MULTI-OBJECTIVE BANDITS WITH HIERARCHICAL PREFERENCES: A THOMPSON SAMPLING APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper studies multi-objective bandits with hierarchical preferences, a class of bandit problems where arms are evaluated according to multiple objectives, each with a distinct priority level. The agent aims to maximize the most critical objective first, followed by the second most important, and so on for subsequent objectives. We address this problem using Thompson Sampling (TS), a well-known Bayesian decision-making strategy. Although TS has been extensively studied in single-objective bandit settings, its effectiveness in lexicographic bandits remains an open question. To fill this gap, we propose two TS-based algorithms for lexicographic bandits: (i) For Gaussian reward distributions, we introduce an multi-armed bandit algorithm that achieves a problem-dependent regret bound of $O(\sum \frac{\log(mKT)}{\Delta^i(a)})$, where $\Delta^i(a)$ denotes the suboptimality gap for the objective $i \in [m]$ and arm $a \in [K]$, and m is the number of objectives. (ii) For unknown reward distributions, we design a stochastic linear bandit algorithm with a minmax regret bound of $O(d^{3/2}\sqrt{T})$, where d is the dimension of the contextual vectors. These results highlight the adaptability of TS strategy to the lexicographic bandit problem, offering efficient solutions under varying degrees of knowledge about the rewards. Empirical experiments strongly support our theoretical findings.

1 Introduction

Multi-armed bandits (MAB) is a sequential decision-making model under uncertainty, where an agent selects an arm (action) from an arm set $[K] = \{1, 2, \ldots, K\}$ and receives a stochastic reward corresponding to the chosen arm (Robbins, 1952; Lattimore & Szepesvári, 2020). The agent's goal is to maximize cumulative rewards, which requires balancing the exploration of uncertain arms with the exploitation of the best-known arms (Auer, 2002). This exploration-exploitation trade-off is central to a variety of applications, such as online advertising (Schwartz et al., 2017), recommendation systems (Li et al., 2010), and clinical trials (Villar et al., 2015), where decisions must be made under uncertainty. These scenarios often involve contextual information, which motivates the development of stochastic linear bandits (SLB) (Abbasi-yadkori et al., 2011; Chu et al., 2011; Jun & Kim, 2024). In SLB, arms are represented by feature vectors $\mathcal{A} \subseteq \mathbb{R}^d$, and the expected reward of each arm is a linear function of its features and an unknown parameter vector. In this paper, we first propose an algorithm for MAB with *finite* arms, and then present an algorithm for SLB with *infinite* arms.

In addressing the stochastic bandit problem, two widely studied and influential strategies are the Upper Confidence Bound (UCB) (Auer, 2002; Abbasi-yadkori et al., 2011) and Thompson Sampling (TS) (Agrawal & Goyal, 2013a; Russo & Van Roy, 2014; Xu et al., 2023; Clavier et al., 2024). UCB operates in the *frequentist* framework, assuming that the underlying parameters of the bandit model are fixed. At each round, it constructs confidence intervals for each arm's expected reward and selects the arm with the highest upper confidence bound (Abbasi-yadkori et al., 2011). In contrast, TS is based on the *Bayesian* framework, where the bandit parameters follow a prior distribution (Agrawal & Goyal, 2013b). At every step, TS samples a random value from the posterior distribution of each arm, and selects the arm with the highest sampled value. The *simplicity and near-optimal regret performance* of TS make it particularly appealing. Specifically, the UCB-based method (Abbasi-yadkori et al., 2011) requires solving a bilinear optimization problem at each round, which is non-convex and computationally demanding. By contrast, TS involves only linear optimization, significantly enhancing computational efficiency (Abeille & Lazaric, 2017). Empir-

Table 1: Comparisons of the Regret Bounds for TS Bandits. K is the number of arms, d is the dimension of contextual vector, T is the time horizon, and m is the number of objectives. $\Delta^i(a) = \mu^i(a^*) - \mu^i(a)$ is the expected reward gap for arm a's i-th objective. $\Lambda^i(\lambda) = 1 + \lambda + \cdots + \lambda^{i-1}$, where λ is the corresponding trade-off parameter in Eqs. (2) and (3).

Algorithm	Regret	Obj.	Distribution	Model
Kaufmann et al. (2012b)	$O\left(\sum \frac{\log(T)}{\Delta(a)}\right)$	Single	Known	MAB
Russo & Van Roy (2014)	$\widetilde{O}\left(d\sqrt{T}\right)$	Single	Known	SLB
Agrawal & Goyal (2013a)	$\widetilde{O}\left(d^{3/2}\sqrt{T}\right)$ $\widetilde{O}\left(d^{3/2}\sqrt{T}\right)$	Single	Unknown	SLB
Abeille & Lazaric (2017)	$\widetilde{O}\left(d^{3/2}\sqrt{T} ight)$	Single	Unknown	SLB
DK-TSLB (Ours)	$O\left((\Lambda^{i}(\lambda))^{2} \cdot \sum \frac{\log(mKT)}{\Delta^{i}(a)}\right)$ $\widetilde{O}\left(\Lambda^{i}(\lambda) \cdot d^{3/2}\sqrt{T}\right)$	$i \in [m]$	Known	MAB
DF-TSLB (Ours)	$\widetilde{O}\left(\Lambda^i(\lambda)\cdot d^{3/2}\sqrt{T}\right)$	$i \in [m]$	UnKnown	SLB

ical studies further highlight the practical effectiveness of TS. For instance, in applications such as display advertising and news article recommendation, TS has demonstrated competitive or even superior performance compared to other methods (Chapelle & Li, 2011; Scott, 2010). While TS has been extensively studied in single-objective bandit problems (Agrawal & Goyal, 2013b), its application to multi-objective bandits remains relatively underexplored. However, many real-world scenarios necessitate the simultaneous optimization of multiple, potentially conflicting objectives. For instance, recommendation systems must balance user satisfaction (e.g., click or dwell time), platform revenue (e.g., purchase rate), and content diversity (Zheng & Wang, 2021). This highlights the importance of investigating the multi-objective bandit problem (Drugan & Nowe, 2013).

In multi-objective bandit problems, the rewards are vector-valued, which presents a challenge in comparing different arms. For example, comparing the vectors [1,0,0] and [0,0,1] is not straightforward. Existing approaches either utilize scalarization techniques to reduce the multi-objective problem to a single-objective one (Drugan & Nowe, 2013; Roijers et al., 2017; Wanigasekara et al., 2019), or apply Pareto dominance to identify multiple optimal arms (Auer et al., 2016; Lu et al., 2019; Xu & Klabjan, 2023; Crepon et al., 2024). However, scalarization methods *require precise knowledge* of the relative importance of objectives, while Pareto dominance *assumes equal importance* across all objectives, which maybe violated in many real-world applications. For example, a hotel recommendation system prioritizes factors such as price, location, and service quality based on user preferences (Yager et al., 2011). Lexicographic bandits offer a framework that accommodates priority hierarchies, which first optimizes higher-priority objectives and then refines the lower-priority ones (Tekin & Turgay, 2018; Tekin, 2019; Hüyük & Tekin, 2021).

To the best of our knowledge, we are the first to design TS-based algorithms for lexicographic bandit problems. Our main contributions are summarized as follows:

- For the MAB setting with Gaussian rewards, we propose an algorithm that achieves a regret bound of $O\left((\Lambda^i(\lambda))^2 \cdot \sum_{\Delta^i(a)>0} \frac{\log(mKT)}{\Delta^i(a)}\right)$ for the i-th objective, where $i \in [m]$, $\Lambda^i(\lambda) = 1 + \lambda + \dots + \lambda^{i-1}$, m is the number of objectives, λ is the trade-off parameter among conflicting objectives, $\Delta^i(a)$ is the reward gap for arm a's i-th objective, K is the number of arms, and T is the time horizon.
- For the SLB setting with unknown reward distributions, we propose an algorithm achieving a regret bound of $\widetilde{O}(\Lambda^i(\lambda) \cdot d^{3/2}\sqrt{T})$, where d is the dimension of the contextual vector.
- As shown in Table 1, our algorithms yield regret bounds that are comparable to those of single-objective TS algorithms. Notably, since $\Lambda^1(\lambda)=1$ for any $\lambda\in\mathbb{R}$, the performance of the most important objective is not degraded when optimizing the other objectives.
- We further provide an alternative proof for TS bandits, which differs from previous techniques that classify arms as saturated and unsaturated (Agrawal & Goyal, 2013a) or utilize the supporting functions (Abeille & Lazaric, 2017).

2 RELATED WORK

In this section, we provide a brief review of the literature on Thompson Sampling bandits and multiobjective bandits, highlighting key developments in both fields.

Thompson Sampling Bandits. Thompson Sampling (TS), first introduced by Thompson (1933), has become a fundamental approach for bandit problems, which is supported by extensive empirical (Scott, 2010; Chapelle & Li, 2011) and theoretical analysis (Kaufmann et al., 2012b; Agrawal & Goyal, 2013b; 2017). Existing TS algorithms can generally be classified into two categories: methods that assume known reward distributions (Kaufmann et al., 2012a;b; Russo & Van Roy, 2014; Atsidakou et al., 2023) and methods that are distribution-free (Agrawal & Goyal, 2012; 2013b;a; Abeille & Lazaric, 2017; Xu et al., 2023).

Kaufmann et al. (2012b) established an asymptotic regret bound of $O\left(\sum_{\Delta(a)>0}\frac{\log(T)}{\Delta(a)}\right)$ for MAB with Bernoulli rewards. This result was later extended by Kaufmann et al. (2012a) to various specific reward distributions. In a subsequent study, Russo & Van Roy (2014) proposed a regret bound of $\widetilde{O}(\sqrt{KT})$, assuming the posterior distribution is known. More recently, Atsidakou et al. (2023) derived a finite-time Bayes regret bound of $O\left(\sum_{\Delta(a)>0}\frac{\log(T)}{\Delta(a)}\right)$, applicable to both Gaussian and Bernoulli rewards. In cases where the reward distribution is unknown, Agrawal & Goyal (2012) demonstrated that the TS algorithm achieves an expected regret of $O\left(\left(\sum_{\Delta(a)>0}\frac{1}{(\Delta(a))^2}\right)^2\log(T)\right)$ for the MAB model. Subsequently, Agrawal & Goyal (2013b) introduced a problem-independent regret bound of $\widetilde{O}(\sqrt{KT})$ for the MAB model. Agrawal & Goyal (2013a) proposed the first TS method for the SLB problem, proving a regret bound of $\widetilde{O}(d^{3/2}\sqrt{T})$ by categorizing arms into saturated and unsaturated groups. This result was refined by Abeille & Lazaric (2017), who revised the proof of Agrawal & Goyal (2013a) and obtained the same regret bound. Recently, Xu et al. (2023) developed a variance-aware TS algorithm for the SLB model. Additionally, TS has been explored in other settings, including kernelized bandits (Chowdhury & Gopalan, 2017), neural networks (Zhang et al., 2021), and non-stationary environments (Trovo et al., 2020).

Multi-Objective Bandits. Drugan & Nowe (2013) studied the single-objective MAB framework to multi-objective setting by associating a reward vector with each arm. Their work established logarithmic regret bounds under the scalarized regret and the Pareto regret, respectively, where the scalarized approach converts the multi-objective problem into a single-objective one by using weighted combinations of objectives, and the Pareto approach treats all objectives equally, without putting any weights on different objectives. Building on the Pareto approach, two lines of work are developed. One is Pareto regret minimization, which aims to minimize the cumulative Pareto regret over T rounds (Turgay et al., 2018; Lu et al., 2019; Xu & Klabjan, 2023). Another research direction is the Pareto set identification, which aims to minimize the cost of identifying all Pareto optimal arms (Auer et al., 2016; Ararat & Tekin, 2023; Crepon et al., 2024). Most existing work on multi-objective Thompson sampling adopts the scalarized approach (Q. Yahyaa et al., 2015; Roijers et al., 2017; Paria et al., 2019), making it unsuitable for lexicographic bandit problems. Tekin & Turgay (2018) initially examined lexicographic contextual bandits with two objectives. Hüyük & Tekin (2021) extended the objectives beyond two in MAB model and achieved a priority-based regret bound of $\widetilde{O}((KT)^{2/3})$. Xue et al. (2024) studied the lexicographic Lipschitz bandit problem and proposed a regret bound of $\widetilde{O}(T^{(d_z^i+1)/(d_z^i+2)})$ for the *i*-th objective, where d_z^i is the zooming dimension of the i-th objective and $i \in [m]$. Moreover, lexicographic optimization has been studied in multi-objective optimization (Abernethy et al., 2024) and multi-objective reinforcement learning (Skalse et al., 2022; Zhang et al., 2023).

3 PROBLEM SETTING

This paper studies two multi-objective bandit model under lexicographic ordering: Multi-Objective Multi-Armed Bandits (MOMAB) and Multi-Objective Stochastic Linear Bandits (MOSLB).

Notation. For a vector $x \in \mathbb{R}^d$, let ||x|| denote its Euclidean norm. Meanwhile, its norm induced by a positive-definite matrix $V \in \mathbb{R}^{d \times d}$ is $||x||_V = \sqrt{x^\top V x}$. For any positive integer $m \in \mathbb{Z}_+$,

 $[m] \triangleq \{1, 2, \dots, m\}$. The superscript $i \in [m]$ is used to distinguish different objectives, e.g., y_t^i is the stochastic reward of the *i*-th objective at round t.

MOMAB. In the MOMAB problem, the arm set is [K] and each arm $a \in [K]$ has a vector $[\mu^1(a), \mu^2(a), \ldots, \mu^m(a)] \in \mathbb{R}^m$. Here, $\mu^i(a)$ is the expected reward of arm a for its i-th objective, and m is the number of objectives. MOMAB is a T-round sequential decision-making problem. In each round $t=1,2,\ldots,T$, the agent chooses an arm $a_t \in [K]$ and receives a stochastic reward vector $[y_t^1,y_t^2,\ldots,y_t^m] \in \mathbb{R}^m$, where $\mathrm{E}[y_t^i] = \mu^i(a_t)$ for all $i \in [m]$. The lexicographic optimal arm is denoted as a^* (we will define it later). For any arm $a \in [K]$ and $i \in [m]$, we set $\Delta^i(a) = \mu^i(a^*) - \mu^i(a)$. As in single-objective bandit problems (Lattimore & Szepesvári, 2020), the agent's performance is measured by the cumulative reward gap over T rounds, i.e.,

$$R^{i}(T) = \sum_{t=1}^{T} \Delta^{i}(a_{t}) = \sum_{t=1}^{T} \mu^{i}(a^{*}) - \mu^{i}(a_{t}), i \in [m].$$

MOSLB. In the MOSLB problem, the arm set at round t is denoted as $\mathcal{A}_t \subseteq \mathbb{R}^d$, where d is the dimension of contextual vector. In this paper, \mathcal{A}_t is assumed to be infinite. There exist m unknown vectors $\{\boldsymbol{\theta}_*^1, \boldsymbol{\theta}_*^2, \dots, \boldsymbol{\theta}_*^m\} \subseteq \mathbb{R}^d$ which determine the expected rewards of each arm. Precisely, for each objective $i \in [m]$, the expected rewards for arm $\boldsymbol{x} \in \mathcal{A}_t$ is $\mu^i(\boldsymbol{x}) = \langle \boldsymbol{\theta}_*^i, \boldsymbol{x} \rangle$. It is often assumed that both the arms and inherent vectors are bounded, i.e.,

$$\|\boldsymbol{x}\| \le 1, \forall \boldsymbol{x} \in \mathcal{A}_t, \text{ and } \|\boldsymbol{\theta}_*^i\| \le B, \forall i \in [m].$$
 (1)

In each round t = 1, 2, ..., T, the agent chooses an arm $x_t \in A_t$ and receives a stochastic reward vector associated with the chosen arm. Denote the lexicographic optimal arm in A_t as x_t^* . The regret in MOSLB problem is written as

$$R^i(T) = \sum_{t=1}^T \langle \boldsymbol{\theta}_*^i, \boldsymbol{x}_t^* - \boldsymbol{x}_t \rangle, i \in [m].$$

Next, we introduce the lexicographic order to compare different arms (Hüyük & Tekin, 2021).

Definition 1 (Lexicographic Order) Consider two vectors $\mathbf{u} = [u^1, u^2, \dots, u^m] \in \mathbb{R}^m$ and $\mathbf{v} = [v^1, v^2, \dots, v^m] \in \mathbb{R}^m$. \mathbf{u} lexicographically dominates \mathbf{v} if and only if there exists some $i^* \in [m]$ such that $u^i = v^i$ for $i \in [i^* - 1]$ and $u^{i^*} > v^{i^*}$.

Lexicographic order compares vectors sequentially, starting with the first objective and proceeding to the last, e.g., [3, 6, 2] lexicographically dominates [3, 5, 10] and $i^* = 2$. Based on lexicographic order, we introduce the lexicographic optimal arm (Hüyük & Tekin, 2021).

Definition 2 (Lexicographic Optimal Arm) An arm $a^* \in [K]$ or $x_t^* \in A_t$ is lexicographic optimal if and only if its expected reward is not lexicographically dominated by that of any other arms.

To capture the trade-offs between conflicting objectives, we impose assumptions on the expected rewards. In the MOMAB setting, we assume that for any $i \ge 2$ and $a \in [K]$,

$$\mu^{i}(a) - \mu^{i}(a^{*}) \le \lambda \cdot \max_{j \in [i-1]} \{ \mu^{j}(a_{*}) - \mu^{j}(a) \}.$$
 (2)

A similar assumption for the MOSLB setting is that for any $i \geq 2$ and $x \in A_t$,

$$\langle \boldsymbol{\theta}_*^i, \boldsymbol{x} - \boldsymbol{x}_t^* \rangle \le \lambda \cdot \max_{j \in [i-1]} \langle \boldsymbol{\theta}_*^j, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle, \ i \in [m].$$
 (3)

Here, λ quantifies the improvement in the value of the *i*-th objective for each unit decrease in the preceding i-1 objectives, when the solution transitions from the optimal arm $(a^* \text{ or } \boldsymbol{x}_t^*)$ to other arms. Multi-objective optimization often deals with conflicting objectives, thus trade-offs are typically employed, such as the global trade-off and the marginal rate of substitution (Miettinen, 1999).

4 ALGORITHMS

In this section, we first present an algorithm for lexicographic MOMAB, whose rewards follow a Gaussian distribution. Then, we introduce an algorithm for lexicographic MOSLB, capable of handling general distributions.

Algorithm 1 Distribution-Known Thompson Sampling for Lexicographic Bandits (DK-TSLB)

```
217
                                                           Input: T, K, m, \delta, \lambda, \{\theta_{0,a}^{i} | i \in [m], a \in [K]\}, \sigma_{0}, \sigma_{0}
218
                                                                  1: Initialize A_1 = [K]
219
                                                                 2: for t = 1, 2, ..., T do
220
                                                                                                       Compute the posterior distribution \mathcal{N}(\hat{\theta}_{t,a}^i, \hat{\sigma}_{t,a}^2) for any arm a \in \mathcal{A}_t and objective i \in [m],
221
                                                                                                       where \hat{\theta}_{t,a}^{i} and \hat{\sigma}_{t,a}^{2} are defined in Eq. (6)
222
                                                                                                       Compute the confidence term c_t(a) for any arm a \in A_t, where c_t(a) is defined in Eq. (7)
                                                                                                       Choose the arm a_t = \arg \max_{a \in \mathcal{A}_t} c_t(a)
224
                                                                                                       Initialize the arm set A_t^0 = A_t
225
                                                                                                       for i = 1, 2, ..., m do
226
                                                                                                                    \hat{a}_t^i = \arg\max_{a \in \mathcal{A}_{+}^{i-1}} \hat{\theta}_{t,a}^i
227
                                                                                                                   \mathcal{A}_{t}^{i} = \{ a \in \mathcal{A}_{t}^{i-1} | \hat{\theta}_{t,\hat{a}_{t}}^{i} - \hat{\theta}_{t,a}^{i} \le (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot c_{t}(a_{t}) \}
228
                                                                 9:
229
                                                            10:
230
                                                                                                       Update A_{t+1} = A_t^m
                                                                                                       Play arm a_t and observe its reward [y_t^1, y_t^2, \dots, y_t^m]
231
                                                           12:
                                                           13: end for
232
```

4.1 DISTRIBUTION-KNOWN METHOD: DK-TSLB

This part provides a Distribution-Know Thompson Sampling method for Lexicographic Bandits, called DK-TSLB, whose details are provided in Algorithm 1. We use Gaussian rewards for illustration in this paper, *and this method can be easily extended to other distributions*, such as Bernoulli rewards, as long as the posterior distribution is computable.

In the Gaussian MOMAB model, its inherent parameters $\{\theta_a^i|a\in[K],i\in[m]\}\subseteq\mathbb{R}$ are drawn from a known Gaussian prior distribution, which is

$$\theta_a^i \sim \mathcal{N}(\theta_{0,a}^i, \sigma_0^2), a \in [K], i \in [m], \tag{4}$$

where $\theta_{0,a}^i \in \mathbb{R}$ is the prior mean and $\sigma_0 > 0$ is the prior standard deviation. For each arm $a \in [K]$ and each objective $i \in [m]$, its reward follows a Gaussian distribution:

$$y_a^i \sim \mathcal{N}(\theta_a^i, \sigma^2), \mu^i(a) = \theta_a^i,$$
 (5)

where $\theta_a^i \in \mathbb{R}$ is the mean and $\sigma^2 > 0$ is the known variance.

DK-TSLB adopts the idea of active arm elimination (AAE) to eliminate suboptimal arms during the T-round decision process. Unlike single-objective AAE algorithms (Even-Dar et al., 2006), DK-TSLB has to deal with m lexicographically prioritized objectives, which requires a hierarchical decision-making framework.

DK-TSLB starts by initializing the candidate arm set $\mathcal{A}_1 = [K]$. In each round t, DK-TSLB first uses historical data collected from previous rounds to compute the posterior distributions for current round. Leveraging a well-known result that the posterior distribution of a Gaussian random variable with a Gaussian prior is also Gaussian (Bishop, 2006), DK-TSLB computes a Gaussian posterior distribution $\mathcal{N}(\hat{\theta}^i_{t,a}, \hat{\sigma}^2_{t,a})$ for any arm $a \in \mathcal{A}_t$ and objective $i \in [m]$, where the posterior mean and posterior variance are defined as

$$\hat{\theta}_{t,a}^{i} = \hat{\sigma}_{t,a}^{2} \left(\sigma_{0}^{-2} \theta_{0,a}^{i} + \sigma^{-2} \sum_{\tau=1}^{t-1} \mathbb{I}\{a_{\tau} = a\} y_{t}^{i} \right), \quad \hat{\sigma}_{t,a}^{2} = \frac{1}{\sigma_{0}^{-2} + \sigma^{-2} N_{t,a}}. \tag{6}$$

Here, $N_{t,a} = \sum_{\tau=1}^{t-1} \mathbb{I}\{a_{\tau} = a\}$ denotes the number of observations for arm a up to round t.

Based on the posterior variance, DK-TSLB calculates the confidence term for arm a as

$$c_t(a) = \sqrt{2\hat{\sigma}_{t,a}^2 \log(mKT/\delta)},\tag{7}$$

which reflects the uncertainty in the posterior estimates. Next, the arm with maximal uncertainty among all eligible arms A_t is selected for further trials, i.e.,

$$a_t = \operatorname*{arg\,max}_{a \in \mathcal{A}_*} c_t(a). \tag{8}$$

To respect the lexicographic priority of the objectives, DK-TSLB employs a hierarchical elimination mechanism. Beginning with the initial set of active arms $\mathcal{A}^0_t = \mathcal{A}_t$, DK-TSLB iteratively refines this set for each objective $i=1,2,\ldots,m$. At each refinement step, it identifies the arm \hat{a}^i_t that maximizes the posterior mean $\hat{\theta}^i_{t,a}$ within the current active set \mathcal{A}^{i-1}_t , i.e., $\hat{a}^i_t = \arg\max_{a \in \mathcal{A}^{i-1}_t} \hat{\theta}^i_{t,a}$. Then, the active set is updated by retaining only those arms for which their posterior mean is sufficiently close to that of \hat{a}^i_t , such that

$$\mathcal{A}_t^i = \left\{ a \in \mathcal{A}_t^{i-1} | \hat{\theta}_{t,\hat{a}_t^i}^i - \hat{\theta}_{t,a}^i \leq (4\Lambda^i(\lambda) - 2) \cdot c_t(a_t) \right\},$$

where $\Lambda^i(\lambda) = 1 + \lambda + \dots + \lambda^{i-1}$. Recall from Eq. (8) that $c_t(a_t)$ denotes the maximum confidence term among the currently active arms. This choice ensures that the optimal arm a^* remains in the active set, i.e., $a^* \in \mathcal{A}_t^i$.

After eliminating for all m objectives, the active arm set for the next round is updated as $\mathcal{A}_{t+1} = \mathcal{A}_t^m$. Then, DK-TSLB plays the arm a_t , and observes the corresponding rewards $[y_t^1, y_t^2, \dots, y_t^m]$. These rewards are used to calculate the posterior mean and variance for subsequent rounds.

DK-TSLB combines posterior estimation, confidence-based exploration, and lexicographic arm elimination to ensure that the selected arms adhere to the priority order of the objectives and balances exploration and exploitation. The upper bound on the regret of DK-TSLB is provided as follows.

Theorem 1 Suppose that (2), (4) and (5) hold. Let $\Lambda^i(\lambda) = 1 + \lambda + \cdots + \lambda^{i-1}$. With probability at least $1 - \delta$, for any objective $i \in [m]$, the regret of DK-TSLB satisfies

$$R^{i}(T) \leq \sum_{\Delta^{i}(a)>0} \left((4\Lambda^{i}(\lambda))^{2} \sigma^{2} \cdot \frac{2 \log(mKT/\delta)}{\Delta^{i}_{a}} + \Delta^{i}_{a} \right).$$

Remark 1 Theorem 1 states that for any objective $i \in [m]$, DK-TSLB achieves a regret bound of $O\left((\Lambda^i(\lambda))^2 \cdot \sum_{\Delta^i(a)>0} \frac{\log(mKT)}{\Delta^i(a)}\right)$, which is consistent with single-objective algorithms (Kaufmann et al., 2012b) in terms of $\Delta^i(a)$ and T. Although an additional term $\Lambda^i(\lambda)$ is included, this is the cost of optimizing multiple objectives simultaneously. $\Lambda^1(\lambda)=1$ implies that when compared with single-objective algorithms (Kaufmann et al., 2012b), DK-TSLB does not degrade the performance of the most important objective.

4.2 DISTRIBUTION-FREE METHOD: DF-TSLB

In this section, we introduce a Distribution-Free Thompson Sampling method for Lexicographic Bandits, referred to as DF-TSLB, with its details provided in Algorithm 2. DF-TSLB is specifically designed for the MOSLB model, and the only assumption on its rewards is that they satisfy the sub-Gaussian property. Specifically, for some R>0 and any $\eta\in\mathbb{R}$, the following condition holds:

$$\mathrm{E}\left[e^{\eta\left(y_t^i - \langle \boldsymbol{\theta}_*^i, \boldsymbol{x}_t \rangle\right)} | \boldsymbol{x}_t\right] \le \exp\left(\frac{\eta^2 R^2}{2}\right), i \in [m]. \tag{9}$$

In the TS framework, the inherent parameters $\{\theta_*^i\}_{i=1}^m$ are drawn from an unknown distribution, thus it is necessary to construct a posterior distribution based on historical data. Due to the linear structure of MOSLB, we estimate the mean of the posterior distribution by least squares estimation.

DF-TSLB begins by initializing the covariance matrix V_1 as the identity matrix $I \in \mathbb{R}^{d \times d}$ and sets the posterior mean for each objective to be zero vector, i.e, $\hat{\theta}_1^i = \mathbf{0}, \forall i \in [m]$. At each round t, DF-TSLB first defines the confidence parameters α_t and β_t to regulate exploration, as follows:

$$\alpha_t = R\sqrt{d\log(16mtT/\delta)} + B, \quad \beta_t = \alpha_t \cdot \sqrt{2d\log(8dmT/\delta)}.$$
 (10)

Here, α_t quantifies the uncertainty in the least squares estimation and controls the variance of the posterior distribution. β_t shows the uncertainty of the sampled estimators and guides exploration.

After setting the exploration parameters, for each objective $i \in [m]$, DF-TSLB samples an estimator $\tilde{\theta}_t^i$ from a Gaussian distribution $\mathcal{N}(\hat{\theta}_t^i, \alpha_t^2 \cdot \mathbf{V}_t^{-1})$, where $\hat{\theta}_t^i \in \mathbb{R}^d$ is the posterior mean derived from least squares estimation (Eq. (11)), and $\mathbf{V}_t \in \mathbb{R}^{d \times d}$ is the covariance matrix. Using these sampled

346 347

348

349

350

351

352

353

354

355 356 357

358

359 360

361

362

365

366

367

368

369 370

372

373374

375

376

377

Algorithm 2 Distribution-Free Thompson Sampling for Lexicographic Bandits (DF-TSLB)

```
325
             Input: T, d, m, \delta, \lambda, B
326
              1: Initialize V_1 = I, \hat{\boldsymbol{\theta}}_1^i = \mathbf{0} for i \in [m]
327
              2: for t = 1, 2, ..., T do
328
                      Set confidence parameters \alpha_t and \beta_t by Eq. (10)
                      Sample \tilde{\theta}_t^i \sim \mathcal{N}(\hat{\theta}_t^i, \alpha_t^2 \cdot \mathbf{V}_t^{-1}) for all i \in [m]
              4:
                      Initialize s = 1, A_{t,s} = A_t
              5:
331
              6:
                      repeat
332
              7:
                          if \|\boldsymbol{x}\|_{\mathbf{V}^{-1}} \leq 1/\sqrt{T} for any \boldsymbol{x} \in \mathcal{A}_{t,s} then
333
              8:
                              Run Algorithm 3 to obtain the promising arms: A_{t,T} = LAE(\tilde{\theta}_t^i, \alpha_t, \beta_t, A_{t,s}, 1/\sqrt{T})
334
              9:
                              Randomly choose an arm x_t \in \mathcal{A}_{t,T}
335
             10:
                          else if \|x_t\|_{V_{\cdot}^{-1}} > 2^{-s} for some x_t \in \mathcal{A}_{t,s} then
336
             11:
                              Choose the arm x_t
337
             12:
338
                              Run Algorithm 3 to obtain the promising arms: A_{t,s+1} = LAE(\tilde{\theta}_t^i, \alpha_t, \beta_t, A_{t,s}, 2^{-s})
             13:
339
             14:
                              Update s = s + 1
340
             15:
                          end if
                      until an arm x_t is played
             16:
                      Play arm x_t and observe its reward [y_t^1, y_t^2, \dots, y_t^m]
             17:
                      Update covariance matrix V_{t+1} = V_t + \boldsymbol{x}_t \boldsymbol{x}_t^{\top}
343
             18:
             19:
                      Update \theta_{t+1}^i = V_{t+1}^{-1} X_{t+1} Y_{t+1}^i for i \in [m], where X_{t+1} and Y_{t+1}^i are defined in Eq. (12)
344
             20: end for
345
```

Algorithm 3 Lexicographic Arm Elimination (LAE)

```
Input: \tilde{\boldsymbol{\theta}}_t^i, \alpha_t, \beta_t, \mathcal{A}_{t,s}, C

1: Initialize the arm set \mathcal{A}_{t,s}^0 = \mathcal{A}_{t,s}

2: for i = 1, 2, \dots, m do

3: \hat{\boldsymbol{x}}_t^i = \arg\max_{\boldsymbol{x} \in \mathcal{A}_{t,s}^{i-1}} \langle \tilde{\boldsymbol{\theta}}_t^i, \boldsymbol{x} \rangle

4: \mathcal{A}_{t,s}^i = \{ \boldsymbol{x} \in \mathcal{A}_{t,s}^{i-1} | \langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\boldsymbol{x}}_t^i - \boldsymbol{x} \rangle \leq (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C \}

5: end for

6: Return \mathcal{A}_{t,s}^m
```

estimators, DF-TSLB engages in the decision-making process. It iteratively refines active arms, starting with s=1 and the entire arm set at round t, $\mathcal{A}_{t,s}=\mathcal{A}_t$, until an arm is chosen.

Depending on the confidence term $\|x\|_{V_t^{-1}}$ for candidate arms $x \in \mathcal{A}_{t,s}$, the decision-making process is divided into three cases. (i) If $\|x\|_{V_t^{-1}} \le 1/\sqrt{T}$ for any $x \in \mathcal{A}_{t,s}$, this indicates that all arms in $\mathcal{A}_{t,s}$ have been sufficiently explored. In this case, DF-TSLB first applies an arm elimination procedure, referred to as LAE, to filter out promising arms, and then randomly selects an arm x_t from the resulting set $\mathcal{A}_{t,T}$.

The detailed procedure of LAE is outlined in Algorithm 3. LAE eliminates arms using a procedure similar to Steps 6-11 in DK-TSLB, which iteratively refines $\mathcal{A}_{t,s}$ for each objective $i \in [m]$. Starting with the active arm set $\mathcal{A}_{t,s}^0 = \mathcal{A}_{t,s}$, LAE first identifies the arm that maximizes the posterior mean reward within the current active set $\mathcal{A}_{t,s}^{i-1}$, i.e., $\hat{x}_t^i = \arg\max_{a \in \mathcal{A}_{t,s}^{i-1}} \langle \tilde{\theta}_t^i, \boldsymbol{x} \rangle$. Then, the active set $\mathcal{A}_{t,s}^i$ retains only those arms whose difference between their posterior mean reward and that of \hat{x}_t^i does not exceed a threshold, i.e,

$$\langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\boldsymbol{x}}_t^i - \boldsymbol{x} \rangle \le (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C,$$

where C is an exploration term that adapts as the decision-making process evolves. After eliminating for all m objectives, LAE returns the active arm set \mathcal{A}_t^m .

(ii) If $\|x_t\|_{V_t^{-1}} > 2^{-s}$ for some $x_t \in \mathcal{A}_{t,s}$, the arm x_t is selected directly, as it has a high uncertainty and needs further exploration. (iii) If $\|x\|_{V_t^{-1}} \le 2^{-s}$ for all $x \in \mathcal{A}_{t,s}$, the set of promising arms

 $\mathcal{A}_{t,s}$ is refined using the LAE algorithm with the exploration term $C=2^{-s}$. The index s is then incremented $(s \to s+1)$, and the arm elimination process is repeated until an arm x_t is selected.

After the selected arm x_t is played and the corresponding rewards $[y_t^1, y_t^2, \dots, y_t^m]$ are observed, DF-TSLB updates the posterior mean and variance to prepare for the decision of next round. Specifically, the covariance matrix is updated as $V_{t+1} = V_t + x_t x_t^{\mathsf{T}}$, and the posterior mean for each objective $i \in [m]$ is computed as

$$\hat{\boldsymbol{\theta}}_{t+1}^{i} = \mathbf{V}_{t+1}^{-1} \mathbf{X}_{t+1} \mathbf{Y}_{t+1}^{i}, \tag{11}$$

where

$$X_{t+1} = [x_1, x_2, \dots, x_t], \quad Y_{t+1}^i = [y_1^i, y_2^i, \dots, y_t^i].$$
 (12)

Finally, we present an upper regret bound for DF-TSLB.

Theorem 2 Suppose that (1), (3) and (9) hold. Let $\Lambda^i(\lambda) = 1 + \lambda + \cdots + \lambda^{i-1}$. With probability at least $1 - \delta$, for any objective $i \in [m]$, the regret of DF-TSLB satisfies

$$R^{i}(T) \leq 44\Lambda^{i}(\lambda) \cdot (\alpha_{T} + \beta_{T}) \cdot \log(T) \cdot \sqrt{dT}.$$

Remark 2 Theorem 2 states that DF-TSLB achieves a regret bound of $\widetilde{O}(\Lambda^i(\lambda) \cdot d^{3/2}\sqrt{T})$ for any objective $i \in [m]$. This result aligns with single-objective algorithms (Agrawal & Goyal, 2013a; Abeille & Lazaric, 2017) in terms of d and T. The additional term $\Lambda^i(\lambda)$ captures the cost of optimizing multiple objectives simultaneously. $\Lambda^1(\lambda) = 1$ indicates that DF-TSLB does not degrade the performance of the most important objective. Additionally, it is noteworthy that our proof of Theorem 2 significantly differs from existing methods that classify arms as saturated or unsaturated (Agrawal & Goyal, 2013a) or utilize the properties of support functions (Abeille & Lazaric, 2017).

5 DK-TSLB vs. DF-TSLB

Although DK-TSLB and DF-TSLB share the common goal of addressing the lexicographic bandit problem, they differ significantly in the following aspects:

Assumptions. The primary distinction in the assumptions of our two algorithms is that DK-TSLB requires distribution knowledge of the rewards and is designed for the MOMAB model, while DF-TSLB does not require such knowledge and is designed for the MOSLB model. Additionally, two other factors further differentiate these algorithms. First, DK-TSLB assumes that the expected rewards $\{\theta_a^i | a \in [K], i \in [m]\}$ are drawn from a Gaussian prior distribution, making its expected rewards *unbounded*. In contrast, DF-TSLB satisfies the condition in Eq. (12), which ensures that its expected rewards are *bounded* by some constant B > 0. Second, DK-TSLB assumes a *finite and fixed* arm set A = [K], whereas the arm set A_t of DF-TSLB can be *infinite and dynamic*.

Implementation. DK-TSLB employs an average sum to estimate the posterior mean (Eq. (6)), whereas DF-TSLB utilizes least squares estimation (Eq. (11)). Besides, their strategies for arm selection also differ significantly in two key aspects. First, DK-TSLB selects the arm with the maximum confidence term (Step 5), while DF-TSLB divides the decision-making process into multiple stages, sequentially eliminating arms until a final choice is made (Steps 5–16). This is due the arm set in DF-TSLB is changing, where new arms are continually added. Directly selecting the arm with the maximum confidence term in such a scenario would require excessive exploration, leading to increased regret. To address this, DF-TSLB alternates between exploration (Step 11) and exploitation (Step 13) across stages. Second, their arm elimination thresholds differ. For DK-TSLB, the threshold is $(2+4\lambda+\cdots+\lambda^{i-1})\cdot c_t(a_t)$, whereas for DF-TSLB, it is $(2+4\lambda+\cdots+\lambda^{i-1})\cdot (\alpha_t+\beta_t)\cdot C$, and C is dynamically adjusted during the decision-making process.

Theorems. Theorem 1 for DK-TSLB provides a *problem-dependent* regret bound based on the expected reward gap, $\sum_{\Delta^i(a)>0} \frac{1}{\Delta^i(a)}$, which adapts to specific problem instances. Specifically, a smaller positive gap $\Delta^i(a)$ indicates that the expected reward of a suboptimal arm a is close to that of the optimal arm, making it more difficult to identify the optimal arm. However, this regret bound becomes invalid when K is infinite. In contrast, Theorem 2 for DF-TSLB provides a regret bound with a different structure, emphasizing a growth rate of $d^{3/2}\sqrt{T}$. This bound is well-suited for the infinite-armed setting and captures the complexity of the high-dimensional context space.

Figure 1: Comparison of our algorithms versus baselines. Each experiment is run 5 times, with average regret shown as lines and standard deviation as shaded areas.

6 EXPERIMENTS

This section presents empirical evaluations, where we compare our approaches against the lexicographic MOMAB algorithm PF-LEX (Hüyük & Tekin, 2021), as well as two single-objective TS bandit algorithms: BayesUCB (Atsidakou et al., 2023) and TSCB (Agrawal & Goyal, 2013a). BayesUCB assumes knowledge of the reward distribution, whereas TSCB does not rely on this knowledge. Details of the experimental setup are in Appendix A.

Figure 1 shows the empirical performance of the baselines and our algorithms. Panels (a), (b), and (c) show the regret curves for the first, second, and third objectives, respectively. In Figure 1(a), BayesUCB and TSCB exhibit the lowest regret, as they are single-objective algorithms that focus solely on the first objective, thereby yielding optimal performance. Notably, the regret values of BayesUCB, TSCB, DK-TSLB, and DF-TSLB are approximately 20, 20, 40, and 100, respectively. Given the long time horizon ($T=20{,}000$), the regrets of DK-TSLB and DF-TSLB remain only slightly higher than those of BayesUCB and TSCB.

Figure 1(b) presents the regret curves for the second objective, where DK-TSLB and DF-TSLB clearly outperform the other methods. The regret curve for PF-LEX is higher than DK-TSLB and DF-TSLB, which aligns with the theoretical guarantees. Specifically, the regret bound for PF-LEX is $\widetilde{O}((KT)^{2/3})$, whereas the regret bounds for DK-TSLB and DF-TSLB are $O(K\log(KT))$ and $\widetilde{O}(d^{3/2}\sqrt{T})$, respectively. The regret curves for BayesUCB and TSCB continue to rise, indicating that these methods fail to identify the optimal arm and, consequently, cannot effectively optimize multiple objectives. Furthermore, the large deviations of BayesUCB and TSCB are attributed to the fact that these single-objective algorithms disregard the second objective, causing the second-objective rewards to appear random. Figure 1(c) shows the regret curves for the third objective. Once again, DK-TSLB and DF-TSLB outperform all baseline methods, with their flat curves indicating successful identification of the lexicographic optimal arm.

7 CONCLUSION AND FUTURE WORK

This paper is the first to design TS-based algorithms for lexicographic bandits. When the rewards follow a Gaussian distribution, we propose an MOMAB algorithm that achieves a regret bound of $O\left((\Lambda^i(\lambda))^2 \cdot \sum_{\Delta^i(a)>0} \frac{\log(KT)}{\Delta^i(a)}\right)$ for any objective $i \in [m]$. Although our algorithm and analysis focuses on Gaussian rewards, Algorithm 1 can be easily extended to other distributions (e.g. Bernoulli rewards), as long as the posterior distribution is computable. When the reward distributions are unknown, we propose an MOSLB algorithm that achieves a regret bound of $\widetilde{O}(\Lambda^i(\lambda) \cdot d^{3/2}\sqrt{T})$ for any objective $i \in [m]$. Meanwhile, we provide an alternative proof for linear TS bandits, which differs from previous techniques that classify arms as saturated and unsaturated (Agrawal & Goyal, 2013a) or utilize the properties of support functions (Abeille & Lazaric, 2017).

Although our methods achieve comparable regret bounds to single-objective algorithms (Kaufmann et al., 2012b; Abeille & Lazaric, 2017) in term of $\Delta^i(a)$, K, d and T, a challenging open problem is to remove the additional term $\Lambda^i(\lambda)$.

REFERENCES

- Yasin Abbasi-yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In *Advances in Neural Information Processing Systems 24*, pp. 2312–2320, 2011.
- Marc Abeille and Alessandro Lazaric. Linear Thompson Sampling Revisited. In *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, pp. 176–184, 2017.
- Jacob A. Abernethy, Robert Schapire, and Umar Syed. Lexicographic optimization: Algorithms and stability. In *Proceedings of The 27th International Conference on Artificial Intelligence and Statistics*, pp. 2503–2511, 2024.
- Milton Abramowitz. Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., USA, 1964. ISBN 0486612724.
- Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem. In *Proceedings of the 25th Annual Conference on Learning Theory*, pp. 39.1–39.26, 2012.
- Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In *Proceedings of the 30th International Conference on Machine Learning*, pp. 127–135, 2013a.
- Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In *Proceedings of the 16th International Conference on Artificial Intelligence and Statistics*, pp. 99–107, 2013b.
- Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. *Journal of the ACM*, 64(5):1–24, 2017.
- J. Aldaz, Sorina Barza, Masatoshi Fujii, and M. Moslehian. Advances in operator cauchy–schwarz inequalities and their reverses. *Annals of Functional Analysis*, 6(3):275–295, 2015.
- Cagin Ararat and Cem Tekin. Vector optimization with stochastic bandit feedback. In *Proceedings of the 26th International Conference on Artificial Intelligence and Statistics*, pp. 2165–2190, 2023.
- Alexia Atsidakou, Branislav Kveton, Sumeet Katariya, Constantine Caramanis, and Sujay Sanghavi. Finite-time logarithmic bayes regret upper bounds. In *Advances in Neural Information Processing Systems 36*, pp. 4331–4350, 2023.
- Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine Learning Research*, 3(11):397–422, 2002.
- Peter Auer, Chao-Kai Chiang, Ronald Ortner, and Madalina Drugan. Pareto front identification from stochastic bandit feedback. In *Proceedings of the 19th International Conference on Artificial Intelligence and Statistics*, pp. 939–947, 2016.
- Christopher M. Bishop. *Pattern Recognition and Machine Learning*. Springer-Verlag, Berlin, Heidelberg, 2006.
- Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In *Advances in Neural Information Processing Systems 24*, pp. 2249–2257, 2011.
- Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In *Proceedings of the 34th International Conference on Machine Learning*, pp. 844–853, 2017.
- Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions. In *Proceedings of the 14th International Conference on Artificial Intelligence and Statistics*, pp. 208–214, 2011.
- Pierre Clavier, Tom Huix, and Alain Oliviero Durmus. VITS: Variational inference thompson sampling for contextual bandits. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 9033–9075, 2024.
- Élise Crepon, Aurélien Garivier, and Wouter M Koolen. Sequential learning of the Pareto front for multi-objective bandits. In *Proceedings of The 27th International Conference on Artificial Intelligence and Statistics*, pp. 3583–3591, 2024.

- Madalina M. Drugan and Ann Nowe. Designing multi-objective multi-armed bandits algorithms: A study. In *The 2013 International Joint Conference on Neural Networks*, pp. 1–8, 2013.
- Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. *Journal of Machine Learning Research*, 7(39):1079–1105, 2006.
 - Alihan Hüyük and Cem Tekin. Multi-objective multi-armed bandit with lexicographically ordered and satisficing objectives. *Machine Learning*, 110(6):1233–1266, 2021.
 - Kwang-Sung Jun and Jungtaek Kim. Noise-adaptive confidence sets for linear bandits and application to Bayesian optimization. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 22643–22671, 2024.
 - Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, and Rebecca Willett. Scalable generalized linear bandits: Online computation and hashing. In *Advances in Neural Information Processing Systems 30*, pp. 99–109, 2017.
 - Emilie Kaufmann, Olivier Cappe, and Aurelien Garivier. On bayesian upper confidence bounds for bandit problems. In *Proceedings of the 15th International Conference on Artificial Intelligence and Statistics*, pp. 592–600, 2012a.
 - Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: an asymptotically optimal finite-time analysis. In *Proceedings of the 23rd International Conference on Algorithmic Learning Theory*, pp. 199–213, 2012b.
 - Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.
 - Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation. In *Proceedings of the 19th International Conference on World Wide Web*, pp. 661–670, 2010.
 - Shiyin Lu, Guanghui Wang, Yao Hu, and Lijun Zhang. Multi-objective generalized linear bandits. In *Proceedings of the 28th International Joint Conference on Artificial Intelligence*, pp. 3080–3086, 2019.
 - Kaisa Miettinen. *Nonlinear Multiobjective Optimization*. Kluwer Academic Publishers, Boston, USA, 1999.
 - Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multiobjective bayesian optimization using random scalarizations. In *Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence*, pp. 766–776, 2019.
 - Saba Q. Yahyaa, Madalina M. Drugan, and Bernard Manderick. Thompson sampling in the adaptive linear scalarized multi objective multi armed bandit. In *International Conference on Agents and Artificial Intelligence*, pp. 55–65, 2015.
 - Herbert Robbins. Some aspects of the sequential design of experiments. *Bulletin of the American Mathematical Society*, 58(5):527–535, 1952.
 - Diederik M. Roijers, Luisa M. Zintgraf, and Ann Nowe. Interactive thompson sampling for multi-objective multi-armed bandits. In *Algorithmic Decision Theory: 5th International Conference*, pp. 18–34, 2017.
 - Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. *Mathematics of Operations Research*, 39(4):1221–1243, 2014.
 - Eric Schwartz, Eric Bradlow, and Peter Fader. Customer acquisition via display advertising using multi-armed bandit experiments. *Marketing Science*, 36(2):500–522, 2017.
 - Steven Scott. A modern bayesian look at the multi-armed bandit. *Applied Stochastic Models in Business and Industry*, 26(6):665–667, 2010.

- Joar Skalse, Lewis Hammond, Charlie Griffin, and Alessandro Abate. Lexicographic multi-objective reinforcement learning. In *Proceedings of the 31st International Joint Conference on Artificial Intelligence*, pp. 3430–3436, 2022.
 - Cem Tekin. The biobjective multiarmed bandit: learning approximate lexicographic optimal allocations. *Turkish Journal of Electrical Engineering and Computer Sciences*, 27(2):1065–1080, 2019.
 - Cem Tekin and Eralp Turgay. Multi-objective contextual multi-armed bandit with a dominant objective. *IEEE Transactions on Signal Processing*, 66(14):3799–3813, 2018.
 - William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25:285–294, 1933.
 - Francesco Trovo, Stefano Paladino, Marcello Restelli, and Nicola Gatti. Sliding-window thompson sampling for non-stationary settings. *Journal of Artificial Intelligence Research*, 68:311–364, 2020.
 - Eralp Turgay, Doruk Oner, and Cem Tekin. Multi-objective contextual bandit problem with similarity information. In *Proceedings of the 21st International Conference on Artificial Intelligence and Statistics*, pp. 1673–1681, 2018.
 - Sofía S. Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design of clinical trials: Benefits and challenges. *Statistical Science*, 30(2):199 215, 2015.
 - Nirandika Wanigasekara, Yuxuan Liang, Siong Thye Goh, Ye Liu, Joseph Jay Williams, and David S. Rosenblum. Learning multi-objective rewards and user utility function in contextual bandits for personalized ranking. In *Proceedings of the 28th International Joint Conference on Artificial Intelligence*, pp. 3835–3841, 2019.
 - Mengfan Xu and Diego Klabjan. Pareto regret analyses in multi-objective multi-armed bandit. In *Proceedings of the 40th International Conference on International Conference on Machine Learning*, pp. 38499–38517, 2023.
 - Ruitu Xu, Yifei Min, and Tianhao Wang. Noise-adaptive thompson sampling for linear contextual bandits. In *Advances in Neural Information Processing Systems 36*, pp. 23630–23657, 2023.
 - Bo Xue, Ji Cheng, Fei Liu, Yimu Wang, and Qingfu Zhang. Multiobjective lipschitz bandits under lexicographic ordering. *Proceedings of the 38th AAAI Conference on Artificial Intelligence*, pp. 16238–16246, 2024.
 - Ronald R. Yager, Giray Gumrah, and Marek Z. Reformat. Using a web personal evaluation tool pet for lexicographic multi-criteria service selection. *Knowledge-Based Systems*, 24(7):929–942, 2011.
 - Hengrui Zhang, Youfang Lin, Sheng Han, and Kai Lv. Lexicographic actor-critic deep reinforcement learning for urban autonomous driving. *IEEE Transactions on Vehicular Technology*, 72(4):4308– 4319, 2023.
 - Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. In *International Conference on Learning Representations*, 2021.
 - Yong Zheng and David (Xuejun) Wang. Multi-objective recommendations. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 4098–4099, 2021.

A EXPERIMENTAL SETTINGS

MOMAB. In the MOMAB setting, we set number of arms K=10 and the number of objectives m=3. For any arm $a\in [K]$, its expected rewards are defined as $\mu^1(a)=1-\min_{p\in\{0.3,0.6,0.9\}}|0.1\times a-p|, \mu^2(a)=1-2\times \min_{p\in\{0.5,0.8\}}|0.1\times a-p|, \mu^3(a)=1-2\times |0.1\times a-0.5|$. The optimal arms for the first objective are $\{3,6,9\}$, and the optimal arms for both the first and second objectives are $\{6,9\}$. Thus, to identify the lexicographic optimal arm $a^*=6$, it is necessary to consider all three objectives.

MOSLB. In the MOSLB setting, we fix the arm set as $\mathcal{A}_t = \{\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_K\} \subseteq \mathbb{R}^d$ for any $t \geq 1$. Both the arm number K and feature dimension d are set as 10, which ensures that MOMAB and MOSLB encounter the same number of unknown parameters. For $k \in [K]$, the arm vector \tilde{x}_k is set as the standard basis in \mathbb{R}^d , whose k-th element is 1 and all other elements are 0. The number of objectives is set as m=3. We denote the inherent vectors as $\boldsymbol{\theta}_*^i = [\theta_*^i(1), \theta_*^i(2), \dots, \theta_*^i(10)], i \in [3]$. The elements of $\boldsymbol{\theta}_*^1$, $\boldsymbol{\theta}_*^2$ and $\boldsymbol{\theta}_*^3$ are specified as $\boldsymbol{\theta}_*^1(k) = 1 - \min_{p \in \{0.3, 0.6, 0.9\}} |0.1 \times k - p|$, $\boldsymbol{\theta}_*^2(k) = 1 - 2 \times \min_{p \in \{0.5, 0.8\}} |0.1 \times k - p|$ and $\boldsymbol{\theta}_*^3(k) = 1 - 2 \times |0.1 \times k - 0.5|, k \in [10]$. Thus, its expected rewards are the same as the MOMAB setting.

All experiments were conducted on a Windows 10 laptop with an Intel(R) Core(TM) i7-1170 CPU and 32GB of RAM. Each algorithm was run with $\delta=0.01$ and T=20,000. The stochastic rewards $\{y_t^i\}_{t\in[T]}$ are drawn from a normal distribution with mean $\mu^i(a)$ or $\mu^i(x)$ and variance 0.1. Following the existing bandit work (Chapelle & Li, 2011; Jun et al., 2017), we scale the confidence terms for all algorithms by a factor selected from the range [0.01,1].

B PROOF OF THEOREM 1

Recall from Eq. (5) that, in the Gaussian MOMAB model, the expected reward for any arm $a \in [K]$ and any objective $i \in [m]$ is $\mu^i(a) = \theta^i_a$. Therefore, the regret for MOMAB can be rewritten as

$$R^{i}(T) = \sum_{t=1}^{T} \Delta^{i}(a_{t}) = \sum_{t=1}^{T} \theta_{a^{*}}^{i} - \theta_{a_{t}}^{i}, i \in [m].$$

Let \mathcal{E} be the event

$$\mathcal{E} = \left\{ \forall t \in [T], \forall a \in [K], \forall i \in [m] : |\theta_a^i - \hat{\theta}_{t,a}^i| \le c_t(a) \right\}, \tag{13}$$

where $\hat{\theta}_{t,a}^{i}$ is the posterior mean as calculated in Eq. (6), and $c_{t}(a)$ is the confidence term defined in Eq. (7).

To establish a foundation for the proof, we first introduce a lemma to show that the event \mathcal{E} holds with high probability.

Lemma 1 (Abramowitz (1964)) For a Gaussian distributed random variable Z with mean m and variance σ^2 , for any $z \geq 1$,

$$\Pr\{|Z - m| > z\sigma\} \le \frac{1}{\sqrt{\pi}z}e^{-z^2/2}.$$

Given that $\theta_a^i \sim \mathcal{N}(\hat{\theta}_{t,a}^i, \hat{\sigma}_{t,a}^2)$ and $c_t(a) = \sqrt{2\hat{\sigma}_{t,a}^2 \log(mKT/\delta)}$, we have for a fixed $t \in [T], a \in [K]$ and $i \in [m]$,

$$|\theta_a^i - \hat{\theta}_{t,a}^i| \le c_t(a)$$

holds with probability at least $1-\frac{\delta}{mKT}$. Taking the union over all $t\in[T], a\in[K]$ and $i\in[m]$, we conclude that event $\mathcal E$ holds with probability at least $1-\delta$.

The prioritized elimination mechanism in Steps 6 to 10 of Algorithm 1 is crucial for selecting arms in accordance with the priority order of the objectives, while efficiently balancing exploration and exploitation. We now present the following lemma, which demonstrates that the elimination mechanism in Algorithm 1 does not discard the lexicographic optimal arm, and that the remaining arms are promising.

Lemma 2 Suppose \mathcal{E} in Eq. (13) holds. In Steps 6 to 10 of Algorithm 1, if $a^* \in \mathcal{A}_t^0$, then

$$a_* \in \mathcal{A}_t^m \text{ and } \Delta^i(a) \leq 4(1+\lambda+\cdots+\lambda^{i-1}) \cdot c_t(a_t), \forall i \in [m], \forall a \in \mathcal{A}_t^m.$$

Proof: Given that the arm is eliminated from the 1-st objective to the m-th objective, we prove this lemma using an inductive approach. For the first objective i=1, since $\hat{a}_t^1 = \arg\max_{a \in \mathcal{A}_t^0} \hat{\theta}_{t,a}^1$ and $a^* \in \mathcal{A}_t^0$, it follows that for all $a \in \mathcal{A}_t^1$,

$$\Delta^{1}(a) = \theta_{a^{*}}^{1} - \theta_{a}^{1} \le \theta_{a^{*}}^{1} - \hat{\theta}_{t,a^{*}}^{1} + \hat{\theta}_{t,\hat{a}^{1}}^{1} - \theta_{a}^{1}. \tag{14}$$

Given that the event \mathcal{E} holds, we have for all $a \in \mathcal{A}_t^1$,

$$\theta_{a^*}^1 - \hat{\theta}_{t,a^*}^1 \le c_t(a^*), \quad \hat{\theta}_{t,a}^1 - \theta_a^1 \le c_t(a).$$

Substituting these bounds into Eq. (14), we obtain for all $a \in \mathcal{A}_t^1$,

$$\Delta^{1}(a) \leq c_{t}(a^{*}) + \hat{\theta}_{t,\hat{a}_{t}}^{1} - \hat{\theta}_{t,a}^{1} + c_{t}(a).$$

Recalling that $\mathcal{A}^1_t = \{a \in \mathcal{A}^0_t | \hat{\theta}^1_{t,\hat{a}^1_t} - \hat{\theta}^1_{t,a} \leq 2c_t(a_t)\}$, it follows that for all $a \in \mathcal{A}^1_t$,

$$\Delta^{1}(a) \le c_{t}(a^{*}) + 2c_{t}(a_{t}) + c_{t}(a). \tag{15}$$

Since $a_t = \arg \max_{a \in \mathcal{A}_t^0} c_t(a)$, we have $c_t(a) \le c_t(a_t)$ for all $a \in \mathcal{A}_t^1 \subseteq \mathcal{A}_t^0$. Substituting this into Eq. (15) yields,

$$\Delta^1(a) \leq 4c_t(a_t), \forall a \in \mathcal{A}_t^1.$$

Next, since the event \mathcal{E}_t holds, we have

$$\hat{\theta}_{t,\hat{a}_{t}^{1}}^{1} - \hat{\theta}_{t,a^{*}}^{1} \le \theta_{\hat{a}_{t}^{1}}^{1} + c_{t}(\hat{a}_{t}^{1}) - \theta_{a^{*}}^{1} + c_{t}(a^{*}).$$

Given that a^* is the optimal arm, it follows that $\theta^1_{\hat{a}^1_t} - \theta^1_{a^*} \leq 0$. Reusing $c_t(a) \leq c_t(a_t)$ for all $a \in \mathcal{A}^1_t \subseteq \mathcal{A}^0_t$, we conclude

$$\hat{\theta}_{t,\hat{a}_{t}^{1}}^{1} - \hat{\theta}_{t,a^{*}}^{1} \leq \theta_{\hat{a}_{t}^{1}}^{1} + c_{t}(\hat{a}_{t}^{1}) - \theta_{a^{*}}^{1} + c_{t}(a^{*}) \leq 2c_{t}(a_{t}).$$

Thus, $a^* \in \mathcal{A}^1_t = \{a \in \mathcal{A}^0_t | \hat{\theta}^1_{t,\hat{a}^1_t} - \hat{\theta}^1_{t,a} \le 2c_t(a_t)\}$, completing the proof for the first objective.

By induction, for $i \geq 2$, assume

$$a^* \in \mathcal{A}_t^j \text{ and } \Delta^j(a) \leq 4(1+\lambda+\dots+\lambda^{j-1}) \cdot c_t(a_t), \forall a \in \mathcal{A}_t^j, \forall j \in [i-1].$$

We aim to prove

$$a^* \in \mathcal{A}_t^i \text{ and } \Delta_a^i \le 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot c_t(a_t), \forall a \in \mathcal{A}_t^i.$$
 (16)

Since $\hat{a}^i_t = \arg\max_{a \in \mathcal{A}^{i-1}_t} \hat{\theta}^i_{t,a}$ and $a^* \in \mathcal{A}^{i-1}_t$, it follows that for all $a \in \mathcal{A}^i_t \subseteq \mathcal{A}^{i-1}_t$,

$$\Delta^{i}(a) = \theta_{a^{*}}^{i} - \theta_{a}^{i} \le \theta_{a^{*}}^{i} - \hat{\theta}_{t,a^{*}}^{i} + \hat{\theta}_{t,\hat{a}_{t}^{i}}^{i} - \theta_{a}^{i}.$$

$$(17)$$

Given that event \mathcal{E} holds, we have that for all $a \in \mathcal{A}_t^i$,

$$\theta_{a^*}^i - \hat{\theta}_{t,a^*}^i \le c_t(a^*), \quad \hat{\theta}_{t,a}^i - \theta_a^i \le c_t(a).$$

Substituting these bounds into Eq. (17) gives, for all $a \in \mathcal{A}_t^i$,

$$\Delta^{i}(a) \leq c_{t}(a^{*}) + \hat{\theta}_{t,\hat{a}^{i}}^{i} - \hat{\theta}_{t,a}^{i} + c_{t}(a).$$

Recalling that $\mathcal{A}_t^i = \{a \in \mathcal{A}_t^0 | \hat{\theta}_{t,\hat{a}_t^i}^i - \hat{\theta}_{t,a}^i \leq (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot c_t(a_t) \}$, it follows that for all $a \in \mathcal{A}_t^i$,

$$\Delta^{i}(a) \le c_{t}(a^{*}) + (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot c_{t}(a_{t}) + c_{t}(a).$$
(18)

Since $a_t = \arg \max_{a \in \mathcal{A}_t^0} c_t(a)$, we have $c_t(a) \le c_t(a_t)$ for all $a \in \mathcal{A}_t^i \subseteq \mathcal{A}_t^0$. Substituting this into Eq. (18) yields, for all $a \in \mathcal{A}_t^i$,

$$\Delta^{i}(a) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot c_{t}(a_{t}).$$

Next, since the event \mathcal{E}_t holds, we have

$$\hat{\theta}_{t,\hat{a}_{t}^{i}}^{i} - \hat{\theta}_{t,a^{*}}^{i} \le \theta_{\hat{a}_{t}^{i}}^{i} + c_{t}(\hat{a}_{t}^{i}) - \theta_{a^{*}}^{i} + c_{t}(a^{*}). \tag{19}$$

According to Eq. (2), $\theta^i_{\hat{a}^i_*} - \theta^i_{a^*} \leq \lambda \cdot \max_{j \in [i-1]} \{\theta^j_{a^*} - \theta^j_{\hat{a}^i_*}\}$. Thus,

$$\theta_{\hat{a}_t^i}^i - \theta_{a^*}^i \le \lambda \cdot 4(1 + \lambda + \dots + \lambda^{i-2}) \cdot c_t(a_t).$$

Reusing $c_t(a) \le c_t(a_t)$ for all $a \in \mathcal{A}_t^i \subseteq \mathcal{A}_t^0$, taking this into Eq. (19) gives

$$\hat{\theta}_{t,\hat{a}_{t}^{i}}^{i} - \hat{\theta}_{t,a^{*}}^{i} \le 4(\lambda + \lambda^{2} + \dots + \lambda^{i-1}) \cdot c_{t}(a_{t}) + 2c_{t}(a_{t}).$$

Thus, $a^* \in \mathcal{A}^i_t = \{a \in \mathcal{A}^{i-1}_t | \hat{\theta}^i_{t,\hat{a}^i_t} - \hat{\theta}^i_{t,a^*} \le (2+4\lambda+\cdots+4\lambda^{i-1}) \cdot c_t(a_t) \}$. Hence, Eq. (16) is proved, completing the induction framework and the proof of Lemma 2.

Lemma 2 depends on the assumption $a_* \in \mathcal{A}_t^0$. In the following lemma, we remove this assumption.

Lemma 3 Suppose \mathcal{E} in Eq. (13) holds. In Algorithm 1, for any $a \in \mathcal{A}_{t+1}$,

$$\Delta^{i}(a) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot c_{t}(a_{t}).$$

Proof: We prove by induction that $a^* \in \mathcal{A}^0_t$ for $t \geq 1$. For the base case t = 1, $a^* \in \mathcal{A}^0_1$ obviously since $\mathcal{A}^0_1 = [K]$. Now, assume $a^* \in \mathcal{A}^0_t$ for some $t \geq 1$. By Lemma 2, $a^* \in \mathcal{A}^0_t$ deduces that $a^* \in \mathcal{A}^m_t$. Given that $\mathcal{A}^0_{t+1} = \mathcal{A}_{t+1} = \mathcal{A}^m_t$, it follows that $a^* \in \mathcal{A}^0_{t+1}$. Thus, by induction $a_* \in \mathcal{A}^0_t$ holds for all $t \geq 1$. With $a^* \in \mathcal{A}^0_t$, Lemma 2 tells that for any $a \in \mathcal{A}^m_t$, $\Delta^i(a) \leq 4(1+\lambda+\cdots+\lambda^{i-1})\cdot c_t(a_t)$ for $i \in [m]$. Therefore, Lemma 3 holds as $\mathcal{A}^m_t = \mathcal{A}_{t+1}$. \square

We now proceed to complete the proof of Theorem 1. For clarity, define $\Lambda^i(\lambda) = 1 + \lambda + \cdots + \lambda^{i-1}$ for any $i \in [m]$. Since $a_t \in \mathcal{A}_t$, Lemma 3 tells that

$$\Delta^{i}(a_{t}) \leq 4\Lambda^{i}(\lambda) \cdot c_{t-1}(a_{t-1}) = 4\Lambda^{i}(\lambda) \cdot \sqrt{\frac{2\log(mKT/\delta)}{\sigma_{0}^{-2} + \sigma^{-2}N_{t-1,a_{t-1}}}}.$$
 (20)

From Step 5 of Algorithm 1, where $a_t = \arg \max_{a \in \mathcal{A}_t} c_t(a) = \arg \min_{a \in \mathcal{A}_t} N_{t,a}$, we have

$$N_{t,a_t} \leq N_{t,a_{t-1}} = N_{t-1,a_{t-1}} + 1.$$

Substituting this into Eq. (20), we have

$$\Delta^{i}(a_t) \le 4\Lambda^{i}(\lambda) \cdot \sqrt{\frac{2\log(KT/\delta)}{\sigma_0^{-2} + \sigma^{-2}(N_{t,a_t} - 1)}}.$$

Reorganizing the inequality yields

$$N_{t,a_t} \le (4\Lambda^i(\lambda))^2 \sigma^2 \cdot \frac{2\log(mKT/\delta)}{(\Delta^i(a_t))^2} - \sigma^2 \sigma_0^{-2} + 1 \le (4\Lambda^i(\lambda))^2 \sigma^2 \cdot \frac{2\log(mKT/\delta)}{(\Delta^i(a_t))^2} + 1.$$

Using the number of times each arm is played, we can bound the regret as follows:

$$R^{i}(T) = \sum_{t=1}^{T} \Delta^{i}(a_{t}) \leq \sum_{\Delta^{i}(a)>0} \Delta^{i}(a) \cdot N_{T+1,a}$$
$$\leq \sum_{\Delta^{i}(a)>0} \left((4\Lambda^{i}(\lambda))^{2} \sigma^{2} \cdot \frac{2 \log(mKT/\delta)}{\Delta_{a}^{i}} + \Delta_{a}^{i} \right).$$

Since the event \mathcal{E} holds with probability at least $1 - \delta$, the above regret bound holds with the same probability. The proof of Theorem 1 is finished.

C PROOF OF THEOREM 2

We begin by presenting a lemma that establishes the confidence parameters in Eq. (10).

Lemma 4 With probability at least $1 - \delta$, for any $i \in [m]$ and $t \in [T]$,

$$\|\hat{\boldsymbol{\theta}}_t^i - \boldsymbol{\theta}_*^i\|_{\mathbf{V}_t} \le \alpha_t = R\sqrt{d\log\left(\frac{16mtT}{\delta}\right)} + B, \quad \|\tilde{\boldsymbol{\theta}}_t^i - \hat{\boldsymbol{\theta}}_t^i\|_{\mathbf{V}_t} \le \beta_t = \alpha_t \cdot \sqrt{2d\log\left(\frac{8dmT}{\delta}\right)}.$$

Proof: For a fixed objective $i \in [m]$, Lemma 1 of Abeille & Lazaric (2017) guarantees that, with probability at least $1 - \delta$, for any round $t \in [T]$,

$$\|\hat{\boldsymbol{\theta}}_t^i - \boldsymbol{\theta}_*^i\|_{\mathbf{V}_t} \leq \tilde{\alpha}_t = R\sqrt{d\log\left(\frac{16tT}{\delta}\right)} + B, \quad \|\tilde{\boldsymbol{\theta}}_t^i - \hat{\boldsymbol{\theta}}_t^i\|_{\mathbf{V}_t} \leq \tilde{\beta}_t = \tilde{\alpha}_t \cdot \sqrt{2d\log\left(\frac{8dT}{\delta}\right)}.$$

Applying a union bound over all $i \in [m]$ finishes the proof of Lemma 4.

Define the event

$$\tilde{\mathcal{E}} = \left\{ \forall t \in [T], \forall i \in [m] : \|\hat{\boldsymbol{\theta}}_t^i - \boldsymbol{\theta}_*^i\|_{\mathbf{V}_t} \le \alpha_t, \|\tilde{\boldsymbol{\theta}}_t^i - \hat{\boldsymbol{\theta}}_t^i\|_{\mathbf{V}_t} \le \beta_t \right\},\tag{21}$$

From Lemma 4, it follows that event $\tilde{\mathcal{E}}$ holds with probability at least $1 - \delta$. Using this result, the posterior rewards can be bounded as follows.

Lemma 5 Suppose event $\tilde{\mathcal{E}}$ in Eq. (21) holds. For any $i \in [m]$ and $t \in [T]$,

$$|\langle \boldsymbol{\theta}_*^i - \tilde{\boldsymbol{\theta}}_t^i, \boldsymbol{x} \rangle| \leq (\alpha_t + \beta_t) \cdot ||\boldsymbol{x}||_{V_*^{-1}}.$$

Proof: We first reformulate the expected reward as follows,

$$\langle oldsymbol{ heta}_*^i, oldsymbol{x}
angle = \langle oldsymbol{ heta}_*^i - \hat{oldsymbol{ heta}}_t^i, oldsymbol{x}
angle + \langle \hat{oldsymbol{ heta}}_t^i, oldsymbol{x}
angle + \langle \hat{oldsymbol{ heta}}_t^i, oldsymbol{x}
angle.$$

Applying the Cauchy-Schwarz inequality (Aldaz et al., 2015), this expression can be bounded as:

$$\langle \boldsymbol{\theta}_*^i, \boldsymbol{x} \rangle - \langle \tilde{\boldsymbol{\theta}}_t^i, \boldsymbol{x} \rangle \leq \|\boldsymbol{\theta}_*^i - \hat{\boldsymbol{\theta}}_t^i\|_{\mathrm{V}_t} \|\boldsymbol{x}\|_{\mathrm{V}_t^{-1}} + \|\hat{\boldsymbol{\theta}}_t^i - \tilde{\boldsymbol{\theta}}_t^i\|_{\mathrm{V}_t} \|\boldsymbol{x}\|_{\mathrm{V}_t^{-1}}.$$

Since the event $\tilde{\mathcal{E}}$ holds, the inequality can be further relaxed to:

$$\langle \boldsymbol{\theta}_*^i, \boldsymbol{x} \rangle - \langle \tilde{\boldsymbol{\theta}}_t^i, \boldsymbol{x} \rangle \leq (\alpha_t + \beta_t) \cdot \| \boldsymbol{x} \|_{\mathbf{V}_{-}^{-1}}.$$

A similar discussion derives that

$$\begin{split} \langle \tilde{\boldsymbol{\theta}}_t^i, \boldsymbol{x} \rangle &= \langle \tilde{\boldsymbol{\theta}}_t^i - \hat{\boldsymbol{\theta}}_t^i, \boldsymbol{x} \rangle + \langle \hat{\boldsymbol{\theta}}_t^i - \boldsymbol{\theta}_*^i, \boldsymbol{x} \rangle + \langle \boldsymbol{\theta}_*^i, \boldsymbol{x} \rangle \\ &\leq \|\tilde{\boldsymbol{\theta}}_t^i - \hat{\boldsymbol{\theta}}_t^i\|_{\mathbf{V}_t} \|\boldsymbol{x}\|_{\mathbf{V}_t^{-1}} + \|\hat{\boldsymbol{\theta}}_t^i - \boldsymbol{\theta}_*^i\|_{\mathbf{V}_t} \|\boldsymbol{x}\|_{\mathbf{V}_t^{-1}} + \langle \boldsymbol{\theta}_*^i, \boldsymbol{x} \rangle \\ &\leq (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}\|_{\mathbf{V}_t^{-1}} + \langle \boldsymbol{\theta}_*^i, \boldsymbol{x} \rangle. \end{split}$$

Thus, the proof of Lemma 5 is complete.

In the following, we present two lemmas to analyze the elimination algorithm LAE, which serve as counterparts to Lemma 2 and Lemma 3.

Lemma 6 Suppose event $\tilde{\mathcal{E}}$ in Eq. (21) holds. In Algorithm 3, if $x_t^* \in \mathcal{A}_{t,s}$ and $\|x\|_{V_t^{-1}} \leq C$ for any $x \in \mathcal{A}_{t,s}$, then

$$\boldsymbol{x}_t^* \in \mathcal{A}_{t.s}^m \text{ and } \langle \boldsymbol{\theta}_*^i, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C, \forall i \in [m], \forall \boldsymbol{x} \in \mathcal{A}_{t.s}^m.$$

Proof: Similar to the proof of Lemma 2, we prove this lemma by an inductive approach. For the first objective i=1, since $\hat{\boldsymbol{x}}_t^1 = \arg\max_{\boldsymbol{x} \in \mathcal{A}_{t,s}^0} \langle \tilde{\boldsymbol{\theta}}_t^1, \boldsymbol{x} \rangle$ and $\boldsymbol{x}_t^* \in \mathcal{A}_{t,s}^0 = \mathcal{A}_{t,s}$, it follows that for all $\boldsymbol{x} \in \mathcal{A}_{t,s}^1$,

$$\langle \boldsymbol{\theta}_*^1, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \le \langle \boldsymbol{\theta}_*^1, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle + \langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\boldsymbol{x}}_t^1 - \boldsymbol{x}_t^* \rangle. \tag{22}$$

Given that the event $\tilde{\mathcal{E}}$ holds, Lemma 5 tells that for all $x \in \mathcal{A}_{t,s}^1$,

$$|\langle \boldsymbol{\theta}_*^1 - \tilde{\boldsymbol{\theta}}_t^1, \boldsymbol{x}_t^* \rangle| \leq (\alpha_t + \beta_t) \cdot ||\boldsymbol{x}_t^*||_{V_{\star}^{-1}}, |\langle \boldsymbol{\theta}_*^1 - \tilde{\boldsymbol{\theta}}_t^1, \boldsymbol{x} \rangle| \leq (\alpha_t + \beta_t) \cdot ||\boldsymbol{x}||_{V_{\star}^{-1}}.$$

Substituting this into Eq. (22), it follows that for all $x \in \mathcal{A}_{t,s}^1$,

$$\langle \boldsymbol{\theta}_*^1, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \leq (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}_t^*\|_{V_*^{-1}} + \langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\boldsymbol{x}}_t^1 - \boldsymbol{x} \rangle + (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}\|_{V_*^{-1}}.$$

Recall that $\mathcal{A}_{t,s}^1 = \{ \boldsymbol{x} \in \mathcal{A}_{t,s}^0 | \langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\boldsymbol{x}}_t^1 - \boldsymbol{x} \rangle \leq 2(\alpha_t + \beta_t) \cdot C \}$. Therefore, for all $\boldsymbol{x} \in \mathcal{A}_{t,s}^1$,

$$\langle \boldsymbol{\theta}_*^1, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \leq (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}_t^*\|_{\mathbf{V}_{+}^{-1}} + 2(\alpha_t + \beta_t) \cdot C + (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}\|_{\mathbf{V}_{+}^{-1}}.$$

Since $\|x\|_{\mathbf{V}_t^{-1}} \leq C$ for any $x \in \mathcal{A}_{t,s}$, it follows that for all $x \in \mathcal{A}_{t,s}^1$,

$$\langle \boldsymbol{\theta}_{*}^{1}, \boldsymbol{x}_{t}^{*} - \boldsymbol{x} \rangle \leq 4(\alpha_{t} + \beta_{t}) \cdot C.$$

Next, Lemma 5 tells that

$$\langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\boldsymbol{x}}_t^1 - \boldsymbol{x}_t^* \rangle \leq \langle \boldsymbol{\theta}_t^1, \hat{\boldsymbol{x}}_t^1 - \boldsymbol{x}_t^* \rangle + (\alpha_t + \beta_t) \cdot \|\hat{\boldsymbol{x}}_t^1\|_{V_{\cdot}^{-1}} + (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}_t^*\|_{V_{\cdot}^{-1}}.$$

Since x_t^* is the optimal arm, $\langle \boldsymbol{\theta}_*^1, \hat{x}_t^1 - x_t^* \rangle \leq 0$. Using $\|\boldsymbol{x}\|_{V^{-1}} \leq C$ for any $\boldsymbol{x} \in \mathcal{A}_{t,s}$, we have

$$\langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\boldsymbol{x}}_t^1 - \boldsymbol{x}_t^* \rangle \le 2(\alpha_t + \beta_t) \cdot C.$$

Thus, $\boldsymbol{x}_t^* \in \mathcal{A}_t^1 = \{a \in \mathcal{A}_{t,s}^0 | \langle \tilde{\boldsymbol{\theta}}_t^1, \hat{\boldsymbol{x}}_t^1 - \boldsymbol{x}_t^* \rangle \leq 2(\alpha_t + \beta_t) \cdot C \}$. The proof for the first objective is finished.

Using the induction method, assume that for $i \geq 2$,

$$\boldsymbol{x}_t^* \in \mathcal{A}_{t,s}^j$$
 and $\langle \boldsymbol{\theta}_*^j, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{j-1}) \cdot (\alpha_t + \beta_t) \cdot C, \forall \boldsymbol{x} \in \mathcal{A}_{t,s}^j, \forall j \in [i-1].$

We aim to prove

$$\boldsymbol{x}_{t}^{*} \in \mathcal{A}_{t,s}^{i} \text{ and } \langle \boldsymbol{\theta}_{*}^{i}, \boldsymbol{x}_{t}^{*} - \boldsymbol{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_{t} + \beta_{t}) \cdot C, \forall \boldsymbol{x} \in \mathcal{A}_{t,s}^{i}. \tag{23}$$

Since $\hat{x}_t^i = \arg\max_{\boldsymbol{x} \in \mathcal{A}_{t,s}^{i-1}} \langle \tilde{\boldsymbol{\theta}}_t^i, \boldsymbol{x} \rangle$ and $x_t^* \in \mathcal{A}_{t,s}^{i-1}$, it follows that for all $\boldsymbol{x} \in \mathcal{A}_{t,s}^i$,

$$\langle \boldsymbol{\theta}_{*}^{i}, \boldsymbol{x}_{t}^{*} - \boldsymbol{x} \rangle \leq \langle \boldsymbol{\theta}_{*}^{i}, \boldsymbol{x}_{t}^{*} - \boldsymbol{x} \rangle + \langle \tilde{\boldsymbol{\theta}}_{t}^{i}, \hat{\boldsymbol{x}}_{t}^{i} - \boldsymbol{x}_{t}^{*} \rangle. \tag{24}$$

Given that the event $\tilde{\mathcal{E}}$ holds, Lemma 5 tells ensures that for all $x \in \mathcal{A}_{t,s}^i$,

$$|\langle \boldsymbol{\theta}_*^i - \tilde{\boldsymbol{\theta}}_t^i, \boldsymbol{x}_t^* \rangle| \leq (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}_t^*\|_{V_t^{-1}}, |\langle \boldsymbol{\theta}_*^i - \tilde{\boldsymbol{\theta}}_t^i, \boldsymbol{x} \rangle| \leq (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}\|_{V_t^{-1}}.$$

Substituting this into Eq. (24), for all ${m x} \in {\mathcal A}_{t,s}^i,$

$$\langle \boldsymbol{\theta}_*^i, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \leq (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}_t^*\|_{V_t^{-1}} + \langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\boldsymbol{x}}_t^i - \boldsymbol{x} \rangle + (\alpha_t + \beta_t) \cdot \|\boldsymbol{x}\|_{V_t^{-1}}.$$

Recalling that $\mathcal{A}^i_{t,s} = \{ \boldsymbol{x} \in \mathcal{A}^{i-1}_{t,s} | \langle \tilde{\boldsymbol{\theta}}^i_t, \hat{\boldsymbol{x}}^i_t - \boldsymbol{x} \rangle \leq (2 + 4\lambda + \dots + 4\lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C \}$ and $\| \boldsymbol{x} \|_{V_t^{-1}} \leq C$ for any $\boldsymbol{x} \in \mathcal{A}_{t,s}$, we have for all $\boldsymbol{x} \in \mathcal{A}^i_{t,s}$,

$$\langle \boldsymbol{\theta}_*^i, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C.$$

Finally, Lemma 5 tells that

$$\langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\boldsymbol{x}}_t^i - \boldsymbol{x}_t^* \rangle \leq \langle \boldsymbol{\theta}_t^i, \hat{\boldsymbol{x}}_t^i - \boldsymbol{x}_t^* \rangle + 2(\alpha_t + \beta_t) \cdot C.$$

Using Eq. (3), $\langle \boldsymbol{\theta}_*^i, \hat{\boldsymbol{x}}_t^i - \boldsymbol{x}_t^* \rangle \leq \lambda \cdot \max_{j \in [i-1]} \{ \langle \boldsymbol{\theta}_*^j, \boldsymbol{x}_t^* - \hat{\boldsymbol{x}}_t^i \rangle \}$. Thus,

$$\langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\boldsymbol{x}}_t^i - \boldsymbol{x}_t^* \rangle \leq \lambda \cdot 4(1 + \lambda + \dots + \lambda^{i-2}) \cdot (\alpha_t + \beta_t) \cdot C + 2(\alpha_t + \beta_t) \cdot C.$$

It follows that $\boldsymbol{x}_t^* \in \mathcal{A}_{t,s}^i = \{\boldsymbol{x} \in \mathcal{A}_{t,s}^{i-1} | \langle \tilde{\boldsymbol{\theta}}_t^i, \hat{\boldsymbol{x}}_t^i - \boldsymbol{x}_t^* \rangle \leq (2 + 4\lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot C \}$. This completes the proof of Eq. (23) and concludes the induction framework.

Lemma 6 depends on the assumption that $x_t^* \in \mathcal{A}_{t,s}^0$. In the following lemma, we remove this assumption.

Lemma 7 Suppose $\tilde{\mathcal{E}}$ in Eq. (21) holds. In Algorithm 2, for any $s \geq 1$ and $x \in \mathcal{A}_{t,s}$,

$$\langle \boldsymbol{\theta}_*^i, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \le 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot 2^{-s+1}, i \in [m].$$

Proof: We prove $\boldsymbol{x}_t^* \in \mathcal{A}_{t,s}^0$ for $s \geq 1$ by induction. For the base case s = 1, $\boldsymbol{x}_t^* \in \mathcal{A}_{t,1}^0$ obviously since $\mathcal{A}_{t,1}^0 = \mathcal{A}_t$. Assume that $\boldsymbol{x}_t^* \in \mathcal{A}_{,s}^0$ for some $s \geq 1$. By Lemma 6, $\boldsymbol{x}_t^* \in \mathcal{A}_{t,s}^0$ deduces that $\boldsymbol{x}_t^* \in \mathcal{A}_{t,s}^m$. Since $\mathcal{A}_{t,s+1}^0 = \mathcal{A}_{t,s+1} = \mathcal{A}_{t,s}^m$, it follows that $\boldsymbol{x}_t^* \in \mathcal{A}_{t,s+1}^0$. By induction, we conclude that $\boldsymbol{x}_t^* \in \mathcal{A}_{t,s}^0$ for all $s \geq 1$. Given $\boldsymbol{x}_t^* \in \mathcal{A}_{t,s}^0$, Lemma 6 tells that for any $\boldsymbol{x} \in \mathcal{A}_{t,s}^m$, $\langle \boldsymbol{\theta}_t^i, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot 2^{-s}, i \in [m]$. Thus, Lemma 7 holds since $\mathcal{A}_{t,s}^m = \mathcal{A}_{t,s+1}$. \square

By a similar argument as in Lemma 7, we obtain the following lemma.

Lemma 8 Suppose $\tilde{\mathcal{E}}$ in Eq. (21) holds. In Algorithm 2, for any $x \in \mathcal{A}_{t,T}$,

$$\langle \boldsymbol{\theta}_*^i, \boldsymbol{x}_t^* - \boldsymbol{x} \rangle \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_t + \beta_t) \cdot \frac{1}{\sqrt{T}}, i \in [m].$$

We now complete the proof of Theorem 2. Let $\psi_s(T) = \{t \in [T] | \|\boldsymbol{x}_t\|_{V_t^{-1}} > 2^{-s} \}$ for $s \ge 1$, and let $\psi_0(T) = \{t \in [T] | \|\boldsymbol{x}_t\|_{V_*^{-1}} \le 1/\sqrt{T} \}$. The regret can be decomposed as

$$R^{i}(T) = \sum_{t \in \psi_{0}(T)} \langle \boldsymbol{\theta}_{*}^{i}, \boldsymbol{x}_{t}^{*} - \boldsymbol{x}_{t} \rangle + \sum_{s=1}^{S} \sum_{t \in \psi_{s}(T)} \langle \boldsymbol{\theta}_{*}^{i}, \boldsymbol{x}_{t}^{*} - \boldsymbol{x}_{t} \rangle.$$

where $S \leq \log(T)$, since $2^{-\log T} \leq 1/\sqrt{T}$.

The trials in $\psi_0(T)$ play arms in the **if** case. By Lemma 8, we have

$$\sum_{t \in \psi_0(T)} \langle \boldsymbol{\theta}_*^i, \boldsymbol{x}_t^* - \boldsymbol{x}_t \rangle \le |\psi_0(T)| \cdot 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_T + \beta_T) \cdot \frac{1}{\sqrt{T}}.$$

For the trials in $\psi_s(T)$, corresponding to the **else if** case, where the arm is selected from $\mathcal{A}_{t,s}$. Lemma 7 tells that

$$\sum_{t \in \psi_s(T)} \langle \boldsymbol{\theta}_*^i, \boldsymbol{x}_t^* - \boldsymbol{x}_t \rangle \le |\psi_s(T)| \cdot 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_T + \beta_T) \cdot 2^{-s+1}.$$

Thus, the regret for the i-the objective is bounded as

$$R^{i}(T) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_{T} + \beta_{T}) \cdot \left(\frac{|\psi_{0}(T)|}{\sqrt{T}} + \sum_{s=1}^{S} 2 \cdot 2^{-s} |\psi_{s}(T)|\right). \tag{25}$$

Lemma 3 of Chu et al. (2011) states that

$$\sum_{t \in \psi_s(T)} \|\boldsymbol{x}_t\|_{V_t^{-1}} \le 5\sqrt{d|\psi_s(T)|\log(|\psi_s(T)|)}.$$

Using the fact that $\|x_t\|_{V_t^{-1}} > 2^{-s}$ for $t \in \psi_s(T)$, we obtain

$$2^{-s}|\psi_s(T)| \le 5\sqrt{d|\psi_s(T)|\log(|\psi_s(T)|)}.$$

Since $|\psi_s(T)| \leq T$, we obtain

$$\sum_{s=1}^{S} 2 \cdot 2^{-s} |\psi_s(T)| \le 10 \sum_{s=1}^{S} \sqrt{d|\psi_s(T)| \log T}.$$

Applying the Cauchy-Schwarz inequality (Aldaz et al., 2015), this simplifies to

$$\sum_{s=1}^{S} 2 \cdot 2^{-s} |\psi_s(T)| \le 10\gamma_T \sqrt{dST \log T}.$$

Since $S \leq \log T$, we can further relax this bound to

$$\sum_{s=1}^{S} 2 \cdot 2^{-s} |\psi_s(T)| \le 10 \log T \sqrt{dT}.$$

Substituting this result into Eq. (25) shows that

$$R^{i}(T) \leq 4(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_T + \beta_T) \cdot \left(\sqrt{T} + 10 \log T \sqrt{dT}\right).$$

A simple relaxation yields the final bound,

$$R^{i}(T) \le 44(1 + \lambda + \dots + \lambda^{i-1}) \cdot (\alpha_T + \beta_T) \cdot \log T \sqrt{dT}.$$

The proof of Theorem 2 is finished.