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ABSTRACT

Large language models (LLMs) are widely recognized for their exceptional capacity
to capture semantic meaning. Yet, there remains no established metric to quantify
this capability. In this work, we introduce a quantitative metric, Information
Emergence (IE), designed to measure LLMSs’ ability to extract semantics from
input tokens. We formalize “semantics” as the meaningful information abstracted
from a sequence of tokens and, leveraging information theory, quantify this through
comparing the reduction in entropy observed for a sequence of tokens (macro-level)
and individual tokens (micro-level). To achieve this, we design a light-weight
estimator to compute the mutual information at both micro and macro levels for
each transformer layer, which is agnostic to different tasks and language model
architectures. We apply IE in both synthetic in-context learning (ICL) scenarios
and natural sentence contexts. Experiments show a high-level informativeness
of our metric reflected in semantic faithfulness, sensitivity and connection with
emergence. In addition, we highlight some interesting findings: 1) IE explains why
ICL offers clearer semantics and benefits compared to natural text through changes
in entropy. 2) We could associate certain hallucination phenomenon with increased
variance in IE. 3) IE can effectively differentiate between human-written and LLM-
generated text, proving especially useful for extremely large and closed-source
language models. Our codes are available at: https://anonymous.4open!
science/r/Emergence/.

1 INTRODUCTION

One of the most elusive and captivating attributes of large language models (LLMs) is their ability
to learn semantics from inputs across diverse domains(Chen| [2023]; [Chang et al.| 2024 [Minaee
et al., 2024), a feature that owes much to a cross-pollination of unsupervised training and next-
token prediction (NTP) mechanisms. It has stimulated numerous significant research directions,
such as in-context learning (ICL) (Min et al., 2022a3bj; Wies et al., 2024; |Ye et al., 2023} [Kossen
et al., [2023; Swaminathan et al., 2024}, emergence capabilities (Wei et al., 2022; |[Schaeffer et al.,
2023} |Srivastava et al., 2023} [Lu et al.} 2023 |Yu & Dong} 2022} [Liu et al.||2024)), and hallucination
investigations (Rawte et al.| 2023} Ji et al.| [2023; Zhang et al.| 2023} Deemter, 2024)).

However, the capability of LLMs to capture semantics from texts is challenging to quantify and
thereby, to evaluate. Numerous existing tasks indirectly reflect similar capabilities through evaluating
LLMs’ performances (e.g., accuracy) on a specific task, such as “instruction following” (Zeng et al.,
2023), “searching” (Sun et al., |2023), and “reasoning” (Yang et al., 2024). Nevertheless, these
evaluation methods rely on manually curating datasets and tasks tailoring different aspects, resulting
in time-consuming and domain-specific findings. In addition, these evaluations typically focus on
coarse-grained text, not providing interpretations for the behavior of finer-grained tokens. Lastly,
existing evaluation metrics which vary across different tasks can lead to varied performances, and
even contradicting conclusions (Schaeffer et al., 2023).

In response to the above limitations, we propose a task-agnostic and closed-form metric, which we
refer to as Information Emergence (IEﬂ designed to reflect and deterministically quantify the

'The “Information Emergence” here and “Emergence” in LLM-related research are two different notions, we
discuss their difference in Section[2.T]and Section 4.3}
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ability of LLMs to extract meaningful semantics from input tokens. To begin with, we construct
a mathematical formalism capable of modeling semantics. In essence, semantics naturally emerge
as a meaningfully organized ensemble of tokens (Hilpert & Saavedra, [2020; |/Apidianakil [2023)).
Consequently, tokens are considered microscopic (micro) observations with sophisticated patterns
in a sentence, whereas semantics represent macroscopic (macro) observations emerging with more
predictable behaviors. Inspired by information theory, we formalize the model’s proficiency in
semantic understanding, i.e., information emergence, as the difference of the entropy reduction
between micro-level and macro-level. In another word, a better model proficient in deriving
semantics from tokens, in comparison to other models, ought to render a higher entropy
reduction for a global sequence than for a single token.

To compute IE in transformer models, as discussed earlier, we need to mathematically measure
entropy reduction for both micro and macro levels. Given the auto-regressive nature of the NTP
mechanism, at any layer [ in transformer, the most micro-level transition can be naturally framed as
the probability pj0,0  for an isolated token h?, whereas the macro-level transition can be formulated

as PpT |0 pl_ .. nT , ACTOSS T tokens. We resort to the mutual information between successive
transformer layers and adopt a practically effective estimation algorithm motivated by (Belghazi et al.,
2018)) which is suitable for high-dimensional continuous representations. Therefore, we can measure
the IE value for any token at any transformer layer, reflecting the strength of the LLM’s capability in

extracting semantics from the historical context.

We devise a suite of comprehensive experiments encompassing two different scenarios. In the
first scenario, we curate a group of synthetic datasets under the ICL setting with different context
domains. In the second scenario, we collect two wild datasets consisting of real-world natural
language questions/answers. Under both scenarios, we experiment with different LMs including
GPT-2 (Radford et al., 2019), GEMMA (Team et al., 2024}, and OpenLIlama (Computer, |2023)).
In alignment with our hypothesis, we show that IE offers a high-level informativeness through
semantic faithfulness and sensitivity - the richer the semantics, the higher the IE. Additionally, a set
of experiments conducted across model sizes have indicated the potential association between IE and
Emergence. Furthermore, we obtain 3 interesting findings:

1. IE increases token-by-token in natural texts, whereas, in ICL-style texts, IE increases only
when a new demonstration appears.

2. There is a strong correlation between specific hallucination phenomenons and a high variance
in IE scores.

3. Distinctive patterns in IE have been observed between human-written and LLM-generated
texts, revealing IE’s potential in automatically recognising LLM generations.

Overall, the main contributions could be summarized below:

* We introduce IE, a novel, reasonably validated, and task-agnostic metric to deterministically
quantify the semantic understanding capability of LLMs.

* We introduce a light-weight implementation method for evaluating IE, which can be applied
to extremely large and closed-source LMs like GPT-4 (Achiam et al., [2023).

* Empirical evidence demonstrates that IE can uncover previously unknown and essential
patterns in areas such as ICL, Emergence, and hallucination.

2 RELATED WORK

2.1 INFORMATION EMERGENCE AND EMERGENCE

Emergence is defined as a capability that does not exist in smaller models but appears in larger
ones (Srivastava et al.| 2023} |Lu et al., 2023 [Yu & Dongl 2022} [Liu et al., 2024). Most commonly,
as the model size increases, the performance on many tasks rapidly improves. Several studies have
posited explanations for Emergence: the qualitative change resulting from quantitative behavior (Wei
et al.| 2022), the random combination of linguistic skills (Arora & Goyal, |2022), and principles that
can be extrapolated from smaller models (Schaeffer et al., 2023).
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Figure 1: The analogy of auto-regressive process in NTP to Markov process. Taking the output
representation of token2 in Block 0 (h%) as an example, which receives information from input

representations of hQ, hg, and h§,satisfying p,» <t = Pp2_ 10 4t p2-
Vi [ Hy 1411y R

IE is a concept defined and validated in Information Theory (Bedaul [1997;2008)). It describes phe-
nomena observable at the macroscopic level but unobservable at the microscopic level. Nevertheless,
only limited empirical experiments are conducted to reflect a similar pattern of abrupt improvement
between IE and Emergence with increased model size.

2.2 EVALUATION ON LLM CAPABILITIES

The prevalent body of research extensively measures the capabilities of LLMs across various tasks
by employing substantial benchmark datasets (Srivastava et al.,[2023; |Wang et al., [2024} [Zhu et al.,
2024])). Additionally, a significant amount of research focuses on the performance of LLMs concerning
specific capabilities such as adaptability to different domains (Afzal et al.,|2024)), human-like cognition
(opinions, attitudes, etc.) (Ma et al., [2024), followed with input instructions (Zeng et al., [2023)), text
searching capability (Sun et al.,[2023), and reasoning ability (Yang et al.|[2024)). Moreover, numerous
studies have also considered the performance of LLMs in collaborative evaluation with humans (Kim
et al.,|2024; Zheng et al.| 2023). In contrast to these studies, our work concentrates on an essential
yet abstract ability of LLMs - the ability to extract semantics from tokens.

3 METHOD

3.1 How TO MODEL SEMANTIC IN LLMS

In this papelﬂ we identify the transformer block as the fundamental unit. Specifically, we employ
l=0,1,...,L — 1 to index transformer blocks within a language model, where L represents the
total number of blocks. For instance, GPT-2 XL (1.6B parameters) comprises 12 blocks (L =
12), and Gemma-2B totals 18 blocks (L = 18). For any transformer block [/, given an input
sequence of token length 7" and hidden state dimension D, the input representation is given by H; =
{9 h},hZ,....h/ '} and the output representation is Hyp1 = {h, bl 1, b3 1, ... hLT' )
where H € RT*P and ht € RP . Without loss of generality, we hypothesize that the multi-layer
blocks constitutes a Markov process.

Hypothesis 1 (Markov Process Analogy). The auto-regressive process of NTP mechanism in multi-
layer blocks undergoes a Markovian stochastic process following a transition probability of any h! 11
with Pht, |n9.hd h2,....ht> simply denoted by P, |HS"
To simplify the analogy for easier understanding, Figure[T] omits normalization layers, MLP layers,
and residual structures between transformer blocks, and thus the output of I-th block is directly
considered as the input to [ 4 1-th block (H;1). However, in all our real implementations, we retain
the exact transformer output at every layer, i.e., hj11 = h; + attention(h;) + M LP(h;).

Accordingly, we could categorize token variables within each sequence into two distinct categories:
microscopic (micro) variables and macroscopic (macro) variables. A micro variable refers to a

2Please note that this paper addresses decoder-only autoregressive language models, while other language
models that do not meet the requirements, such as BERT (Devlin et al.| 2018)) family, are not considered within
the scope.
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token which is solely influenced by a single token as the input. For instance, h° satisfies Ph, ,1n9-
Whereas macro variables aggregate information from all micro variables and thus encompass tokens

which are influenced by all the tokens within the sequence as the input. An example could be A’
which satisfies PRI~ b, kT 1

l+1

In summary, the NTP mechanism can be viewed as a behavior that increasingly coarsens from the
most micro to the most macro scale and finally forms meaningful semantics. Hence, the macro level
represents the semantics level and the micro level indicates the token level. Our definition of IE,
hence, represents the phenomenon observable at a semantics level, yet unobservable at a token level
during a dynamic process (instantiated in Example|T)).

Example 1. Given T binary tokens H; = {hQ, h},... b ~'} € {0,1}T as inputs, for simplicity,
we assume all variables are micro variables: Vh 11 € Hiy1 satisfies Phi,|n (the simplest Markov
process, and in the subsequent part of this Example, we use p to simply denote this transition
probability). The output representations are also binary, i.e., Hj1 € {0,1}T. We assume an
evolution rule which enables the parity of the sum of all output variables equal to the sum of all inputs
with probability . If H; satisfies the uniform distribution, the evolution rule entails the probability of
the output Hy 1 :

T—-1 T—131
_ QTl,sztoth_u hj
P(Hu1|Hi) { S, otherwise M
where W' bt :=1 zfz Y is even and Wl_ ;' ht :=0 if odd. For example, if H,= {0 0,0}, Hj+1

can be one of {0,0,0}, {O 1 1} {1,0,1},{1,1, 0} with probability ~, leadmg 10 551 chancefor
each candidate above. Each of the remaining value for H; 1 has probability = 5=

With the assumption of micro dependency Phi,, |np> We can derive the distribution of a micro variable

as p(hj,,=0|h}) = p(hj,,=1|h}) = 0.5. Fmally, let k' be the macro variable with h"*=wWL_ ' ht.
Then the distribution of the macro variable becomes:

ma may __ 77 When hﬁai - hma
( l+1|h ) - { 1— v, when l+1 7& hma (2)

Example [I]elucidates an interesting phenomenon of IE: The macro variable h* is not induced by
any individual micro variable but a collective of them. As a result, it shows different phenomenon
from any micro variable. Moreover, we note that the same evolution rule applies to both micro and
macro variables. This is known as Supervenience Hypothesis (Bedaul [1997;2008):

Hypothesis 2 (Supervenience). When the properties of the micro-level mechanisms of a system are
fixed, so are the properties of all its macro levels.

Hypothesis 2] explicates that the “new phenomenon” in macro systems does not materialize ex nihilo.
The micro level is causally and mechanically complete, and there is no room left for any causal and
mechanical contribution at the macro level. In other words, the semantics that emerged in macro
has irreducible causal and mechanical power in practice but not in principle, just because the token
perspective is too fine-grained to observe such a phenomenon.

Given the Supervenience hypothesis and motivated by more endeavors about information the-
ory (Rosas et al.}[2020; |[Hoel et al.|[2013;2016), we can define IE in LLMs as:

Definition 1 (Information Emergence in LLMs). For any transformer block l, let h]"* be the macro
variable (h]"* satisfies Py | H<T ) and let h}** be the micro variable (h]*" satisfies Phyi |y ),
MI(-,-) represents the mutual information, thus the strength of IE in block I can be described as:

ma ma 1 mi. mi.
B(D) = MIG{S, b = 7 3 MI(h ™) 3)
Definition [I] describes how to estimate the IE metric. To illustrate, suppose an input sequence

contains three tokens ‘large language model’, with their representations at the /th block denoted
as H, = {h),h},h}}. To compute the mutual information at the micro level, we need to make
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sure each micro token is positioned at the beginning of the sequence to avoid the influence from
other tokens due to the auto-regressive nature of the NTP mechanism. Specifically, we obtain
the first micro variable {1}l where h™-" = h° corresponds to ‘large’ derived by going
through the transformer model for the input ‘large language model’. The second micro variable
{hjri-t }ZL: 51 corresponds to ‘language’ given by going through the transformer model one more time
for the modified input ‘language model’. The third micro variable proceeds in a similar manner by
removing the first two tokens in the original input. These modified inputs ensure that each micro
variable only depends on itself in the previous block. Meanwhile, the macro variable {h}"“}f;ol
is given by hi"® = h? for the original input sequence ‘large language model’. Finally, we have

E(l) = MI(h, A — S(MI(R0, ) + MI(RS, B + MG, b))

Notably, We measure IE by comparing the macro changes with the micro changes across blocks,
instead of directly computing M I(h["®, hi*") at the same block, justified by the Supervenience
hypothesis which posits that under the same state, micro and macro variables do not exhibit emergence
phenomenon due to the completeness of the micro level. We use Example [2]to explain why the
mutual information between macro variables and micro variables is different:

Example 2. Continuing from Example[I} for simplicity, we assume y=1, T'=3. Assuming block
| undergoes a uniform distribution, we have p(hj**=0) = p(hj**=1) = 0.5 and p(h]*'=0) =

p(h™-t=1) = 0.5. Without loss of generality, let’s assume hi"* = 0 and h]"*** = 0. According
to Example we have p(hj"'i'=0[hj"-") = p(hlrfflt—ﬂhmz t) = 0.5. On the contrary, p(hi’}y =
0|hj"*) = v = 1. Hence, the IE value becomes E(l) =1 — £(0+ 0+ 0) =

Example [2| elucidates that the difference in mutual information stems from a coarse-graining that
transitions from individual elements (micro) to an aggregate whole (macro). From an information
theory perspective, F(I) > 0 indicates that when the function of transformer block [ results in a
higher reduction of uncertainty (entropy) on the whole sequence (macro variable) compared to the
individual tokens (micro variables), there is a higher chance of capturing the collective semantics.
Consequently, IE can be briefly understood as ‘“how confidence with which a language model,
based on previous tokens, definitely predicts the next token with a lower entropy in semantics”.

3.2 How TO ESTIMATE IE IN LLMS?

It is not feasible to directly compute the mutual information in Eq. [3Jusing Kullback-Leibler (KL)
divergence, as the input lies in a high-dimensional continuous space. To address that, we resort to an
approximation method using mean values proposed in Belghazi et al.| (2018):

D1 (P||Q) = limsup Ep[f] — log(Egle’]) )
Q=R

where f represents a function that maps Q to Gibbs distribution by dG = fef dQ, where Z = Eglef].
Naturally, f can be a neural model. Thereby, Equation [4]can be equlvalently represented as optimizing
the error function L:

1< o
= 5 2 (fola"lly") — log( Z Joa®lly™**) )
b=1

where 6 denotes the parameters for f, || denotes the concatenation operation and B is the batch size.
x,y € R are two inputs for computing the mutual information M1 (z,vy). °||y® corresponds to
samphng from the joint distribution Py, while z%||y*7® corresponds to sampling from the marginal

distribution Px and Pyl When £ converges to the minimum £, we can obtain the final estimated
mutual information as M1 (x,y)=—logs «L. (More details and proofs are shown in Belghazi et al.
(2018).)

To get the IE value E(1) in Eq. 3| we compute MI(h}"%, hi**) by replacing z* and y" in Eq.

with A} _ and hj"" obtained by applying the LM to the same input sequence s, whereas replacing
y*7? with hj"s using a different sequence s’ # s. Similar operations apply when computing

MI (h;’flt, h"” t). (Refer to Appendix [A|for a complete algorithm for estimator.)

3In our implementation, the batch size was increased to encompass the entirety of the sample set to ensure
the rationality of Pxy, Px and Py.
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3.3 IMPLEMENTATION

Our algorithm requires that the number of samples is sufficiently large (over 300k) to provide a good
estimate of the mutual information. Meanwhile, the length of each sequence within a dataset should
be kept the same to facilitate position-wise observation and meaningful computation. Due to resource
constraints, our comparative analysis is limited to GPT2-large (812M), GPT2-XL (1.61B), GEMMA
(2.51B), and OpenLlama (3B) models. Fortunately, this parameter range is sufficient to observe
variations and regularities of IE. For those LLMs with extremely large size or closed resource (e.g.,
GPT-4, Claude3, etc.), we design another efficient strategy that enables their IE evaluations as shown
in Section[5.3] All computational experiments can be conducted on one NVIDIA GeForce RTX 3090
GP The estimator f in Eq.|4|is a model of a 10-layer neural network comprising linear layers
and leaky ReLU activation functions, where each linear layer’s output dimension was half of its
input dimension. We set the batch size to 300,000 to ensure the stability of the sampling distribution,
thereby guaranteeing robust results. Additionally, the learning rate was initially set at 1e-4 and was
polynomially decayed to 1e-8 within 10k epochs. We examine the IE value of LLMs under two
distinct settings: ICL with few-shot examples and natural sentences without demonstrations.

3.3.1 ICL SCENARIO

Since existing datasets (e.g., SST-2 (Socher et al) 2013), AGNews (Zhang et al., 2015), and
EmoC (Chatterjee et al.l [2019)) do not meet the requirement of the same sequence length, we
synthesized a set of simple few-shot samples having token length and positions aligned across dif-
ferent sequences. We curate three different datasets encompassing three different domains, each
containing sequences of few-shot single-token entities with commas:

* Country: We select 25 countries from the Vocabulary as entities, each represented by 1
token (e.g., ‘Canada’, ‘Russia’). Each shot consists of one entity followed by a comma,
totaling 2 tokens. We constructed 25 * 24 x 23 % 22 = 303, 60(| input sequences, each
comprising 8 tokens (4 different shots), such as “France, Mexico, Egypt, Russia,”.

e Animal: Similarly, we select 16 animals as entities, and construct 16 * 15 % 14 x 13 % 12 =
524160 input sequences comprising 10 tokens (5 different shots), such as “Fox, Pig, Penguin,
Rabbit, Cock,”.

* Color: We select 15 colors as entities, and construct 360360 samples comprising 10 tokens
(5 different shots), such as “red, orange, yellow, green, blue,”.

In the experiment, we observe that each entity, treated as a micro variable (i.e., the first token),
produces similar mutual information across different positions. Consequently, in this section, we
only use the entity in the first position to compute the mutual information to approximate the mean of
all micro variables. Moreover, E(l) also acts analogously in each block, so we utilize the mean of

{E() lL:_Ol to show the IE. By varying the position ¢ of the macro variable (last token in a sequence),
we use the following equation to compute the IE at length ¢:

L-1 L
~ 1 1 _ _
Et)=7 ) EW)ma=t-1= 7 (MI(h{ZL it — MI(h, 1, hY)) (©6)
1=0 l

|
—

Il
=]

3.3.2 NATURAL SENTENCE SCENARIO

We randomly select 300,000 natural sequences, each consisting of 8 tokens, from OpenOrca (Lian
et al.,[2023)) and OpenHermes (Teknium) 2023), respectively. OpenOrca and OpenHermes are both
large-scale, multi-domain QA datasets. These sequences were selected to ensure that the first token
in each sequence is the actual beginning of a sentence.

In our experiments, we observe potential discrepancies in mutual information for individual tokens at
different positions within a sentence (i.e., micro mechanisms in different positions are not consistent).

“For easy deployment, we split the representations of LLMs into several 768-dimension segments and the
final representation is the mean of these segments.
The number of shots is decided to ensure the number of combinations in each category is over 300000.
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These discrepancies are detailed in Appendix [C). Consequently, for the mutual information of
micro-level variables, we adhere to Equation |3| which averages the micro MI at each position:

z_: Yma—t—1 = — i MI(hit bt —fZMI ™M) @)
=0

=0

h \

4 INFORMATIVENESS

4.1 SEMANTIC FAITHFULNESS

We have designed several experiments to sub-
stantiate the semantic faithfulness of IE. We
observed the change in IE and other popular met-
rics (Exact Match, Accuracy, and model loss)
with the increase in the number of tokens, using
the samples from the OpenOrca dataset. Fig-
ure [2| demonstrates the change in their values,
with increasement > 0 representing the value
increasing from that in the previous token. Only 1t 2 3 4 s s 7 8 8 10
IE consistently exhibits an upward trend (i.e., Token
> (), which aligns with the intuition: what a
sentence intends to convey is increasingly de- Figure 2: The increasement of IE, EM, Accuracy,
terministic along with the increasing number of and model loss for GPT2-XL in comparison to
tokens. Moreover, the low variance (reflected the previous token: increasement = (value(t) —
as the shaded area in Figure[2) in IE values ex- value(t — 1))/value(t), where value(t) repre-
hibits commendable stability compared to other ~sents the value at token ¢. Therefore, a positive
metrics. increasement (> 0) indicates an increase in the
metric value, and a decrease vice versa.
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4.2 SEMANTIC SENSITIVITY

Subsequently, we aim to examine the semantic

sensitivity of IE, particularly its ability to reflect differences when minor perturbations are introduced
into the semantics. Consequently, we conducted a series of ablation studies to modulate certain
factors (such as dataset size, attributes, tasks, and format) individually. We treat the performance of
GPT2-XL on the “country” dataset as a baseline. Appendix [D]details the variations when different
factors are changed. It was observed that IE increases with the model’s size. This corroborates the
rationale that a model with a larger size generally has better capability to determine semantics. In
addition, our study also identifies variations in IE against different tasks and prompts, which also
resonates with findings from prior research (Lu et al., [2023} |Yu & Dongl 2022; [Liu et al., 2024).

4.3 CONNECTION TO EMERGENCE

Moreover, We demonstrate that IE manifests a steep ascend within the parameter range of 10® to
100 across 8 arithmetic tasks, which is detailed in Appendlx. Given the confines of computational
resources, we were able to select 8 models within the parameter range of GPT2 (1 * 10%), GPT2-large
(7 * 10®), GPT2-XL (1 * 10%), Gemma (2 * 10°), OpenLlama (3 * 10%), GPT-J (6 * 10°), Gemma
(7 % 10%), and GPT-NeoX (2 * 10'0). In light of the existing evaluation work, Big-Bench (Srivastava
et al.,[2023)), we discovered the emergent phenomena within the arithmetic tasks emerge within the
parameters of [10%, 101°]. Consequently, the association between the performance and IE values of 8
arithmetic tasks was investigated, as shown in Figure 3] For model performance, we directly adopt
the default settings of the Big-Bench benchmark. As for IE, we took the average of the IE values of
the initial five output tokens to be the final result.

A marked enhancement in task performance occurs once effective parameters reach 1019, thereby
showcasing an emergent phenomenon. The average IE experiences a substantial surge within the
same parameter range (10° to 10'°). As a pioneering work proposing a quantitative metric to reflect
the level of semantics deterministically, we believe our method could also greatly benefit further
research on Emergence.
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Performance on Arithmetic IE on Arithmetic
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Figure 3: IE and Model Performance with model size increasing in Arithmetic
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Figure 4: E (t) on ICL and natural scenarios with mean and variance.

5 FINDINGS

5.1 IE INCREASES ONLY WHEN A NEW DEMONSTRATION APPEARS

Figure [] illustrates that IE naturally becomes higher with increased tokens. However, there is a
strikingly different trend between ICL and natural scenarios (containing natural sentences). In a
natural scenario, IE increases with each successive token and achieves a rapid convergence (around
the 6th token), whereas, under the ICL scenario, IE only increases when a new demonstration emerges
(at positions of the 2nd token, 4th token, 6th token)|’} but with a higher upper bound and requiring
more tokens to reach to the highest value.

We subsequently investigate how many demonstrations are needed before IE ceases to increase.
Table[]indicates that the three ICL categories under study tend to saturate at the 7th demonstration
(though this does not suggests a generic ICL phenomenon). Moreover, we test whether increasing
the number of tokens within each demonstration would maintain this ”stepwise elevating” pattern.
Figure[6] shows that the IE scores within each demonstration does not change when the length of each
demonstration is increased to 5 tokens, 6 tokens, and 7 tokens.

The complete record of every token’s mutual information is detailed in Table showing the example of
GPT2-XL on the Animal category.
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Hence, we can interpret ICL’s role in enhancing semantic determinability: ICL bolsters semantic
determinability via demonstrations, where increasing the number of demonstrations can increase the
ability of capturing semantics beyond natural text, but eventually saturates after a certain quantity.

Concurrently, disparate performances observed across the two datasets and three model families
suggest that the domain of the training data and preprocessing methodologies are likely critical
factors, as further supported by the evaluations of individual tokens at different sentence positions
elaborated in Appendix [C} For instance, GPT2-large and GPT2-XL, which share the same dataset
(40GB WebText), preprocessing methods, and model architecture, exhibit a common characteristic:
the mutual information of the first token is consistently lower than the average mutual information of
micro-level variables.

5.2 HIGHER IE WITH LARGE STANDARD DEVIATION CORRESPONDS TO CERTAIN
HALLUCINATION BEHAVIORS

Figure ] indicates that IE becomes unstable as the number of demonstrations increases. To further
study this observation, we explicitly report the IE and standard deviation (s.d.) in Table[T]and compute
the accuracy of the generation{] spanning over different numbers of shots. As can be seen from rows
1-9 of Table[l] as IE ceases to grow and the s.d. reaches the peak, the LM displays a higher probability
of generating inaccurate responses. From a closer look, we discover that oftentimes, the LM fails
to generate new entities due to “error repetition” (explanations and some examples can be found
in Appendix [E.3). This is aligned with existing study (Zhang et al., 2023) related to hallucination.
Specifically, LLMs struggle to correct themselves after generating an erroneous output, consequently
resulting in stagnation and fluctuation in IE value.

However, this should not be confused

with the power of ICL in exploit- IE value by each shot
ing more complex patterns effectively ~ Statistics | shotl  shot2 shot3 shotd shot5 shot6 shot7
with more “shots” as the input. Differ-  value 4013 834 1295 2681 6159 8249 7152

SD <0.01 059 084 261 6.59 722 7.05
Accuracy of LLMs outputs given shots (%)
dataset shotl ~ shot2 shot3 shot4 shot5 shot6 shot7

ent from the above observation, an in-
creasing number of shots tend to bring

higher accuracies under more com- “country 0 5415 7429 8847 4621 2159 22.68
plex scenarios. As shown in rows 10-  animal 0 4451 6943 76.19 64.19 36.14 3354
15 of Tablem we design four challeng- color 0 3749 66.51 72.18 73.16 4695 38.49

Accuracy in 4 complex pattern given shots (%)

ing tasks: “Asia’ and ‘Europe’ only pattern shotl  shot2 shot3 shot4 shotS shot6 shot7

provide countries in Asia and Europe, A, 035 327 426 1529 3472 8453 79.16
respectively, as input demonstrations; ~ Europe | 375 829 1116 2468 4936 89.38 89.51
‘Size’ Contains anima]s arranged by Size 4.59 2.94 6.43 7.29 7.16 2646 34.19

size from smaller to larger; ‘Alphabet’ Alphabet | 0.11 1.26 1.47 39.16 69.17 5491 18.67

sorts the entities alphabetically based

on the first letter. The accuracy results Table 1: The relationship between the accuracy of GPT2-XL
indicate that LLMs require more shots outputs and IE by each shot in 3 categories.

to capture complex patterns compared

to simple patterns. Thus, it prompts us to conjecture if the stagnation and fluctuations in the IE
are associated with another hallucination: with excessive shots, LLMs may perceive more complex
patterns beyond the surface (or even actual) appearance. In short, the correlation between IE s.d. and
hallucination would offer novel insights into the future development of hallucination detection and
mitigation.

5.3 TEXTS GENERATED FROM LLMS AND HUMANS EXHIBIT DIFFERENT IE VALUES

We seek to measure the differences in text generated by larger language models compared to human
texts, as well as the variations among these LLMs themselves. Specifically, we use questions from
OpenHermes as inputs and collect responses by invoking the APIs of GPT-4, Claude3-opus, Claude3-
sonnet, and Llama3. These responses were subjected to the same data processing methods described
in Section[3.3.2] To evaluate these extremely large and closed-source language models, we implement
a 3-step strategy:

"We randomly sample a total of N = 1000 samples and regard the generation to be correct if the generated
entity belongs to the corresponding domain of the dataset (country, animal or color) and is not repetitive.
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Text+Estimator token0 tokenl token2 token3 tokend4 token5 token6 token7 token8
Human+GPT2-XL 10.9 16.9 18.6 19.5 19.5 19.7 19.6 19.5 19.4
Human+GEMMA 9.5 16.8 22.4 24.3 24.0 25.3 24.6 25.0 259
GPT4+GPT2-XL 11.3 18.8 23.5 27.2 34.5 37.2 39.2 39.5 39.2
GPT4+GEMMA 12.1 20.5 25.1 31.6 36.3 39.9 40.4 39.5 40.6

Claude3-opus+GPT2-XL 12.6 21.8 26.6 29.5 36.8 39.8 42.6 45.2 453
Claude3-sonnet+GPT2-XL  11.4 17.4 24.8 28.5 32.5 36.5 36.1 36.2 36.2
Llama3 (70B)+GPT2-XL 11.2 18.1 23.6 24.5 28.5 32.6 36.5 36.8 36.6

Table 2: IE in texts generated from human and popular LLMs. “text” refers to the party that generates
the text. “Estimator” refers to the LM used to transform the text into representations and estimates
the IE value using f described in Section

Step 1: Collect the answers from these LLMs (or humans) via the questions from the OpenHermes.

Step 2: Following the data processing in Section[3.3.2] we format these answers into input sequences
of 8 tokens and obtained their representations using smaller LMs (e.g., GPT-2, GEMMA).

Step 3: These representations were then processed through an estimator to calculate the mutual
information introduced in Section [3.2] thereby determining the IE values of these answers via
Equation

Table [2illustrates an interesting phenomenon: LLM-generated texts exhibited substantially greater
IE value than human texts. This observation is intuitive—given that LLMs aim to generate tokens
with the highest probability, naturally resulting in greater entropy reduction.

Another observation is that the text generated by different LLMs (GPT-4, Claude3, and Llama3)
displays variations in IE values. Significant differences are observed not only in the maximum strength
of the IE but also in the patterns of growth. Without actually computing the transformer representations
of the target LLMs, these findings open a promising path towards estimating the semantic capturing
capability from extremely large and closed-source LMs without expensive computational costs.

6 LIMITATIONS

Position-wise Token: Given that mutual information intrinsically demands the distribution of two
tokens to be valid, we require every token’s position to hold a specific meaning, such as representing
the beginning or end of a sentence, the subject, predicate, and so forth. Hence, applying our estimator
directly to existing tasks may result in a lack of interpretability as the token lengths and positions in
the samples vary significantly.

Sample Amount: To ensure the accuracy of joint and marginal distributions of high-dimensional
continuous representations, a tremendous number of samples is essential. We are attempting more
mechanistic alternative methods, hoping to reduce sample size requirements in the future.

More Models and Tokens: It is evident that our experiments lack larger-sized models and analysis
of long-length texts, especially for emergence and hallucination analysis. Given more computational
resources, we would continue to expand these experiments.

7 CONCLUSION

In this paper, we mathematically model the entropy of tokens and propose a quantitative metric,
Information Emergence (IE), representing the LLM’s ability to obtain semantics from tokens. Under
the proposed low-resource estimator, we corroborate that IE possesses semantic faithfulness and
sensitivity not found in other metrics. under the settings of ICL and natural sentences, We conducted
extensive experiments explaining why ICL provides clearer semantics than natural text, as well as the
intrinsic relationship between IE and hallucinations. Simultaneously, we discovered that IE can be
utilized to distinguish whether the source of the text originates from humans or LLMs, particularly a
simple and feasible strategy for those of significantly large LMs.

10
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A ALGORITHM FOR ESTIMATING MUTUAL INFORMATION

Algorithm 1 Estimating Mutual Information

Require: : A set of input tokens U € R*T', where S denotes the total number of samples and T'
represents the number of token in each sample. A LLM f;. with L layer of blocks and hidden state
dimension D. A estimator fy.

Ensure: : Mutual Information M € RX*T,
procedure 1 Extracting Representation H € R%*L*T*D from LLM
Initialization: H = ()
for each sample s in .S do

H <+ H + f;(Us)
end for
procedure 2 Estimating Mutual Information M
Initialization: M = 0,1 =0,¢t =0,
while ! < Landt < T do
I, <+ Hi4(H, € R9*D)
Iy — Hl+1,t(Hl+1,t c RS*D)
Shuffle H;4; ; in the dimension S
Iy* — Hl+1,t(Hl+17t S RS*D)
inputl « I;||I,
input2 < Ip||1,*
Initialization: My, = 0
for Epoch ¢ < 10k do
outputl < fg(inputl)
output2 < fo(input2)
L=1 Zle(outputl) —log(% Zle(outpuﬂ)
L backpropagation
if My, == 0 then
My < —logsL
else if M, # O then
if My, < —log5L then
My — —logsL
end if
end if
end for
l—l+1t+—t+1
Ml,t A thp
end while
return M

Algorithm [T] is employed to elucidate the entire process of estimating mutual information. Sim-
plified, the method involves two primary steps: Step 1 involves extracting representative samples
from a LLM, and Step 2 entails estimating the mutual information between these representation
samples. We denote the time required to estimate a pair of representations (H;; and H;,; ;) as
a. Consequently, the time complexity for estimating representations from an LLM for a sequence
St = tokenl, token2, ;tokenT — 1 across L block layers is denoted as O(LT «).

In practical implementations, e approximately costs 40 minutes on one 3090 GPU, whereas significant
improvements on a 4090 GPU reduce this time to about 20 minutes.

B CASES IN ARITHMETIC TASKS

We have selected a total of 8 arithmetic tasks, as illustrated in the caption of Figure|3| For these tasks,
we employed the 2-shots as the prompt templates for the ICl method. We randomly matched different
shots for each sample. A representative example from each task is selected and presented as follows:

1 digit addition:

14
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OpenOrca
| tokenO [ tokenl | token2 | - | token-3 | token-2 | token-1 |
with previous token  8.38 13.42 15.56 17.11 17.16 17.26
wo. previous token 8.38 10.75 10.63 10.69 10.64 12.85
OpenHermes
| tokenO | token1 | token2 | - | token-3 | token-2 | token-1 |
with previous token  7.91 12.37 15.03 18.37 18.43 19.22
wo. previous token 791 10.78 10.91 10.88 10.95 12.62
(a) GPT2-XL
OpenOrca
| tokenO | tokenl | token2 | - | token-3 | token-2 | token-1 |
with previous token  10.53 17.27 20.17 21.27 21.66 22.41
wo. previous token  10.53 10.65 10.49 10.58 10.48 10.62
OpenHermes
| tokenO [ token1 [ token2 | - [ token-3 [ token-2 | token-1 |
with previous token  9.59 16.80 22.28 25.31 25.33 25.54
wo. previous token 9.59 9.66 9.62 9.48 9.67 9.61
(b) GEMMA

Figure 5: Mutual information of each token position in two datasets, taking GPT2-XL and GENNA
as examples.
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measure t0 t1 t2 t3 t4 t5 to6 t7

baseline 469 469 946 937 1532 15.02 2844 2947
modell 464 469 944 945 15.09 14.67 27.59 28.67
model2 464 468 944 928 1527 14.66 44.08 36.37
model3 469 468 947 945 1529 1554 5228 85.61
tokenl 282 283 6.88 685 11.08 10.95 16.83 16.09
token2 360 360 736 7.29 11.15 11.08 1586 14.96
candidate | 3.26 3.26 722 722 1144 1135 17.15 17.33
fusionl 384 384 7.63 764 11.66 1149 1745 1628
fusion2 345 345 726 7.05 11.05 11.06 1645 16.59
space 469 469 946 937 1532 15.02 2244 5.19
prefix 469 469 946 946 1532 1534 37.85 41.05

Table 3: “Ablation Study” of how IE value changes with different measures adopted. t0-t7 represent
1st - 8th token.

“What is 1 plus 0? A: 1, What is 4 plus 4? A: 8, What is 2 plus 72 A:”

1 digit division:

“What is 6 divided by 1? A: 6, What is 8 divided by 4? A: 2, What is 3 divided by 3? A:”
1 digit multiplication:

“What is 1 times 8? A: 8, What is 5 times 0? A: 0, What is 6 times 7? A:”

1 digit subtraction:

“What is 5 minus 2? A: 3, What is 7 minus 6? A: 1, What is 9 minus 0? A:”

2 digit addition:

“What is 53 plus 97?7 A: 150, What is 89 plus 25?7 A: 114, What is 75 plus 637 A:”

2 digit division:

“What is 72 divided by 9?7 A: 8, What is 81 divided by 27? A: 3, What is 18 divided by 3? A:”
2 digit multiplication:

“What is 95 times 55? A: 5225, What is 92 times 88? A: 8096, What is 43 times 427 A:”
2 digit subtraction:

“What is 25 minus 14? A: 11, What is 55 minus 36? A: 19, What is 80 minus 38? A:”

C MUTUAL INFORMATION IN THE NATURAL SCENARIO

We observed variations in the IE statistics of tokens at different positions within a sentence. Conse-
quently, we systematically evaluated tokens at various positions within a sentence, as illustrated in
Figure[5] Specifically, token0, tokenl, and token2 were derived from the same sample set A from
OpenOrca, while token-3, token-2, and token-1 were taken from another sample set B from OpenOrca.
Sample set A ensured that tokenO was the initial token of the sentence, while set B ensured that
token-1 was the last token of the sentence. This allowed us to measure differences in IE statistics for
tokens at the beginning, middle, and end of sentences across variable sentence lengths.

Figure 5] presents an interesting phenomenon: taking GPT2-XL and GEMMA as examples, GPT2-
XL exhibits distinct responses to tokens at different sentence positions—IE values increase at the
beginning, stabilize in the middle, and rise again at the end. GEMMA, on the other hand, does
not display such positional sensitivity. We hypothesize that this may be related to the different
preprocessing methods used in the training data.
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Model categories shot3  shot4 shot5 shot6 shot7
country 15.67 11295 12.75 10.33 11.04

GPT2-large animal 1424 16.06 19.52 1039 144
color 1488 14.82 1639 1124  10.22

country 15.86  T13.12 1356  11.75  10.32

GPT2-XL  animal 1421 1575 18.21 T1.15  10.61
color 13.82 1461 17.06 11.74 10.54

country 16.33  122.16 [2.86  13.21 13.54

Gemma animal 14.09 1624 1845 13651 [2.14
color 14.65 15.16 17.81 11649 11.21

country 16.33 14526 1754 14.65  [3.15

OpenLlama animal 1495 17.54 135.16 12.16  13.26
color 1439 1527  127.56 11142 1251

Table 4: AE (t) compared to the previous token. The red represents E(t) decreases compared to the
previous token.

D ABLATION STUDY FOR SEMANTIC SENSITIVITY

To investigate the influence of different factors on IE value, we treat the performance of GPT2-XL on
the “country” dataset as a baseline and implemented a series of variations. First, we replace GPT2-XL.
with other LMs, namely modell using GPT2-large, model2 using GEMMA, and model3 using
OpenLlama. Second, we vary the dataset, forming datal using “animal” dataset and data2 using
“color” dataset. In addition, we use candidate to denote reduced candidates in the original “country”
dataset (reducing the total number of countries from 25 to 15), and fusion1, fusion2 to denote mixed
candidates where fusion 1 mixes data from “country” and “animal” domains, and fusion 2 mixes data
from “country”, “animal”, and “color” domains. Last, we alter the input sequence, forming space by
replacing the entity in the 4th shot with space+entity[ﬂ prefix prepends a comma to the original first
token.

As shown in Table 3} Differences in model IE become apparent only when a sufficient number of
shots are provided. Statistically, models with larger parameter sizes exhibit higher IE. However,
differences in data are apparent starting from the first shot, likely related to the domain of training
data (tokenl, token2). Furthermore, depleting the diversity of shots effectively reduces the IE values
in ICL (candidate). Lastly, the format of the prompt significantly influences IE, explaining LLMs’
sensitivity to certain perturbations (space, prefix).

E SUPPLEMENTARY MATERIALS FOR FINDING 1

E.1 LIMIT NUMBER OF SHOTS

In Section[3.3.1] we expanded the 3 categories into input sequences containing 10 shots (20 tokens
each). Table 4] illustrates the changes in IE value for each shot relative to its predecessor within these
sequences. The IE value of 4 different LLMs generally approached their upper limits by the 6th and
7th shots. It is important to note that these results only indicate the existence of an upper limit to the
contribution of shot quantity to IE in ICL. They do not imply that the 6th and 7th shot universally
represents the upper limit for all ICL tasks.

E.2 SHOT LENGTH

To examine the IE value associated with shot lengths, we designed a shot format pertinent to sentiment
analysis as follows:

“[entity] sentiment: [label],”

where “[entity]” represents emotional words such as “happy,”, “thrill”, “offended”, etc., and
“[label]” options include “positive” or “negative,” specifically chosen based on the category of

8In the GPT-2 tokenizer, space+entity is treated as a new token.
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Figure 6: E (t) with inputs of 18 tokens, consisting of 3 shots in 5 tokens, 6 tokens, 7 tokens,
respectively.

“[entity]”. The token length of “[entity]” was employed to control the overall length of the shot; for
instance, when “[entity]” consists of single-token words like “anger,” “love,” etc., the entire shot
spans 5 tokens, whereas for two-token words like “hopeful,” “resentful,” etc., the shot extends to 6
tokens. Consequently, we generated 300,000 input samples, each 18 tokens in length, comprising 3
shots with lengths of 5 tokens, 6 tokens, and 7 tokens respectively.

Figure [ corroborates our hypothesis: within each shot, all tokens share a uniform IE value. This
observation supports another intuitive viewpoint of ICL: an LLM gains greater confidence in the
correctness of its predictions only when a new shot is introduced.

E.3 CASES OF INACCURATE GENERATIONS WITH EXCESSIVE SHOTS

In Table [T| we found 2 types of erroneous repetition, we listed some cases of them from GPT2-XL, in
which blue text indicates the shots as prompt, the green text indicates correct entities and red text
indicates wrong entities:

Case 1: The sequence breakdown was precipitated by the output of an incorrect entity.

“Ukraine, Mexico, Russia, Australia, United
States of America, United States of America, United States of America, United States of America”

Case 2: Due to a loop spaning the shots, no new entities were generated.

“Canada, France, Turkey, Iran,
United States, Canada, Germany, United States, Canada, Germany, United States, Canada,
Germany”

F DETAILED MUTUAL INFORMATION TABLES

Tables [5]and [f] present the performance of GPT2-XL on the Animal category and OpenOrca datasets,
respectively. Although “shots” and “natural sentences” demonstrate different patterns, they share a
common characteristic: mutual information increases with token length, aligning well with the NTP
mechanism.
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layer | token0 tokenl token2 token3 token4 token5 token6 token7
1 2.83 2.83 6.89 6.50 10.68 9.24 14.16  11.53
2 2.83 2.83 6.90 6.91 11.08 11.10 16.70  16.79
3 2.83 2.83 6.89 6.88 11.17  11.17 16.93  16.00
4 2.83 2.83 6.89 6.88 11.08 11.06 16.74  16.58
5 2.83 2.83 6.89 6.89 11.13  11.11 16.94  15.88
6 2.83 2.83 6.88 6.89 11.16  11.16  18.89  17.11
7 2.84 2.83 6.89 6.88 11.15  11.14 1697 17.08
8 2.83 2.83 6.88 6.88 11.12  11.19  16.86  17.42
9 2.83 2.83 6.90 6.88 11.20 11.17 16.92  15.97
10 2.83 2.83 6.88 6.88 11.08 11.14 1697 16.51
11 2.83 2.83 6.88 6.88 11.04 11.05 17.05  16.19

Table 5: Mutual information of GPT2-XL in Animal category. Red represents the highest value in
this block.

layer | token0 tokenl token2 token3 token4 token5 token6 token7
1 8.40 13.71 1601 17.33 1721 17.67 1795 17.29
2 8.36 13.77 1576 17.06 17.08 17.72 17.68  18.00
3 8.44 1375 16.09 17.10 17.82 17.69 17.84 18.04
4 8.44 1420 1607 17.29 1745 17.74 1851 17.81
5 8.39 1350 1632 1683 17.82 1798 1826 18.14
6 8.41 13.69 16.03 1699 1758 17.82 1752  18.33
7 8.41 13.68 1606 17.00 1832 17.72 17.69  18.19
8 8.40 13.80 1597 1726 1761 1773 17.52 1844
9 8.35 13.69 1595 17.17 1721 17.54 1747  18.03
10 8.41 13.57 1630 1657 1746 1785 17.85 17.51
11 8.34 1337 1602 1593 17.30 1724 17.27 1691

Table 6: Mutual information of GPT2-XL in OpenOrca dataset. Red represents the highest value in
this block.
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