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Abstract

We study reinforcement learning (RL) in a setting with a network of agents whose states and actions
interact in a local manner where the objective is to find localized policies such that the (discounted)
global reward is maximized. A fundamental challenge in this setting is that the state-action space
size scales exponentially in the number of agents, rendering the problem intractable for large net-
works. In this paper, we propose a Scalable Actor Critic (SAC) framework that exploits the network
structure and finds a localized policy that is an O(p"*+1)-approximation of a stationary point of the
objective for some p € (0, 1), with complexity that scales with the local state-action space size of
the largest x-hop neighborhood of the network.

Keywords: Multi-agent reinforcement learning, networked systems, actor-critic methods.

1. Introduction

Having demonstrated impressive performance in a wide array of domains such as game play (Silver
et al., 2016; Mnih et al., 2015), robotics (Duan et al., 2016), autonomous driving (Li et al., 2019),
Reinforcement Learning (RL) has emerged as a promising tool for decision and control. However,
in order to use RL in the context of control of large scale networked systems, such as those in
cyber-physical systems, it is necessary to develop scalable RL algorithms for networked systems.

In this paper, we consider a RL problem for a network of n agents, each with state s; and action
a;, both taking values from finite sets. The agents are associated with an underlying dependence
graph G and interact locally, i.e, the distribution of s;(¢ + 1) only depends on the current states of
the local neighborhood of i as well as the local a;(t). Further, each agent is associated with stage
reward r; that is a function of s;, a;, and the global stage reward is the average of r;. In this setting,
the design goal is to find a decision policy that maximizes the (discounted) global reward. This
setting captures a wide range of applications, e.g. epidemics (Mei et al., 2017), social networks
(Chakrabarti et al., 2008; Llas et al., 2003), communication networks (Zocca, 2019; Vogels et al.,
2003), queueing networks (Papadimitriou and Tsitsiklis, 1999), smart transportation (Zhang and
Pavone, 2016), smart building systems (Wu et al., 2016; Zhang et al., 2017).

A fundamental difficulty when applying RL to such networked systems is that, even if indi-
vidual state and action spaces are small, the entire state profile (s1, ..., s,) and the action profile
(ai,...,ay) can take values from a set of size exponentially large in n. This “curse of dimension-
ality” renders the problem unscalable. For example, most RL algorithms like temporal difference
(TD) learning or ()-learning require storage of a (Q-function (Bertsekas and Tsitsiklis, 1996) whose
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size is the same as the state-action space, which in our problem is exponentially large in n. Such
scalability issues have indeed been observed in previous research on variants of the problem we
study, e.g. in multi-agent RL (Littman, 1994; Bu et al., 2008) and factored Markov Decision Proc-
cess (MDP) (Kearns and Koller, 1999; Guestrin et al., 2003). A variety of approaches have been
proposed to manage this issue, e.g. the idea of “independent learners” in Claus and Boutilier (1998);
or function approximation schemes (Tsitsiklis and Van Roy, 1997). However, such approaches lack
rigorous optimality guarantees. In fact, it has been suggested that such MDPs with exponentially
large state spaces may be fundamentally intractable, e.g., see Blondel and Tsitsiklis (2000).

In addition to the scalability issue, another challenge is that, even if an optimal policy that
maps a global state (s, ..., s,) profile to a global action (a1, ..., a,) can be found, it is usually
impractical to implement such a policy for real-world networked systems because of the limited
information and communication among agents. For example, in large scale networks, each agent ¢
may only be able to to implement localized policies, where its action a; only depends on its own
state s;. Designing such localized polices with global network performance guarantee can also be
challenging, see e.g. Rotkowitz and Lall (2005).

The challenges described above highlight the difficulty of applying RL to control large scale
networked systems. However, the network itself provides some structure that can potentially be
exploited. The question that motivates this paper is: Can the network structure be utilized to develop
scalable RL algorithms that provably find a (near-)optimal localized policy?

Contributions. In this work we propose a framework that exploits properties of the network
structure to develop RL to learn localized policies for large-scale networked systems in a scalable
manner. Specifically, our main result (Theorem 5) shows that our algorithm, Scalable Actor Critic
(SAC), finds a localized policy that is a O(p"T!)-approximation of a stationary point of the ob-
jective function, with complexity that scales with the local state-action space size of the largest
k-hop neighborhood. To the best of our knowledge, our results are perhaps the first to provide such
provable guarantee for scalable RL of localized policies in multi-agent network settings.

The key technique underlying our results is the observation that, when the size of x-hop neigh-
borhood is bounded, the network structure implies that the ()-function satisfies an exponential decay
property (Definition 2), which leads to a tractable approximation of the policy gradient. In particu-
lar, despite the policy gradient itself being intractable to compute due to the large state-action space
size, we introduce a truncated policy gradient (see Lemma 4) that can be computed efficiently and
can be used in an actor-critic framework which yields an O(p"*!)-approximation. This technique is
novel and is a contribution in its own right. It can be used broadly to develop RL in network settings
beyond the specific actor-critic algorithm we propose in this paper.

Related Literature. Our problem falls under category of the “succinctly described” MDPs in
Blondel and Tsitsiklis (2000, Section 5.2), where the state and/or action space is a product space
formed by the individual state and/or action space of multiple agents. As the state/action space is
exponentially large, such problems are unscalable in general, even when the problem has structure
(Blondel and Tsitsiklis, 2000; Whittle, 1988; Papadimitriou and Tsitsiklis, 1999). Despite this, there
is a large literature on RL/MDPs in multi-agent settings under various structural assumptions.

Multi-agent RL dates back to the early work of Littman (1994); Claus and Boutilier (1998);
Littman (2001); Hu and Wellman (2003) (see Bu et al. (2008) for a review) and has been actively
studied, e.g. Zhang et al. (2018); Kar et al. (2013); Macua et al. (2015); Mathkar and Borkar (2017);
Wai et al. (2018), see a more recent review in Zhang et al. (2019). Multi-agent RL encompasses
a broad range of settings including competitive agents and Markov games. The case most relevant
to ours is the cooperative multi-agent RL where typically, the agents can take their own actions but
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Problem \ State Action Coupling Representative Literature
Multi-agent RL global  local yes Zhang et al. (2019)
Factored MDP local  global local coupling Guestrin et al. (2003)

Weakly Coupled MDP | local local reward only Meuleau et al. (1998)
Our work local local  local coupling Qu et al. (2019)

Table 1: Comparison of settings in related literature.

they share a common global state and maximize a global reward (Bu et al., 2008). This is contrast
to the model we study, in which each agent has its own state and acts upon its own state. Despite
the existence of a global state, multi-agent RL still faces scalability issues since the joint-action
space is exponentially large. Methods have been proposed to deal with this, including independent
learners (Claus and Boutilier, 1998; Matignon et al., 2012), where each agent employs a single-
agent RL method. While successful in some cases, the independent learner approach can suffer
from instability (Matignon et al., 2012). Alternatively, one can use function approximation schemes
to approximate the large (J-table, e.g., linear function approximation (Zhang et al., 2018) or neuro
networks (Lowe et al., 2017). Such methods can reduce computation complexity significantly, but it
is unclear whether the performance loss caused by the function approximation is small. In contrast,
our technique not only reduces computation but also guarantees small performance loss.

Factored MDPs are problems where every agent has its own state and the state transition fac-
torizes in a way similar to our model (Kearns and Koller, 1999; Guestrin et al., 2003; Osband and
Van Roy, 2014). However, they differ from the model we consider in that each agent does not have
its own action. Instead, there is a global action affecting every agent. Despite the difference, Fac-
tored MDPs still suffer from scalability issues. Similar approaches as in the case of Multi-agent RL
are used, e.g., Guestrin et al. (2003) proposes a class of “factored” linear function approximators;
however, it is unclear whether the loss caused by the approximation is small.

Other Related Work. Our work is also related to weakly coupled MDPs, where every agent has
its own state and action but their transition is decoupled (Meuleau et al., 1998). Additionally, our
model shares some similarity with the epidemic network (Cator and Van Mieghem, 2012; Sahneh
et al., 2013; Mei et al., 2017) and Glauber dynamics in physics (Lokhov et al., 2015; Mezard and
Montanari, 2009), though our focus is very different from these works. Finally, this work is related
to Qu and Li (2019), which assumes the full knowledge of MDP model (not RL) and imposes
strong assumptions on the graph. In contrast, our work here does not need knowledge of the MDP
and significantly relaxes the network assumptions.

2. Preliminaries

We consider a network of n agents that are associated with an underlying undirected graph G =
(N, E), where N = {1,...,n} is the set of agents and £ C N x N is the set of edges. Each agent i
is associated with state s; € S;, a; € A; where S; and A; are finite sets. The global state is denoted
ass = (81,...,8p) €S := 81 X -+ xS, and similarly the global action a = (a1, ...,a,) € A:=
Aj x -+ x A,. Attime ¢, given current state s(¢) and action a(t), the next individual state s;(t + 1)
is independently generated and is only dependent on neighbors:

n

P(s(t +1)[s(t),a(t)) = [T P(sit + Dlsw, (1), as(1)), (1)

i=1
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where notation V; means the neighborhood of ¢ (including ¢ itself) and sy, is the states of ¢’s
neighbors. In addition, for integer £ > 1, we let IN;* denote the x-hop neighborhood of 4, i.e. the
nodes whose graph distance to 7 is less than or equal to s, including i itself. We also let f(x) =
sup; ‘NZH | .

Each agent is associated with a class of localized policies Cf ¢ parameterized by 6;. The localized
policy Cf “(a;|s;) is a distribution on the local action a; conditioned on the local state s;, and each
agent, conditioned on observing s;(t), takes an action a;(t) independently drawn from Cf “(+|si(t)).
We use 6 = (61,...,0,) to denote the tuple of the localized policies Cf *, and also use (?(als) =
I, Cf “(ai|s;) to denote the joint policy, which is a product distribution of the localized policies
as each agent acts independently.

Further, each agent is associated with a stage reward function 7;(s;, a;) that depends on the local
state and action, and the global stage reward is 7 (s, a) = % >, 1i(si,a;). The objective is to find
localized policy tuple 6 such that the discounted global stage reward is maximized, starting from
some initial state distribution 7,

méix J(0) :=Egr,E a(t)~Co(-|s( [ny "

)|s(0) = s] : 2)

To provide context for what follows, we review a few key concepts in RL. First, fixing a localized
policy tuple § = (61, ..., 0,), the Q-function for this policy 6 is:

oo

Q%(s,a) = Ea(t)~(9(<|s(t))|: yr(s(t), a(t))
t=0

1 n
Zgz a(t)~Co (-|s( [ZV% si(t),a(t))
=1

In the last step, we have defined Qf(s, a) which is the @ function for the individual reward ;. Both
QY and Qf are exponentially large tables and, therefore, are intractable to compute and store.

Finally, we recall the policy gradient theorem, which is the basis of many algorithmic results in
RL. We emphasize that the lemma shows that the gradient of .J(6) depends on Q? and, therefore, is
intractable to compute using the form in Lemma 1.

s(0) = s,a(0) = a}

5(0) = s,a(0) = a} = %ZQ?(S,G). (3)

Lemma 1 (Sutton et al. (2000)) Let ©° be a distribution on the state space given by w(s) =
(1 =) Y2077l (s), where 7l is the distribution of s(t) under fixed policy 6 when s(0) is drawn
from . Then

1

V'](e) = GESNWO,GNCG('IS) Qe(sa a)v log Ce (CL’S). 4)

3. Algorithm Design and Results

In this paper we propose an algorithm, Scalable Actor Critic (SAC), which provably finds an
O(prt1)-stationary point of the objective .J(#) for some p < ~,! with complexity scaling in the
size of the local state-action space of the largest x-hop neighborhood. We state our main result
formally in Theorem 5 after introducing the details of SAC and the key idea underlying its design.

1. In this paper, a e-stationary point of J(0) refers to a 8 s.t. |[VJ(0)||* < e.
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3.1. Key Idea: Exponential Decay of Q-function Leads to Efficient Gradient Approximation

Recall that the policy gradient in Lemma 1 is intractable to compute due to the dimension of the
@-function. Our key idea is that exponential decay of the () function allows efficient approximation
of the policy gradient via truncation. To illustrate this, we start with the definition of the exponential
decay property. Recall that N/ is the set of x-hop neighborhood of node 7 and define N, = N/ /N,
i.e. the set of agents that are outside of i’th k-hop neighborhood. We write state s as (s NE, S Nfi),
i.e. the states of agents that are in the k-hop neighborhood of 7 and outside of x-hop neighborhood
respectively. Similarly, we write a as (a NE, @ Nfi)‘ The exponential decay property is then defined
as follows.

Definition 2 The (c, p)-exponential decay property holds if, for any localized policy 6, for any
1 €N, SNr € SNf’ SN, S/Nf. S SNfi’ anr € .ANf, aNfi’ale- S ‘ANfi’ Q? satisfies,

QY (s, s, ans, ans,) — QF (s, sy ans, aiys )| < cp™ .

It may not be immediately clear when the exponential decay property holds. Lemma 3 highlights
that the exponential decay property holds generally, with p = ~y. Further, under some mixing time
assumptions, the exponential decay property holds with p < ~. For more details on the generality
of the exponential decay property, see Appendix A in our online report Qu et al. (2019).

T

Lemma 3 [fVi, r; is upper bounded by 7, then the (1_7 ,7Y)-exponential decay property holds.

The power of the exponential decay property is that it guarantees that the dependence of Qf on
other agents shrinks quickly as the distance between them grows. This motivates us to consider the
following class of truncated (Q-functions,

Q) (s, anx) = Z wi(sne,, ane ;s sne, ans)QF (snr, sy, ans, anx ), ()

SNEK HANFK .
—i —i

where w; (s N* 5 GN% 5 SN, @ Nf) are any non-negative weights satisfying

E wi(sti,aNfi;sNin,aNf) = LV(SNf?aNf) S SNzk X ANf (6)
syr €SNk Lank EANK .
-1 -1 -1 -1

Finally, our key insight is the following Lemma 4, which says when the exponential decay prop-
erty holds, the truncated Q-function (5) can be used to accurately approximate the policy gradient.
The proof of Lemma 4 is postponed to Appendix B in our online report Qu et al. (2019).

Lemma 4 (Truncated Policy Gradient) Given i, define the following truncated policy gradient

N 1 1 A .
hi(0) = ﬁEswwe,a~(9(~|s) [g > Q?(SN;,@N;) Vo, log ¢ (asss), @)
jENE

where Q? can be any truncated Q-function in the form of (5). Then, if (c, p)-exponential decay
property holds and if |V, log Cfi(ai\si)\\ < L;,Va;, s;, we have HiLZ(H) — Vo, J ()] < %p“*l.

The power of this lemma is that the truncated () function has much smaller dimension than the
true () function, and is thus scalable. However, despite the reduction in dimension, the error of
the approximated gradient (7) is small. In the next section, we use this idea to design a scalable
algorithm.
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3.2. Algorithm Design: Scalable Actor Critic (SAC)

The good properties of the truncated ()-function open many possibilities for algorithm design. For
instance, one can first obtain the truncated ()-function in some way (which could be much easier
than directly computing the full Q-function) and then do a policy gradient step using the Lemma 4.
In this subsection, we propose one particular approach using the actor-critic framework. Our ap-
proach, Scalable Actor Critic (SAC), uses temporal difference (TD) learning to obtain the truncated
@-function and then uses policy gradient for policy improvement. Psuedocode of the proposed
algorithm is given in Algorithm 1.

Overall structure. The overall structure of SAC is a for-loop from line 1 to line 13. Inside the
outer loop, there is an inner loop (line 4 through line 9) that uses temporal difference learning to get
the truncated ()-function, which is followed by a policy gradient step that does policy improvement.

The Critic: TD-inner loop. Line 4 through line 9 is the policy evaluation inner loop that obtains
the truncated () function, where line 7 and 8 are the temporal difference update. We note that steps 7
and 8 use the same update equation as TD learning, except that it “pretends” (s NE, G N;) is the true
state-action pair while the true state-action pair should be (s, a). As will be shown in the theoretic
analysis in Appendix C in our online report Qu et al. (2019), such a TD update implicitly gives an
estimate of a truncated () function.

The Actor: Policy Gradient. Steps 10 through 12 define the the actor actions. Here, each agent
calculates an estimate of the truncated gradient based on (7), and then conducts a gradient step.

Discussion. Our algorithm serves as an initial concrete demonstration of how to make use of the
truncated policy gradient to develop a scalable RL method for networked systems. There are many
extensions and other approaches that could be pursued, either within the actor-critic framework or
beyond. One immediate extension is to do a warm start, i.e., initialize Q? as the final estimate Q'f
in the previous outer-loop. Additionally, one can use the TD-\ variant of TD learning with variance
reduction schemes like the advantage function. Further, beyond the actor-critic framework, another
direction is to develop @)-learning/SARSA type algorithms based on the truncated )-functions.
These are interesting topics for future work.

Numerical Experiments. Due to space limit, the numerical results are omitted and can be
found in our online report (Qu et al., 2019).

3.3. Approximation Bound

In this section we state and discuss the formal approximation guarantee for SAC. Before stating the
theorem, we first state the assumptions we use. The first assumption is standard in the RL literature
and bounds the reward and state/action space size.

Assumption 1 (Bounded reward and state/action space size) The reward is upper bounded as
0 < ri(siya;) < 7,Yi,84,a; The individual state and action space size are upper bounded as
ISi| < S, |A;| < A, Vi.

Assumption 2 (Exponential Decay) The (c, p) exponential decay property holds for some p < 7.

Note that under Assumption 1, Assumption 2 automatically holds with p = ~, cf. Lemma 3.
However, we state the exponential decay property as an assumption to account for the more general
case that p could be strictly less than -y, as detailed in Appendix A in our online report Qu et al.
(2019).

Our third assumption can be interpreted as an ergodicity condition which ensures that the state-
action pairs are sufficiently visited.
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Algorithm 1: SAC: Scalable Actor Critic
Input: 0;(0); parameter x; T, length of each episode; step size parameters h, tg, 7).

1 form=20,1,2,...do

Sample initial state s(0) ~ 7, each agent i takes action a;(0) ~ Cf i(m) (+|si(0)), receives

2
reward 7;(0) = 7;(s;(0), a;(0)).

3 Initialize Q¥ € RINEANE (6 be the all zero vector.

4 fort =1to 7T do

5 Get state s;(t), take action a;(t) ~ Cfi(m)(-|si(t)), get reward 7;(t) = r;(s;(t), a;(t)).

6 Update the truncated () function with step size a;—1 = ﬁ,

7 Ql(sn(t — 1), anz(t — 1)) =

(1= )Qf (snx(t = 1), ans (= 1)) + r1 (ri(t = 1) +9Q5 (snx (1), anx (1)),

8 Q%(SNZ_K, aNf) = Qg_l(SNin, aNin) for (SNiK’ aNf) 75 (SNf (t — 1), aNf (t — 1))

9 end
10 Each agent ¢ calculates approximated gradient,

R T A 0;

1| Gim) = 001t S enn QF (sns (1), ans (1) Vo, log ¢ ™ (ai(8) i (1))
12 Each agent ¢ conducts gradient step 0;(m + 1) = 6;(m) + n,g;(m) with n,,, = \/%H
13 end

Assumption 3 (Sufficient Local exploration) There exists positive integer T and o € (0,1) s.t.
under any fixed policy 0 and any initial state-action (s,a) € S x A, Vi € N,V(syr,dys) €
Snr X Ang, we have P((snr(7), an (7)) = (syr, aiyx)|(s(1),a(1)) = (s,a)) = 0.

Assumption 3 requires that every state action pair in the «-hop neighborhood must be visited with
some positive probability after some time. This type of assumption is common for finite time
convergence results in RL. For example, in Srikant and Ying (2019), it is assumed that every state-
action pair is visited with positive probability in the stationary distribution and the state-action
distribution converges to the stationary distribution with some rate. This implies our assumption
which is weaker in the sense that we only require local state-action pair (s NE, @ Nf’) to be visited
as opposed to the full state-action pair (s, a). Having said that, we note Assumption 3 does not
consider the exploration-exploitation trade-off, which is a challenging issue even in single agent
RL. We leave the study of exploration-exploitation in the multi-agent networked setting as future
work.

Finally, we assume boundedness and Lipschitz continuity of the gradients, which is standard in
the RL literature.

Assumption 4 (Bounded and Lipschitz continuous gradient) Forany i, a;, s; and 0;, we assume

| Vo, log(fi(ai|si)H < L;. Asaresult, |[Vglog(®(als)| < L = />, L?. Further, assume
VJ(0) is L'-Lipschitz continuous in 6.

Theorem 5 Under Assumption 1, 2, 3 and 4, for any 6 € (0,1), M > 3, suppose the critic
step size oy = # satisfies h > 1 max(2, ﬁ), to > max(2h,40h,T); and the actor step
size satisfies Ny, = \/%H with n < %L" Further, if the inner loop length T is large enough s.t.



SCALABLE RL FOR NETWORKED SYSTEMS

T+1210g7@+(5+1)log7pand

Co(557.T) N Ch 2
VT + 1o T+t~ (1—7)2’
_ 5 _ _
where Ca(8,T) = 19\ log(222) + () log S4], € = 127 max(1827, 2 (7 4 1)),
with € = 4# + 27 and we recall that f(k) = max; | NJ*| is the size of the largest k-neighborhood.
Then, with probability at least 1 — 6,

[ 27 872 L2 4, 9672L'L*? B
Sommo M [VIO)IP _ o= T =y s Mlogs + Ty nlos M aor2er
SM - M+1 (1—~)5

®)

€))

The proof of Theorem 5 can be found in Appendix D in our online report Qu et al. (2019). To

interpret the result, note that the first term in (9) converges to 0 in the order of O(ﬁ) and the
second term, which we denote as &, is the bias caused by the truncation of the @)-function and
it scales in the order of O(p"!). As such, our method SAC will eventually find an O(p~+!)-
approximation of a stationary point of the objective function J(#), which could be very close to a
true stationary point even for small x as €, decays exponentially in &.

In terms of complexity, (9) gives that, to reach a O (e, )-approximate stationary point, the num-
ber of outer-loop iterations required is M > Q(Eﬁ%poly(ﬁ L,L, ﬁ)), which scales polyno-
mially with the parameters of the problem. We emphasize that it does not scale exponentially
with n. Further, since the left hand side of (8) decays to 0 as T increases in the order of O(%)

and the right hand side of (8) is in the same order as O(e,), the inner-loop length required is
T > Q(%poly(r, L, 2,7, f(k))). Parameters 7 and 1 are from Assumption 3 and they scale
€ o ¥ o

with the local state-action space size of the largest x-hop neighborhood. Therefore, the inner-loop
length required scale with the size of the local state-action space of the largest x-neighborhood,
which is much smaller than the full state-action space size when the graph is sparse.”

4. Conclusion and Discussion

This paper proposes a SAC algorithm that provably finds a close-to-stationary point of .J () in time
that scales with the local state-action space size of the largest x-hop neighbor, which can be much
smaller than the full state-action space size when the graph is sparse. This perhaps represents the
first scalable RL method for localized control of multi-agent networked systems with such provable
guarantee. In addition, the framework underlying SAC, including the truncated Q)-function (5) and
truncated policy gradient (Lemma 7), is a contribution in its own right and could potentially lead to
other scalable RL methods for networked systems, including TD-\ variants and ()-learning/SARSA
type methods. Additionally, other future directions include further investigation into the exponential
decay property, the trade-off between exploration and exploitation.

Acknowledgments

The research was supported by Resnick Sustainability Institute Fellowship, NSF CAREER 1553407,
ONR YIP, AFOSR YIP, the PIMCO Fellowship, and NSF grants AitF-1637598, CNS-1518941.

2. This requirement on 7" could potentially be further reduced if we do a warm start for the inner-loop, as the (Q-estimate
from the previous outer-loop should be already a good estimate for the current outer-loop. We leave the finite time
analysis of the warm start variant as future work.
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