. This perspective motivates BellNet, our proposed unrolling
of policy iteration to solve BEQs. BellNet is a deep architecture composed of L + 1 layers. Each
layer takes as input a VF vector q € RISII4I and its associated softmax policy IT € [0, 1]!S!*I4I and
outputs an enhanced VF vector and policy. The mapping between the input and output of the /-th
layer is implemented by graph filters with learnable coefficients h(*) and g(*). Formally, let g be the
(possibly random) initial estimate of the VF, and let % = {(h(), g(V)} £ collect all the learnable
coefficients. Then, BelINet, repented by the mapping ®(-; ), implements {q, IT} := ®(g; ) with
q=q L), =114+ g = g, and layer-wise updates:

l ] l 1
q" D =K B Py e+ L s el (Prw)

Qij/T
) = o (QUHY), with [0-(Q)]i; = 377
Ml oQir/7
k=1
forl =0,...,L —1, where Q¥ = unvec(q(l)), o; 1s a row-wise softmax operator with temperature
parameter 7, and h(") = [hél), ce h(ll()H] and gV = [9%)4-1—5’ . ,g%)ﬂ] are the filter coefficients

of the [-th layer. Each layer implements two reduced-order, parallel graph filters, sums their respective
outputs, and then applies a softmax nonlinearity. The BellNet model is illustrated in Fig.[I] Setting

L =00, K = 00, and S = 0, with hy) =7 and g" = ~%, and replacing the softmax with the max

%

operator, recovers policy iteration. Likewise, setting K = 0 and S = 0 yields value iteration.
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Figure 2: Evaluation of BellNet across different scenarios. We report the median error of the estimated q,
computed as in (I0), over 15 realizations. a) Shows the error as L increases; b) illustrates the error as K
increases; and c) evaluates the transferability capacity of BellNet.
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Figure 3: Cliff walking environment (left) and its mirrored version (right). Cliff regions are shown in black;
arrows indicate the policy learned by BellNet, and the color map represents the corresponding VFs. BellNet is
trained on the top environment, while the policy in the bottom environment is inferred without retraining.

Learning. To complete the approach, we formulate the optimization adopted to learn the filter
coefficients H. The loss function is inspired by temporal difference (TD) methods [33]]. We solve
a sequential optimization problem that minimizes the Bellman error [36]37], which is the discrepancy
between the left and rhs of (3). Specifically, with n being an iteration index, we solve

H[n+1] = argminH ||I‘ + 'YPV[n] - Q((_L H)H%a (9)

where vy, is defined as per (3) from {qp,}, ITj,,) } := ®(q, H[,]). Note that {qj,,), I}, } depends on
the current iterate ) and not on the optimized coefficients H. By slight abuse of notation, ® in
(@) refers only to the VF output g. We also highlight that: (a) as customary in TD, for each n we
update the filter coefficients via gradient descent; (b) our DP method does not require data samples,
but the transition probability matrix P instead; and (c) BellNet is initialized with an arbitrary VF q
and trained to converge to the optimal VF and policy regardless of q.

Transferability. Graph filters are permutation-equivariant and transferable to larger graphs from a
convergent sequence [18]], making them particularly well suited to generalize across related problems.
In our DP context, this property can be leveraged to train BellNet on a single MDP and deploy it on
other similar or larger MDPs. Doing so yields solutions faster than evaluating policies from scratch,
as we demonstrate numerically in Section[5] Moreover, the vanilla BellNet described so far operates
with a fixed unrolling depth and distinct parameters per block. An attractive alternative is to share
weights across blocks. Although weight sharing admittedly reduces expressiveness, it markedly
decreases the number of learnable parameters [5} [38]]. Crucially, it allows the same block to be reused
as many times as desired during inference—exceeding the original training depth to enable efficient,
scalable transfer as well as to delineate favorable complexity versus policy approximation tradeoffs.

S Numerical Results and Concluding Remarks

We assess the performance of BellNet in the cliff walking environment, a grid-world setup where the
goal is to reach a target location in the minimum number of steps without falling off the grid. The
state space S corresponds to positions on the grid, and the action space consists of moving up, down,
left, or right. Two instances of this environment are depicted in Fig.[3} Simulations are conducted



using the Gymnasium library [39,/40]. Experiments were run on an AMD EPYC 9634 (168 threads)
server with two NVIDIA RTX 4090 GPUs (24 GB each).

We compute the true VF q* using policy iteration with sufficiently many policy evaluation and
improvement steps, and report the normalized error defined as

~ * A~ A~ * * 2
nerr(q,q*) = ||a/llallz — a*/|la*[|2|]- (10)

Figure [2| depicts the median error along with the interquartile range (between the 25th and 75th
percentiles), computed over 15 random realizations. We compare the performance of BellNet with
and without weight sharing (denoted “BN-WS” and “BN” in the legend), as well as value iteration
(“Val-it”) and policy iteration (‘“Pol-it”), across multiple scenarios. Furthermore, “BN-WS” denotes
BellNet with a single graph filter (i.e., S = 0), whereas “BN2-WS” corresponds to the case with two
graph filters and §' = K.

Test case 1 (Depth). We first examine how increasing the number of unrolling layers (equivalently,
the number of policy improvement steps for “Val-it” and “Pol-it”) influences performance. Figure Zh
shows results using filter orders 5 and 10 for “BN”, and 10 policy evaluation updates in “Pol-it”.
Apparently, the weight sharing strategy leads to better performance with lower variance, whereas dis-
tinct filter coefficients results in more unstable behavior. Moreover, BellNet consistently outperforms
policy iteration, recovering the optimal policy with only 4 layers compared to 10 required by “Pol-it”.

Test case 2 (Filter order). Next, we investigate the role of the filter order in the performance of
BellNet. Figure[Zb shows the error of “Pol-it” and “BN-WS” as the number of policy evaluation
steps and, correspondingly, the filter order, increases as indicated on the x-axis. We evaluate “Pol-it”
with 5 and 10 policy improvement steps, and use the same number of unrolling layers for “BN-WS”
and “BN2-WS”. Comparing “BN-WS” and “BN2-WS”, we find that both architectures achieve
similar performance when the number of unrolling layers is sufficiently large, although “BN2-WS”
exhibits greater instability at L = 5. As expected, we also find that a higher filter order improves the
performance of “BN-WS”, with a smaller order being sufficient when the number of unrolling layers
increases. Interestingly, this is not the case for “Pol-it”, where the number of policy improvement
steps has a greater impact than the number of evaluation steps in this setting. Consistent with the
previous experiment, these results highlight how BellNet outperforms “Pol-it” when the number of
policy improvement steps is moderately small.

Test case 3 (Transferability). The last experiment inspects BellNet’s transferability properties. We
train BellNet in the original grid-world setting used in previous test cases, and then use it to predict
the optimal policy in a modified environment where the positions of the cliffs, origin, and destination
have changed. As shown in Fig. [2c, BellNet successfully predicts the optimal policy in the new
environment without requiring retraining. For comparison, we compute the optimal policy in the
modified environment using value iteration and policy iteration with 5 and 10 policy evaluation steps.
We observe that the error in the estimated q decreases as the number of layers (indicated on the
x-axis) increases, or, when higher-order filters are used. Notably, BellNet outperforms the classical
baselines when both the number of unrolling layers and the filter order are sufficiently large. Overall,
these preliminary results show that BellNet not only offers a novel approach to estimating the optimal
policy, but also generalizes effectively to other related environments not seen during training.

Work partially funded by the Spanish AEI (10.13039/501100011033) grant PID2022-136887NB-100, and the
Community of Madrid via the Ellis Madrid Unit and grants URJC/CAM F861 and F1180 and TEC-2024/COM-
89. A related version of this work appeared at CAMSAP 2025 under the title Unrolling Dynamic Programming
via Graph Filters. Minor edits of this document were made with the assistance of ChatGPT.
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