

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-OBJECTIVE BANDITS WITH HIERARCHICAL PREFERENCES: A THOMPSON SAMPLING APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper studies multi-objective bandits with hierarchical preferences, a class of bandit problems where arms are evaluated according to multiple objectives, each with a distinct priority level. The agent aims to maximize the most critical objective first, followed by the second most important, and so on for subsequent objectives. We address this problem using Bayesian decision-making strategies. Although Bayesian methods have been extensively studied in single-objective bandit settings, its effectiveness in lexicographic bandits remains an open question. To fill this gap, we propose two TS-based algorithms for lexicographic bandits: **(i)** For Gaussian reward distributions, we introduce an multi-armed bandit algorithm that achieves a *problem-dependent regret bound* of $O(\sum_{\Delta^i(a) > 0} \frac{\log(mKT)}{\Delta^i(a)})$, where $\Delta^i(a)$ denotes the suboptimality gap for the objective $i \in [m]$ and arm $a \in [K]$, and m is the number of objectives. **(ii)** For unknown reward distributions, we design a stochastic linear bandit algorithm with a *minmax regret bound* of $\tilde{O}(d^{3/2}\sqrt{T})$, where d is the dimension of the contextual vectors. These results highlight the adaptability of TS strategy to the lexicographic bandit problem, offering efficient solutions under varying degrees of knowledge about the rewards. Empirical experiments support our theoretical findings.

1 INTRODUCTION

Multi-armed bandits (MAB) is a sequential decision-making model under uncertainty, where an agent selects an arm (action) from an arm set $[K] = \{1, 2, \dots, K\}$ and receives a stochastic reward corresponding to the chosen arm (Robbins, 1952; Lattimore & Szepesvári, 2020). The agent's goal is to maximize cumulative rewards, which requires balancing the exploration of uncertain arms with the exploitation of the best-known arms (Auer, 2002). This exploration-exploitation trade-off is central to a variety of applications, such as online advertising (Schwartz et al., 2017), recommendation systems (Li et al., 2010), and clinical trials (Villar et al., 2015), where decisions must be made under uncertainty. These scenarios often involve contextual information, which motivates the development of stochastic linear bandits (SLB) (Abbasi-yadkori et al., 2011; Chu et al., 2011; Jun & Kim, 2024). In SLB, arms are represented by feature vectors $\mathcal{A} \subseteq \mathbb{R}^d$, and the expected reward of each arm is a linear function of its features and an unknown parameter vector. In this paper, we first propose an algorithm for MAB with *finite* arms, and then present an algorithm for SLB with *infinite* arms.

In addressing the stochastic bandit problem, two widely studied and influential strategies are the Upper Confidence Bound (UCB) (Auer, 2002; Abbasi-yadkori et al., 2011) and Thompson Sampling (TS) (Agrawal & Goyal, 2013a; Russo & Van Roy, 2014; Xu et al., 2023; Clavier et al., 2024). UCB operates in the *frequentist* framework, assuming that the underlying parameters of the bandit model are fixed. At each round, it constructs confidence intervals for each arm's expected reward and selects the arm with the highest upper confidence bound (Abbasi-yadkori et al., 2011). In contrast, TS is based on the *Bayesian* framework, where the bandit parameters follow a prior distribution (Agrawal & Goyal, 2013b). At every step, TS samples a random value from the posterior distribution of each arm, and selects the arm with the highest sampled value. The *simplicity and near-optimal regret performance* of TS make it particularly appealing. Specifically, the UCB-based method (Abbasi-yadkori et al., 2011) requires solving a bilinear optimization problem at each round, which is non-convex and computationally demanding. By contrast, TS involves only linear optimization, significantly enhancing computational efficiency (Abeille & Lazaric, 2017). Empirical

054

055

Table 1: Comparisons of the Regret Bounds for TS Bandits.

056

057

Algorithm	Regret	Obj.	Distribution	Model
Kaufmann et al. (2012b)	$O\left(\sum \frac{\log(T)}{\Delta(a)}\right)$	Single	Known	MAB
Russo & Van Roy (2014)	$\tilde{O}\left(d\sqrt{T}\right)$	Single	Known	SLB
Agrawal & Goyal (2013a)	$\tilde{O}\left(d^{3/2}\sqrt{T}\right)$	Single	Unknown	SLB
Abeille & Lazaric (2017)	$\tilde{O}\left(d^{3/2}\sqrt{T}\right)$	Single	Unknown	SLB
DK-BULB (Ours)	$O\left((\Lambda^i(\lambda))^2 \cdot \sum \frac{\log(mKT)}{\Delta^i(a)}\right)$	$i \in [m]$	Known	MAB
DF-TSLB (Ours)	$\tilde{O}\left(\Lambda^i(\lambda) \cdot d^{3/2}\sqrt{T}\right)$	$i \in [m]$	UnKnown	SLB

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

studies further highlight the practical effectiveness of TS. While TS has been extensively studied in single-objective bandit problems (Agrawal & Goyal, 2013b), its application to multi-objective bandits remains relatively underexplored. However, many real-world scenarios necessitate the simultaneous optimization of multiple, potentially conflicting objectives. For instance, recommendation systems must balance user satisfaction (e.g., click or dwell time), platform revenue (e.g., purchase rate), and content diversity (Zheng & Wang, 2021). This highlights the importance of investigating the multi-objective bandit problem (Drugan & Nowe, 2013).

076

077

078

079

080

081

082

083

084

085

086

087

088

In multi-objective bandit problems, the rewards are vector-valued, which presents a challenge in comparing different arms. Existing approaches either utilize scalarization techniques to reduce the multi-objective problem to a single-objective one (Drugan & Nowe, 2013; Ruijters et al., 2017; Wanigasekara et al., 2019), or apply Pareto dominance to identify multiple optimal arms (Auer et al., 2016; Lu et al., 2019; Xu & Klabjan, 2023; Crepon et al., 2024). However, scalarization methods *require precise knowledge* of the relative importance of objectives, while Pareto dominance *does not impose any priority ordering* across all objectives, which maybe violated in many real-world applications. For example, a hotel recommendation system prioritizes factors such as price, location, and service quality based on user preferences (Yager et al., 2011). Lexicographic bandits offer a framework that accommodates priority hierarchies, which first optimizes higher-priority objectives and then refines the lower-priority ones (Tekin & Turgay, 2018; Tekin, 2019; Hütük & Tekin, 2021).

To the best of our knowledge, we are the first to design Bayesian algorithms for lexicographic bandit problems. Our main contributions are summarized as follows:

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

- For the MAB setting with Gaussian rewards, we propose an algorithm that achieves a regret bound of $O\left((\Lambda^i(\lambda))^2 \cdot \sum_{\Delta^i(a) > 0} \frac{\log(mKT)}{\Delta^i(a)}\right)$ for the i -th objective, where $i \in [m]$, $\Lambda^i(\lambda) = 1 + \lambda + \dots + \lambda^{i-1}$, m is the number of objectives, λ is the trade-off parameter among conflicting objectives, $\Delta^i(a)$ is the reward gap for arm a 's i -th objective, K is the number of arms, and T is the time horizon.
- For the SLB setting with unknown reward distributions, we propose an algorithm achieving a regret bound of $\tilde{O}(\Lambda^i(\lambda) \cdot d^{3/2}\sqrt{T})$, where d is the dimension of the contextual vector.
- As shown in Table 1, our algorithms yield regret bounds that are comparable to those of single-objective TS algorithms. Notably, since $\Lambda^1(\lambda) = 1$ for any $\lambda \in \mathbb{R}$, the performance of the most important objective is not degraded when optimizing the other objectives.
- We further provide an alternative proof for TS bandits, which differs from previous techniques that classify arms as saturated and unsaturated (Agrawal & Goyal, 2013a) or utilize the supporting functions (Abeille & Lazaric, 2017).

2 RELATED WORK

In this section, we provide a brief review of the literature on Thompson Sampling bandits and multi-objective bandits, highlighting key developments in both fields.

108 **Thompson Sampling Bandits.** Thompson Sampling (TS), first introduced by Thompson (1933),
 109 has become a fundamental approach for bandit problems, which is supported by extensive empirical
 110 (Scott, 2010; Chapelle & Li, 2011) and theoretical analysis (Kaufmann et al., 2012b; Agrawal &
 111 Goyal, 2013b; 2017). Existing TS algorithms can generally be classified into two categories: meth-
 112 ods that assume known reward distributions (Kaufmann et al., 2012a;b; Russo & Van Roy, 2014;
 113 Atsidakou et al., 2023) and methods that are distribution-free (Agrawal & Goyal, 2012; 2013b;a;
 114 Abeille & Lazaric, 2017; Xu et al., 2023).

115 Kaufmann et al. (2012b) established an asymptotic regret bound of $O\left(\sum_{\Delta(a)>0} \frac{\log(T)}{\Delta(a)}\right)$ for MAB
 116 with Bernoulli rewards. This result was later extended by Kaufmann et al. (2012a) to various specific
 117 reward distributions. In a subsequent study, Russo & Van Roy (2014) proposed a regret bound of
 118 $\tilde{O}(\sqrt{KT})$, assuming the posterior distribution is known. More recently, Atsidakou et al. (2023)
 119 derived a finite-time Bayes regret bound of $O\left(\sum_{\Delta(a)>0} \frac{\log(T)}{\Delta(a)}\right)$, applicable to both Gaussian and
 120 Bernoulli rewards. In cases where the reward distribution is unknown, Agrawal & Goyal (2012)
 121 demonstrated that the TS algorithm achieves an expected regret of $O\left((\sum_{\Delta(a)>0} \frac{1}{(\Delta(a))^2})^2 \log(T)\right)$
 122 for the MAB model. Subsequently, Agrawal & Goyal (2013b) introduced a problem-independent
 123 regret bound of $\tilde{O}(\sqrt{KT})$ for the MAB model. Agrawal & Goyal (2013a) proposed the first TS
 124 method for the SLB problem, proving a regret bound of $\tilde{O}(d^{3/2}\sqrt{T})$ by categorizing arms into
 125 saturated and unsaturated groups. This result was refined by Abeille & Lazaric (2017), who revised
 126 the proof of Agrawal & Goyal (2013a) and obtained the same regret bound. Recently, Xu et al.
 127 (2023) developed a variance-aware TS algorithm for the SLB model.
 128

129 **Multi-Objective Bandits.** Drugan & Nowe (2013) studied the single-objective MAB framework
 130 to multi-objective setting by associating a reward vector with each arm. Their work established
 131 logarithmic regret bounds under the scalarized regret and the Pareto regret, respectively, where
 132 the scalarized approach converts the multi-objective problem into a single-objective one by using
 133 weighted combinations of objectives, and the Pareto approach treats all objectives equally, without
 134 putting any weights on different objectives. Building on the Pareto approach, two lines of work
 135 are developed. One is Pareto regret minimization, which aims to minimize the cumulative Pareto
 136 regret over T rounds (Turgay et al., 2018; Lu et al., 2019; Xu & Klabjan, 2023). Another research
 137 direction is the Pareto set identification, which aims to minimize the cost of identifying all Pareto
 138 optimal arms (Auer et al., 2016; Ararat & Tekin, 2023; Crepon et al., 2024). Most existing work
 139 on multi-objective Thompson sampling adopts the scalarized approach (Q. Yahyaa et al., 2015; Roi-
 140 jers et al., 2017; Paria et al., 2019), making it unsuitable for lexicographic bandit problems. Tekin
 141 & Turgay (2018) initially examined lexicographic contextual bandits with two objectives. H  y  k
 142 & Tekin (2021) extended the objectives beyond two in MAB model and achieved a priority-based
 143 regret bound of $\tilde{O}((KT)^{2/3})$. Xue et al. (2024) studied the lexicographic Lipschitz bandit problem
 144 and proposed a regret bound of $\tilde{O}(T^{(d_z^i+1)/(d_z^i+2)})$ for the i -th objective, where d_z^i is the zooming
 145 dimension of the i -th objective and $i \in [m]$.
 146

147 3 PROBLEM SETTING

148 This paper studies two multi-objective bandit model under lexicographic ordering: Multi-Objective
 149 Multi-Armed Bandits (MOMAB) and Multi-Objective Stochastic Linear Bandits (MOSLB).
 150

151 **Notation.** For a vector $\mathbf{x} \in \mathbb{R}^d$, let $\|\mathbf{x}\|$ denote its Euclidean norm. Meanwhile, its norm induced
 152 by a positive-definite matrix $\mathbf{V} \in \mathbb{R}^{d \times d}$ is $\|\mathbf{x}\|_{\mathbf{V}} = \sqrt{\mathbf{x}^{\top} \mathbf{V} \mathbf{x}}$. For any positive integer $m \in \mathbb{Z}_+$,
 153 $[m] \triangleq \{1, 2, \dots, m\}$. The superscript $i \in [m]$ is used to distinguish different objectives, e.g., y_t^i is
 154 the stochastic reward of the i -th objective at round t .
 155

156 **MOMAB.** In the MOMAB problem, the arm set is $[K]$ and each arm $a \in [K]$ has a vector
 157 $[\mu^1(a), \mu^2(a), \dots, \mu^m(a)] \in \mathbb{R}^m$. Here, $\mu^i(a)$ is the expected reward of arm a for its i -th ob-
 158 jective, and m is the number of objectives. MOMAB is a T -round sequential decision-making
 159 problem. In each round $t = 1, 2, \dots, T$, the agent chooses an arm $a_t \in [K]$ and receives a stochas-
 160 tic reward vector $[y_t^1, y_t^2, \dots, y_t^m] \in \mathbb{R}^m$, where $E[y_t^i] = \mu^i(a_t)$ for all $i \in [m]$. The lexicographic
 161 optimal arm is denoted as a^* (we will define it later). For any arm $a \in [K]$ and $i \in [m]$, we set
 $\Delta^i(a) = \mu^i(a^*) - \mu^i(a)$. As in single-objective bandit problems (Lattimore & Szepesv  i, 2020),

162 the agent's performance is measured by the cumulative reward gap over T rounds, i.e.,
 163

$$164 R^i(T) = \sum_{t=1}^T \Delta^i(a_t) = \sum_{t=1}^T \mu^i(a^*) - \mu^i(a_t), i \in [m].$$

$$165$$

$$166$$

167 **MOSLB.** In the MOSLB problem, the arm set at round t is denoted as $\mathcal{A}_t \subseteq \mathbb{R}^d$, where d is the
 168 dimension of contextual vector. In this paper, \mathcal{A}_t is assumed to be infinite. There exist m unknown
 169 vectors $\{\theta_*^1, \theta_*^2, \dots, \theta_*^m\} \subseteq \mathbb{R}^d$ which determine the expected rewards of each arm. Precisely, for
 170 each objective $i \in [m]$, the expected rewards for arm $\mathbf{x} \in \mathcal{A}_t$ is $\mu^i(\mathbf{x}) = \langle \theta_*^i, \mathbf{x} \rangle$. It is often assumed
 171 that both the arms and inherent vectors are bounded, i.e.,

$$172 \|\mathbf{x}\| \leq 1, \forall \mathbf{x} \in \mathcal{A}_t, \text{ and } \|\theta_*^i\| \leq B, \forall i \in [m]. \quad (1)$$

$$173$$

174 In each round $t = 1, 2, \dots, T$, the agent chooses an arm $\mathbf{x}_t \in \mathcal{A}_t$ and receives a stochastic reward
 175 vector associated with the chosen arm. Denote the lexicographic optimal arm in \mathcal{A}_t as \mathbf{x}_t^* . The
 176 regret in MOSLB problem is written as

$$177 R^i(T) = \sum_{t=1}^T \langle \theta_*^i, \mathbf{x}_t^* - \mathbf{x}_t \rangle, i \in [m].$$

$$178$$

$$179$$

180 Next, we introduce the lexicographic order to compare different arms (Hüyük & Tekin, 2021).
 181

182 **Definition 1 (Lexicographic Order)** Consider two vectors $\mathbf{u} = [u^1, u^2, \dots, u^m] \in \mathbb{R}^m$ and $\mathbf{v} =$
 183 $[v^1, v^2, \dots, v^m] \in \mathbb{R}^m$. \mathbf{u} lexicographically dominates \mathbf{v} if and only if there exists some $i^* \in [m]$
 184 such that $u^i = v^i$ for $i \in [i^* - 1]$ and $u^{i^*} > v^{i^*}$.
 185

186 Lexicographic order compares vectors sequentially, starting with the first objective and proceeding
 187 to the last, e.g., $[3, 6, 2]$ lexicographically dominates $[3, 5, 10]$ and $i^* = 2$. Based on lexicographic
 188 order, we introduce the lexicographic optimal arm (Hüyük & Tekin, 2021).

189 **Definition 2 (Lexicographic Optimal Arm)** An arm $a^* \in [K]$ or $\mathbf{x}_t^* \in \mathcal{A}_t$ is lexicographic optimal if and only if its expected reward is not lexicographically dominated by that of any other arms.
 190

192 To capture the trade-offs between conflicting objectives, we impose assumptions on the expected
 193 rewards. In the MOMAB setting, we assume that for any $i \geq 2$ and $a \in [K]$,
 194

$$195 \mu^i(a) - \mu^i(a^*) \leq \lambda \cdot \max_{j \in [i-1]} \{\mu^j(a^*) - \mu^j(a)\}. \quad (2)$$

$$196$$

197 A similar assumption for the MOSLB setting is that for any $i \geq 2$ and $\mathbf{x} \in \mathcal{A}_t$,

$$198 \langle \theta_*^i, \mathbf{x} - \mathbf{x}_t^* \rangle \leq \lambda \cdot \max_{j \in [i-1]} \langle \theta_*^j, \mathbf{x}_t^* - \mathbf{x} \rangle, \quad i \in [m]. \quad (3)$$

$$199$$

200 Here, λ quantifies the improvement in the value of the i -th objective for each unit decrease in the
 201 preceding $i - 1$ objectives, when the solution transitions from the optimal arm to other arms.
 202

203 4 ALGORITHMS

$$204$$

205 In this section, we first present an algorithm for lexicographic MOMAB, and then introduce an
 206 algorithm for lexicographic MOSLB.
 207

208 4.1 DISTRIBUTION-KNOWN METHOD: DK-BULB

$$209$$

210 This part provides a Distribution-Know BayesUCB method for Lexicographic Bandits, called DK-
 211 BULB, whose details are provided in Algorithm 1. We use Gaussian rewards for illustration in this
 212 paper, and this method can be easily extended to other distributions, such as Bernoulli rewards.
 213

214 In the Gaussian MOMAB model, its inherent parameters $\{\theta_a^i | a \in [K], i \in [m]\} \subseteq \mathbb{R}$ are drawn
 215 from a known Gaussian prior distribution, which is

$$216 \theta_a^i \sim \mathcal{N}(\theta_{0,a}^i, \sigma_0^2), a \in [K], i \in [m], \quad (4)$$

Algorithm 1 Distribution-Known BayesUCB for Lexicographic Bandits (DK-BULB)

```

216
217 Input:  $T, K, m, \delta, \lambda, \{\theta_{0,a}^i | i \in [m], a \in [K]\}, \sigma_0, \sigma$ 
218 1: Initialize  $\mathcal{A}_1 = [K]$ 
219 2: for  $t = 1, 2, \dots, T$  do
220 3: Compute the posterior distribution  $\mathcal{N}(\hat{\theta}_{t,a}^i, \hat{\sigma}_{t,a}^2)$  for any arm  $a \in \mathcal{A}_t$  and objective  $i \in [m]$ ,
221 where  $\hat{\theta}_{t,a}^i$  and  $\hat{\sigma}_{t,a}^2$  are defined in Eq. (6)
222 4: Compute the confidence term  $c_t(a)$  for any arm  $a \in \mathcal{A}_t$ , where  $c_t(a)$  is defined in Eq. (7)
223 5: Choose the arm  $a_t = \arg \max_{a \in \mathcal{A}_t} c_t(a)$ 
224 6: Initialize the arm set  $\mathcal{A}_t^0 = \mathcal{A}_t$ 
225 7: for  $i = 1, 2, \dots, m$  do
226 8:  $\hat{a}_t^i = \arg \max_{a \in \mathcal{A}_t^{i-1}} \hat{\theta}_{t,a}^i$ 
227 9:  $\mathcal{A}_t^i = \{a \in \mathcal{A}_t^{i-1} | \hat{\theta}_{t,\hat{a}_t^i}^i - \hat{\theta}_{t,a}^i \leq (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot c_t(a_t)\}$ 
228 10: end for
229 11: Update  $\mathcal{A}_{t+1} = \mathcal{A}_t^m$ 
230 12: Play arm  $a_t$  and observe its reward  $[y_t^1, y_t^2, \dots, y_t^m]$ 
231 13: end for
232
233
234
235 where  $\theta_{0,a}^i \in \mathbb{R}$  is the prior mean and  $\sigma_0 > 0$  is the prior standard deviation. For each arm  $a \in [K]$ 
236 and each objective  $i \in [m]$ , its reward follows a Gaussian distribution:
237
238 
$$y_a^i \sim \mathcal{N}(\theta_a^i, \sigma^2), \mu^i(a) = \theta_a^i, \quad (5)$$

239 where  $\theta_a^i \in \mathbb{R}$  is the mean and  $\sigma^2 > 0$  is the known variance.
240 DK-BULB adopts the idea of active arm elimination (AAE) to eliminate suboptimal arms during
241 the  $T$ -round decision process. Unlike single-objective AAE algorithms (Even-Dar et al., 2006),
242 DK-BULB has to deal with  $m$  lexicographically prioritized objectives, which requires a hierarchical
243 decision-making framework.
244 DK-BULB starts by initializing the candidate arm set  $\mathcal{A}_1 = [K]$ . In each round  $t$ , DK-BULB first
245 uses historical data collected from previous rounds to compute the posterior distributions for current
246 round. Leveraging a well-known result that the posterior distribution of a Gaussian random variable
247 with a Gaussian prior is also Gaussian (Bishop, 2006), DK-BULB computes a Gaussian posterior
248 distribution  $\mathcal{N}(\hat{\theta}_{t,a}^i, \hat{\sigma}_{t,a}^2)$  for any arm  $a \in \mathcal{A}_t$  and objective  $i \in [m]$ , where the posterior mean and
249 posterior variance are defined as
250
251 
$$\hat{\theta}_{t,a}^i = \hat{\sigma}_{t,a}^2 \left( \sigma_0^{-2} \theta_{0,a}^i + \sigma^{-2} \sum_{\tau=1}^{t-1} \mathbb{I}\{a_\tau = a\} y_\tau^i \right), \quad \hat{\sigma}_{t,a}^2 = \frac{1}{\sigma_0^{-2} + \sigma^{-2} N_{t,a}}. \quad (6)$$

252
253 Here,  $N_{t,a} = \sum_{\tau=1}^{t-1} \mathbb{I}\{a_\tau = a\}$  denotes the number of observations for arm  $a$  up to round  $t$ .
254
255 Based on the posterior variance, DK-BULB calculates the confidence term for arm  $a$  as
256
257 
$$c_t(a) = \sqrt{2\hat{\sigma}_{t,a}^2 \log(mKT/\delta)}, \quad (7)$$

258 which reflects the uncertainty in the posterior estimates. Next, the arm with maximal uncertainty
259 among all eligible arms  $\mathcal{A}_t$  is selected for further trials, i.e.,
260
261 
$$a_t = \arg \max_{a \in \mathcal{A}_t} c_t(a). \quad (8)$$

262
263 To respect the lexicographic priority of the objectives, DK-BULB employs a hierarchical elimination
264 mechanism. Beginning with the initial set of active arms  $\mathcal{A}_t^0 = \mathcal{A}_t$ , DK-BULB iteratively refines
265 this set for each objective  $i = 1, 2, \dots, m$ . At each refinement step, it identifies the arm  $\hat{a}_t^i$  that max-
266 imizes the posterior mean  $\hat{\theta}_{t,a}^i$  within the current active set  $\mathcal{A}_t^{i-1}$ , i.e.,  $\hat{a}_t^i = \arg \max_{a \in \mathcal{A}_t^{i-1}} \hat{\theta}_{t,a}^i$ .
267 Then, the active set is updated by retaining only those arms for which their posterior mean is suffi-
268 ciently close to that of  $\hat{a}_t^i$ , such that
269

```

$$\mathcal{A}_t^i = \left\{ a \in \mathcal{A}_t^{i-1} | \hat{\theta}_{t,\hat{a}_t^i}^i - \hat{\theta}_{t,a}^i \leq (4\Lambda^i(\lambda) - 2) \cdot c_t(a_t) \right\},$$

270 where $\Lambda^i(\lambda) = 1 + \lambda + \dots + \lambda^{i-1}$. Since $c_t(a_t)$ is the maximum confidence term among the
271 currently active arms, the optimal arm a^* remains in the active set.

272 After eliminating for all m objectives, the active arm set for the next round is updated as $\mathcal{A}_{t+1} =$
273 \mathcal{A}_t^m . Then, DK-BULB plays the arm a_t , and observes the corresponding rewards $[y_t^1, y_t^2, \dots, y_t^m]$.
274 These rewards are used to calculate the posterior mean and variance for subsequent rounds.
275

276 DK-BULB combines posterior estimation, confidence-based exploration, and lexicographic arm
277 elimination to ensure that the selected arms adhere to the priority order of the objectives and balances
278 exploration and exploitation. The upper bound on the regret of DK-BULB is provided as follows.
279

280 **Theorem 1** Suppose that (2), (4) and (5) hold. Let $\Lambda^i(\lambda) = 1 + \lambda + \dots + \lambda^{i-1}$. With probability
281 at least $1 - \delta$, for any objective $i \in [m]$, the regret of DK-BULB satisfies

$$282 R^i(T) \leq \sum_{\Delta^i(a) > 0} \left((4\Lambda^i(\lambda))^2 \sigma^2 \cdot \frac{2 \log(mKT/\delta)}{\Delta_a^i} + \Delta_a^i \right).$$

285 **Remark 1** Theorem 1 states that for any objective $i \in [m]$, DK-BULB achieves a regret bound of
286 $O\left((\Lambda^i(\lambda))^2 \cdot \sum_{\Delta^i(a) > 0} \frac{\log(mKT)}{\Delta^i(a)}\right)$, which is consistent with single-objective algorithms (Kauf-
287 mann et al., 2012b) in terms of $\Delta^i(a)$ and T . Although an additional term $\Lambda^i(\lambda)$ is included, this
288 is the cost of optimizing multiple objectives simultaneously. $\Lambda^1(\lambda) = 1$ implies that when com-
289 pared with single-objective algorithms (Kaufmann et al., 2012b), DK-BULB does not degrade the
290 performance of the most important objective.
291

292 4.2 DISTRIBUTION-FREE METHOD: DF-TSLB

294 In this section, we introduce a Distribution-Free Thompson Sampling method for Lexicographic
295 Bandits, referred to as DF-TSLB, with its details provided in Algorithm 2. DF-TSLB is specifically
296 designed for the MOSLB model, and the only assumption on its rewards is that they satisfy the
297 sub-Gaussian property. Specifically, for some $R > 0$ and any $\eta \in \mathbb{R}$, the following condition holds:
298

$$299 \mathbb{E} \left[e^{\eta(y_t^i - \langle \theta_*^i, \mathbf{x}_t \rangle)} \mid \mathbf{x}_t \right] \leq \exp \left(\frac{\eta^2 R^2}{2} \right), i \in [m]. \quad (9)$$

301 In the TS framework, the inherent parameters $\{\theta_*^i\}_{i=1}^m$ are drawn from an unknown distribution,
302 thus it is necessary to construct a posterior distribution based on historical data. Due to the linear
303 structure of MOSLB, we estimate the mean of the posterior distribution by least squares estimation.
304

305 DF-TSLB begins by initializing the covariance matrix \mathbf{V}_1 as the identity matrix $\mathbf{I} \in \mathbb{R}^{d \times d}$ and sets
306 the posterior mean for each objective to be zero vector, i.e. $\hat{\theta}_1^i = \mathbf{0}, \forall i \in [m]$. At each round t ,
307 DF-TSLB first defines the confidence parameters α_t and β_t to regulate exploration, as follows:
308

$$309 \alpha_t = R \sqrt{d \log(16mtT/\delta)} + B, \quad \beta_t = \alpha_t \cdot \sqrt{2d \log(8dmT/\delta)}. \quad (10)$$

310 Here, α_t quantifies the uncertainty in the least squares estimation and controls the variance of the
311 posterior distribution. β_t shows the uncertainty of the sampled estimators and guides exploration.
312

313 After setting the exploration parameters, for each objective $i \in [m]$, DF-TSLB samples an estimator
314 $\hat{\theta}_t^i$ from a Gaussian distribution $\mathcal{N}(\hat{\theta}_t^i, \alpha_t^2 \cdot \mathbf{V}_t^{-1})$, where $\hat{\theta}_t^i \in \mathbb{R}^d$ is the posterior mean derived from
315 least squares estimation (Eq. (11)), and $\mathbf{V}_t \in \mathbb{R}^{d \times d}$ is the covariance matrix. Using these sampled
316 estimators, DF-TSLB engages in the decision-making process. It iteratively refines active arms,
317 starting with $s = 1$ and the entire arm set at round t , $\mathcal{A}_{t,s} = \mathcal{A}_t$, until an arm is chosen.
318

319 Depending on the confidence term $\|\mathbf{x}\|_{\mathbf{V}_t^{-1}}$ for candidate arms $\mathbf{x} \in \mathcal{A}_{t,s}$, the decision-making
320 process is divided into three cases. **(i)** If $\|\mathbf{x}\|_{\mathbf{V}_t^{-1}} \leq 1/\sqrt{T}$ for any $\mathbf{x} \in \mathcal{A}_{t,s}$, this indicates that all
321 arms in $\mathcal{A}_{t,s}$ have been sufficiently explored. In this case, DF-TSLB first applies an arm elimination
322 procedure, referred to as LAE, to filter out promising arms, and then randomly selects an arm \mathbf{x}_t
323 from the resulting set $\mathcal{A}_{t,T}$.

324 The detailed procedure of LAE is outlined in Algorithm 3. LAE eliminates arms using a procedure
325 similar to Steps 6-11 in DK-BULB, which iteratively refines $\mathcal{A}_{t,s}$ for each objective $i \in [m]$. Starting
326

324 **Algorithm 2** Distribution-Free Thompson Sampling for Lexicographic Bandits (DF-TSLB)

325 **Input:** $T, d, m, \delta, \lambda, B$

326 1: Initialize $V_1 = I$, $\hat{\theta}_1^i = \mathbf{0}$ for $i \in [m]$

327 2: **for** $t = 1, 2, \dots, T$ **do**

328 3: Set confidence parameters α_t and β_t by Eq. (10)

329 4: Sample $\tilde{\theta}_t^i \sim \mathcal{N}(\hat{\theta}_t^i, \alpha_t^2 \cdot V_t^{-1})$ for all $i \in [m]$

330 5: Initialize $s = 1$, $\mathcal{A}_{t,s} = \mathcal{A}_t$

331 6: **repeat**

332 7: **if** $\|\mathbf{x}\|_{V_t^{-1}} \leq 1/\sqrt{T}$ for any $\mathbf{x} \in \mathcal{A}_{t,s}$ **then**

333 8: Run Algorithm 3 to obtain the promising arms: $\mathcal{A}_{t,T} = \text{LAE}(\tilde{\theta}_t^i, \alpha_t, \beta_t, \mathcal{A}_{t,s}, 1/\sqrt{T})$

334 9: Randomly choose an arm $\mathbf{x}_t \in \mathcal{A}_{t,T}$

335 10: **else if** $\|\mathbf{x}_t\|_{V_t^{-1}} > 2^{-s}$ for some $\mathbf{x}_t \in \mathcal{A}_{t,s}$ **then**

336 11: Choose the arm \mathbf{x}_t

337 12: **else**

338 13: Run Algorithm 3 to obtain the promising arms: $\mathcal{A}_{t,s+1} = \text{LAE}(\tilde{\theta}_t^i, \alpha_t, \beta_t, \mathcal{A}_{t,s}, 2^{-s})$

339 14: Update $s = s + 1$

340 15: **end if**

341 16: **until** an arm \mathbf{x}_t is played

342 17: Play arm \mathbf{x}_t and observe its reward $[y_t^1, y_t^2, \dots, y_t^m]$

343 18: Update covariance matrix $V_{t+1} = V_t + \mathbf{x}_t \mathbf{x}_t^\top$

344 19: Update $\hat{\theta}_{t+1}^i = V_{t+1}^{-1} \mathbf{X}_{t+1} \mathbf{Y}_{t+1}^i$ for $i \in [m]$, where \mathbf{X}_{t+1} and \mathbf{Y}_{t+1}^i are defined in Eq. (12)

345 20: **end for**

347 **Algorithm 3** Lexicographic Arm Elimination (LAE)

348 **Input:** $\tilde{\theta}_t^i, \alpha_t, \beta_t, \mathcal{A}_{t,s}, C$

349 1: Initialize the arm set $\mathcal{A}_{t,s}^0 = \mathcal{A}_{t,s}$

350 2: **for** $i = 1, 2, \dots, m$ **do**

351 3: $\hat{\mathbf{x}}_t^i = \arg \max_{\mathbf{x} \in \mathcal{A}_{t,s}^{i-1}} \langle \tilde{\theta}_t^i, \mathbf{x} \rangle$

352 4: $\mathcal{A}_{t,s}^i = \{\mathbf{x} \in \mathcal{A}_{t,s}^{i-1} | \langle \tilde{\theta}_t^i, \hat{\mathbf{x}}_t^i - \mathbf{x} \rangle \leq (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C\}$

353 5: **end for**

354 6: Return $\mathcal{A}_{t,s}^m$

356 with the active arm set $\mathcal{A}_{t,s}^0 = \mathcal{A}_{t,s}$, LAE first identifies the arm that maximizes the posterior mean reward within the current active set $\mathcal{A}_{t,s}^{i-1}$, i.e., $\hat{\mathbf{x}}_t^i = \arg \max_{\mathbf{x} \in \mathcal{A}_{t,s}^{i-1}} \langle \tilde{\theta}_t^i, \mathbf{x} \rangle$. Then, the active set $\mathcal{A}_{t,s}^i$ retains only those arms whose difference between their posterior mean reward and that of $\hat{\mathbf{x}}_t^i$ does not exceed a threshold, i.e,

$$\langle \tilde{\theta}_t^i, \hat{\mathbf{x}}_t^i - \mathbf{x} \rangle \leq (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C,$$

363 where C is an exploration term that adapts as the decision-making process evolves. After eliminating 364 for all m objectives, LAE returns the active arm set \mathcal{A}_t^m .

365 **(ii)** If $\|\mathbf{x}_t\|_{V_t^{-1}} > 2^{-s}$ for some $\mathbf{x}_t \in \mathcal{A}_{t,s}$, the arm \mathbf{x}_t is selected directly, as it has a high uncertainty 366 and needs further exploration. **(iii)** If $\|\mathbf{x}\|_{V_t^{-1}} \leq 2^{-s}$ for all $\mathbf{x} \in \mathcal{A}_{t,s}$, the set of promising arms 367 $\mathcal{A}_{t,s}$ is refined using the LAE algorithm with the exploration term $C = 2^{-s}$. The index s is then 368 incremented ($s \rightarrow s + 1$), and the arm elimination process is repeated until an arm \mathbf{x}_t is selected. 369

370 After the selected arm \mathbf{x}_t is played and the corresponding rewards $[y_t^1, y_t^2, \dots, y_t^m]$ are observed, 371 DF-TSLB updates the posterior mean and variance to prepare for the decision of next round. Specif- 372 ically, the covariance matrix is updated as $V_{t+1} = V_t + \mathbf{x}_t \mathbf{x}_t^\top$, and the posterior mean for each 373 objective $i \in [m]$ is computed as

$$\hat{\theta}_{t+1}^i = V_{t+1}^{-1} \mathbf{X}_{t+1} \mathbf{Y}_{t+1}^i, \quad (11)$$

375 where

$$\mathbf{X}_{t+1} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t], \quad \mathbf{Y}_{t+1}^i = [y_1^i, y_2^i, \dots, y_t^i]. \quad (12)$$

377 Finally, we present an upper regret bound for DF-TSLB.

378 **Theorem 2** Suppose that (1), (3) and (9) hold. Let $\Lambda^i(\lambda) = 1 + \lambda + \dots + \lambda^{i-1}$. With probability
 379 at least $1 - \delta$, for any objective $i \in [m]$, the regret of DF-TSLB satisfies
 380

$$381 \quad 382 \quad R^i(T) \leq 44\Lambda^i(\lambda) \cdot (\alpha_T + \beta_T) \cdot \log(T) \cdot \sqrt{dT}. \\ 383$$

384 **Remark 2** Theorem 2 states that DF-TSLB achieves a regret bound of $\tilde{O}(\Lambda^i(\lambda) \cdot d^{3/2} \sqrt{T})$ for any
 385 objective $i \in [m]$. This result aligns with single-objective algorithms (Agrawal & Goyal, 2013a;
 386 Abeille & Lazaric, 2017) in terms of d and T . The additional term $\Lambda^i(\lambda)$ captures the cost of
 387 optimizing multiple objectives simultaneously. $\Lambda^1(\lambda) = 1$ indicates that DF-TSLB does not degrade
 388 the performance of the most important objective. Additionally, it is noteworthy that our proof of
 389 Theorem 2 significantly differs from existing methods that classify arms as saturated or unsaturated
 390 (Agrawal & Goyal, 2013a) or utilize the properties of support functions (Abeille & Lazaric, 2017).

391 392 393 5 DK-BULB vs. DF-TSLB

394 395 396 Although DK-BULB and DF-TSLB share the common goal of addressing the lexicographic bandit
 397 problem, they differ significantly in the following aspects:

398 **Assumptions.** The primary distinction in the assumptions of our two algorithms is that DK-BULB
 399 requires distribution knowledge of the rewards and is designed for the MOMAB model, while DF-
 400 TSLB does not require such knowledge and is designed for the MOSLB model. Additionally, two
 401 other factors further differentiate these algorithms. First, DK-BULB assumes that the expected
 402 rewards $\{\theta_a^i | a \in [K], i \in [m]\}$ are drawn from a Gaussian prior distribution, making its expected
 403 rewards *unbounded*. In contrast, DF-TSLB satisfies the condition in Eq. (12), which ensures that its
 404 expected rewards are *bounded* by some constant $B > 0$. Second, DK-BULB assumes a *finite and*
 405 *fixed* arm set $\mathcal{A} = [K]$, whereas the arm set \mathcal{A}_t of DF-TSLB can be *infinite and dynamic*.

406 **Implementation.** DK-BULB employs an *average sum* to estimate the posterior mean (Eq. (6)),
 407 whereas DF-TSLB utilizes *least squares estimation* (Eq. (11)). Besides, their strategies for arm
 408 selection also differ significantly in two key aspects. First, DK-BULB *selects the arm with the maximum*
 409 *confidence term* (Step 5), while DF-TSLB *divides the decision-making process into multiple*
 410 *stages, sequentially eliminating arms until a final choice is made* (Steps 5-16). This is due the arm
 411 set in DF-TSLB is changing, where new arms are continually added. Directly selecting the arm with
 412 the maximum confidence term in such a scenario would require excessive exploration, leading to in-
 413 creased regret. To address this, DF-TSLB alternates between exploration (Step 11) and exploitation
 414 (Step 13) across stages. Second, their *arm elimination thresholds* differ. For DK-BULB, the thresh-
 415 old is $(2 + 4\lambda + \dots + \lambda^{i-1}) \cdot c_t(a_t)$, whereas for DF-TSLB, it is $(2 + 4\lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C$,
 416 and C is dynamically adjusted during the decision-making process.

417 **Theorems.** Theorem 1 for DK-BULB provides a *problem-dependent* regret bound based on the
 418 expected reward gap, $\sum_{\Delta^i(a) > 0} \frac{1}{\Delta^i(a)}$, which adapts to specific problem instances. Specifically, a
 419 smaller positive gap $\Delta^i(a)$ indicates that the expected reward of a suboptimal arm a is close to that
 420 of the optimal arm, making it more difficult to identify the optimal arm. However, this regret bound
 421 becomes invalid when K is infinite. In contrast, Theorem 2 for DF-TSLB provides a regret bound
 422 with a different structure, emphasizing a growth rate of $d^{3/2} \sqrt{T}$. This bound is well-suited for the
 423 infinite-armed setting and captures the complexity of the high-dimensional context space.

424 Finally, we note that the λ -based hierarchical elimination mechanism originates from prior work
 425 (Xue et al., 2024). A central contribution of this paper is to show that Bayesian posterior-based
 426 exploration can be effectively integrated into this elimination framework to address lexicographic
 427 MOMAB and MOSLB, a direction not pursued in the earlier Lipschitz bandit setting (Xue et al.,
 428 2024). Our approach differs from existing studies (Xue et al., 2024; 2025) in three key aspects: (i)
 429 Algorithm 1 directly selects the arm with the largest posterior uncertainty (Step 5); (ii) it establishes
 430 instance-dependent regret guarantees that capture problem hardness; and (iii) it introduces a novel
 431 combination of BayesUCB/TS-style posterior exploration with λ -based hierarchical elimination,
 432 in contrast to their repeat-until search procedures, instance-independent bounds, and deterministic
 433 UCB-style analysis (Xue et al., 2024; 2025).

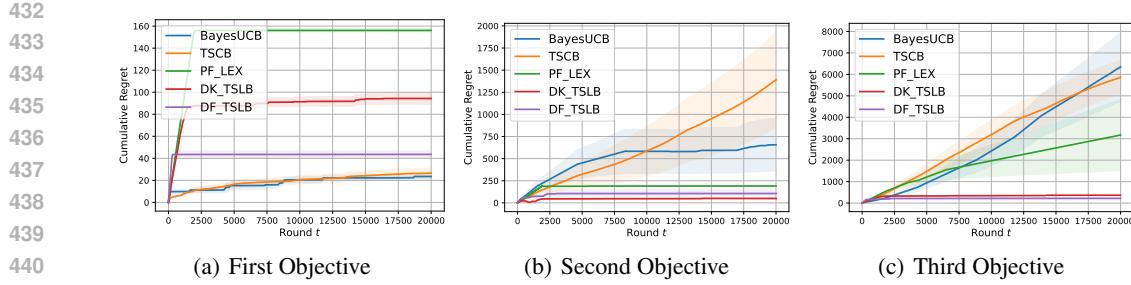


Figure 1: Comparison of our algorithms versus baselines. Each experiment is run 5 times, with average regret shown as lines and standard deviation as shaded areas.

6 EXPERIMENTS

This section presents empirical evaluations, where we compare our approaches against the lexicographic MOMAB algorithm PF-LEX (Hüyük & Tekin, 2021), as well as two single-objective algorithms: BayesUCB (Atsidakou et al., 2023) and TSCB (Agrawal & Goyal, 2013a). BayesUCB assumes knowledge of the reward distribution, whereas TSCB does not rely on this knowledge. Details of the experimental setup are in Appendix A.

Figure 1 shows the empirical performance of the baselines and our algorithms. Panels (a), (b), and (c) show the regret curves for the first, second, and third objectives, respectively. In Figure 1(a), BayesUCB and TSCB exhibit the lowest regret, as they are single-objective algorithms that focus solely on the first objective, thereby yielding optimal performance. Notably, the regret values of BayesUCB, TSCB, DK-BULB, and DF-TSLB are approximately 20, 20, 40, and 100, respectively. Given the long time horizon ($T = 20,000$), the regrets of DK-BULB and DF-TSLB remain only slightly higher than those of BayesUCB and TSCB.

Figure 1(b) presents the regret curves for the second objective, where DK-BULB and DF-TSLB clearly outperform the other methods. The regret curve for PF-LEX is higher than DK-BULB and DF-TSLB, which aligns with the theoretical guarantees. Specifically, the regret bound for PF-LEX is $\tilde{O}((KT)^{2/3})$, whereas the regret bounds for DK-BULB and DF-TSLB are $O(K \log(KT))$ and $\tilde{O}(d^{3/2} \sqrt{T})$, respectively. The regret curves for BayesUCB and TSCB continue to rise, indicating that these methods fail to identify the optimal arm and, consequently, cannot effectively optimize multiple objectives. Furthermore, the large deviations of BayesUCB and TSCB are attributed to the fact that these single-objective algorithms disregard the second objective, causing the second-objective rewards to appear random. Figure 1(c) shows the regret curves for the third objective. Once again, DK-BULB and DF-TSLB outperform all baseline methods, with their flat curves indicating successful identification of the lexicographic optimal arm.

7 CONCLUSION AND FUTURE WORK

This paper is the first to design Bayes-based algorithms for lexicographic bandits. **When** the rewards follow a Gaussian distribution, we propose an MOMAB algorithm that achieves a regret bound of $O\left((\Lambda^i(\lambda))^2 \cdot \sum_{\Delta^i(a) > 0} \frac{\log(KT)}{\Delta^i(a)}\right)$ for any objective $i \in [m]$. Although our algorithm and analysis focuses on Gaussian rewards, Algorithm 1 can be easily extended to other distributions (e.g. Bernoulli rewards), as long as the posterior distribution is computable. **When** the reward distributions are unknown, we propose an MOSLB algorithm that achieves a regret bound of $\tilde{O}(\Lambda^i(\lambda) \cdot d^{3/2} \sqrt{T})$ for any objective $i \in [m]$. Meanwhile, we provide an alternative proof for linear TS bandits, which differs from previous techniques that classify arms as saturated and unsaturated (Agrawal & Goyal, 2013a) or utilize the properties of support functions (Abeille & Lazaric, 2017).

Although our methods achieve comparable regret bounds to single-objective algorithms (Kaufmann et al., 2012b; Abeille & Lazaric, 2017) in term of $\Delta^i(a)$, K , d and T , a challenging open problem is to remove the additional term $\Lambda^i(\lambda)$.

486 REFERENCES
487

488 Yasin Abbasi-yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
489 bandits. In *Advances in Neural Information Processing Systems 24*, pp. 2312–2320, 2011.

490 Marc Abeille and Alessandro Lazaric. Linear Thompson Sampling Revisited. In *Proceedings of the
491 20th International Conference on Artificial Intelligence and Statistics*, pp. 176–184, 2017.

492 Milton Abramowitz. *Handbook of Mathematical Functions, With Formulas, Graphs, and Mathe-
493 matical Tables*. Dover Publications, Inc., USA, 1964. ISBN 0486612724.

495 Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit prob-
496 lem. In *Proceedings of the 25th Annual Conference on Learning Theory*, pp. 39.1–39.26, 2012.

497 Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
498 In *Proceedings of the 30th International Conference on Machine Learning*, pp. 127–135, 2013a.

500 Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In *Pro-
501 ceedings of the 16th International Conference on Artificial Intelligence and Statistics*, pp. 99–107,
502 2013b.

503 Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. *Journal of
504 the ACM*, 64(5):1–24, 2017.

505 J. Aldaz, Sorina Barza, Masatoshi Fujii, and M. Moslehian. Advances in operator cauchy–schwarz
506 inequalities and their reverses. *Annals of Functional Analysis*, 6(3):275–295, 2015.

508 Cagin Ararat and Cem Tekin. Vector optimization with stochastic bandit feedback. In *Proceedings of
509 the 26th International Conference on Artificial Intelligence and Statistics*, pp. 2165–2190, 2023.

510 Alexia Atsidakou, Branislav Kveton, Sumeet Katariya, Constantine Caramanis, and Sujay Sanghavi.
511 Finite-time logarithmic bayes regret upper bounds. In *Advances in Neural Information Processing
512 Systems 36*, pp. 4331–4350, 2023.

514 Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine
515 Learning Research*, 3(11):397–422, 2002.

516 Peter Auer, Chao-Kai Chiang, Ronald Ortner, and Madalina Drugan. Pareto front identification
517 from stochastic bandit feedback. In *Proceedings of the 19th International Conference on Artificial
518 Intelligence and Statistics*, pp. 939–947, 2016.

520 Christopher M. Bishop. *Pattern Recognition and Machine Learning*. Springer-Verlag, Berlin, Hei-
521 delberg, 2006.

523 Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In *Advances in
524 Neural Information Processing Systems 24*, pp. 2249–2257, 2011.

525 Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff func-
526 tions. In *Proceedings of the 14th International Conference on Artificial Intelligence and Statistics*,
527 pp. 208–214, 2011.

528 Pierre Clavier, Tom Huix, and Alain Oliviero Durmus. VITS : Variational inference thompson
529 sampling for contextual bandits. In *Proceedings of the 41st International Conference on Machine
530 Learning*, pp. 9033–9075, 2024.

532 Élise Crepon, Aurélien Garivier, and Wouter M Koolen. Sequential learning of the Pareto front
533 for multi-objective bandits. In *Proceedings of The 27th International Conference on Artificial
534 Intelligence and Statistics*, pp. 3583–3591, 2024.

535 Madalina M. Drugan and Ann Nowe. Designing multi-objective multi-armed bandits algorithms: A
536 study. In *The 2013 International Joint Conference on Neural Networks*, pp. 1–8, 2013.

537 Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions
538 for the multi-armed bandit and reinforcement learning problems. *Journal of Machine Learning
539 Research*, 7(39):1079–1105, 2006.

540 Alihan Hüyük and Cem Tekin. Multi-objective multi-armed bandit with lexicographically ordered
 541 and satisfying objectives. *Machine Learning*, 110(6):1233–1266, 2021.
 542

543 Kwang-Sung Jun and Jungtaek Kim. Noise-adaptive confidence sets for linear bandits and applica-
 544 tion to Bayesian optimization. In *Proceedings of the 41st International Conference on Machine
 545 Learning*, pp. 22643–22671, 2024.

546 Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, and Rebecca Willett. Scalable generalized
 547 linear bandits: Online computation and hashing. In *Advances in Neural Information Processing
 548 Systems 30*, pp. 99–109, 2017.
 549

550 Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On bayesian upper confidence bounds for
 551 bandit problems. In *Proceedings of the 15th International Conference on Artificial Intelligence
 552 and Statistics*, pp. 592–600, 2012a.

553 Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: an asymptotically
 554 optimal finite-time analysis. In *Proceedings of the 23rd International Conference on Algorithmic
 555 Learning Theory*, pp. 199–213, 2012b.
 556

557 Wonyoung Kim, Gi-Soo Kim, and Myunghee Cho Paik. Doubly robust thompson sampling with
 558 linear payoffs. In *Advances in Neural Information Processing Systems 34*, pp. 15830 – 15840,
 559 2021.

560 Tor Lattimore and Csaba Szepesvári. *Bandit Algorithms*. Cambridge University Press, 2020.
 561

562 Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
 563 personalized news article recommendation. In *Proceedings of the 19th International Conference
 564 on World Wide Web*, pp. 661–670, 2010.

565 Shiyin Lu, Guanghui Wang, Yao Hu, and Lijun Zhang. Multi-objective generalized linear bandits. In
 566 *Proceedings of the 28th International Joint Conference on Artificial Intelligence*, pp. 3080–3086,
 567 2019.
 568

569 Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
 570 objective bayesian optimization using random scalarizations. In *Proceedings of the 35th Confer-
 571 ence on Uncertainty in Artificial Intelligence*, pp. 766–776, 2019.

572 Saba Q. Yahyaa, Madalina M. Drugan, and Bernard Manderick. Thompson sampling in the adaptive
 573 linear scalarized multi objective multi armed bandit. In *International Conference on Agents and
 574 Artificial Intelligence*, pp. 55–65, 2015.
 575

576 Herbert Robbins. Some aspects of the sequential design of experiments. *Bulletin of the American
 577 Mathematical Society*, 58(5):527–535, 1952.

578 Diederik M. Roijers, Luisa M. Zintgraf, and Ann Nowe. Interactive thompson sampling for multi-
 579 objective multi-armed bandits. In *Algorithmic Decision Theory: 5th International Conference*,
 580 pp. 18–34, 2017.
 581

582 Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. *Mathematics of
 583 Operations Research*, 39(4):1221–1243, 2014.

584 Eric Schwartz, Eric Bradlow, and Peter Fader. Customer acquisition via display advertising using
 585 multi-armed bandit experiments. *Marketing Science*, 36(2):500–522, 2017.
 586

587 Steven Scott. A modern bayesian look at the multi-armed bandit. *Applied Stochastic Models in
 588 Business and Industry*, 26(6):665–667, 2010.

589 Cem Tekin. The biobjective multiarmed bandit: learning approximate lexicographic optimal allo-
 590 cations. *Turkish Journal of Electrical Engineering and Computer Sciences*, 27(2):1065–1080,
 591 2019.
 592

593 Cem Tekin and Eralp Turgay. Multi-objective contextual multi-armed bandit with a dominant ob-
 jective. *IEEE Transactions on Signal Processing*, 66(14):3799–3813, 2018.

594 William R. Thompson. On the likelihood that one unknown probability exceeds another in view of
 595 the evidence of two samples. *Biometrika*, 25:285–294, 1933.

596

597 Eralp Turgay, Doruk Oner, and Cem Tekin. Multi-objective contextual bandit problem with simi-
 598 larity information. In *Proceedings of the 21st International Conference on Artificial Intelligence
 599 and Statistics*, pp. 1673–1681, 2018.

600 Sofía S. Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design
 601 of clinical trials: Benefits and challenges. *Statistical Science*, 30(2):199 – 215, 2015.

602

603 Nirandika Wanigasekara, Yuxuan Liang, Siong Thye Goh, Ye Liu, Joseph Jay Williams, and
 604 David S. Rosenblum. Learning multi-objective rewards and user utility function in contextual
 605 bandits for personalized ranking. In *Proceedings of the 28th International Joint Conference on
 606 Artificial Intelligence*, pp. 3835–3841, 2019.

607 Mengfan Xu and Diego Klabjan. Pareto regret analyses in multi-objective multi-armed bandit. In
 608 *Proceedings of the 40th International Conference on International Conference on Machine Learn-
 609 ing*, pp. 38499–38517, 2023.

610 Ruitu Xu, Yifei Min, and Tianhao Wang. Noise-adaptive thompson sampling for linear contextual
 611 bandits. In *Advances in Neural Information Processing Systems 36*, pp. 23630–23657, 2023.

612

613 Bo Xue, Ji Cheng, Fei Liu, Yimu Wang, and Qingfu Zhang. Multiobjective lipschitz bandits under
 614 lexicographic ordering. *Proceedings of the 38th AAAI Conference on Artificial Intelligence*, pp.
 615 16238–16246, 2024.

616 Bo Xue, Xi Lin, Xiaoyuan Zhang, and Qingfu Zhang. Multiple trade-offs: An improved approach
 617 for lexicographic linear bandits. *Proceedings of the 39th AAAI Conference on Artificial Intelli-
 618 gence*, pp. 21850–21858, 2025.

619

620 Ronald R. Yager, Giray Gumrah, and Marek Z. Reformat. Using a web personal evaluation tool –
 621 pet for lexicographic multi-criteria service selection. *Knowledge-Based Systems*, 24(7):929–942,
 622 2011.

623

624 Yong Zheng and David (Xuejun) Wang. Multi-objective recommendations. In *Proceedings of the
 625 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 4098–4099, 2021.

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A EXPERIMENTAL SETTINGS**
 649

650 **MOMAB.** In the MOMAB setting, we set number of arms $K = 10$ and the number of ob-
 651 jectives $m = 3$. For any arm $a \in [K]$, its expected rewards are defined as $\mu^1(a) = 1 -$
 652 $\min_{p \in \{0.3, 0.6, 0.9\}} |0.1 \times a - p|$, $\mu^2(a) = 1 - 2 \times \min_{p \in \{0.5, 0.8\}} |0.1 \times a - p|$, $\mu^3(a) = 1 - 2 \times$
 653 $|0.1 \times a - 0.5|$. The optimal arms for the first objective are $\{3, 6, 9\}$, and the optimal arms for both
 654 the first and second objectives are $\{6, 9\}$. Thus, to identify the lexicographic optimal arm $a^* = 6$, it
 655 is necessary to consider all three objectives.

656 **MOSLB.** In the MOSLB setting, we fix the arm set as $\mathcal{A}_t = \{\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_K\} \subseteq \mathbb{R}^d$ for any $t \geq 1$.
 657 Both the arm number K and feature dimension d are set as 10, which ensures that MOMAB and
 658 MOSLB encounter the same number of unknown parameters. For $k \in [K]$, the arm vector \tilde{x}_k is set
 659 as the standard basis in \mathbb{R}^d , whose k -th element is 1 and all other elements are 0. The number of
 660 objectives is set as $m = 3$. We denote the inherent vectors as $\theta_*^i = [\theta_*^i(1), \theta_*^i(2), \dots, \theta_*^i(10)]$, $i \in$
 661 $[3]$. The elements of θ_*^1 , θ_*^2 and θ_*^3 are specified as $\theta_*^1(k) = 1 - \min_{p \in \{0.3, 0.6, 0.9\}} |0.1 \times k - p|$,
 662 $\theta_*^2(k) = 1 - 2 \times \min_{p \in \{0.5, 0.8\}} |0.1 \times k - p|$ and $\theta_*^3(k) = 1 - 2 \times |0.1 \times k - 0.5|$, $k \in [10]$. Thus,
 663 its expected rewards are the same as the MOMAB setting, enabling a direct comparison between the
 664 two models.

665 Although Algorithm 2 is capable of handling infinite arm sets, we use a finite arm set in the MOSLB
 666 experiments for the following reasons:

667 1. Using a finite arm set allows both MOMAB and MOSLB to be evaluated on the same
 668 problem instance, making the empirical comparison more meaningful and controlled.
 669 2. Even if the arm set were infinite, in practice we would still construct a structured arm set
 670 (e.g., a ball or grid) so that the maximization steps in the algorithms admit exact solutions.
 671 This setup is conceptually equivalent to working with a finite discrete arm set.
 672 3. Many existing stochastic linear bandit works conduct experiments on finite arm sets for
 673 the same practical reasons (Kim et al., 2021; Xu et al., 2023). Hence, our setup follows
 674 standard empirical practice in this domain.

675 All experiments were conducted on a Windows 10 laptop with an Intel(R) Core(TM) i7-1170 CPU
 676 and 32GB of RAM. Each algorithm was run with $\delta = 0.01$ and $T = 20,000$. The stochastic
 677 rewards $\{y_t^i\}_{t \in [T]}$ are drawn from a normal distribution with mean $\mu^i(a)$ or $\mu^i(x)$ and variance 0.1.
 678 Following the existing bandit work (Chapelle & Li, 2011; Jun et al., 2017), we scale the confidence
 679 terms for all algorithms by a factor selected from the range $[0.01, 1]$.

680 **B PROOF OF THEOREM 1**
 681

682 Recall from Eq. (5) that, in the Gaussian MOMAB model, the expected reward for any arm $a \in [K]$
 683 and any objective $i \in [m]$ is $\mu^i(a) = \theta_a^i$. Therefore, the regret for MOMAB can be rewritten as

684
$$R^i(T) = \sum_{t=1}^T \Delta^i(a_t) = \sum_{t=1}^T \theta_{a_t}^i - \theta_{a^*}^i, i \in [m].$$

685 Let \mathcal{E} be the event

686
$$\mathcal{E} = \left\{ \forall t \in [T], \forall a \in [K], \forall i \in [m] : |\theta_a^i - \hat{\theta}_{t,a}^i| \leq c_t(a) \right\}, \quad (13)$$

687 where $\hat{\theta}_{t,a}^i$ is the posterior mean as calculated in Eq. (6), and $c_t(a)$ is the confidence term defined in
 688 Eq. (7).

689 To establish a foundation for the proof, we first introduce a lemma to show that the event \mathcal{E} holds
 690 with high probability.

691 **Lemma 1 (Abramowitz (1964))** For a Gaussian distributed random variable Z with mean m and
 692 variance σ^2 , for any $z \geq 1$,

693
$$\Pr\{|Z - m| > z\sigma\} \leq \frac{1}{\sqrt{\pi}z} e^{-z^2/2}.$$

Given that $\theta_a^i \sim \mathcal{N}(\hat{\theta}_{t,a}^i, \hat{\sigma}_{t,a}^2)$ and $c_t(a) = \sqrt{2\hat{\sigma}_{t,a}^2 \log(mKT/\delta)}$, we have for a fixed $t \in [T], a \in [K]$ and $i \in [m]$,

$$|\theta_a^i - \hat{\theta}_{t,a}^i| \leq c_t(a)$$

holds with probability at least $1 - \frac{\delta}{mKT}$. Taking the union over all $t \in [T], a \in [K]$ and $i \in [m]$, we conclude that event \mathcal{E} holds with probability at least $1 - \delta$.

The prioritized elimination mechanism in Steps 6 to 10 of Algorithm 1 is crucial for selecting arms in accordance with the priority order of the objectives, while efficiently balancing exploration and exploitation. We now present the following lemma, which demonstrates that the elimination mechanism in Algorithm 1 does not discard the lexicographic optimal arm, and that the remaining arms are promising.

Lemma 2 Suppose \mathcal{E} in Eq. (13) holds. In Steps 6 to 10 of Algorithm 1, if $a^* \in \mathcal{A}_t^0$, then

$$a_* \in \mathcal{A}_t^m \text{ and } \Delta^i(a) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot c_t(a_t), \forall i \in [m], \forall a \in \mathcal{A}_t^m.$$

Proof: Given that the arm is eliminated from the 1-st objective to the m -th objective, we prove this lemma using an inductive approach. For the first objective $i = 1$, since $\hat{a}_t^1 = \arg \max_{a \in \mathcal{A}_t^0} \hat{\theta}_{t,a}^1$ and $a^* \in \mathcal{A}_t^0$, it follows that for all $a \in \mathcal{A}_t^1$,

$$\Delta^1(a) = \theta_{a^*}^1 - \theta_a^1 \leq \theta_{a^*}^1 - \hat{\theta}_{t,a^*}^1 + \hat{\theta}_{t,\hat{a}_t^1}^1 - \theta_a^1. \quad (14)$$

Given that the event \mathcal{E} holds, we have for all $a \in \mathcal{A}_t^1$,

$$\theta_{a^*}^1 - \hat{\theta}_{t,a^*}^1 \leq c_t(a^*), \quad \hat{\theta}_{t,a}^1 - \theta_a^1 \leq c_t(a).$$

Substituting these bounds into Eq. (14), we obtain for all $a \in \mathcal{A}_t^1$,

$$\Delta^1(a) \leq c_t(a^*) + \hat{\theta}_{t,\hat{a}_t^1}^1 - \hat{\theta}_{t,a}^1 + c_t(a).$$

Recalling that $\mathcal{A}_t^1 = \{a \in \mathcal{A}_t^0 \mid \hat{\theta}_{t,\hat{a}_t^1}^1 - \hat{\theta}_{t,a}^1 \leq 2c_t(a_t)\}$, it follows that for all $a \in \mathcal{A}_t^1$,

$$\Delta^1(a) \leq c_t(a^*) + 2c_t(a_t) + c_t(a). \quad (15)$$

Since $a_t = \arg \max_{a \in \mathcal{A}_t^0} c_t(a)$, we have $c_t(a) \leq c_t(a_t)$ for all $a \in \mathcal{A}_t^1 \subseteq \mathcal{A}_t^0$. Substituting this into Eq. (15) yields,

$$\Delta^1(a) \leq 4c_t(a_t), \forall a \in \mathcal{A}_t^1.$$

Next, since the event \mathcal{E}_t holds, we have

$$\hat{\theta}_{t,\hat{a}_t^1}^1 - \hat{\theta}_{t,a^*}^1 \leq \theta_{\hat{a}_t^1}^1 + c_t(\hat{a}_t^1) - \theta_{a^*}^1 + c_t(a^*).$$

Given that a^* is the optimal arm, it follows that $\theta_{\hat{a}_t^1}^1 - \theta_{a^*}^1 \leq 0$. Reusing $c_t(a) \leq c_t(a_t)$ for all $a \in \mathcal{A}_t^1 \subseteq \mathcal{A}_t^0$, we conclude

$$\hat{\theta}_{t,\hat{a}_t^1}^1 - \hat{\theta}_{t,a^*}^1 \leq \theta_{\hat{a}_t^1}^1 + c_t(\hat{a}_t^1) - \theta_{a^*}^1 + c_t(a^*) \leq 2c_t(a_t).$$

Thus, $a^* \in \mathcal{A}_t^1 = \{a \in \mathcal{A}_t^0 \mid \hat{\theta}_{t,\hat{a}_t^1}^1 - \hat{\theta}_{t,a}^1 \leq 2c_t(a_t)\}$, completing the proof for the first objective.

By induction, for $i \geq 2$, assume

$$a^* \in \mathcal{A}_t^j \text{ and } \Delta^j(a) \leq 4(1 + \lambda + \dots + \lambda^{j-1}) \cdot c_t(a_t), \forall a \in \mathcal{A}_t^j, \forall j \in [i-1].$$

We aim to prove

$$a^* \in \mathcal{A}_t^i \text{ and } \Delta^i(a) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot c_t(a_t), \forall a \in \mathcal{A}_t^i. \quad (16)$$

Since $\hat{a}_t^i = \arg \max_{a \in \mathcal{A}_t^{i-1}} \hat{\theta}_{t,a}^i$ and $a^* \in \mathcal{A}_t^{i-1}$, it follows that for all $a \in \mathcal{A}_t^i \subseteq \mathcal{A}_t^{i-1}$,

$$\Delta^i(a) = \theta_{a^*}^i - \theta_a^i \leq \theta_{a^*}^i - \hat{\theta}_{t,a^*}^i + \hat{\theta}_{t,\hat{a}_t^i}^i - \theta_a^i. \quad (17)$$

Given that event \mathcal{E} holds, we have that for all $a \in \mathcal{A}_t^i$,

$$\theta_{a^*}^i - \hat{\theta}_{t,a^*}^i \leq c_t(a^*), \quad \hat{\theta}_{t,a}^i - \theta_a^i \leq c_t(a).$$

Substituting these bounds into Eq. (17) gives, for all $a \in \mathcal{A}_t^i$,

$$\Delta^i(a) \leq c_t(a^*) + \hat{\theta}_{t,\hat{a}_t^i}^i - \hat{\theta}_{t,a}^i + c_t(a).$$

Recalling that $\mathcal{A}_t^i = \{a \in \mathcal{A}_t^0 \mid \hat{\theta}_{t,\hat{a}_t^i}^i - \hat{\theta}_{t,a}^i \leq (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot c_t(a_t)\}$, it follows that for all $a \in \mathcal{A}_t^i$,

$$\Delta^i(a) \leq c_t(a^*) + (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot c_t(a_t) + c_t(a). \quad (18)$$

Since $a_t = \arg \max_{a \in \mathcal{A}_t^0} c_t(a)$, we have $c_t(a) \leq c_t(a_t)$ for all $a \in \mathcal{A}_t^i \subseteq \mathcal{A}_t^0$. Substituting this into Eq. (18) yields, for all $a \in \mathcal{A}_t^i$,

$$\Delta^i(a) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot c_t(a_t).$$

Next, since the event \mathcal{E}_t holds, we have

$$\hat{\theta}_{t,\hat{a}_t^i}^i - \hat{\theta}_{t,a^*}^i \leq \theta_{\hat{a}_t^i}^i + c_t(\hat{a}_t^i) - \theta_{a^*}^i + c_t(a^*). \quad (19)$$

According to Eq. (2), $\theta_{\hat{a}_t^i}^i - \theta_{a^*}^i \leq \lambda \cdot \max_{j \in [i-1]} \{\theta_{a^*}^j - \theta_{\hat{a}_t^i}^j\}$. Thus,

$$\theta_{\hat{a}_t^i}^i - \theta_{a^*}^i \leq \lambda \cdot 4(1 + \lambda + \dots + \lambda^{i-2}) \cdot c_t(a_t).$$

Reusing $c_t(a) \leq c_t(a_t)$ for all $a \in \mathcal{A}_t^i \subseteq \mathcal{A}_t^0$, taking this into Eq. (19) gives

$$\hat{\theta}_{t,\hat{a}_t^i}^i - \hat{\theta}_{t,a^*}^i \leq 4(\lambda + \lambda^2 + \dots + \lambda^{i-1}) \cdot c_t(a_t) + 2c_t(a_t).$$

Thus, $a^* \in \mathcal{A}_t^i = \{a \in \mathcal{A}_t^{i-1} \mid \hat{\theta}_{t,\hat{a}_t^i}^i - \hat{\theta}_{t,a^*}^i \leq (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot c_t(a_t)\}$. Hence, Eq. (16) is proved, completing the induction framework and the proof of Lemma 2. \square

Lemma 2 depends on the assumption $a_* \in \mathcal{A}_t^0$. In the following lemma, we remove this assumption.

Lemma 3 Suppose \mathcal{E} in Eq. (13) holds. In Algorithm 1, for any $a \in \mathcal{A}_{t+1}$,

$$\Delta^i(a) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot c_t(a_t).$$

Proof: We prove by induction that $a^* \in \mathcal{A}_t^0$ for $t \geq 1$. For the base case $t = 1$, $a^* \in \mathcal{A}_1^0$ obviously since $\mathcal{A}_1^0 = [K]$. Now, assume $a^* \in \mathcal{A}_t^0$ for some $t \geq 1$. By Lemma 2, $a^* \in \mathcal{A}_t^0$ deduces that $a^* \in \mathcal{A}_t^m$. Given that $\mathcal{A}_{t+1}^0 = \mathcal{A}_{t+1} = \mathcal{A}_t^m$, it follows that $a^* \in \mathcal{A}_{t+1}^0$. Thus, by induction $a_* \in \mathcal{A}_t^0$ holds for all $t \geq 1$. With $a^* \in \mathcal{A}_t^0$, Lemma 2 tells that for any $a \in \mathcal{A}_t^m$, $\Delta^i(a) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot c_t(a_t)$ for $i \in [m]$. Therefore, Lemma 3 holds as $\mathcal{A}_t^m = \mathcal{A}_{t+1}$. \square

We now proceed to complete the proof of Theorem 1. For clarity, define $\Lambda^i(\lambda) = 1 + \lambda + \dots + \lambda^{i-1}$ for any $i \in [m]$. Since $a_t \in \mathcal{A}_t$, Lemma 3 tells that

$$\Delta^i(a_t) \leq 4\Lambda^i(\lambda) \cdot c_{t-1}(a_{t-1}) = 4\Lambda^i(\lambda) \cdot \sqrt{\frac{2 \log(mKT/\delta)}{\sigma_0^{-2} + \sigma^{-2} N_{t-1,a_{t-1}}}}. \quad (20)$$

From Step 5 of Algorithm 1, where $a_t = \arg \max_{a \in \mathcal{A}_t} c_t(a) = \arg \min_{a \in \mathcal{A}_t} N_{t,a}$, we have

$$N_{t,a_t} \leq N_{t,a_{t-1}} = N_{t-1,a_{t-1}} + 1.$$

Substituting this into Eq. (20), we have

$$\Delta^i(a_t) \leq 4\Lambda^i(\lambda) \cdot \sqrt{\frac{2 \log(KT/\delta)}{\sigma_0^{-2} + \sigma^{-2} (N_{t,a_t} - 1)}}.$$

Reorganizing the inequality yields

$$N_{t,a_t} \leq (4\Lambda^i(\lambda))^2 \sigma^2 \cdot \frac{2 \log(mKT/\delta)}{(\Delta^i(a_t))^2} - \sigma^2 \sigma_0^{-2} + 1 \leq (4\Lambda^i(\lambda))^2 \sigma^2 \cdot \frac{2 \log(mKT/\delta)}{(\Delta^i(a_t))^2} + 1.$$

810 Using the number of times each arm is played, we can bound the regret as follows:
 811

$$\begin{aligned}
 812 \quad R^i(T) &= \sum_{t=1}^T \Delta^i(a_t) \leq \sum_{\Delta^i(a)>0} \Delta^i(a) \cdot N_{T+1,a} \\
 813 \\
 814 \quad &\leq \sum_{\Delta^i(a)>0} \left((4\Lambda^i(\lambda))^2 \sigma^2 \cdot \frac{2 \log(mKT/\delta)}{\Delta_a^i} + \Delta_a^i \right).
 \end{aligned}$$

815 Since the event \mathcal{E} holds with probability at least $1 - \delta$, the above regret bound holds with the same
 816 probability. The proof of Theorem 1 is finished. \square
 817

820 C PROOF OF THEOREM 2

821 We begin by presenting a lemma that establishes the confidence parameters in Eq. (10).
 822

823 **Lemma 4** *With probability at least $1 - \delta$, for any $i \in [m]$ and $t \in [T]$,*

$$\begin{aligned}
 824 \quad \|\hat{\theta}_t^i - \theta_*^i\|_{V_t} &\leq \alpha_t = R \sqrt{d \log \left(\frac{16mtT}{\delta} \right)} + B, \quad \|\tilde{\theta}_t^i - \hat{\theta}_t^i\|_{V_t} \leq \beta_t = \alpha_t \cdot \sqrt{2d \log \left(\frac{8dmT}{\delta} \right)}.
 \end{aligned}$$

825 **Proof:** For a fixed objective $i \in [m]$, Lemma 1 of Abeille & Lazaric (2017) guarantees that, with
 826 probability at least $1 - \delta$, for any round $t \in [T]$,

$$\|\hat{\theta}_t^i - \theta_*^i\|_{V_t} \leq \tilde{\alpha}_t = R \sqrt{d \log \left(\frac{16tT}{\delta} \right)} + B, \quad \|\tilde{\theta}_t^i - \hat{\theta}_t^i\|_{V_t} \leq \tilde{\beta}_t = \tilde{\alpha}_t \cdot \sqrt{2d \log \left(\frac{8dT}{\delta} \right)}.$$

827 Applying a union bound over all $i \in [m]$ finishes the proof of Lemma 4. \square
 828

829 Define the event

$$\tilde{\mathcal{E}} = \left\{ \forall t \in [T], \forall i \in [m] : \|\hat{\theta}_t^i - \theta_*^i\|_{V_t} \leq \alpha_t, \|\tilde{\theta}_t^i - \hat{\theta}_t^i\|_{V_t} \leq \beta_t \right\}, \quad (21)$$

830 From Lemma 4, it follows that event $\tilde{\mathcal{E}}$ holds with probability at least $1 - \delta$. Using this result, the
 831 posterior rewards can be bounded as follows.

832 **Lemma 5** *Suppose event $\tilde{\mathcal{E}}$ in Eq. (21) holds. For any $i \in [m]$ and $t \in [T]$,*

$$\langle \theta_*^i - \tilde{\theta}_t^i, \mathbf{x} \rangle \leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}\|_{V_t^{-1}}.$$

833 **Proof:** We first reformulate the expected reward as follows,
 834

$$\langle \theta_*^i, \mathbf{x} \rangle = \langle \theta_*^i - \hat{\theta}_t^i, \mathbf{x} \rangle + \langle \hat{\theta}_t^i - \tilde{\theta}_t^i, \mathbf{x} \rangle + \langle \tilde{\theta}_t^i, \mathbf{x} \rangle.$$

835 Applying the Cauchy-Schwarz inequality (Aldaz et al., 2015), this expression can be bounded as:
 836

$$\langle \theta_*^i, \mathbf{x} \rangle - \langle \tilde{\theta}_t^i, \mathbf{x} \rangle \leq \|\theta_*^i - \hat{\theta}_t^i\|_{V_t} \|\mathbf{x}\|_{V_t^{-1}} + \|\hat{\theta}_t^i - \tilde{\theta}_t^i\|_{V_t} \|\mathbf{x}\|_{V_t^{-1}}.$$

837 Since the event $\tilde{\mathcal{E}}$ holds, the inequality can be further relaxed to:
 838

$$\langle \theta_*^i, \mathbf{x} \rangle - \langle \tilde{\theta}_t^i, \mathbf{x} \rangle \leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}\|_{V_t^{-1}}.$$

839 A similar discussion derives that

$$\begin{aligned}
 840 \quad \langle \tilde{\theta}_t^i, \mathbf{x} \rangle &= \langle \tilde{\theta}_t^i - \hat{\theta}_t^i, \mathbf{x} \rangle + \langle \hat{\theta}_t^i - \theta_*^i, \mathbf{x} \rangle + \langle \theta_*^i, \mathbf{x} \rangle \\
 841 \\
 842 \quad &\leq \|\tilde{\theta}_t^i - \hat{\theta}_t^i\|_{V_t} \|\mathbf{x}\|_{V_t^{-1}} + \|\hat{\theta}_t^i - \theta_*^i\|_{V_t} \|\mathbf{x}\|_{V_t^{-1}} + \langle \theta_*^i, \mathbf{x} \rangle \\
 843 \\
 844 \quad &\leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}\|_{V_t^{-1}} + \langle \theta_*^i, \mathbf{x} \rangle.
 \end{aligned}$$

845 Thus, the proof of Lemma 5 is complete. \square
 846

847 In the following, we present two lemmas to analyze the elimination algorithm LAE, which serve as
 848 counterparts to Lemma 2 and Lemma 3.

864 **Lemma 6** Suppose event $\tilde{\mathcal{E}}$ in Eq. (21) holds. In Algorithm 3, if $\mathbf{x}_t^* \in \mathcal{A}_{t,s}$ and $\|\mathbf{x}\|_{V_t^{-1}} \leq C$ for
865 any $\mathbf{x} \in \mathcal{A}_{t,s}$, then
866

867 $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^m$ and $\langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C, \forall i \in [m], \forall \mathbf{x} \in \mathcal{A}_{t,s}^m$.
868

869 **Proof:** Similar to the proof of Lemma 2, we prove this lemma by an inductive approach. For the
870 first objective $i = 1$, since $\hat{\mathbf{x}}_t^1 = \arg \max_{\mathbf{x} \in \mathcal{A}_{t,s}^0} \langle \tilde{\boldsymbol{\theta}}_t^1, \mathbf{x} \rangle$ and $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^0 = \mathcal{A}_{t,s}$, it follows that for
871 all $\mathbf{x} \in \mathcal{A}_{t,s}^1$,

872
$$\langle \boldsymbol{\theta}_*^1, \mathbf{x}_t^* - \mathbf{x} \rangle \leq \langle \boldsymbol{\theta}_*^1, \mathbf{x}_t^* - \mathbf{x} \rangle + \langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\mathbf{x}}_t^1 - \mathbf{x}_t^* \rangle. \quad (22)$$

873

874 Given that the event $\tilde{\mathcal{E}}$ holds, Lemma 5 tells that for all $\mathbf{x} \in \mathcal{A}_{t,s}^1$,

875
$$|\langle \boldsymbol{\theta}_*^1 - \tilde{\boldsymbol{\theta}}_t^1, \mathbf{x}_t^* \rangle| \leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}_t^*\|_{V_t^{-1}}, |\langle \boldsymbol{\theta}_*^1 - \tilde{\boldsymbol{\theta}}_t^1, \mathbf{x} \rangle| \leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}\|_{V_t^{-1}}.$$

876

877 Substituting this into Eq. (22), it follows that for all $\mathbf{x} \in \mathcal{A}_{t,s}^1$,

878
$$\langle \boldsymbol{\theta}_*^1, \mathbf{x}_t^* - \mathbf{x} \rangle \leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}_t^*\|_{V_t^{-1}} + \langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\mathbf{x}}_t^1 - \mathbf{x} \rangle + (\alpha_t + \beta_t) \cdot \|\mathbf{x}\|_{V_t^{-1}}.$$

879

880 Recall that $\mathcal{A}_{t,s}^1 = \{\mathbf{x} \in \mathcal{A}_{t,s}^0 \mid \langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\mathbf{x}}_t^1 - \mathbf{x} \rangle \leq 2(\alpha_t + \beta_t) \cdot C\}$. Therefore, for all $\mathbf{x} \in \mathcal{A}_{t,s}^1$,

881
$$\langle \boldsymbol{\theta}_*^1, \mathbf{x}_t^* - \mathbf{x} \rangle \leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}_t^*\|_{V_t^{-1}} + 2(\alpha_t + \beta_t) \cdot C + (\alpha_t + \beta_t) \cdot \|\mathbf{x}\|_{V_t^{-1}}.$$

882

883 Since $\|\mathbf{x}\|_{V_t^{-1}} \leq C$ for any $\mathbf{x} \in \mathcal{A}_{t,s}$, it follows that for all $\mathbf{x} \in \mathcal{A}_{t,s}^1$,

884
$$\langle \boldsymbol{\theta}_*^1, \mathbf{x}_t^* - \mathbf{x} \rangle \leq 4(\alpha_t + \beta_t) \cdot C.$$

885

886 Next, Lemma 5 tells that
887

888
$$\langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\mathbf{x}}_t^1 - \mathbf{x}_t^* \rangle \leq \langle \boldsymbol{\theta}_*^1, \hat{\mathbf{x}}_t^1 - \mathbf{x}_t^* \rangle + (\alpha_t + \beta_t) \cdot \|\hat{\mathbf{x}}_t^1\|_{V_t^{-1}} + (\alpha_t + \beta_t) \cdot \|\mathbf{x}_t^*\|_{V_t^{-1}}.$$

889

890 Since \mathbf{x}_t^* is the optimal arm, $\langle \boldsymbol{\theta}_*^1, \hat{\mathbf{x}}_t^1 - \mathbf{x}_t^* \rangle \leq 0$. Using $\|\mathbf{x}\|_{V_t^{-1}} \leq C$ for any $\mathbf{x} \in \mathcal{A}_{t,s}$, we have
891

892
$$\langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\mathbf{x}}_t^1 - \mathbf{x}_t^* \rangle \leq 2(\alpha_t + \beta_t) \cdot C.$$

893

894 Thus, $\mathbf{x}_t^* \in \mathcal{A}_t^1 = \{a \in \mathcal{A}_{t,s}^0 \mid \langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\mathbf{x}}_t^1 - \mathbf{x}_t^* \rangle \leq 2(\alpha_t + \beta_t) \cdot C\}$. The proof for the first objective is
895 finished.
896

897 Using the induction method, assume that for $i \geq 2$,

898
$$\mathbf{x}_t^* \in \mathcal{A}_{t,s}^j \text{ and } \langle \boldsymbol{\theta}_*^j, \mathbf{x}_t^* - \mathbf{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{j-1}) \cdot (\alpha_t + \beta_t) \cdot C, \forall \mathbf{x} \in \mathcal{A}_{t,s}^j, \forall j \in [i-1].$$

899

900 We aim to prove

901
$$\mathbf{x}_t^* \in \mathcal{A}_{t,s}^i \text{ and } \langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C, \forall \mathbf{x} \in \mathcal{A}_{t,s}^i. \quad (23)$$

902

903 Since $\hat{\mathbf{x}}_t^i = \arg \max_{\mathbf{x} \in \mathcal{A}_{t,s}^{i-1}} \langle \tilde{\boldsymbol{\theta}}_t^i, \mathbf{x} \rangle$ and $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^{i-1}$, it follows that for all $\mathbf{x} \in \mathcal{A}_{t,s}^i$,

904
$$\langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x} \rangle \leq \langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x} \rangle + \langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\mathbf{x}}_t^i - \mathbf{x}_t^* \rangle. \quad (24)$$

905

906 Given that the event $\tilde{\mathcal{E}}$ holds, Lemma 5 tells ensures that for all $\mathbf{x} \in \mathcal{A}_{t,s}^i$,

907
$$|\langle \boldsymbol{\theta}_*^i - \tilde{\boldsymbol{\theta}}_t^i, \mathbf{x}_t^* \rangle| \leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}_t^*\|_{V_t^{-1}}, |\langle \boldsymbol{\theta}_*^i - \tilde{\boldsymbol{\theta}}_t^i, \mathbf{x} \rangle| \leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}\|_{V_t^{-1}}.$$

908

909 Substituting this into Eq. (24), for all $\mathbf{x} \in \mathcal{A}_{t,s}^i$,

910
$$\langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x} \rangle \leq (\alpha_t + \beta_t) \cdot \|\mathbf{x}_t^*\|_{V_t^{-1}} + \langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\mathbf{x}}_t^i - \mathbf{x} \rangle + (\alpha_t + \beta_t) \cdot \|\mathbf{x}\|_{V_t^{-1}}.$$

911

912 Recalling that $\mathcal{A}_{t,s}^i = \{\mathbf{x} \in \mathcal{A}_{t,s}^{i-1} \mid \langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\mathbf{x}}_t^i - \mathbf{x} \rangle \leq (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C\}$ and
913 $\|\mathbf{x}\|_{V_t^{-1}} \leq C$ for any $\mathbf{x} \in \mathcal{A}_{t,s}$, we have for all $\mathbf{x} \in \mathcal{A}_{t,s}^i$,

914
$$\langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C.$$

915

918 Finally, Lemma 5 tells that
 919

$$\langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\mathbf{x}}_t^i - \mathbf{x}_t^* \rangle \leq \langle \boldsymbol{\theta}_*^i, \hat{\mathbf{x}}_t^i - \mathbf{x}_t^* \rangle + 2(\alpha_t + \beta_t) \cdot C.$$

920 Using Eq. (3), $\langle \boldsymbol{\theta}_*^i, \hat{\mathbf{x}}_t^i - \mathbf{x}_t^* \rangle \leq \lambda \cdot \max_{j \in [i-1]} \{ \langle \boldsymbol{\theta}_*^j, \mathbf{x}_t^* - \hat{\mathbf{x}}_t^j \rangle \}$. Thus,
 921

$$\langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\mathbf{x}}_t^i - \mathbf{x}_t^* \rangle \leq \lambda \cdot 4(1 + \lambda + \dots + \lambda^{i-2}) \cdot (\alpha_t + \beta_t) \cdot C + 2(\alpha_t + \beta_t) \cdot C.$$

922 It follows that $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^i = \{ \mathbf{x} \in \mathcal{A}_{t,s}^{i-1} \mid \langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\mathbf{x}}_t^i - \mathbf{x}_t^* \rangle \leq (2 + 4\lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C \}$.
 923 This completes the proof of Eq. (23) and concludes the induction framework. \square
 924

925 Lemma 6 depends on the assumption that $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^0$. In the following lemma, we remove this
 926 assumption.
 927

928 **Lemma 7** Suppose $\tilde{\mathcal{E}}$ in Eq. (21) holds. In Algorithm 2, for any $s \geq 1$ and $\mathbf{x} \in \mathcal{A}_{t,s}$,
 929

$$\langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot 2^{-s+1}, i \in [m].$$

930 **Proof:** We prove $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^0$ for $s \geq 1$ by induction. For the base case $s = 1$, $\mathbf{x}_t^* \in \mathcal{A}_{t,1}^0$ obviously
 931 since $\mathcal{A}_{t,1}^0 = \mathcal{A}_t$. Assume that $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^0$ for some $s \geq 1$. By Lemma 6, $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^0$ deduces
 932 that $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^m$. Since $\mathcal{A}_{t,s+1}^0 = \mathcal{A}_{t,s+1} = \mathcal{A}_{t,s}^m$, it follows that $\mathbf{x}_t^* \in \mathcal{A}_{t,s+1}^0$. By induction, we
 933 conclude that $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^0$ for all $s \geq 1$. Given $\mathbf{x}_t^* \in \mathcal{A}_{t,s}^0$, Lemma 6 tells that for any $\mathbf{x} \in \mathcal{A}_{t,s}^m$,
 934 $\langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot 2^{-s}, i \in [m]$. Thus, Lemma 7 holds since $\mathcal{A}_{t,s}^m = \mathcal{A}_{t,s+1}$. \square
 935

936 By a similar argument as in Lemma 7, we obtain the following lemma.
 937

938 **Lemma 8** Suppose $\tilde{\mathcal{E}}$ in Eq. (21) holds. In Algorithm 2, for any $\mathbf{x} \in \mathcal{A}_{t,T}$,
 939

$$\langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot \frac{1}{\sqrt{T}}, i \in [m].$$

940 We now complete the proof of Theorem 2. Let $\psi_s(T) = \{t \in [T] \mid \|\mathbf{x}_t\|_{V_t^{-1}} > 2^{-s}\}$ for $s \geq 1$, and
 941 let $\psi_0(T) = \{t \in [T] \mid \|\mathbf{x}_t\|_{V_t^{-1}} \leq 1/\sqrt{T}\}$. The regret can be decomposed as
 942

$$R^i(T) = \sum_{t \in \psi_0(T)} \langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x}_t \rangle + \sum_{s=1}^S \sum_{t \in \psi_s(T)} \langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x}_t \rangle.$$

943 where $S \leq \log(T)$, since $2^{-\log T} \leq 1/\sqrt{T}$.
 944

945 The trials in $\psi_0(T)$ play arms in the **if** case. By Lemma 8, we have
 946

$$\sum_{t \in \psi_0(T)} \langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x}_t \rangle \leq |\psi_0(T)| \cdot 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_T + \beta_T) \cdot \frac{1}{\sqrt{T}}.$$

947 For the trials in $\psi_s(T)$, corresponding to the **else if** case, where the arm is selected from $\mathcal{A}_{t,s}$.
 948 Lemma 7 tells that
 949

$$\sum_{t \in \psi_s(T)} \langle \boldsymbol{\theta}_*^i, \mathbf{x}_t^* - \mathbf{x}_t \rangle \leq |\psi_s(T)| \cdot 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_T + \beta_T) \cdot 2^{-s+1}.$$

950 Thus, the regret for the i -the objective is bounded as
 951

$$R^i(T) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_T + \beta_T) \cdot \left(\frac{|\psi_0(T)|}{\sqrt{T}} + \sum_{s=1}^S 2 \cdot 2^{-s} |\psi_s(T)| \right). \quad (25)$$

952 Lemma 3 of Chu et al. (2011) states that
 953

$$\sum_{t \in \psi_s(T)} \|\mathbf{x}_t\|_{V_t^{-1}} \leq 5\sqrt{d|\psi_s(T)| \log(|\psi_s(T)|)}.$$

972 Using the fact that $\|\mathbf{x}_t\|_{V_t^{-1}} > 2^{-s}$ for $t \in \psi_s(T)$, we obtain
 973

$$974 \quad 2^{-s}|\psi_s(T)| \leq 5\sqrt{d|\psi_s(T)|\log(|\psi_s(T)|)}.$$

975 Since $|\psi_s(T)| \leq T$, we obtain
 976

$$977 \quad \sum_{s=1}^S 2 \cdot 2^{-s}|\psi_s(T)| \leq 10 \sum_{s=1}^S \sqrt{d|\psi_s(T)|\log T}.$$

980 Applying the Cauchy-Schwarz inequality (Aldaz et al., 2015), this simplifies to
 981

$$982 \quad \sum_{s=1}^S 2 \cdot 2^{-s}|\psi_s(T)| \leq 10\gamma_T \sqrt{dST\log T}.$$

985 Since $S \leq \log T$, we can further relax this bound to
 986

$$987 \quad \sum_{s=1}^S 2 \cdot 2^{-s}|\psi_s(T)| \leq 10 \log T \sqrt{dT}.$$

989 Substituting this result into Eq. (25) shows that
 990

$$991 \quad R^i(T) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_T + \beta_T) \cdot \left(\sqrt{T} + 10 \log T \sqrt{dT} \right).$$

993 A simple relaxation yields the final bound,
 994

$$995 \quad R^i(T) \leq 44(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_T + \beta_T) \cdot \log T \sqrt{dT}.$$

996 The proof of Theorem 2 is finished. □
 997

998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025