
Published as a conference paper at ICLR 2025

LEANPROGRESS: GUIDING SEARCH FOR NEURAL THE-
OREM PROVING VIA PROOF PROGRESS PREDICTION

Suozhi Huang
Institute for Interdisciplinary Information Sciences
Tsinghua University
Beijing, China
huang-sz20@mails.tsinghua.edu.cn

Peiyang Song
Computing + Mathematical Sciences Department
California Institute of Technology
Pasadena, CA, U.S.A.
psong@caltech.edu

Robert Joseph George
Computing + Mathematical Sciences Department
California Institute of Technology
Pasadena, CA, U.S.A.
rgeorge@caltech.edu

Anima Anandkumar
Computing + Mathematical Sciences Department
California Institute of Technology
Pasadena, CA, U.S.A.
anima@caltech.edu

ABSTRACT

Mathematical reasoning remains a significant challenge for Large Language Models
(LLMs) due to hallucinations. When combined with formal proof assistants like
Lean, these hallucinations can be eliminated through rigorous verification, making
theorem proving reliable. However, even with formal verification, LLMs still
struggle with long proofs and complex mathematical formalizations. While Lean
with LLMs offers valuable assistance with retrieving lemmas, generating tactics,
or even complete proofs, it lacks a crucial capability: providing a sense of proof
progress. This limitation particularly impacts the overall development efficiency in
large formalization projects. We introduce LeanProgress, a method that predicts the
progress in the proof. Training and evaluating our models made on a large corpus of
Lean proofs from Lean Workbook Plus and Mathlib4 and how many steps remain
to complete it, we employ data preprocessing and balancing techniques to handle
the skewed distribution of proof lengths. Our experiments show that LeanProgress
achieves an overall prediction accuracy of 75.1% in predicting the amount of
progress and, hence, the remaining number of steps. When integrated into a best-
first search framework using Reprover, our method shows a 3.8% improvement
on Mathlib4 compared to baseline performances of 41.2%, particularly for longer
proofs. These results demonstrate how proof progress prediction can enhance both
automated and interactive theorem proving, enabling users to make more informed
decisions about proof strategies.

1 INTRODUCTION

Formal theorem proving (Avigad, 2023) has emerged as a cornerstone of rigorous mathematical
verification, providing machine-checked guarantees for proofs ranging from foundational results
(Gowers et al., 2023) to industrial applications (Community, 2022). The Lean proof assistant (Moura
& Ullrich, 2021), built on dependent type theory, has witnessed remarkable adoption growth (Best
et al., 2023), fueled by collaborative efforts on large-scale formalization projects (mathlib Community,
2020) and novel mathematical developments (Asgeirsson, 2024). This collaborative paradigm shift
underscores the urgent need for enhanced tooling to support mathematicians navigating increasingly
complex proof environments.

The recent success of Large Language Models (LLMs) in code generation (Rozière et al., 2024)
and symbolic reasoning (Yu et al., 2024) has spurred innovations at the intersection of LLMs and
formal verification. Some of the works that have been developed include LeanDojo (Yang et al.,
2024b) which provides an interactive environment for training LLMs on tactic-level interactions
while LLMStep (Welleck & Saha, 2023) and LeanCopilot (Song et al., 2024) focuses on next-tactic

1

Published as a conference paper at ICLR 2025

suggestion through interface as a useful tool. Lean Agent (Kumarappan et al., 2024) then combines
neural suggestion with life-long learning while Lean Aide (Agrawal et al., 2022) and Lean-STaR(Lin
et al., 2024) translates statements written in natural language in a doc-string like format to Lean
types (including theorem statements) and bootstrapping thoughts. While these systems demonstrate
impressive tactic-level accuracy (Johansson, 2023), they primarily optimize for local correctness
rather than global proof progress – a critical limitation when navigating Lean’s vast action space
(Nawrocki et al., 2023).

Proof Tree Data Construction

distribution
balancing

remaining steps=3

induction n, rfl

simp [add, ih]

local context
+ history

+ number of steps

built-in tactic

LLM on
local server

predict_steps

Progress Prediction Integration with LeanCopilot

n : ℕ
⊢ add 0 n = n

log prob = 0.4

log prob = 0.3

log prob = 0.2

case n

log prob score as critic

n : ℕ
⊢ add 0 n = n

remaining steps = 1

remaining steps = 3

remaining steps = 2

case n

remaining steps as signal

n : ℕ
⊢ add 0 n = n

⊢ add 0 0 = 0 n’ : ℕ
ih: add 0 n’ = n’
⊢ add 0 (n’+1) = n’+1

Local context
⊢ Goal

Tactic
Induction n

rfl

simp [add, ih]

Figure 1: The visualization of LeanProgress. LeanProgress is a lightweight framework that collects
the number of remaining steps in proof trees and then balances the data distribution to train the
language model. Then LeanProgress takes the proof state as input to generate the remaining steps
for each state as a signal for search. LeanProgress also integrates the tactic predict steps in
LeanCopilot as a user-friendly tool.

Reinforcement learning (RL) presents a theoretically appealing framework for automated theorem
proving (Dong et al., 2024), where finding reward signals over proof trajectories is essential. However,
the combinatorial explosion of tactic sequences in Lean (Clune, 2023) renders direct RL applications
impractical (Setlur et al., 2024). Alphaproof (AlphaProof & AlphaGeometry, 2024) has done RL for
theorem proving but it’s not open source and needs enormous compute. Current approaches mitigate
this through hybrid architectures (Wang et al., 2023) but remain fundamentally limited by the absence
of reliable progress indicators to guide exploration – a prerequisite for effective RL in mathematical
domains (Gao et al., 2024).

We address this critical gap with LeanProgress (Fig 2), a lightweight framework that predicts
remaining proof steps through learned progress signals with search methods beyond log-probability
based search (Song et al., 2024) or manual heuristics (Ringer et al., 2021).

LeanProgress makes the following key contributions:

Balanced Data Generation Pipeline: We construct a balanced dataset of approximately 80k proof
trajectories from Lean Workbook Plus and Mathlib4 by performing a tree search and selecting the
shortest path as ground truth. We employ a data balancing strategy based on relative proof progress.
Since the useful and non-trivial data of long proofs are long-tailed distributed in the original dataset,
we fully utilize long proof data by assigning each state with a remaining step as a label.

Model for Progress Prediction: We fine-tune a DeepSeek Coder V1 1.3b base model to predict the
remaining steps, achieving a Mean Absolute Error (MAE) of 3.29 and an overall prediction accuracy

2

Published as a conference paper at ICLR 2025

of 75.1% on the test set with proof history. Unlike tactic suggestion tools, LeanProgress provides a
global view of the proof process by predicting the remaining steps rather than the immediate next
tactic.

Progress-Guided Proof Search: We integrate our step prediction model into a best-first search
framework. A natural first step for using the progress predictor is combining the predicted remaining
steps with the tactic generator’s log probabilities to guide the search. In the future, we hope to use
this, instead of just relying on the log probabilities, as a reward for RL. We observe on Mathlib4 a
significant improvement of 3.8% with the baseline Reprover performance of 41.2%.

Integration with LeanCopilot: Based on the LeanCopilot framework, we provide a new built-
in tactic predict steps with suggestion within the standard Lean user interface. It is a
helpful tool that not only suggest tactics but also offer users immediate feedback on proof progress
and potential next steps. All the development details are in Appendix A B and C.

2 RELATED WORK

LLMs for Formal Proof Generation. Large Language Models (LLMs) have demonstrated signifi-
cant potential in the field of formal theorem proving (Yang et al., 2024a), finding applications across
various proof assistants (Yang et al., 2024b; Song et al., 2024; Lama et al., 2024). Current research
on LLM-based theorem proving primarily focuses on several key tasks. A prominent application
is tactic suggestion. Following GPT-f (Polu & Sutskever, 2020), LLMs are employed to predict
the most promising next tactic given the current proof state. These methods are often coupled with
proof search algorithms, such as best-first search (Yang et al., 2024b) or majority voting (Zhou et al.,
2024), to explore the proof space and discover complete proofs (Wu et al., 2024). Other techniques,
such as retrieval-augmented LLMs (Yang et al., 2024b) and agentic approaches (Thakur et al., 2024),
provides further aids for tactic generation by selecting relevant lemmas and enabling multi-round
proof refinement utilizing environment feedback. Moreover, emerging research directions include
autoformalization (Wu et al., 2022; Jiang et al., 2023), which aims to translate informal mathematical
text into formal proofs, and the direct generation of complete proof sketches (Jiang et al., 2022; Wang
et al., 2024), both of which can be combined with proof generation to enable large-scale training
despite inherent proof data scarcity. Our work addresses the gap from local tactic prediction to a
global understanding of the proof trajectory by focusing on predicting the number of remaining steps
required for proof completion, offering a novel way for new applications of reinforcement learning in
automated theorem proving.

Interactive Tools for Formal Theorem Proving. Mathematicians proving theorems in Lean can
significantly benefit from interactive tools that integrate seamlessly into the Lean workflow and
provide aids. LLMStep (Welleck & Saha, 2023) extracts current proof states from Lean and sends it
to a remote server for LLM-generated tactic suggestions. LeanCopilot (Song et al., 2024) improves
the user experience by having fully native tactic suggestion and proof search tools in Lean, besides
an additional functionality of premise selection, providing more comprehensive assistance for the
proving process. CoqPilot (Kozyrev et al., 2024), a VS Code extension for Coq, uses LLMs,
among other generative methods, to fill in proof holes by an “admit” tactic. Unlike these tactics
or proof-centric approaches, we predict the number of remaining steps by adding a new tactic,
predict steps with suggestion based on LeanCopilot, providing tactic suggestions ranked
by the output number of remaining steps as a score.

LLM Guidance in Search. Effective proof search is essential for automated theorem proving.
While scaling computational resources during search has led to significant advancements, as seen
in AlphaGeometry (Trinh et al., 2024) and AlphaProof (AlphaProof & AlphaGeometry, 2024) for
IMO problems and in recent work on natural language reasoning (Lightman et al., 2023; Yang
et al., 2022; Zhang et al., 2024; Xie et al., 2024) (including OpenAI’s o1, o3 model (Jaech et al.,
2024; Xu et al., 2025)), proof search is a bit different. The vast search space of possible proof
steps necessitates effective guiding mechanisms. This highlights the need for methods that can
provide a global perspective on proof progress, which our work addresses by predicting the number
of remaining steps.

3

Published as a conference paper at ICLR 2025

3 DATA GENERATION FOR LEANPROGRESS

This section details the data generation and processing methodology used to train LeanProgress. We
describe the process of generating proof trees using best-first search (BFS) and the Reprover model,
the resulting dataset of proof trajectories, and the adjustments made to address the skewed distribution
of proof lengths.

3.1 PRELIMINARIES: TACTIC PREDICTION AS AN MDP

Interactive Theorem Provers (ITPs) frame theorem proving as a search problem. As Fig 2 shows,
the initial theorem to be proven represents the initial state, and the application of tactics generates
transitions to new states, each containing subgoals. The objective is to find a sequence of tactics that
leads to a state where all subgoals are proven. This search process is central to automated theorem
proving, and our work focuses on providing valuable information to guide this search within the Lean
ITP.

root state
log p = 0

state 2
log p = 0.5

state 1
log p = 0.3

state 3
log p = 2.0

state 5
log p = 0.7

state 6
log p = 0.9

state 4
log p = 0.6

goal state
log p = 3.2

……state 7
log p = 1.4

extract shortest proof path

1 step

2 steps

state 3
log p = 2.0

remaining:

goal state
log p = 2.0

goal state
log p = 3.2

root state
log p = 0

0 step

……

Figure 2: The visualization of extract proof tree in theorem proving.

The theorem-proving problem can be formalized as a Markov Decision Process (MDP), denoted
as (S,A, Pa, Ra), where S represents the set of all possible proof states. A represents the set of all
available tactics (actions). Pa represents the state transition probabilities after executing tactic a in
state s. Ra represents the reward obtained by executing tactic a. From an MDP perspective, a proof
process can be viewed as a trajectory of states, tactics, and rewards: (si, ai, ri), where the proof
assistant (e.g., Lean) provides the next state si+1 given the current state si and the applied tactic ai.
In typical tactic prediction, proving a theorem involves providing a proof state s to a language model
L, which then generates a tactic a, i.e., πL(a|s). Typically, final states (where the goal is proven) are
assigned a reward of 1, indicating successful completion of the proof.

3.2 GENERATING PROOF TREES AND TRAJECTORIES

A common evaluation strategy for neural theorem provers is best-first search (BFS), as used in GPT-f
and related research (Han et al., 2021). This method explores the proof space by iteratively expanding
the ”best” state, determined by the maximum cumulative log probability of the preceding proof trajec-
tory. Specifically, given a set of unexpanded states si, the ”best” state to expand is chosen according
to: maxi

∑i−1
j=0 log p(aj , sj), where (s0, a0), . . . , (si−1, ai−1) is the proof trajectory before state si

and log p(aj , sj) is the average log probability of the generated tokens for the tactic aj in state sj .

4

Published as a conference paper at ICLR 2025

(a) Original dataset of steps distribution (b) Adjusted dataset of steps distribution by balanc-
ing different ranges

Figure 3: Distribution of proof lengths before and after adjustment. Fig (a) shows Original dataset
with average proof length of Loriginal = 2.47. We address the imbalance by assigning each range with
different sample ratios. After adjustment the average proof length of Loriginal = 10.1. This dataset is
balanced to keep more long proof paths.

Our work utilizes BFS in conjunction with the Reprover model (Yang et al., 2024b) to generate
successful proof trees. By systematically applying Reprover to all reachable states within a certain
depth in a best-first manner, we construct a tree of successful proofs. This approach allows us to
collect a dataset of complete proof trajectories, which is then used to train our model to predict
the number of remaining steps. This data generation process is crucial for training our model to
understand the relationship between proof states and the number of steps required for completion. In
particular, if multiple proofs are found for a theorem (i.e., multiple no goals nodes are reached), we
select the proof with the minimum depth (the length of the path from the root node to the no goals
node) to ensure the quality and consistency of the training data.

Formally, let T = {t1, t2, ..., tM} be the set of theorems in our dataset. For each theorem ti ∈ T ,
we perform BFS using the Reprover model to generate a set of successful proof trajectories Pi =
{pi,1, pi,2, ..., pi,ki

}, where ki is the number of proofs found for theorem ti. Each proof trajectory
pi,j is a sequence of proof states: pi,j = (si,j,1, si,j,2, ..., si,j,ni,j

), where ni,j is the length (number
of steps) of the j-th proof for theorem ti.

If ki > 1, we select the proof trajectory pi,j∗ with the minimum depth:

j∗ = argmin
j

{ni,j | 1 ≤ j ≤ ki}

Our training dataset D is then constructed by extracting (state, remaining steps) pairs from the
selected proof trajectories:

D = {(si,j∗,l, ni,j∗ − l) | ti ∈ T, 1 ≤ l ≤ ni,j∗}

where si,j∗,l is the l-th state in the selected proof trajectory pi,j∗ for theorem ti, and ni,j∗ − l
represents the number of remaining steps from state si,j∗,l to the end of the proof.

3.3 DATA BALANCING

We evaluated our models on a dataset of Lean proofs extracted from Lean Workbook Plus and
Mathlib4. The original dataset exhibited a skewed distribution of proof lengths, with an average
proof length of Loriginal = 2.47. This distribution is shown in Figure 3(a). We adjusted the data
distribution based on relative progress within each proof to address this imbalance and ensure a more
representative sample of different proof stages. The adjustment was performed by assigning different
sampling ratios to five ranges of proof lengths: 1-5 steps (Basic progress, 0.01 ratio), 6-10 steps
(Intermediate progress, 0.3 ratio), 11-15 steps (Moderate progress, 0.5 ratio), 16-20 steps (Advanced
progress, 0.7 ratio), and 21+ steps (Expert progress, 1.0 ratio). This strategy effectively upsamples
longer proofs and downsamples shorter ones, resulting in a more balanced dataset. The resulting

5

Published as a conference paper at ICLR 2025

adjusted distribution has an average proof length of Ladjusted = 10.1, and the comparison is shown in
Figure 3(b).

The dataset was then split into training, validation, and test sets. The test set contains 88,233 proof
states. The training set contains Ntrain proof states, and the validation set contains Nval proof states.
The dataset was partitioned randomly at the theorem level, meaning that all states from a given
theorem belong to the same split (either training, validation, or test). This prevents data leakage
between splits.

4 MODEL TRAINING & EXPERIMENTS

This section describes the experimental setup, including model training and results of evaluating
LeanProgress’s Step Predictor: Prediction accuracy and search pass rate improvement compared to
traditional best-first search via log probability.

4.1 LANGUAGE MODEL: REMAINING STEP PREDICTOR

Our approach uses a language model to predict the number of steps remaining to reach a no goals
state (proof completion) given a current proof state. While the language model architecture can be
varied, we employ a fine-tuned DeepSeek Coder 1.3B model (Guo et al., 2024). This model is trained
to predict the number of remaining steps based on the current proof state and, optionally, the history
of applied tactics.

The input format for our model is as follows:

[STATE BEFORE]state [STEPS TO NO GOALS]steps

Here, state represents the current proof state, encoded as a string representing the current goals.
The model is trained to generate the number of remaining steps after this prompt. This input format
allows the model to focus specifically on the task of predicting the remaining steps, distinct from
predicting the next tactic.

We fine-tuned the DeepSeek Coder 1.3B model on (state, remaining steps) pairs extracted from
successful proof trajectories generated using BFS and the Reprover model as described in the
previous subsection. The DeepSeek Coder model was chosen for its strong performance in code
understanding tasks with less than 2B parameters so that personal computers can support inference
locally, which we believe translates well to the task of predicting a numerical value representing the
remaining steps. The model was fine-tuned using a Mean Squared Error (MSE) loss function with
the AdamW optimizer. The training was conducted batch size of 4 and a learning rate of 1e − 5.
Other parameters are like betas (0.9, 0.999) with weight decay 0.01 and warmup ratio 0.03. We
experimented with other models, such as DeepSeek coder V2 or Prover V1.5, but the model size of
7B is not capable of being used on personal computers. We found that the DeepSeek Coder 1.3B
model provided the best balance between performance and computational efficiency.

4.2 PROOF HISTORY UTILIZATION

We investigated the impact of incorporating proof history into the input for remaining step prediction.
We compared the performance of our model when using only the current proof state (state before) as
input against using both the current state and the preceding tactic sequence (state proof). The results,
shown in Table 1, demonstrate the importance of including proof history. The prompt formats used
for these two settings are as follows:

• state before: --- STATE_BEFORE: {state_before}
--- STEPS_TO_NO_GOALS:

• state proof: --- STATE_BEFORE: {state_before}
--- PROOF: {proof}
--- STEPS_TO_NO_GOALS:

6

Published as a conference paper at ICLR 2025

Where {state before} represents the current proof state, and {proof} represents the sequence
of tactics applied so far.

4.3 EVALUATION

We evaluate our model in two ways. First, we assess the accuracy of our step predictions directly
on our generated dataset by calculating the Mean Absolute Error (MAE). Second, we investigate
the potential of using our step predictions as a ranking score within a best-first search framework,
comparing its performance against standard best-first search based solely on log probabilities.

4.3.1 MAE EVALUATION ON STEPS DATASET

To evaluate the accuracy of our step predictions, we calculate the Mean Absolute Error (MAE) on our
generated dataset D. Given a state si,j∗,l in the selected proof trajectory for theorem ti, our model
predicts the number of remaining steps as n̂i,j∗,l = f(si,j∗,l). The actual number of remaining steps
is ni,j∗ − l. The MAE is then calculated as: MAE = 1

|D|
∑

(s,n)∈D |n̂ − n| where |D| is the total
number of (state, remaining steps) pairs in our dataset. This metric provides a direct measure of the
average difference between our model’s predictions and the true number of remaining steps.

4.3.2 PROOF HISTORY HELPS STEP PREDICTION

We evaluate the prediction accuracy using Mean Absolute Error (MAE), which measures the average
absolute difference between the predicted number of remaining steps and the actual number of
remaining steps. A lower MAE indicates better prediction accuracy. Table 1 presents the MAE and
accuracy results for both input formats across different ranges of proof lengths and overall. The table
shows the total number of samples for each range, along with the accuracy and MAE achieved by
each input format.

Input Range Total Samples Accuracy MAE

state 1-5 2.82k 71.1% 1.412
6-10 1.17k 52.1% 2.920

11-15 567 47.7% 6.808
16-20 563 63.2% 4.915
21+ 3.70k 59.7% 8.648

Overall 8.82k 61.8% 5.217

proof 1-5 2.82k 79.0% 1.066
6-10 1.17k 61.5% 2.857

11-15 567 68.3% 4.341
16-20 563 77.1% 2.748
21+ 3.70k 76.7% 5.221

Overall 8.82k 75.1% 3.290

Table 1: Comparison of MAE and Accuracy with and without Proof History.

From the results in Table 1, we observe a significant performance drop when only the input state is
used (state before). Including all previous tactics in the prompt (state proof) provides a ”direction”
for the proof, leading to better performance and more accurate predictions, as evidenced by the
consistently lower MAE values across all ranges and overall. This improvement is likely due to the
fact that proof history encodes information beyond the current state, such as consistent application of
specific mathematical techniques (e.g., repeated use of exponentiation or logarithms) or the overall
strategy being employed. This contextual information allows the model to make more informed
predictions about the remaining steps.

4.3.3 COMBINING BEST-FIRST SEARCH WITH STEPS PREDICTION

Beyond direct prediction accuracy, we explore the potential of using our step predictions to guide
proof search. We integrate our model into a best-first search framework by combining the predicted

7

Published as a conference paper at ICLR 2025

remaining steps with the log probabilities of the tactic sequence. Specifically, when selecting the next
state to expand, instead of using only the cumulative log probability L(si) =

∑i−1
j=0 log p(aj |sj),

where (s0, a0), . . . , (si−1, ai−1) is the proof trajectory before state si and log p(aj |sj) is the average
log probability of the generated tokens for the tactic aj given state sj , we use a combined score:
C(si) = αN(si) + (1 − α)P (si), where α ∈ [0, 1] is a hyperparameter that controls the relative
importance of the normalized steps N(si) and the log probability P (si). The normalized steps are
calculated as N(si) = −2n̂i/Nmax, where n̂i = f(si) is the predicted number of remaining steps
for state si, and Nmax is the maximum possible number of steps from all states in a proof.

We compare the performance of this combined approach(where α = 0.2) with a standard best-first
search using only log probabilities (equivalent to setting α = 0). We evaluate both approaches by
measuring the number of theorems solved within a fixed number of expansions and the average
number of expansions required to find a proof. This comparison demonstrates the effectiveness of
incorporating our step predictions into the search process. Proof search requires a search algorithm and
a method for interacting with Lean. So, we chose the best-first search for LeanDojo’s implementation.
Best-first search is parameterized by the maximum number of generated tactics, defined as the number
of attempts × expansion size per iteration × maximum iterations, subject to a timeout. We use a
2-minute timeout and use beam search with a size of 1 × 32 due to memory constraints.

We compare our method, which combines predicted remaining steps with log probabilities, against
standard best-first search using only log probabilities. We evaluate the LeanDojo v4 test dataset. The
primary metric for evaluating proof search performance is the percentage of theorems solved within
the timeout. The results of this comparison are shown in Table 2, which demonstrate the effectiveness
of incorporating our step predictions into the proof search process.

Method Mathlib4-test
Original LogP 41.2%
Steps as Critic 45.0%

Table 2: Comparison of Proof Search Performance: Pass rates on the Mathlib4-test dataset with Lean.
This table shows the pass rates of previous logP method and ours. In sampling, we used a model with
a temperature of 0.7; we sampled 32 examples once.

5 FUTURE WORK AND CONCLUSION

There are several promising avenues for future work that could further enhance LeanProgress.

1) Incorporating Tree-of-Thought and Chain-of-Thought Approaches: One potential direction for
future research is to integrate tree-of-thought (ToT) and chain-of-thought (CoT) methodologies into
LeanProgress. These approaches could provide a more structured and interpretable way of reasoning
about proof progress. By incorporating ToT and CoT, we could potentially improve the model’s
ability to explain its predictions and provide more detailed insights into the proof process.

2) Integration with Reinforcement Learning: A particularly promising avenue for future work is
the integration of LeanProgress with reinforcement learning (RL) techniques. LeanProgress’s ability
to predict the number of remaining steps in a proof can provide a continuous and informative reward
signal for RL. Unlike binary rewards only indicating success or failure at the end, this continuous
feedback allows the agent to learn from partial progress throughout the proving process. They could
also learn efficiently by receiving feedback throughout the proving process while developing better
long-term strategies. This could then enable the model to adapt its behavior based on the difficulty
and progress of the current theorem and achieve higher success rates.

3) Lightweight and Scalable Implementations: Future work could also focus on developing more
lightweight implementations of LeanProgress. This could involve exploring model compression
techniques or developing more efficient architectures that maintain prediction accuracy while reducing
computational requirements. Such improvements would make LeanProgress more accessible and
easier to integrate into existing theorem-proving workflows.

8

Published as a conference paper at ICLR 2025

In conclusion, we introduce LeanProgress, an approach enhancing interactive theorem proving by
integrating a remaining step predictor into the LeanCopilot frontend. Our work makes several
contributions to automated theorem proving. We generated a balanced dataset of proof trajectories by
adjusting the sampling ratio based on proof length, addressing the challenge of skewed distributions
in proof complexity. We then trained a remaining step prediction model using the current proof state
and, optionally, the proof history. Integrating this model into the LeanCopilot interface provides
users with both tactic suggestions and remaining step predictions, offering a more comprehensive
tool for guiding the proof process. Our results highlight the potential of proof progress prediction in
enhancing both automated and interactive theorem proving, enabling users to make more informed
decisions about proof strategies and bridging the gap between local tactic prediction and global proof
trajectory understanding.

REFERENCES

Ayush Agrawal, Siddhartha Gadgil, Navin Goyal, Ashvni Narayanan, and Anand Tadipatri. Towards a
mathematics formalisation assistant using large language models, 2022. URL https://arxiv.
org/abs/2211.07524.

T AlphaProof and T AlphaGeometry. Ai achieves silver-medal standard solving international 178
mathematical olympiad problems. DeepMind blog, 179, 2024.

Dagur Asgeirsson. Towards Solid Abelian Groups: A Formal Proof of Nöbeling’s Theorem. In
Yves Bertot, Temur Kutsia, and Michael Norrish (eds.), 15th International Conference on In-
teractive Theorem Proving (ITP 2024), volume 309 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 6:1–6:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. ISBN 978-3-95977-337-9. doi: 10.4230/LIPIcs.ITP.2024.6. URL https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.6.

Jeremy Avigad. Mathematics and the formal turn, 2023. URL https://arxiv.org/abs/
2311.00007.

Alex J. Best, Christopher Birkbeck, Riccardo Brasca, and Eric Rodriguez Boidi. Fermat’s Last
Theorem for Regular Primes. In Adam Naumowicz and René Thiemann (eds.), 14th International
Conference on Interactive Theorem Proving (ITP 2023), volume 268 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 36:1–36:8, Dagstuhl, Germany, 2023. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. ISBN 978-3-95977-284-6. doi: 10.4230/LIPIcs.ITP.2023.
36. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.
ITP.2023.36.

Joshua Clune. A formalized reduction of keller’s conjecture. In Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, pp. 90–101,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700262. doi:
10.1145/3573105.3575669. URL https://doi.org/10.1145/3573105.3575669.

Mathlib Community. Completion of the liquid tensor experiment. https://
leanprover-community.github.io/blog/posts/lte-final/, 2022.

Kefan Dong, Arvind Mahankali, and Tengyu Ma. Formal theorem proving by rewarding llms to
decompose proofs hierarchically, 2024. URL https://arxiv.org/abs/2411.01829.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for llm reasoning, 2024. URL
https://arxiv.org/abs/2410.15115.

W. T. Gowers, Ben Green, Freddie Manners, and Terence Tao. On a conjecture of marton, 2023.
URL https://arxiv.org/abs/2311.05762.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y.K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

9

https://arxiv.org/abs/2211.07524
https://arxiv.org/abs/2211.07524
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.6
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.6
https://arxiv.org/abs/2311.00007
https://arxiv.org/abs/2311.00007
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.36
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.36
https://doi.org/10.1145/3573105.3575669
https://leanprover-community.github.io/blog/posts/lte-final/
https://leanprover-community.github.io/blog/posts/lte-final/
https://arxiv.org/abs/2411.01829
https://arxiv.org/abs/2410.15115
https://arxiv.org/abs/2311.05762
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196

Published as a conference paper at ICLR 2025

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. arXiv preprint arXiv:2102.06203, 2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. arXiv
preprint arXiv:2311.03755, 2023.

Moa Johansson. What can large language models do for theorem proving and formal methods? In
Bridging the Gap Between AI and Reality: First International Conference, AISoLA 2023, Crete,
Greece, October 23–28, 2023, Proceedings, pp. 391–394, Berlin, Heidelberg, 2023. Springer-
Verlag. ISBN 978-3-031-46001-2. doi: 10.1007/978-3-031-46002-9 25. URL https://doi.
org/10.1007/978-3-031-46002-9_25.

Andrei Kozyrev, Gleb Solovev, Nikita Khramov, and Anton Podkopaev. Coqpilot, a plugin for
llm-based generation of proofs. In Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’24, pp. 2382–2385. ACM, October 2024. doi: 10.1145/
3691620.3695357. URL http://dx.doi.org/10.1145/3691620.3695357.

Adarsh Kumarappan, Mo Tiwari, Peiyang Song, Robert Joseph George, Chaowei Xiao, and Anima
Anandkumar. Leanagent: Lifelong learning for formal theorem proving, 2024. URL https:
//arxiv.org/abs/2410.06209.

Vanessa Lama, Catherine Ma, and Tirthankar Ghosal. Benchmarking automated theorem proving with
large language models. In Proceedings of the 1st Workshop on NLP for Science (NLP4Science),
pp. 208–218, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave thinking
and proving, 2024. URL https://arxiv.org/abs/2407.10040.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, pp. 367–381, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370974. doi: 10.1145/
3372885.3373824. URL https://doi.org/10.1145/3372885.3373824.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual
Event, July 12–15, 2021, Proceedings, pp. 625–635, Berlin, Heidelberg, 2021. Springer-Verlag.
ISBN 978-3-030-79875-8. doi: 10.1007/978-3-030-79876-5 37. URL https://doi.org/
10.1007/978-3-030-79876-5_37.

Wojciech Nawrocki, Edward W. Ayers, and Gabriel Ebner. An Extensible User Interface for Lean 4.
In Adam Naumowicz and René Thiemann (eds.), 14th International Conference on Interactive
Theorem Proving (ITP 2023), volume 268 of Leibniz International Proceedings in Informatics
(LIPIcs), pp. 24:1–24:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN 978-3-95977-284-6. doi: 10.4230/LIPIcs.ITP.2023.24. URL https://
drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.24.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. Proof repair across
type equivalences. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pp. 112–127, 2021.

10

https://doi.org/10.1007/978-3-031-46002-9_25
https://doi.org/10.1007/978-3-031-46002-9_25
http://dx.doi.org/10.1145/3691620.3695357
https://arxiv.org/abs/2410.06209
https://arxiv.org/abs/2410.06209
https://arxiv.org/abs/2407.10040
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.24
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.24

Published as a conference paper at ICLR 2025

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024. URL
https://arxiv.org/abs/2308.12950.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning, 2024. URL https://arxiv.org/abs/2410.08146.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots for
theorem proving in lean, 2024. URL https://arxiv.org/abs/2404.12534.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-
context learning agent for formal theorem-proving, 2024. URL https://arxiv.org/abs/
2310.04353.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Heng Liao, and Xiaodan Liang.
Lego-prover: Neural theorem proving with growing libraries, 2023. URL https://arxiv.
org/abs/2310.00656.

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jianqiao Lu, Zhicheng
Yang, Jing Tang, Jian Yin, Zhenguo Li, et al. Proving theorems recursively. arXiv preprint
arXiv:2405.14414, 2024.

Sean Welleck and Rahul Saha. Llmstep: Llm proofstep suggestions in lean. arXiv preprint
arXiv:2310.18457, 2023.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. arXiv
preprint arXiv:2408.00724, 2024.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Information
Processing Systems, 35:32353–32368, 2022.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025.

Kaiyu Yang, Jia Deng, and Danqi Chen. Generating natural language proofs with verifier-guided
search. arXiv preprint arXiv:2205.12443, 2022.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai, 2024a. URL https://arxiv.
org/abs/2412.16075.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Processing Systems, 36, 2024b.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
ACM Computing Surveys, 56(12):1–39, 2024.

11

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2404.12534
https://arxiv.org/abs/2310.04353
https://arxiv.org/abs/2310.04353
https://arxiv.org/abs/2310.00656
https://arxiv.org/abs/2310.00656
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075

Published as a conference paper at ICLR 2025

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q Weinberger, and Yuhuai Wu.
Don’t trust: Verify–grounding llm quantitative reasoning with autoformalization. arXiv preprint
arXiv:2403.18120, 2024.

12

Published as a conference paper at ICLR 2025

A CODE & ARTIFACTS

We open source all code and artifacts with this work. The complete codebase of data generation
pipeline, data processing, tool development based on LeanCopilot, and main algorithm will be shared
in a Github repository, which, together with the curated dataset, will be made public upon acceptance
of this work. For this submission, in respect to the double blind policy, we submit the complete code
in supplementary materials.

B QUALITATIVE EXAMPLES

In this section, we showcase LeanProgress successfully predicting the number of remaining steps, in
a variety of representative qualitative examples.

Figure 4: Qualitative Example 1/6 of running our Step Predictor on real-world Lean problems.

Figure 5: Qualitative Example 2/6 of running our Step Predictor on real-world Lean problems.

Figure 6: Qualitative Example 3/6 of running our Step Predictor on real-world Lean problems.

C PRACTICAL TOOL DEVELOPMENT.

With the Step Predictor, one immediate practical application is to couple with tactic suggestion and
offer indications of proof progress. While LeanCopilot provides a general framework of developing
LLM-based tools natively in Lean, and supports a suggest tactic functionality that offers tactic
suggestions, it lacks concrete feedback to help users choose among tactic candidates, which creates
inefficiency due to repetitive trial-and-error during the theorem proving process. With each tactic
candidate, LeanCopilot only offers the resulting state if applying that tactic, together with a log
probability score from the tactic generation model. While the log probability score hard to concretize

13

Published as a conference paper at ICLR 2025

Figure 7: Qualitative Example 4/6 of running our Step Predictor on real-world Lean problems.

Figure 8: Qualitative Example 5/6 of running our Step Predictor on real-world Lean problems.

and the resulting state oftentimes too complicated to interpret directly, using prediction of numbers of
remaining steps helps guide users directly and concretely in choosing tactics.

Thus, to complement existing tactic suggestion, we leverage LeanCopilot’s neural network inference
framework in Lean, and builds a practical tool upon suggest tactic that additionally shows the
number of remaining steps from each tactic candidate. The whole functionality is wrapped into a
single tactic predict steps with suggestion that is directly usable within a standard Lean
workflow.

Case Study for Tool Use. To further illustrate the practical application and effectiveness of Lean-
Progress, we present a case study demonstrating its use within the LeanCopilot environment. This
example showcases how the combined display of tactic suggestions and remaining step predictions
can aid users in navigating complex proofs, particularly in number theory.

Figure 10 (simulated) demonstrates LeanProgress’s assistance in proving a divisibility theorem. The
user begins with the goal of proving that if (m ∗ n+m+ n) mod 6 = 4 for natural numbers m and
n, then 12 divides m ∗ n (written as 12 | (m ∗ n) in Lean). The user inputs the theorem statement
into Lean and invokes the predict steps with suggestion command. The Lean Infoview
then displays the following information, offering both a prediction of the remaining proof steps and a
set of suggested tactics.

Case Study for Proof Guided by LeanProgress. We now analyze a specific example,
mathd algebra 296, to illustrate the advantage of using Progress Predictor. The theorem and
proof is:

theorem mathd_algebra_296 : abs (((3491 - 60) * (3491 + 60) - 3491ˆ2):Z)
= 3600 := by
rw abs_of_nonpos
norm_num
norm_num

This theorem was successfully proven with the aid of our Progress Predictor. A key observation
is that a naive application of norm num would not suffice to complete the proof. The Progress
Predictor leverages the recorded proof history and inferred the application of the difference of squares

14

Published as a conference paper at ICLR 2025

Figure 9: Qualitative Example 6/6 of running our Step Predictor on real-world Lean problems.

Input (User) theorem

theorem lean_workbook_plus_74374 (m n : N
) : (m * n + m + n) % 6 = 4 → 12 | m *
n := by

predict steps with suggestion

Suggestion (Lean-
Progress)

Lean Infoview

Try these:

• rw [Nat.add comm]

• intro h

• rw [← Nat.mod add div m n]

• rw [Nat.dvd iff mod eq zero]

• omega

Steps remaining: 6

Figure 10: Simulated example showing the use of predict steps with suggestion. The
tactic predicts 6 remaining steps and suggests 5 tactics. The first 3 tactics for this proof should be
intro h, have g := congr arg (· % 6) h and simp at g.

factorization. By leveraging proof history and remaining steps, the Progress Predictor likely guided
the prover to apply norm num multiple times, ultimately leading to the successful derivation of
the target value. A standard Reprover, lacking access to the proof history, would struggle with this
theorem.

15

	Introduction
	Related Work
	Data Generation for LeanProgress
	Preliminaries: Tactic Prediction as an MDP
	Generating Proof Trees and Trajectories
	Data Balancing

	Model Training & Experiments
	Language Model: Remaining Step Predictor
	Proof History Utilization
	Evaluation
	MAE Evaluation on Steps Dataset
	Proof History Helps Step Prediction
	Combining Best-First Search with Steps Prediction

	Future Work and Conclusion
	Code & Artifacts
	Qualitative Examples
	Practical Tool Development.

