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ABSTRACT

Accurate mesh-based simulation is central to modeling phenomena governed by
PDEs, such as flow, elasticity, and climate. Recent machine learning solutions,
including Graph Neural Networks (GNNs) and Fourier Neural Operators (FNOs),
enable faster approximations but can struggle with long-range interactions, irreg-
ular mesh topologies, or fixed time steps. To address the above challenges, we
introduce SpectralFlowNet, a unified framework for mesh-based PDE simulation
that marries graph spectral methods with continuous-time neural dynamics. By pro-
jecting mesh data onto an intrinsic spectral basis via the Graph Fourier Transform
(GFT) and evolving these spectral coefficients using Neural Ordinary Differen-
tial Equations (ODEs), our model naturally handles multiscale spatial structures
and temporal dynamics. This resolution-invariant, multiscale approach achieves
state-of-the-art performance on plastic deformation tasks and demonstrates robust
zero-shot transfer across resolutions.

1 INTRODUCTION

Mesh simulation plays a critical role in approximating PDE-governed physical phenomena in areas
ranging from fluid dynamics to climate modeling. Traditional numerical solvers are computationally
intensive, prompting the development of machine learning methods such as Graph Neural Networks
(GNNs) and Fourier Neural Operators (FNOs). However, GNNs—while adept at modeling local
interactions—struggle with long-range dependencies, and FNOs impose fixed temporal discretization
and regular mesh structures.

In this work, we propose SpectralFlowNet, a model that integrates:

1. Graph Fourier Transform (GFT): Projects mesh data onto a spectral basis aligned with the
underlying geometry, ensuring resolution invariance (Sandryhaila & Moura, 2013).

2. Neural ODEs: Evolves spectral coefficients continuously, decoupling time discretization and
naturally accommodating multiscale temporal dynamics (Chen et al., 2018).

Furthermore, our architecture adapts its depth according to the spatial resolution, preserving localized
interactions across scales.

Our contributions can be summarized as follows:

• We develop a graph-invariant framework that unifies spectral methods and continuous-time dynam-
ics for mesh simulation.

• We propose a multiscale architecture with adaptive GNN depth and layer normalization to achieve
robust zero-shot transfer across resolutions.

• Our experiments on a plastic deformation dataset show improved accuracy and enhanced general-
ization compared to state-of-the-art baselines.

∗First author, equal contribution.
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2 RELATED WORK

We summarize the related works in mesh-based PDE simulation. Compared with existing methods,
we unify graph-based spectral embeddings with a Neural ODE time-evolution to enable resolution-
and time-invariant modeling. The method naturally accommodates multiple scales in space and time
by leveraging a continuous framework.

Mesh-based GNNs. Methods like Pfaff et al. (2020) and Fortunato et al. (2022) leverage graph
representations to model localized interactions on irregular meshes. Despite strong performance on
next-step prediction, they can struggle with long-range spectral modes and do not inherently handle
continuous time.

Fourier Neural Operators (FNOs). Works such as Li et al. (2020; 2023; 2024) use FFT-based
operators to capture global correlations. Although effective on regular grids, direct application
to unstructured meshes or multi-resolution scenarios can be suboptimal. Moreover, time-stepping
remains discrete and fixed.

Sun et al. (2024) applied Graph Fourier Neural ODEs to capture multiscale interactions in molecular
dynamics. In contrast, our work focuses on mesh-based PDE simulation, leveraging spectral graph
methods to handle resolution invariance and adaptive time-stepping in unstructured graph data.

3 MODEL

Figure 1: Encoder-Processor-Decoder architecture combining Graph Fourier Transform and Neural
ODEs for multiscale mesh simulation.

Our model adapts the encoder-processor-decoder structure (see Fig. 1) (Kingma, 2013). Detailed
definitions and theoretical justifications have been moved to the Appendix for clarity.

3.1 ENCODER

Given an input mesh Mt0 = (V,E) with node features ut0
i ∈ Rd, we first construct a graph based

on either grid connectivity or an adaptive k-nearest neighbor (k-NN) scheme. Edge weights are
computed as

Aij =
dmin

dij
, (1)
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where dij is the Euclidean distance between nodes i and j and dmin is the smallest such distance. A
GCN layer aggregates features (Kipf & Welling, 2016):

ht0
i = Θ⊤

∑
j∈N (i)∪{i}

Aji√
d̂j d̂i

ut0
j , (2)

with d̂i = 1 +
∑

j∈N (i) Aji. We then apply the Graph Fourier Transform:

ĥt0 = U⊤ht0 , (3)

projecting the node features onto the eigenbasis of the carefully-chosen normalized Laplacian
Lnorm = I −D−1/2AD−1/2 (Hein et al., 2005; Singer, 2006; Belkin & Niyogi, 2008). In practice,
we truncate to the m lowest-frequency modes to retain essential geometric information.

3.2 PROCESSOR: CONTINUOUS-TIME DYNAMICS

We evolve the spectral coefficients via a Neural ODE (Chen et al., 2018):

dĥt

dt
= fθ(ĥ

t, t), t ∈ [t0, tend], (4)

where fθ is a small multilayer perceptron. This continuous formulation decouples temporal discretiza-
tion from training, thereby naturally accommodating multiscale dynamics.

3.3 DECODER

The decoder reconstructs the spatial features in two stages. First, the inverse GFT recovers the spatial
domain with residual connection (He et al., 2016):

htn = Uĥtn + ht0 . (5)

Next, a GraphSAGE update refines these features (Hamilton et al., 2017):

h′
i = W1 h

tn
i +W2 mean

{
htn
j : j ∈ N (i)

}
. (6)

3.4 MULTISCALE ADAPTATION

To preserve local interactions across varying resolutions, we adapt the GNN depth as a function of
the spatial resolution (w, h):

ℓ(w, h) = 6− 2

⌊
log2

(
30

w

)⌋
. (7)

This strategy removes layers for lower-resolution inputs, preventing over-aggregation. Plus, layer
normalization is applied at encoder-decoder interfaces to stabilize feature distributions across scales.

4 EXPERIMENTS

We assess performance on a plastic deformation dataset from Li et al. (2023), where each mesh
experiences material stress over 20 time steps. We compare with GeoFNO and examine zero-shot
transfer across multiple mesh resolutions to highlight the multiscale advantage.

4.1 SETUP AND BASELINES

Task. Predict displacement fields on meshes ranging in resolution from 5× 10 to 30× 100. We train
on different resolutions and test on the same or finer/courser meshes.

Baselines. We compare against GeoFNO Li et al. (2023), which projects node data into a Fourier
basis but assumes a fixed grid/time step.

Implementation. We keep 24 lowest modes, use a 6-layer GNN in encoding/decoding, and a Neural
ODE solver with dopri5 integrator.
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Table 1: MSE on Plastic Deformation

Method MSE (×10−3)

GeoFNO Li et al. (2023) 7.4
SpectralFlowNet (Ours) 6.6

Table 2: Zero-Shot Transfer to 30× 100

Train Res. Test Res. MSE (×10−3)

15× 50 30× 100 12.2
7× 25 30× 100 58.6

Figure 2: Ground-truth vs. Predicted Displacement Fields in Plastic Deformation. The top
row shows the ground-truth displacement evolution over time, while the bottom row presents the
corresponding predictions from our model. The results demonstrate accurate recovery of both global
deformation patterns and localized high-gradient regions.

4.2 MAIN RESULTS

Table 1 reports MSE trained and tested on the original resolution (30 × 100). SpectralFlowNet
outperforms GeoFNO with a 10.8% reduction in error, demonstrating strong local-global modeling.
Figure 2 compares the predicted displacement fields from our model against the ground-truth evolution
in a plastic deformation task. Our approach successfully captures both the large-scale structural
changes and the finer local variations, demonstrating its ability to generalize across different spatial
and temporal scales.

Zero-shot Transfer. We then test a model trained on a coarser resolution (15× 50) on the original
30 × 100 mesh (Table 2). To add more robustness and reduces the effect of the distribution-wise
difference between the two resolutions, we add a 0.2 dropout layer after the processor and reduces
the number of GNN layers to 4 as mentioned in the model section (Srivastava et al., 2014). While
error grows compared to the training resolution, it remains significantly below naive upsampling
baselines, demonstrating resolution-invariant capabilities. Figure 3 illustrates the zero-shot transfer
performance of our model. While the model successfully captures large-scale deformation features,
some high-frequency artifacts emerge due to the increased resolution, emphasizing the need for
resolution-agnostic spectral embeddings.

4.3 ABLATIONS

We evaluate the effect of removing major components to understand their impact on performance.
As shown in Figure 4, the ablation study highlights the role of each component in our model.
Removing GFT significantly increases error, indicating that spectral transforms are crucial for
capturing underlying patterns. Similarly, eliminating the Neural ODE leads to high error, showing
that temporal modeling is necessary. Finally, removing GNN layers results in poor local refinements,
confirming their importance in spatial structuring. These results confirm the necessity of each
component. The largest degradation occurs when removing GFT, highlighting its critical role. Neural
ODEs and GNN layers also significantly contribute to performance, emphasizing the need for both
temporal and spatial modeling. Overall, these findings validate our design choices.

5 CONCLUSION

We introduced SpectralFlowNet, a mesh-based simulation framework that fuses graph Laplacian
eigenmodes with continuous ODEs. By operating in a truncated spectral domain, the model attains
resolution-invariant representations, and by leveraging Neural ODE dynamics, it can handle diverse
time stepping. Experiments on plastic deformation confirm the approach’s efficacy and its multiscale
versatility in zero-shot resolution transfer. Future directions include extending to adaptive remeshing
and explicit multi-physics coupling.
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A MORE VISUALIZATION

Figure 3: Zero-Shot Transfer from 15 × 50 to 30 × 100 Resolution. The top row presents the
ground-truth displacement fields, while the bottom row shows the model predictions on a finer mesh
unseen during training. The results highlight the model’s ability to generalize across resolutions
while preserving key deformation structures, albeit with some increased Moiré patterns.

B THEORETICAL BACKGROUND

Mesh and Graph Laplacian. A mesh M t = (V,E) is viewed as a graph with node features ut
i.

The normalized Laplacian is Lnorm = I−D−1/2AD−1/2. Its eigen-decomposition Lnorm = UΛU⊤

underlies the Graph Fourier Transform x̂ = U⊤x.

Spectral Convergence Theorem. Under mild conditions (e.g., M smooth, σ > 0 small), Lnorm

converges to the Laplace–Beltrami operator of M as mesh resolution increases (Belkin & Niyogi,
2008). Thus, eigenvalues/eigenvectors approximate the manifold spectrum, justifying resolution
invariance in practice.

C GRAPH CONSTRUCTION

For 2D or 3D regular grids, Aij = 1 if j is in the 4- (or 6-) neighborhood of i, else 0. For unstructured
or general mesh data, we either preserve the connectivity from the mesh faces or use k-NN adjacency
with distance-based edge weights Aij ∝ 1/dij .

D IMPLEMENTATION DETAILS

Neural ODE. We use a 2-layer MLP for fθ, with ReLU activations and 256 hidden size. We adopt
the dopri5 integrator with absolute tolerance 10−4 and relative tolerance 10−3.

Layer Normalization. Each GNN layer is followed by layer normalization (Ba, 2016), crucial for
stable training across drastically different resolutions.

Optimization. We train for 400 epochs (batch size=1) using Adam (lr = 10−4, weight decay=10−12).
A multi-step scheduler halves the learning rate every 50 epochs.

E ABLATION STUDY.

To conform with the task of both original prediction and zero shot transfer, we used a reconciled
experiment setting in the ablation study of 4 GNN layers with no dropout. For w/o Neural ODE, we
output a repetitive snapshot of the latent encoding at t0, and in future work could be replaced as a
temporal rollout with a simple 2-Layer MLP.

Figure 4: Ablation on Plastic Deformation
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