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ABSTRACT

This paper studies multi-objective bandits with hierarchical preferences, a class of
bandit problems where arms are evaluated according to multiple objectives, each
with a distinct priority level. The agent aims to maximize the most critical objec-
tive first, followed by the second most important, and so on for subsequent ob-
jectives. We address this problem using Bayesian decision-making strategies. Al-
though Bayesian methods have been extensively studied in single-objective ban-
dit settings, its effectiveness in lexicographic bandits remains an open question.
To fill this gap, we propose two TS-based algorithms for lexicographic bandits:
(i) For Gaussian reward distributions, we introduce an multi-armed bandit algo-
rithm that achieves a problem-dependent regret bound ofO(

∑
∆i(a)>0

log(mKT )
∆i(a) ),

where ∆i(a) denotes the suboptimality gap for the objective i ∈ [m] and arm
a ∈ [K], and m is the number of objectives. (ii) For unknown reward distribu-
tions, we design a stochastic linear bandit algorithm with a minmax regret bound
of Õ(d3/2

√
T ), where d is the dimension of the contextual vectors. These results

highlight the adaptability of TS strategy to the lexicographic bandit problem, of-
fering efficient solutions under varying degrees of knowledge about the rewards.
Empirical experiments support our theoretical findings.

1 INTRODUCTION

Multi-armed bandits (MAB) is a sequential decision-making model under uncertainty, where an
agent selects an arm (action) from an arm set [K] = {1, 2, . . . ,K} and receives a stochastic reward
corresponding to the chosen arm (Robbins, 1952; Lattimore & Szepesvári, 2020). The agent’s goal
is to maximize cumulative rewards, which requires balancing the exploration of uncertain arms with
the exploitation of the best-known arms (Auer, 2002). This exploration-exploitation trade-off is cen-
tral to a variety of applications, such as online advertising (Schwartz et al., 2017), recommendation
systems (Li et al., 2010), and clinical trials (Villar et al., 2015), where decisions must be made under
uncertainty. These scenarios often involve contextual information, which motivates the development
of stochastic linear bandits (SLB) (Abbasi-yadkori et al., 2011; Chu et al., 2011; Jun & Kim, 2024).
In SLB, arms are represented by feature vectors A ⊆ Rd, and the expected reward of each arm is a
linear function of its features and an unknown parameter vector. In this paper, we first propose an
algorithm for MAB with finite arms, and then present an algorithm for SLB with infinite arms.

In addressing the stochastic bandit problem, two widely studied and influential strategies are the
Upper Confidence Bound (UCB) (Auer, 2002; Abbasi-yadkori et al., 2011) and Thompson Sam-
pling (TS) (Agrawal & Goyal, 2013a; Russo & Van Roy, 2014; Xu et al., 2023; Clavier et al.,
2024). UCB operates in the frequentist framework, assuming that the underlying parameters of the
bandit model are fixed. At each round, it constructs confidence intervals for each arm’s expected
reward and selects the arm with the highest upper confidence bound (Abbasi-yadkori et al., 2011).
In contrast, TS is based on the Bayesian framework, where the bandit parameters follow a prior
distribution (Agrawal & Goyal, 2013b). At every step, TS samples a random value from the pos-
terior distribution of each arm, and selects the arm with the highest sampled value. The simplicity
and near-optimal regret performance of TS make it particularly appealing. Specifically, the UCB-
based method (Abbasi-yadkori et al., 2011) requires solving a bilinear optimization problem at each
round, which is non-convex and computationally demanding. By contrast, TS involves only linear
optimization, significantly enhancing computational efficiency (Abeille & Lazaric, 2017). Empirical
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Table 1: Comparisons of the Regret Bounds for TS Bandits.
Algorithm Regret Obj. Distribution Model

Kaufmann et al. (2012b) O
(∑ log(T )

∆(a)

)
Single Known MAB

Russo & Van Roy (2014) Õ
(
d
√
T
)

Single Known SLB

Agrawal & Goyal (2013a) Õ
(
d3/2

√
T
)

Single Unknown SLB

Abeille & Lazaric (2017) Õ
(
d3/2

√
T
)

Single Unknown SLB

DK-BULB (Ours) O
(
(Λi(λ))2 ·

∑ log(mKT )
∆i(a)

)
i ∈ [m] Known MAB

DF-TSLB (Ours) Õ
(
Λi(λ) · d3/2

√
T
)

i ∈ [m] UnKnown SLB

studies further highlight the practical effectiveness of TS. While TS has been extensively studied in
single-objective bandit problems (Agrawal & Goyal, 2013b), its application to multi-objective ban-
dits remains relatively underexplored. However, many real-world scenarios necessitate the simul-
taneous optimization of multiple, potentially conflicting objectives. For instance, recommendation
systems must balance user satisfaction (e.g., click or dwell time), platform revenue (e.g., purchase
rate), and content diversity (Zheng & Wang, 2021). This highlights the importance of investigating
the multi-objective bandit problem (Drugan & Nowe, 2013).

In multi-objective bandit problems, the rewards are vector-valued, which presents a challenge in
comparing different arms. Existing approaches either utilize scalarization techniques to reduce the
multi-objective problem to a single-objective one (Drugan & Nowe, 2013; Roijers et al., 2017; Wani-
gasekara et al., 2019), or apply Pareto dominance to identify multiple optimal arms (Auer et al.,
2016; Lu et al., 2019; Xu & Klabjan, 2023; Crepon et al., 2024). However, scalarization methods
require precise knowledge of the relative importance of objectives, while Pareto dominance does not
impose any priority ordering across all objectives, which maybe violated in many real-world ap-
plications. For example, a hotel recommendation system prioritizes factors such as price, location,
and service quality based on user preferences (Yager et al., 2011). Lexicographic bandits offer a
framework that accommodates priority hierarchies, which first optimizes higher-priority objectives
and then refines the lower-priority ones (Tekin & Turgay, 2018; Tekin, 2019; Hüyük & Tekin, 2021).

To the best of our knowledge, we are the first to design Bayesian algorithms for lexicographic bandit
problems. Our main contributions are summarized as follows:

• For the MAB setting with Gaussian rewards, we propose an algorithm that achieves a re-
gret bound of O

(
(Λi(λ))2 ·

∑
∆i(a)>0

log(mKT )
∆i(a)

)
for the i-th objective, where i ∈ [m],

Λi(λ) = 1 + λ + · · · + λi−1, m is the number of objectives, λ is the trade-off parameter
among conflicting objectives, ∆i(a) is the reward gap for arm a’s i-th objective, K is the
number of arms, and T is the time horizon.

• For the SLB setting with unknown reward distributions, we propose an algorithm achieving
a regret bound of Õ(Λi(λ) · d3/2

√
T ), where d is the dimension of the contextual vector.

• As shown in Table 1, our algorithms yield regret bounds that are comparable to those of
single-objective TS algorithms. Notably, since Λ1(λ) = 1 for any λ ∈ R, the performance
of the most important objective is not degraded when optimizing the other objectives.

• We further provide an alternative proof for TS bandits, which differs from previous tech-
niques that classify arms as saturated and unsaturated (Agrawal & Goyal, 2013a) or utilize
the supporting functions (Abeille & Lazaric, 2017).

2 RELATED WORK

In this section, we provide a brief review of the literature on Thompson Sampling bandits and multi-
objective bandits, highlighting key developments in both fields.
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Thompson Sampling Bandits. Thompson Sampling (TS), first introduced by Thompson (1933),
has become a fundamental approach for bandit problems, which is supported by extensive empirical
(Scott, 2010; Chapelle & Li, 2011) and theoretical analysis (Kaufmann et al., 2012b; Agrawal &
Goyal, 2013b; 2017). Existing TS algorithms can generally be classified into two categories: meth-
ods that assume known reward distributions (Kaufmann et al., 2012a;b; Russo & Van Roy, 2014;
Atsidakou et al., 2023) and methods that are distribution-free (Agrawal & Goyal, 2012; 2013b;a;
Abeille & Lazaric, 2017; Xu et al., 2023).

Kaufmann et al. (2012b) established an asymptotic regret bound of O
(∑

∆(a)>0
log(T )
∆(a)

)
for MAB

with Bernoulli rewards. This result was later extended by Kaufmann et al. (2012a) to various specific
reward distributions. In a subsequent study, Russo & Van Roy (2014) proposed a regret bound of
Õ(

√
KT ), assuming the posterior distribution is known. More recently, Atsidakou et al. (2023)

derived a finite-time Bayes regret bound of O
(∑

∆(a)>0
log(T )
∆(a)

)
, applicable to both Gaussian and

Bernoulli rewards. In cases where the reward distribution is unknown, Agrawal & Goyal (2012)
demonstrated that the TS algorithm achieves an expected regret ofO

(
(
∑

∆(a)>0
1

(∆(a))2 )
2 log(T )

)
for the MAB model. Subsequently, Agrawal & Goyal (2013b) introduced a problem-independent
regret bound of Õ(

√
KT ) for the MAB model. Agrawal & Goyal (2013a) proposed the first TS

method for the SLB problem, proving a regret bound of Õ(d3/2
√
T ) by categorizing arms into

saturated and unsaturated groups. This result was refined by Abeille & Lazaric (2017), who revised
the proof of Agrawal & Goyal (2013a) and obtained the same regret bound. Recently, Xu et al.
(2023) developed a variance-aware TS algorithm for the SLB model.

Multi-Objective Bandits. Drugan & Nowe (2013) studied the single-objective MAB framework
to multi-objective setting by associating a reward vector with each arm. Their work established
logarithmic regret bounds under the scalarized regret and the Pareto regret, respectively, where
the scalarized approach converts the multi-objective problem into a single-objective one by using
weighted combinations of objectives, and the Pareto approach treats all objectives equally, without
putting any weights on different objectives. Building on the Pareto approach, two lines of work
are developed. One is Pareto regret minimization, which aims to minimize the cumulative Pareto
regret over T rounds (Turgay et al., 2018; Lu et al., 2019; Xu & Klabjan, 2023). Another research
direction is the Pareto set identification, which aims to minimize the cost of identifying all Pareto
optimal arms (Auer et al., 2016; Ararat & Tekin, 2023; Crepon et al., 2024). Most existing work
on multi-objective Thompson sampling adopts the scalarized approach (Q. Yahyaa et al., 2015; Roi-
jers et al., 2017; Paria et al., 2019), making it unsuitable for lexicographic bandit problems. Tekin
& Turgay (2018) initially examined lexicographic contextual bandits with two objectives. Hüyük
& Tekin (2021) extended the objectives beyond two in MAB model and achieved a priority-based
regret bound of Õ((KT )2/3). Xue et al. (2024) studied the lexicographic Lipschitz bandit problem
and proposed a regret bound of Õ(T (diz+1)/(diz+2)) for the i-th objective, where diz is the zooming
dimension of the i-th objective and i ∈ [m].

3 PROBLEM SETTING

This paper studies two multi-objective bandit model under lexicographic ordering: Multi-Objective
Multi-Armed Bandits (MOMAB) and Multi-Objective Stochastic Linear Bandits (MOSLB).

Notation. For a vector x ∈ Rd, let ∥x∥ denote its Euclidean norm. Meanwhile, its norm induced
by a positive-definite matrix V ∈ Rd×d is ∥x∥V =

√
x⊤Vx. For any positive integer m ∈ Z+,

[m] ≜ {1, 2, . . . ,m}. The superscript i ∈ [m] is used to distinguish different objectives, e.g., yit is
the stochastic reward of the i-th objective at round t.

MOMAB. In the MOMAB problem, the arm set is [K] and each arm a ∈ [K] has a vector
[µ1(a), µ2(a), . . . , µm(a)] ∈ Rm. Here, µi(a) is the expected reward of arm a for its i-th ob-
jective, and m is the number of objectives. MOMAB is a T -round sequential decision-making
problem. In each round t = 1, 2, . . . , T , the agent chooses an arm at ∈ [K] and receives a stochas-
tic reward vector [y1t , y

2
t , . . . , y

m
t ] ∈ Rm, where E[yit] = µi(at) for all i ∈ [m]. The lexicographic

optimal arm is denoted as a∗ (we will define it later). For any arm a ∈ [K] and i ∈ [m], we set
∆i(a) = µi(a∗) − µi(a). As in single-objective bandit problems (Lattimore & Szepesvári, 2020),
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the agent’s performance is measured by the cumulative reward gap over T rounds, i.e.,

Ri(T ) =

T∑
t=1

∆i(at) =

T∑
t=1

µi(a∗)− µi(at), i ∈ [m].

MOSLB. In the MOSLB problem, the arm set at round t is denoted as At ⊆ Rd, where d is the
dimension of contextual vector. In this paper, At is assumed to be infinite. There exist m unknown
vectors {θ1

∗,θ
2
∗, . . . ,θ

m
∗ } ⊆ Rd which determine the expected rewards of each arm. Precisely, for

each objective i ∈ [m], the expected rewards for arm x ∈ At is µi(x) = ⟨θi∗,x⟩. It is often assumed
that both the arms and inherent vectors are bounded, i.e.,

∥x∥ ≤ 1,∀x ∈ At, and ∥θi∗∥ ≤ B,∀i ∈ [m]. (1)

In each round t = 1, 2, . . . , T , the agent chooses an arm xt ∈ At and receives a stochastic reward
vector associated with the chosen arm. Denote the lexicographic optimal arm in At as x∗

t . The
regret in MOSLB problem is written as

Ri(T ) =

T∑
t=1

⟨θi∗,x∗
t − xt⟩, i ∈ [m].

Next, we introduce the lexicographic order to compare different arms (Hüyük & Tekin, 2021).

Definition 1 (Lexicographic Order) Consider two vectors u = [u1, u2, . . . , um] ∈ Rm and v =
[v1, v2, . . . , vm] ∈ Rm. u lexicographically dominates v if and only if there exists some i∗ ∈ [m]
such that ui = vi for i ∈ [i∗ − 1] and ui

∗
> vi

∗
.

Lexicographic order compares vectors sequentially, starting with the first objective and proceeding
to the last, e.g., [3, 6, 2] lexicographically dominates [3, 5, 10] and i∗ = 2. Based on lexicographic
order, we introduce the lexicographic optimal arm (Hüyük & Tekin, 2021).

Definition 2 (Lexicographic Optimal Arm) An arm a∗ ∈ [K] or x∗
t ∈ At is lexicographic opti-

mal if and only if its expected reward is not lexicographically dominated by that of any other arms.

To capture the trade-offs between conflicting objectives, we impose assumptions on the expected
rewards. In the MOMAB setting, we assume that for any i ≥ 2 and a ∈ [K],

µi(a)− µi(a∗) ≤ λ · max
j∈[i−1]

{µj(a∗)− µj(a)}. (2)

A similar assumption for the MOSLB setting is that for any i ≥ 2 and x ∈ At,

⟨θi∗,x− x∗
t ⟩ ≤ λ · max

j∈[i−1]
⟨θj∗,x∗

t − x⟩, i ∈ [m]. (3)

Here, λ quantifies the improvement in the value of the i-th objective for each unit decrease in the
preceding i− 1 objectives, when the solution transitions from the optimal arm to other arms.

4 ALGORITHMS

In this section, we first present an algorithm for lexicographic MOMAB, and then introduce an
algorithm for lexicographic MOSLB.

4.1 DISTRIBUTION-KNOWN METHOD: DK-BULB

This part provides a Distribution-Know BayesUCB method for Lexicographic Bandits, called DK-
BULB, whose details are provided in Algorithm 1. We use Gaussian rewards for illustration in this
paper, and this method can be easily extended to other distributions, such as Bernoulli rewards.

In the Gaussian MOMAB model, its inherent parameters {θia|a ∈ [K], i ∈ [m]} ⊆ R are drawn
from a known Gaussian prior distribution, which is

θia ∼ N (θi0,a, σ
2
0), a ∈ [K], i ∈ [m], (4)
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Algorithm 1 Distribution-Known BayesUCB for Lexicographic Bandits (DK-BULB)
Input: T,K,m, δ, λ, {θi0,a|i ∈ [m], a ∈ [K]}, σ0, σ

1: Initialize A1 = [K]
2: for t = 1, 2, . . . , T do
3: Compute the posterior distribution N (θ̂it,a, σ̂

2
t,a) for any arm a ∈ At and objective i ∈ [m],

where θ̂it,a and σ̂2
t,a are defined in Eq. (6)

4: Compute the confidence term ct(a) for any arm a ∈ At, where ct(a) is defined in Eq. (7)
5: Choose the arm at = argmaxa∈At

ct(a)

6: Initialize the arm set A0
t = At

7: for i = 1, 2, . . . ,m do
8: âit = argmaxa∈Ai−1

t
θ̂it,a

9: Ai
t = {a ∈ Ai−1

t |θ̂i
t,âit

− θ̂it,a ≤ (2 + 4λ+ · · ·+ 4λi−1) · ct(at)}
10: end for
11: Update At+1 = Am

t
12: Play arm at and observe its reward [y1t , y

2
t , . . . , y

m
t ]

13: end for

where θi0,a ∈ R is the prior mean and σ0 > 0 is the prior standard deviation. For each arm a ∈ [K]
and each objective i ∈ [m], its reward follows a Gaussian distribution:

yia ∼ N (θia, σ
2), µi(a) = θia, (5)

where θia ∈ R is the mean and σ2 > 0 is the known variance.

DK-BULB adopts the idea of active arm elimination (AAE) to eliminate suboptimal arms during
the T -round decision process. Unlike single-objective AAE algorithms (Even-Dar et al., 2006),
DK-BULB has to deal withm lexicographically prioritized objectives, which requires a hierarchical
decision-making framework.

DK-BULB starts by initializing the candidate arm set A1 = [K]. In each round t, DK-BULB first
uses historical data collected from previous rounds to compute the posterior distributions for current
round. Leveraging a well-known result that the posterior distribution of a Gaussian random variable
with a Gaussian prior is also Gaussian (Bishop, 2006), DK-BULB computes a Gaussian posterior
distribution N (θ̂it,a, σ̂

2
t,a) for any arm a ∈ At and objective i ∈ [m], where the posterior mean and

posterior variance are defined as

θ̂it,a = σ̂2
t,a

(
σ−2
0 θi0,a + σ−2

t−1∑
τ=1

I{aτ = a}yit

)
, σ̂2

t,a =
1

σ−2
0 + σ−2Nt,a

. (6)

Here, Nt,a =
∑t−1
τ=1 I{aτ = a} denotes the number of observations for arm a up to round t.

Based on the posterior variance, DK-BULB calculates the confidence term for arm a as

ct(a) =
√

2σ̂2
t,a log(mKT/δ), (7)

which reflects the uncertainty in the posterior estimates. Next, the arm with maximal uncertainty
among all eligible arms At is selected for further trials, i.e.,

at = argmax
a∈At

ct(a). (8)

To respect the lexicographic priority of the objectives, DK-BULB employs a hierarchical elimination
mechanism. Beginning with the initial set of active arms A0

t = At, DK-BULB iteratively refines
this set for each objective i = 1, 2, . . . ,m. At each refinement step, it identifies the arm âit that max-
imizes the posterior mean θ̂it,a within the current active set Ai−1

t , i.e., âit = argmaxa∈Ai−1
t

θ̂it,a.
Then, the active set is updated by retaining only those arms for which their posterior mean is suffi-
ciently close to that of âit, such that

Ai
t =

{
a ∈ Ai−1

t |θ̂it,âit − θ̂it,a ≤ (4Λi(λ)− 2) · ct(at)
}
,

5
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where Λi(λ) = 1 + λ + · · · + λi−1. Since ct(at) is the maximum confidence term among the
currently active arms, the optimal arm a∗ remains in the active set.

After eliminating for all m objectives, the active arm set for the next round is updated as At+1 =
Am
t . Then, DK-BULB plays the arm at, and observes the corresponding rewards [y1t , y

2
t , . . . , y

m
t ].

These rewards are used to calculate the posterior mean and variance for subsequent rounds.

DK-BULB combines posterior estimation, confidence-based exploration, and lexicographic arm
elimination to ensure that the selected arms adhere to the priority order of the objectives and balances
exploration and exploitation. The upper bound on the regret of DK-BULB is provided as follows.

Theorem 1 Suppose that (2), (4) and (5) hold. Let Λi(λ) = 1 + λ + · · · + λi−1. With probability
at least 1− δ, for any objective i ∈ [m], the regret of DK-BULB satisfies

Ri(T ) ≤
∑

∆i(a)>0

(
(4Λi(λ))2σ2 · 2 log(mKT/δ)

∆i
a

+∆i
a

)
.

Remark 1 Theorem 1 states that for any objective i ∈ [m], DK-BULB achieves a regret bound of
O
(
(Λi(λ))2 ·

∑
∆i(a)>0

log(mKT )
∆i(a)

)
, which is consistent with single-objective algorithms (Kauf-

mann et al., 2012b) in terms of ∆i(a) and T . Although an additional term Λi(λ) is included, this
is the cost of optimizing multiple objectives simultaneously. Λ1(λ) = 1 implies that when com-
pared with single-objective algorithms (Kaufmann et al., 2012b), DK-BULB does not degrade the
performance of the most important objective.

4.2 DISTRIBUTION-FREE METHOD: DF-TSLB

In this section, we introduce a Distribution-Free Thompson Sampling method for Lexicographic
Bandits, referred to as DF-TSLB, with its details provided in Algorithm 2. DF-TSLB is specifically
designed for the MOSLB model, and the only assumption on its rewards is that they satisfy the
sub-Gaussian property. Specifically, for some R > 0 and any η ∈ R, the following condition holds:

E
[
eη(y

i
t−⟨θi

∗,xt⟩)|xt
]
≤ exp

(
η2R2

2

)
, i ∈ [m]. (9)

In the TS framework, the inherent parameters {θi∗}mi=1 are drawn from an unknown distribution,
thus it is necessary to construct a posterior distribution based on historical data. Due to the linear
structure of MOSLB, we estimate the mean of the posterior distribution by least squares estimation.

DF-TSLB begins by initializing the covariance matrix V1 as the identity matrix I ∈ Rd×d and sets
the posterior mean for each objective to be zero vector, i.e, θ̂i1 = 0,∀i ∈ [m]. At each round t,
DF-TSLB first defines the confidence parameters αt and βt to regulate exploration, as follows:

αt = R
√
d log (16mtT/δ) +B, βt = αt ·

√
2d log (8dmT/δ). (10)

Here, αt quantifies the uncertainty in the least squares estimation and controls the variance of the
posterior distribution. βt shows the uncertainty of the sampled estimators and guides exploration.

After setting the exploration parameters, for each objective i ∈ [m], DF-TSLB samples an estimator
θ̃it from a Gaussian distribution N (θ̂it, α

2
t ·V−1

t ), where θ̂it ∈ Rd is the posterior mean derived from
least squares estimation (Eq. (11)), and Vt ∈ Rd×d is the covariance matrix. Using these sampled
estimators, DF-TSLB engages in the decision-making process. It iteratively refines active arms,
starting with s = 1 and the entire arm set at round t, At,s = At, until an arm is chosen.

Depending on the confidence term ∥x∥V−1
t

for candidate arms x ∈ At,s, the decision-making pro-

cess is divided into three cases. (i) If ∥x∥V−1
t

≤ 1/
√
T for any x ∈ At,s, this indicates that all

arms in At,s have been sufficiently explored. In this case, DF-TSLB first applies an arm elimination
procedure, referred to as LAE, to filter out promising arms, and then randomly selects an arm xt
from the resulting set At,T .

The detailed procedure of LAE is outlined in Algorithm 3. LAE eliminates arms using a procedure
similar to Steps 6-11 in DK-BULB, which iteratively refines At,s for each objective i ∈ [m]. Starting
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Algorithm 2 Distribution-Free Thompson Sampling for Lexicographic Bandits (DF-TSLB)
Input: T, d,m, δ, λ,B

1: Initialize V1 = I, θ̂i1 = 0 for i ∈ [m]
2: for t = 1, 2, . . . , T do
3: Set confidence parameters αt and βt by Eq. (10)
4: Sample θ̃it ∼ N (θ̂it, α

2
t ·V−1

t ) for all i ∈ [m]
5: Initialize s = 1,At,s = At

6: repeat
7: if ∥x∥V−1

t
≤ 1/

√
T for any x ∈ At,s then

8: Run Algorithm 3 to obtain the promising arms: At,T = LAE(θ̃it, αt, βt,At,s, 1/
√
T )

9: Randomly choose an arm xt ∈ At,T

10: else if ∥xt∥V−1
t
> 2−s for some xt ∈ At,s then

11: Choose the arm xt
12: else
13: Run Algorithm 3 to obtain the promising arms: At,s+1 = LAE(θ̃it, αt, βt,At,s, 2

−s)
14: Update s = s+ 1
15: end if
16: until an arm xt is played
17: Play arm xt and observe its reward [y1t , y

2
t , . . . , y

m
t ]

18: Update covariance matrix Vt+1 = Vt + xtx
⊤
t

19: Update θ̂it+1 = V−1
t+1Xt+1Y

i
t+1 for i ∈ [m], where Xt+1 and Yit+1 are defined in Eq. (12)

20: end for

Algorithm 3 Lexicographic Arm Elimination (LAE)

Input: θ̃it, αt, βt,At,s, C
1: Initialize the arm set A0

t,s = At,s

2: for i = 1, 2, . . . ,m do
3: x̂it = argmaxx∈Ai−1

t,s
⟨θ̃it,x⟩

4: Ai
t,s = {x ∈ Ai−1

t,s |⟨θ̃it, x̂it − x⟩ ≤ (2 + 4λ+ · · ·+ 4λi−1) · (αt + βt) · C}
5: end for
6: Return Am

t,s

with the active arm set A0
t,s = At,s, LAE first identifies the arm that maximizes the posterior mean

reward within the current active set Ai−1
t,s , i.e., x̂it = argmaxa∈Ai−1

t,s
⟨θ̃it,x⟩. Then, the active set

Ai
t,s retains only those arms whose difference between their posterior mean reward and that of x̂it

does not exceed a threshold, i.e,
⟨θ̃it, x̂it − x⟩ ≤ (2 + 4λ+ · · ·+ 4λi−1) · (αt + βt) · C,

whereC is an exploration term that adapts as the decision-making process evolves. After eliminating
for all m objectives, LAE returns the active arm set Am

t .

(ii) If ∥xt∥V−1
t
> 2−s for some xt ∈ At,s, the arm xt is selected directly, as it has a high uncertainty

and needs further exploration. (iii) If ∥x∥V−1
t

≤ 2−s for all x ∈ At,s, the set of promising arms
At,s is refined using the LAE algorithm with the exploration term C = 2−s. The index s is then
incremented (s→ s+ 1), and the arm elimination process is repeated until an arm xt is selected.

After the selected arm xt is played and the corresponding rewards [y1t , y
2
t , . . . , y

m
t ] are observed,

DF-TSLB updates the posterior mean and variance to prepare for the decision of next round. Specif-
ically, the covariance matrix is updated as Vt+1 = Vt + xtx

⊤
t , and the posterior mean for each

objective i ∈ [m] is computed as

θ̂it+1 = V−1
t+1Xt+1Y

i
t+1, (11)

where
Xt+1 = [x1,x2, . . . ,xt], Yit+1 = [yi1, y

i
2, . . . , y

i
t]. (12)

Finally, we present an upper regret bound for DF-TSLB.
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Theorem 2 Suppose that (1), (3) and (9) hold. Let Λi(λ) = 1 + λ + · · · + λi−1. With probability
at least 1− δ, for any objective i ∈ [m], the regret of DF-TSLB satisfies

Ri(T ) ≤ 44Λi(λ) · (αT + βT ) · log(T ) ·
√
dT .

Remark 2 Theorem 2 states that DF-TSLB achieves a regret bound of Õ(Λi(λ) · d3/2
√
T ) for any

objective i ∈ [m]. This result aligns with single-objective algorithms (Agrawal & Goyal, 2013a;
Abeille & Lazaric, 2017) in terms of d and T . The additional term Λi(λ) captures the cost of
optimizing multiple objectives simultaneously. Λ1(λ) = 1 indicates that DF-TSLB does not degrade
the performance of the most important objective. Additionally, it is noteworthy that our proof of
Theorem 2 significantly differs from existing methods that classify arms as saturated or unsaturated
(Agrawal & Goyal, 2013a) or utilize the properties of support functions (Abeille & Lazaric, 2017).

5 DK-BULB VS. DF-TSLB

Although DK-BULB and DF-TSLB share the common goal of addressing the lexicographic bandit
problem, they differ significantly in the following aspects:

Assumptions. The primary distinction in the assumptions of our two algorithms is that DK-BULB
requires distribution knowledge of the rewards and is designed for the MOMAB model, while DF-
TSLB does not require such knowledge and is designed for the MOSLB model. Additionally, two
other factors further differentiate these algorithms. First, DK-BULB assumes that the expected
rewards {θia|a ∈ [K], i ∈ [m]} are drawn from a Gaussian prior distribution, making its expected
rewards unbounded. In contrast, DF-TSLB satisfies the condition in Eq. (12), which ensures that its
expected rewards are bounded by some constant B > 0. Second, DK-BULB assumes a finite and
fixed arm set A = [K], whereas the arm set At of DF-TSLB can be infinite and dynamic.

Implementation. DK-BULB employs an average sum to estimate the posterior mean (Eq. (6)),
whereas DF-TSLB utilizes least squares estimation (Eq. (11)). Besides, their strategies for arm
selection also differ significantly in two key aspects. First, DK-BULB selects the arm with the max-
imum confidence term (Step 5), while DF-TSLB divides the decision-making process into multiple
stages, sequentially eliminating arms until a final choice is made (Steps 5-16). This is due the arm
set in DF-TSLB is changing, where new arms are continually added. Directly selecting the arm with
the maximum confidence term in such a scenario would require excessive exploration, leading to in-
creased regret. To address this, DF-TSLB alternates between exploration (Step 11) and exploitation
(Step 13) across stages. Second, their arm elimination thresholds differ. For DK-BULB, the thresh-
old is (2+4λ+ · · ·+λi−1) ·ct(at), whereas for DF-TSLB, it is (2+4λ+ · · ·+λi−1) · (αt+βt) ·C,
and C is dynamically adjusted during the decision-making process.

Theorems. Theorem 1 for DK-BULB provides a problem-dependent regret bound based on the
expected reward gap,

∑
∆i(a)>0

1
∆i(a) , which adapts to specific problem instances. Specifically, a

smaller positive gap ∆i(a) indicates that the expected reward of a suboptimal arm a is close to that
of the optimal arm, making it more difficult to identify the optimal arm. However, this regret bound
becomes invalid when K is infinite. In contrast, Theorem 2 for DF-TSLB provides a regret bound
with a different structure, emphasizing a growth rate of d3/2

√
T . This bound is well-suited for the

infinite-armed setting and captures the complexity of the high-dimensional context space.

Finally, we note that the λ-based hierarchical elimination mechanism originates from prior work
(Xue et al., 2024). A central contribution of this paper is to show that Bayesian posterior-based
exploration can be effectively integrated into this elimination framework to address lexicographic
MOMAB and MOSLB, a direction not pursued in the earlier Lipschitz bandit setting (Xue et al.,
2024). Our approach differs from existing studies (Xue et al., 2024; 2025) in three key aspects: (i)
Algorithm 1 directly selects the arm with the largest posterior uncertainty (Step 5); (ii) it establishes
instance-dependent regret guarantees that capture problem hardness; and (iii) it introduces a novel
combination of BayesUCB/TS-style posterior exploration with λ-based hierarchical elimination,
in contrast to their repeat-until search procedures, instance-independent bounds, and deterministic
UCB-style analysis (Xue et al., 2024; 2025).
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Figure 1: Comparison of our algorithms versus baselines. Each experiment is run 5 times, with
average regret shown as lines and standard deviation as shaded areas.

6 EXPERIMENTS

This section presents empirical evaluations, where we compare our approaches against the lexi-
cographic MOMAB algorithm PF-LEX (Hüyük & Tekin, 2021), as well as two single-objective
algorithms: BayesUCB (Atsidakou et al., 2023) and TSCB (Agrawal & Goyal, 2013a). BayesUCB
assumes knowledge of the reward distribution, whereas TSCB does not rely on this knowledge.
Details of the experimental setup are in Appendix A.

Figure 1 shows the empirical performance of the baselines and our algorithms. Panels (a), (b), and
(c) show the regret curves for the first, second, and third objectives, respectively. In Figure 1(a),
BayesUCB and TSCB exhibit the lowest regret, as they are single-objective algorithms that focus
solely on the first objective, thereby yielding optimal performance. Notably, the regret values of
BayesUCB, TSCB, DK-BULB, and DF-TSLB are approximately 20, 20, 40, and 100, respectively.
Given the long time horizon (T = 20,000), the regrets of DK-BULB and DF-TSLB remain only
slightly higher than those of BayesUCB and TSCB.

Figure 1(b) presents the regret curves for the second objective, where DK-BULB and DF-TSLB
clearly outperform the other methods. The regret curve for PF-LEX is higher than DK-BULB and
DF-TSLB, which aligns with the theoretical guarantees. Specifically, the regret bound for PF-LEX
is Õ((KT )2/3), whereas the regret bounds for DK-BULB and DF-TSLB are O(K log(KT )) and
Õ(d3/2

√
T ), respectively. The regret curves for BayesUCB and TSCB continue to rise, indicating

that these methods fail to identify the optimal arm and, consequently, cannot effectively optimize
multiple objectives. Furthermore, the large deviations of BayesUCB and TSCB are attributed to
the fact that these single-objective algorithms disregard the second objective, causing the second-
objective rewards to appear random. Figure 1(c) shows the regret curves for the third objective. Once
again, DK-BULB and DF-TSLB outperform all baseline methods, with their flat curves indicating
successful identification of the lexicographic optimal arm.

7 CONCLUSION AND FUTURE WORK

This paper is the first to design Bayes-based algorithms for lexicographic bandits. When the re-
wards follow a Gaussian distribution, we propose an MOMAB algorithm that achieves a regret
bound of O

(
(Λi(λ))2 ·

∑
∆i(a)>0

log(KT )
∆i(a)

)
for any objective i ∈ [m]. Although our algorithm

and analysis focuses on Gaussian rewards, Algorithm 1 can be easily extended to other distribu-
tions (e.g. Bernoulli rewards), as long as the posterior distribution is computable. When the re-
ward distributions are unknown, we propose an MOSLB algorithm that achieves a regret bound of
Õ(Λi(λ) ·d3/2

√
T ) for any objective i ∈ [m]. Meanwhile, we provide an alternative proof for linear

TS bandits, which differs from previous techniques that classify arms as saturated and unsaturated
(Agrawal & Goyal, 2013a) or utilize the properties of support functions (Abeille & Lazaric, 2017).

Although our methods achieve comparable regret bounds to single-objective algorithms (Kaufmann
et al., 2012b; Abeille & Lazaric, 2017) in term of ∆i(a), K, d and T , a challenging open problem
is to remove the additional term Λi(λ).
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bandits. In Advances in Neural Information Processing Systems 24, pp. 2312–2320, 2011.

Marc Abeille and Alessandro Lazaric. Linear Thompson Sampling Revisited. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, pp. 176–184, 2017.

Milton Abramowitz. Handbook of Mathematical Functions, With Formulas, Graphs, and Mathe-
matical Tables. Dover Publications, Inc., USA, 1964. ISBN 0486612724.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit prob-
lem. In Proceedings of the 25th Annual Conference on Learning Theory, pp. 39.1–39.26, 2012.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
In Proceedings of the 30th International Conference on Machine Learning, pp. 127–135, 2013a.

Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In Pro-
ceedings of the 16th International Conference on Artificial Intelligence and Statistics, pp. 99–107,
2013b.

Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. Journal of
the ACM, 64(5):1–24, 2017.

J. Aldaz, Sorina Barza, Masatoshi Fujii, and M. Moslehian. Advances in operator cauchy–schwarz
inequalities and their reverses. Annals of Functional Analysis, 6(3):275–295, 2015.

Cagin Ararat and Cem Tekin. Vector optimization with stochastic bandit feedback. In Proceedings of
the 26th International Conference on Artificial Intelligence and Statistics, pp. 2165–2190, 2023.

Alexia Atsidakou, Branislav Kveton, Sumeet Katariya, Constantine Caramanis, and Sujay Sanghavi.
Finite-time logarithmic bayes regret upper bounds. In Advances in Neural Information Processing
Systems 36, pp. 4331–4350, 2023.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(11):397–422, 2002.

Peter Auer, Chao-Kai Chiang, Ronald Ortner, and Madalina Drugan. Pareto front identification
from stochastic bandit feedback. In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, pp. 939–947, 2016.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, Berlin, Hei-
delberg, 2006.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances in
Neural Information Processing Systems 24, pp. 2249–2257, 2011.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff func-
tions. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics,
pp. 208–214, 2011.

Pierre Clavier, Tom Huix, and Alain Oliviero Durmus. VITS : Variational inference thompson
sampling for contextual bandits. In Proceedings of the 41st International Conference on Machine
Learning, pp. 9033–9075, 2024.
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Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th International Conference
on World Wide Web, pp. 661–670, 2010.

Shiyin Lu, Guanghui Wang, Yao Hu, and Lijun Zhang. Multi-objective generalized linear bandits. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3080–3086,
2019.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
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A EXPERIMENTAL SETTINGS

MOMAB. In the MOMAB setting, we set number of arms K = 10 and the number of ob-
jectives m = 3. For any arm a ∈ [K], its expected rewards are defined as µ1(a) = 1 −
minp∈{0.3,0.6,0.9} |0.1 × a − p|, µ2(a) = 1 − 2 × minp∈{0.5,0.8} |0.1 × a − p|, µ3(a) = 1 − 2 ×
|0.1× a− 0.5|. The optimal arms for the first objective are {3, 6, 9}, and the optimal arms for both
the first and second objectives are {6, 9}. Thus, to identify the lexicographic optimal arm a∗ = 6, it
is necessary to consider all three objectives.

MOSLB. In the MOSLB setting, we fix the arm set as At = {x̃1, x̃2, . . . , x̃K} ⊆ Rd for any t ≥ 1.
Both the arm number K and feature dimension d are set as 10, which ensures that MOMAB and
MOSLB encounter the same number of unknown parameters. For k ∈ [K], the arm vector x̃k is set
as the standard basis in Rd, whose k-th element is 1 and all other elements are 0. The number of
objectives is set as m = 3. We denote the inherent vectors as θi∗ = [θi∗(1), θ

i
∗(2), . . . , θ

i
∗(10)], i ∈

[3]. The elements of θ1
∗, θ2

∗ and θ3
∗ are specified as θ1∗(k) = 1 − minp∈{0.3,0.6,0.9} |0.1 × k − p|,

θ2∗(k) = 1− 2×minp∈{0.5,0.8} |0.1× k− p| and θ3∗(k) = 1− 2× |0.1× k− 0.5|, k ∈ [10]. Thus,
its expected rewards are the same as the MOMAB setting, enabling a direct comparison between the
two models.

Although Algorithm 2 is capable of handling infinite arm sets, we use a finite arm set in the MOSLB
experiments for the following reasons:

1. Using a finite arm set allows both MOMAB and MOSLB to be evaluated on the same
problem instance, making the empirical comparison more meaningful and controlled.

2. Even if the arm set were infinite, in practice we would still construct a structured arm set
(e.g., a ball or grid) so that the maximization steps in the algorithms admit exact solutions.
This setup is conceptually equivalent to working with a finite discrete arm set.

3. Many existing stochastic linear bandit works conduct experiments on finite arm sets for
the same practical reasons (Kim et al., 2021; Xu et al., 2023). Hence, our setup follows
standard empirical practice in this domain.

All experiments were conducted on a Windows 10 laptop with an Intel(R) Core(TM) i7-1170 CPU
and 32GB of RAM. Each algorithm was run with δ = 0.01 and T = 20, 000. The stochastic
rewards {yit}t∈[T ] are drawn from a normal distribution with mean µi(a) or µi(x) and variance 0.1.
Following the existing bandit work (Chapelle & Li, 2011; Jun et al., 2017), we scale the confidence
terms for all algorithms by a factor selected from the range [0.01, 1].

B PROOF OF THEOREM 1

Recall from Eq. (5) that, in the Gaussian MOMAB model, the expected reward for any arm a ∈ [K]
and any objective i ∈ [m] is µi(a) = θia. Therefore, the regret for MOMAB can be rewritten as

Ri(T ) =

T∑
t=1

∆i(at) =

T∑
t=1

θia∗ − θiat , i ∈ [m].

Let E be the event

E =
{
∀t ∈ [T ], ∀a ∈ [K], ∀i ∈ [m] : |θia − θ̂it,a| ≤ ct(a)

}
, (13)

where θ̂it,a is the posterior mean as calculated in Eq. (6), and ct(a) is the confidence term defined in
Eq. (7).

To establish a foundation for the proof, we first introduce a lemma to show that the event E holds
with high probability.

Lemma 1 (Abramowitz (1964)) For a Gaussian distributed random variable Z with mean m and
variance σ2, for any z ≥ 1,

Pr{|Z −m| > zσ} ≤ 1√
πz
e−z

2/2.
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Given that θia ∼ N (θ̂it,a, σ̂
2
t,a) and ct(a) =

√
2σ̂2

t,a log(mKT/δ), we have for a fixed t ∈ [T ], a ∈
[K] and i ∈ [m],

|θia − θ̂it,a| ≤ ct(a)

holds with probability at least 1− δ
mKT . Taking the union over all t ∈ [T ], a ∈ [K] and i ∈ [m], we

conclude that event E holds with probability at least 1− δ.

The prioritized elimination mechanism in Steps 6 to 10 of Algorithm 1 is crucial for selecting arms
in accordance with the priority order of the objectives, while efficiently balancing exploration and
exploitation. We now present the following lemma, which demonstrates that the elimination mech-
anism in Algorithm 1 does not discard the lexicographic optimal arm, and that the remaining arms
are promising.

Lemma 2 Suppose E in Eq. (13) holds. In Steps 6 to 10 of Algorithm 1, if a∗ ∈ A0
t , then

a∗ ∈ Am
t and ∆i(a) ≤ 4(1 + λ+ · · ·+ λi−1) · ct(at), ∀i ∈ [m], ∀a ∈ Am

t .

Proof: Given that the arm is eliminated from the 1-st objective to the m-th objective, we prove this
lemma using an inductive approach. For the first objective i = 1, since â1t = argmaxa∈A0

t
θ̂1t,a and

a∗ ∈ A0
t , it follows that for all a ∈ A1

t ,

∆1(a) = θ1a∗ − θ1a ≤ θ1a∗ − θ̂1t,a∗ + θ̂1t,â1t
− θ1a. (14)

Given that the event E holds, we have for all a ∈ A1
t ,

θ1a∗ − θ̂1t,a∗ ≤ ct(a
∗), θ̂1t,a − θ1a ≤ ct(a).

Substituting these bounds into Eq. (14), we obtain for all a ∈ A1
t ,

∆1(a) ≤ ct(a
∗) + θ̂1t,â1t

− θ̂1t,a + ct(a).

Recalling that A1
t = {a ∈ A0

t |θ̂1t,â1t − θ̂1t,a ≤ 2ct(at)}, it follows that for all a ∈ A1
t ,

∆1(a) ≤ ct(a
∗) + 2ct(at) + ct(a). (15)

Since at = argmaxa∈A0
t
ct(a), we have ct(a) ≤ ct(at) for all a ∈ A1

t ⊆ A0
t . Substituting this into

Eq. (15) yields,
∆1(a) ≤ 4ct(at), ∀a ∈ A1

t .

Next, since the event Et holds, we have

θ̂1t,â1t
− θ̂1t,a∗ ≤ θ1â1t

+ ct(â
1
t )− θ1a∗ + ct(a

∗).

Given that a∗ is the optimal arm, it follows that θ1
â1t

− θ1a∗ ≤ 0. Reusing ct(a) ≤ ct(at) for all
a ∈ A1

t ⊆ A0
t , we conclude

θ̂1t,â1t
− θ̂1t,a∗ ≤ θ1â1t

+ ct(â
1
t )− θ1a∗ + ct(a

∗) ≤ 2ct(at).

Thus, a∗ ∈ A1
t = {a ∈ A0

t |θ̂1t,â1t − θ̂1t,a ≤ 2ct(at)}, completing the proof for the first objective.

By induction, for i ≥ 2, assume

a∗ ∈ Aj
t and ∆j(a) ≤ 4(1 + λ+ · · ·+ λj−1) · ct(at), ∀a ∈ Aj

t , ∀j ∈ [i− 1].

We aim to prove

a∗ ∈ Ai
t and ∆i

a ≤ 4(1 + λ+ · · ·+ λi−1) · ct(at), ∀a ∈ Ai
t. (16)

Since âit = argmaxa∈Ai−1
t

θ̂it,a and a∗ ∈ Ai−1
t , it follows that for all a ∈ Ai

t ⊆ Ai−1
t ,

∆i(a) = θia∗ − θia ≤ θia∗ − θ̂it,a∗ + θ̂it,âit
− θia. (17)

14
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Given that event E holds, we have that for all a ∈ Ai
t,

θia∗ − θ̂it,a∗ ≤ ct(a
∗), θ̂it,a − θia ≤ ct(a).

Substituting these bounds into Eq. (17) gives, for all a ∈ Ai
t,

∆i(a) ≤ ct(a
∗) + θ̂it,âit

− θ̂it,a + ct(a).

Recalling that Ai
t = {a ∈ A0

t |θ̂it,âit − θ̂it,a ≤ (2 + 4λ+ · · ·+ 4λi−1) · ct(at)}, it follows that for all
a ∈ Ai

t,
∆i(a) ≤ ct(a

∗) + (2 + 4λ+ · · ·+ 4λi−1) · ct(at) + ct(a). (18)
Since at = argmaxa∈A0

t
ct(a), we have ct(a) ≤ ct(at) for all a ∈ Ai

t ⊆ A0
t . Substituting this into

Eq. (18) yields, for all a ∈ Ai
t,

∆i(a) ≤ 4(1 + λ+ · · ·+ λi−1) · ct(at).

Next, since the event Et holds, we have

θ̂it,âit
− θ̂it,a∗ ≤ θiâit

+ ct(â
i
t)− θia∗ + ct(a

∗). (19)

According to Eq. (2), θi
âit

− θia∗ ≤ λ ·maxj∈[i−1]{θja∗ − θj
âit
}. Thus,

θiâit
− θia∗ ≤ λ · 4(1 + λ+ · · ·+ λi−2) · ct(at).

Reusing ct(a) ≤ ct(at) for all a ∈ Ai
t ⊆ A0

t , taking this into Eq. (19) gives

θ̂it,âit
− θ̂it,a∗ ≤ 4(λ+ λ2 + · · ·+ λi−1) · ct(at) + 2ct(at).

Thus, a∗ ∈ Ai
t = {a ∈ Ai−1

t |θ̂i
t,âit

− θ̂it,a∗ ≤ (2 + 4λ + · · · + 4λi−1) · ct(at)}. Hence, Eq. (16) is
proved, completing the induction framework and the proof of Lemma 2. □

Lemma 2 depends on the assumption a∗ ∈ A0
t . In the following lemma, we remove this assumption.

Lemma 3 Suppose E in Eq. (13) holds. In Algorithm 1, for any a ∈ At+1,

∆i(a) ≤ 4(1 + λ+ · · ·+ λi−1) · ct(at).

Proof: We prove by induction that a∗ ∈ A0
t for t ≥ 1. For the base case t = 1, a∗ ∈ A0

1
obviously since A0

1 = [K]. Now, assume a∗ ∈ A0
t for some t ≥ 1. By Lemma 2, a∗ ∈ A0

t
deduces that a∗ ∈ Am

t . Given that A0
t+1 = At+1 = Am

t , it follows that a∗ ∈ A0
t+1. Thus, by

induction a∗ ∈ A0
t holds for all t ≥ 1. With a∗ ∈ A0

t , Lemma 2 tells that for any a ∈ Am
t ,

∆i(a) ≤ 4(1 + λ+ · · ·+ λi−1) · ct(at) for i ∈ [m]. Therefore, Lemma 3 holds as Am
t = At+1. □

We now proceed to complete the proof of Theorem 1. For clarity, define Λi(λ) = 1+λ+ · · ·+λi−1

for any i ∈ [m]. Since at ∈ At, Lemma 3 tells that

∆i(at) ≤ 4Λi(λ) · ct−1(at−1) = 4Λi(λ) ·

√
2 log(mKT/δ)

σ−2
0 + σ−2Nt−1,at−1

. (20)

From Step 5 of Algorithm 1, where at = argmaxa∈At
ct(a) = argmina∈At

Nt,a, we have

Nt,at ≤ Nt,at−1
= Nt−1,at−1

+ 1.

Substituting this into Eq. (20), we have

∆i(at) ≤ 4Λi(λ) ·

√
2 log(KT/δ)

σ−2
0 + σ−2(Nt,at − 1)

.

Reorganizing the inequality yields

Nt,at ≤ (4Λi(λ))2σ2 · 2 log(mKT/δ)
(∆i(at))2

− σ2σ−2
0 + 1 ≤ (4Λi(λ))2σ2 · 2 log(mKT/δ)

(∆i(at))2
+ 1.

15
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Using the number of times each arm is played, we can bound the regret as follows:

Ri(T ) =

T∑
t=1

∆i(at) ≤
∑

∆i(a)>0

∆i(a) ·NT+1,a

≤
∑

∆i(a)>0

(
(4Λi(λ))2σ2 · 2 log(mKT/δ)

∆i
a

+∆i
a

)
.

Since the event E holds with probability at least 1 − δ, the above regret bound holds with the same
probability. The proof of Theorem 1 is finished. □

C PROOF OF THEOREM 2

We begin by presenting a lemma that establishes the confidence parameters in Eq. (10).

Lemma 4 With probability at least 1− δ, for any i ∈ [m] and t ∈ [T ],

∥θ̂it − θi∗∥Vt
≤ αt = R

√
d log

(
16mtT

δ

)
+B, ∥θ̃it − θ̂it∥Vt

≤ βt = αt ·

√
2d log

(
8dmT

δ

)
.

Proof: For a fixed objective i ∈ [m], Lemma 1 of Abeille & Lazaric (2017) guarantees that, with
probability at least 1− δ, for any round t ∈ [T ],

∥θ̂it − θi∗∥Vt
≤ α̃t = R

√
d log

(
16tT

δ

)
+B, ∥θ̃it − θ̂it∥Vt

≤ β̃t = α̃t ·

√
2d log

(
8dT

δ

)
.

Applying a union bound over all i ∈ [m] finishes the proof of Lemma 4. □

Define the event

Ẽ =
{
∀t ∈ [T ], ∀i ∈ [m] : ∥θ̂it − θi∗∥Vt ≤ αt, ∥θ̃it − θ̂it∥Vt ≤ βt

}
, (21)

From Lemma 4, it follows that event Ẽ holds with probability at least 1 − δ. Using this result, the
posterior rewards can be bounded as follows.

Lemma 5 Suppose event Ẽ in Eq. (21) holds. For any i ∈ [m] and t ∈ [T ],

|⟨θi∗ − θ̃it,x⟩| ≤ (αt + βt) · ∥x∥V−1
t
.

Proof: We first reformulate the expected reward as follows,

⟨θi∗,x⟩ = ⟨θi∗ − θ̂it,x⟩+ ⟨θ̂it − θ̃it,x⟩+ ⟨θ̃it,x⟩.
Applying the Cauchy-Schwarz inequality (Aldaz et al., 2015), this expression can be bounded as:

⟨θi∗,x⟩ − ⟨θ̃it,x⟩ ≤ ∥θi∗ − θ̂it∥Vt∥x∥V−1
t

+ ∥θ̂it − θ̃it∥Vt∥x∥V−1
t
.

Since the event Ẽ holds, the inequality can be further relaxed to:

⟨θi∗,x⟩ − ⟨θ̃it,x⟩ ≤ (αt + βt) · ∥x∥V−1
t
.

A similar discussion derives that

⟨θ̃it,x⟩ = ⟨θ̃it − θ̂it,x⟩+ ⟨θ̂it − θi∗,x⟩+ ⟨θi∗,x⟩
≤ ∥θ̃it − θ̂it∥Vt

∥x∥V−1
t

+ ∥θ̂it − θi∗∥Vt
∥x∥V−1

t
+ ⟨θi∗,x⟩

≤ (αt + βt) · ∥x∥V−1
t

+ ⟨θi∗,x⟩.

Thus, the proof of Lemma 5 is complete. □

In the following, we present two lemmas to analyze the elimination algorithm LAE, which serve as
counterparts to Lemma 2 and Lemma 3.
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Lemma 6 Suppose event Ẽ in Eq. (21) holds. In Algorithm 3, if x∗
t ∈ At,s and ∥x∥V−1

t
≤ C for

any x ∈ At,s, then

x∗
t ∈ Am

t,s and ⟨θi∗,x∗
t − x⟩ ≤ 4(1 + λ+ · · ·+ λi−1) · (αt + βt) · C, ∀i ∈ [m],∀x ∈ Am

t,s.

Proof: Similar to the proof of Lemma 2, we prove this lemma by an inductive approach. For the
first objective i = 1, since x̂1

t = argmaxx∈A0
t,s
⟨θ̃1
t ,x⟩ and x∗

t ∈ A0
t,s = At,s, it follows that for

all x ∈ A1
t,s,

⟨θ1
∗,x

∗
t − x⟩ ≤ ⟨θ1

∗,x
∗
t − x⟩+ ⟨θ̃1

t , x̂
1
t − x∗

t ⟩. (22)

Given that the event Ẽ holds, Lemma 5 tells that for all x ∈ A1
t,s,

|⟨θ1
∗ − θ̃1

t ,x
∗
t ⟩| ≤ (αt + βt) · ∥x∗

t ∥V−1
t
, |⟨θ1

∗ − θ̃1
t ,x⟩| ≤ (αt + βt) · ∥x∥V−1

t
.

Substituting this into Eq. (22), it follows that for all x ∈ A1
t,s,

⟨θ1
∗,x

∗
t − x⟩ ≤ (αt + βt) · ∥x∗

t ∥V−1
t

+ ⟨θ̃1
t , x̂

1
t − x⟩+ (αt + βt) · ∥x∥V−1

t
.

Recall that A1
t,s = {x ∈ A0

t,s|⟨θ̃1
t , x̂

1
t − x⟩ ≤ 2(αt + βt) · C}. Therefore, for all x ∈ A1

t,s,

⟨θ1
∗,x

∗
t − x⟩ ≤ (αt + βt) · ∥x∗

t ∥V−1
t

+ 2(αt + βt) · C + (αt + βt) · ∥x∥V−1
t
.

Since ∥x∥V−1
t

≤ C for any x ∈ At,s, it follows that for all x ∈ A1
t,s,

⟨θ1
∗,x

∗
t − x⟩ ≤ 4(αt + βt) · C.

Next, Lemma 5 tells that

⟨θ̃1
t , x̂

1
t − x∗

t ⟩ ≤ ⟨θ1
∗, x̂

1
t − x∗

t ⟩+ (αt + βt) · ∥x̂1
t∥V−1

t
+ (αt + βt) · ∥x∗

t ∥V−1
t
.

Since x∗
t is the optimal arm, ⟨θ1

∗, x̂
1
t − x∗

t ⟩ ≤ 0. Using ∥x∥V−1
t

≤ C for any x ∈ At,s, we have

⟨θ̃1
t , x̂

1
t − x∗

t ⟩ ≤ 2(αt + βt) · C.

Thus, x∗
t ∈ A1

t = {a ∈ A0
t,s|⟨θ̃1

t , x̂
1
t − x∗

t ⟩ ≤ 2(αt + βt) · C}. The proof for the first objective is
finished.

Using the induction method, assume that for i ≥ 2,

x∗
t ∈ Aj

t,s and ⟨θj∗,x∗
t − x⟩ ≤ 4(1 + λ+ · · ·+ λj−1) · (αt + βt) · C, ∀x ∈ Aj

t,s, ∀j ∈ [i− 1].

We aim to prove

x∗
t ∈ Ai

t,s and ⟨θi∗,x∗
t − x⟩ ≤ 4(1 + λ+ · · ·+ λi−1) · (αt + βt) · C, ∀x ∈ Ai

t,s. (23)

Since x̂it = argmaxx∈Ai−1
t,s

⟨θ̃it,x⟩ and x∗
t ∈ Ai−1

t,s , it follows that for all x ∈ Ai
t,s,

⟨θi∗,x∗
t − x⟩ ≤ ⟨θi∗,x∗

t − x⟩+ ⟨θ̃it, x̂it − x∗
t ⟩. (24)

Given that the event Ẽ holds, Lemma 5 tells ensures that for all x ∈ Ai
t,s,

|⟨θi∗ − θ̃it,x
∗
t ⟩| ≤ (αt + βt) · ∥x∗

t ∥V−1
t
, |⟨θi∗ − θ̃it,x⟩| ≤ (αt + βt) · ∥x∥V−1

t
.

Substituting this into Eq. (24), for all x ∈ Ai
t,s,

⟨θi∗,x∗
t − x⟩ ≤ (αt + βt) · ∥x∗

t ∥V−1
t

+ ⟨θ̃it, x̂it − x⟩+ (αt + βt) · ∥x∥V−1
t
.

Recalling that Ai
t,s = {x ∈ Ai−1

t,s |⟨θ̃it, x̂it − x⟩ ≤ (2 + 4λ + · · · + 4λi−1) · (αt + βt) · C} and
∥x∥V−1

t
≤ C for any x ∈ At,s, we have for all x ∈ Ai

t,s,

⟨θi∗,x∗
t − x⟩ ≤ 4(1 + λ+ · · ·+ λi−1) · (αt + βt) · C.
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Finally, Lemma 5 tells that

⟨θ̃it, x̂it − x∗
t ⟩ ≤ ⟨θi∗, x̂it − x∗

t ⟩+ 2(αt + βt) · C.

Using Eq. (3), ⟨θi∗, x̂it − x∗
t ⟩ ≤ λ ·maxj∈[i−1]{⟨θj∗,x∗

t − x̂it⟩}. Thus,

⟨θ̃it, x̂it − x∗
t ⟩ ≤ λ · 4(1 + λ+ · · ·+ λi−2) · (αt + βt) · C + 2(αt + βt) · C.

It follows that x∗
t ∈ Ai

t,s = {x ∈ Ai−1
t,s |⟨θ̃it, x̂it − x∗

t ⟩ ≤ (2 + 4λ + · · · + λi−1) · (αt + βt) · C}.
This completes the proof of Eq. (23) and concludes the induction framework. □

Lemma 6 depends on the assumption that x∗
t ∈ A0

t,s. In the following lemma, we remove this
assumption.

Lemma 7 Suppose Ẽ in Eq. (21) holds. In Algorithm 2, for any s ≥ 1 and x ∈ At,s,

⟨θi∗,x∗
t − x⟩ ≤ 4(1 + λ+ · · ·+ λi−1) · (αt + βt) · 2−s+1, i ∈ [m].

Proof: We prove x∗
t ∈ A0

t,s for s ≥ 1 by induction. For the base case s = 1, x∗
t ∈ A0

t,1 obviously
since A0

t,1 = At. Assume that x∗
t ∈ A0

,s for some s ≥ 1. By Lemma 6, x∗
t ∈ A0

t,s deduces
that x∗

t ∈ Am
t,s. Since A0

t,s+1 = At,s+1 = Am
t,s, it follows that x∗

t ∈ A0
t,s+1. By induction, we

conclude that x∗
t ∈ A0

t,s for all s ≥ 1. Given x∗
t ∈ A0

t,s, Lemma 6 tells that for any x ∈ Am
t,s,

⟨θi∗,x∗
t −x⟩ ≤ 4(1+λ+ · · ·+λi−1) · 2−s, i ∈ [m]. Thus, Lemma 7 holds since Am

t,s = At,s+1. □

By a similar argument as in Lemma 7, we obtain the following lemma.

Lemma 8 Suppose Ẽ in Eq. (21) holds. In Algorithm 2, for any x ∈ At,T ,

⟨θi∗,x∗
t − x⟩ ≤ 4(1 + λ+ · · ·+ λi−1) · (αt + βt) ·

1√
T
, i ∈ [m].

We now complete the proof of Theorem 2. Let ψs(T ) = {t ∈ [T ]|∥xt∥V−1
t
> 2−s} for s ≥ 1, and

let ψ0(T ) = {t ∈ [T ]|∥xt∥V−1
t

≤ 1/
√
T}. The regret can be decomposed as

Ri(T ) =
∑

t∈ψ0(T )

⟨θi∗,x∗
t − xt⟩+

S∑
s=1

∑
t∈ψs(T )

⟨θi∗,x∗
t − xt⟩.

where S ≤ log(T ), since 2− log T ≤ 1/
√
T .

The trials in ψ0(T ) play arms in the if case. By Lemma 8, we have∑
t∈ψ0(T )

⟨θi∗,x∗
t − xt⟩ ≤ |ψ0(T )| · 4(1 + λ+ · · ·+ λi−1) · (αT + βT ) ·

1√
T
.

For the trials in ψs(T ), corresponding to the else if case, where the arm is selected from At,s.
Lemma 7 tells that∑

t∈ψs(T )

⟨θi∗,x∗
t − xt⟩ ≤ |ψs(T )| · 4(1 + λ+ · · ·+ λi−1) · (αT + βT ) · 2−s+1.

Thus, the regret for the i-the objective is bounded as

Ri(T ) ≤ 4(1 + λ+ · · ·+ λi−1) · (αT + βT ) ·

(
|ψ0(T )|√

T
+

S∑
s=1

2 · 2−s|ψs(T )|

)
. (25)

Lemma 3 of Chu et al. (2011) states that∑
t∈ψs(T )

∥xt∥V −1
t

≤ 5
√
d|ψs(T )| log(|ψs(T )|).
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Using the fact that ∥xt∥V −1
t

> 2−s for t ∈ ψs(T ), we obtain

2−s|ψs(T )| ≤ 5
√
d|ψs(T )| log(|ψs(T )|).

Since |ψs(T )| ≤ T , we obtain

S∑
s=1

2 · 2−s|ψs(T )| ≤ 10

S∑
s=1

√
d|ψs(T )| log T .

Applying the Cauchy-Schwarz inequality (Aldaz et al., 2015), this simplifies to

S∑
s=1

2 · 2−s|ψs(T )| ≤ 10γT
√
dST log T .

Since S ≤ log T , we can further relax this bound to

S∑
s=1

2 · 2−s|ψs(T )| ≤ 10 log T
√
dT .

Substituting this result into Eq. (25) shows that

Ri(T ) ≤ 4(1 + λ+ · · ·+ λi−1) · (αT + βT ) ·
(√

T + 10 log T
√
dT
)
.

A simple relaxation yields the final bound,

Ri(T ) ≤ 44(1 + λ+ · · ·+ λi−1) · (αT + βT ) · log T
√
dT .

The proof of Theorem 2 is finished. □
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