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Abstract

GeRaF is the first method to use neural implicit learning for near-range 3D geome-
try reconstruction from radio frequency (RF) signals. Unlike RGB or LiDAR-based
methods, RF sensing can see through occlusion but suffers from low resolution and
noise due to its lensless imaging nature. While lenses in RGB imaging constrain
sampling to 1D rays, RF signals propagate through the entire space, introducing sig-
nificant noise and leading to cubic complexity in volumetric rendering. Moreover,
RF signals interact with surfaces via specular reflections, requiring fundamentally
different modeling. To address these challenges, GeRaF (1) introduces filter-based
rendering to suppress irrelevant signals, (2) implements a physics-based RF volu-
metric rendering pipeline, and (3) proposes a novel lensless sampling and lensless
alpha blending strategy that makes full-space sampling feasible during training.
By learning signed distance functions, reflectiveness, and signal power through
MLPs and trainable parameters, GeRaF takes the first step towards reconstructing
millimeter-level geometry from RF signals in real-world settings.

1 Introduction

Geometry reconstruction is a fundamental problem that enables a wide range of applications in
fields such as virtual reality [14}121}/32] and robotics [22}[29]. In recent years, neural reconstruction
methods [55 151} 140, 41, 35] have gained significant attention. A key advantage of these methods
is their ability to represent the geometry of a scene continuously, which can help in many down-
stream tasks. However, vision-based sensors often struggle in environments with adverse weather
conditions [67} 20, 37, 134] or even become completely unusable when objects are obscured by
occlusions [2}165) 166, 30,57, 12, [13]].

In contrast, radio frequency (RF) sensing, specifically wireless millimeter-wave (mmWave) sensing,
has the ability to see through occlusions and remains robust under challenging visibility conditions
and, unlike X-Ray, is not dangerous to humans [56], making it a compelling alternative for 3D
reconstruction. This could open up a plethora of applications; for example, seeing whether items
inside a box are the correct items, are damaged, or pose a threat, without having to ever open up
the box. On the other hand, mmWave resolution is extremely low compared to vision. Fig.[T]shows
an example of one radar image, which shows significantly less visual context than camera images
provide, making it hard to directly extract 3D reconstruction from a radar image alone. In order
to perform more complete 3D reconstruction, some works [2} 65 30} 157, [13]] have done 3D point
cloud reconstruction or human body tracking by leveraging movement or emulating larger antenna
apertures, however, the recovered point clouds from RF are still too sparse and noisy to reliably
recover detailed geometry. Other works [6} 24] have proposed using neural implicit representations for
RF sensing, aiming to concentrate scene information from heavy noise through neural optimization.
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However, their systems are designed for large-
scale environments and are far from achieving
millimeter-level precision. Compared to near-
field surface reconstruction, propagation charac-
teristics of RF signals change dramatically when
objects are close to the radar [57,45]], meaning
processing methods for large scale scenes, such
as beamforming [3], introduces a considerable
amount of distortion and noise, often exceeding
the noise acceptable for gradient descent leading
to unstable optimization.

In this paper, we propose the first method to
overcome the fundamental dilemma between
massive RF noise in the input and millimeter-
level geometry reconstruction by using neural
representation learning, shown in Fig.[T} Achiev-
ing this goal, however, is not so straightforward.
Using RF imaging directly to infer surface ge-
ometry presents fundamentally different chal-
lenges from traditional image-based approaches,
in three main ways. (1) A key challenge is the
absence of a lens-based imaging model in wire-
less systems. While vision rendering uses lenses
to filter and focus relevant light rays, wireless
systems operate via lensless imaging, capturing
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Figure 1: GeRaF is the first method to reconstruct
millimeter-level geometry of non-line-of-sight ob-
jects using radio frequency (RF) signals by us-
ing neural implicit representations. Right, shows
the radar heatmap from one scan, a camera scan,
the surface directly reconstructed from the radar
heatmap images, and surface output from GeRaF.

all incoming RF signals without directional fil-

tering. This leads to low signal-to-noise ratios, as irrelevant signals cannot be excluded. (2) There is a
fundamental difference in the propagation characteristics between RF signals and visible light. While
visible light propagation is predominantly determined by scattering, RF reflections are dominated by
specular reflections. Therefore, volumetric rendering techniques that are designed for scattering-based
vision sensors are unsuitable for RF imaging. (3) Finally, a major challenge is the high computational
cost of lensless volumetric rendering. Unlike lens-based rendering, which samples along 1D rays,
lensless rendering requires sampling across the full 3D space, leading to cubic complexity, making
naive implementations intractable.

To address the outlined challenges, we propose the following key contributions: (1) We perform
geometry reconstruction by introducing a matched filter (MF) into the framework that discards
irrelevant signals and preserves the most informative ones. (2) We implement physics-based RF
volumetric rendering, which integrates a RF-specific reflection model and incorporates a mathe-
matical framework for specular reflections directly into the rendering process. (3) We propose a
novel lensless sampling and lensless alpha blending strategy that enables comprehensive scene
coverage while significantly reducing computational cost, making volumetric rendering feasible for
millimeter-level RF applications. Building upon these components, we design our neural model with
three key sub-networks: a Signed Distance Function Network, a Reflective Network, and a Signal
Power Prediction, which are implemented with MLPs or trainable parameters.

We evaluate our system using a 77 GHz mmWave radar mounted on a robotic arm, scanning a variety
of real-world objects. Our results demonstrate that GeRaF takes a significant first step toward accurate
3D reconstruction from RF signals, outperforming currently adopted methods in both reconstruction
quality and robustness to experimental noise. These findings highlight GeRaF’s ability to infer more
detailed scene geometry, as compared to current methods, even under challenging sensing conditions.

2 Related Work

Vision-Based Multi-View 3D Reconstruction and Inverse Rendering Traditional methods exploit
photometric consistency across images and fuse the resulting depth maps into a dense point
cloud [16},[63] 38]]. To obtain a surface representation, techniques such as Alpha Shapes and
Poisson Surface Reconstruction [27] are commonly applied as post-processing steps on the point
cloud. With the rise of deep learning, methods like Neural Radiance Fields (NeRF) [39] and Gaussian
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Figure 2: (a) Frequency Modulated Continuous Waveform, (b) the reflected signal is a delayed
version of the transmitted signal, to resolve distance. (c) Specular reflections dominate radar wave
propagation vs (d) diffused reflections that dominate vision, (e) the radar reflections modeled to
incorporate specular reflections and signal spread.

Splatting (3DGS) [28]] use learnable parameters to reconstruct 3D scenes from multi-view images.
Building upon neural implicit representations [42} 62, (61} 55]] and 3DGS [23 125} 33} 118} 8], recent
work further decomposes scenes into explicit geometry and reconstruct surface meshes. Moreover,
[46., 7, 141} 159, 126 35, [191 [60] address the challenge of predicting lighting and material properties
by considering complex light interactions, based on the explicit forward rendering equation with
BRDF, a process known as inverse rendering. This technique is more physically grounded and brings
reconstructions closer to real-world appearance. While these methods typically operate on lens-based
RGB images, [38]] proposes novel view synthesis on lensless RGB images. However, lensless RGB
images can still be mapped to a lens-based imaging model without altering the underlying ray physics,
unlike RF signals, where such transformation is fundamentally invalid. To date, all of these 3D
representations are derived from RGB images, which are not easily transferable to mmWave data.

3D Radar Imaging Some works have used low frequency radars to estimate the 3D pose of humans
and track them through walls and occlusions [2} 1,65} 30]. However, these works leverage human
motion to combat specularity, and are geared towards human mesh reconstruction. Past work also
leverages deep learning in the context of millimeter wave radar data for imaging or point cloud
completion, however these works primarily focus on the context of self-driving cars, where image
resolution is not important and may not generalize to other objects [20, 147,311 48], 149].

More recently, [36} 68} 9] take inspiration from NeRF [39] to solve a different problem of estimating
the wireless channel based on the predicted signal emitted from different reflectors in space. A group
of work [4}|52]] applies NeRF to simulated satellite images; [6} 124] tries to reconstruct 3D scenes by
representing the wireless signal in the frequency domain, and learning the reflectance and occupancy
of different points. However, all of these prior works try to perform radar image rendering tailored for
reconstructing large scale scenes such as streets or satellite images and don’t address close range high
resolution object reconstruction, which requires different wave propagation modeling as explained in
Appendix [A.3] Authors of [50]], proposes a method for 3D neural reconstruction of objects. However,
their evaluation is limited to simulated data, which when dealing with wireless signals, cannot come
close to representing the complexity of real world experiments.

It is important distinction to make, that all prior works of 3D neural reconstruction using radio
frequency are either limited to simulated data or reconstruction for far range scenes, whereas our
work is the first paper to propose complete high resolution 3D mesh reconstruction.

3 Technical Background

Radar Basics A mmWave radar works by transmitting a wireless signal and receiving back
reflections that come from reflectors in the scene. It operates in the millimeter-wavelength frequency
bands, and uses Frequency Modulated Continuous Wave (FMCW) and antenna arrays to help resolve
spatial ambiguity. As shown in Fig. [2(a), the transmitted FMCW is a function that is linearly
increasing in frequency over time. Considering a single reflector and a single antenna, the received
chirp is simply a time-delayed version of the transmitted chirp, see Fig. 2{b). To resolve range
ambiguity, the received chirp is multiplied with the conjugate of the transmitted chirp and can be
expressed as a complex function:

s(t) = A - e~ i2mUHkDd/e _ g o=(2Rkn) | =j2niT o
where A is the signal amplitude, d is the round-trip propagation distance, c is the speed of light,

7 = d/c is the round-trip delay, f is the starting frequency, and k is the chirp slope. For multiple
reflectors, we simply receive the linear combination of all the reflections.
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(a) Lens-based vs lensless imaging (b) Example MF image from measured radar data.

Figure 3: a) Comparison between lens-based imaging and lensless imaging models. b) Matched filter
image of the metal bunny, summed along the vertical, horizontal, and depth axis.

Reflections Unlike light, whose wavelength (order of 107 meters) is much smaller than surface
irregularities, resulting in predominantly diffused reflection, RF signals have much longer wavelengths
(order of 10~2 meters). In this case, the majority of surfaces appear relatively smooth to the RF signal,
and specular reflections becomes more prominent than diffused scattering. For specular reflections,
the angle of incidence is the same as the angle of reflection, while diffused reflections tend to scatter
at different angles. The difference is illustrated in Fig. [2[c.d).

In this paper, we primarily expect specular reflections. We follow a shifted Lambertian model [44,43],
where the power of the reflections that return to the receiver, is scaled according to the normal and
the signals reflection angle, see Fig.[2(e). The received power is modulated by the directional scaling
factor (w, - wy ), Where (w, is the ideal specular vector and wi. is the vector from the reflecting surface
to the receiver (see Appendix [A.2)). The reflection strength also depends on material properties and
the thickness of the object, which we model using a reflective coefficient a.

An additional power decay factor of (47u)? is divided from the received reflection amplitude ((47u)*
for power), where v is the distance between the point and antennas, to accurately model the free
space path loss (see Appendix[A.T). Given an input signal with amplitude A, the received signal
amplitude A can be expressed as:

A 2 Atx (wo : wr) )

a
(4mu)
Lensless imaging Unlike traditional visual imaging systems that rely on lenses, radar imaging is
inherently a lensless imaging technique. As illustrated in Fig.[3a] a pinhole in visual systems acts as
a physical filter, allowing only one ray per scene point to reach the CMOS sensor while blocking
unrelated rays. In photography, increasing the aperture size allows more light rays to enter, but this
also leads to blur and noise in the image. As the aperture approaches an infinite size, the system
transitions into a lensless imaging model. Lensless imaging, such as with radar antenna arrays, does
not employ any physical pinhole—all incoming rays are received by all antennas.

In contrast, radar imaging relies on algorithmic processing to reconstruct the scene. The core idea
involves applying a digital filter to remove unrealistic signals and keep the most relevant ones,
leveraging the time-varying and phase-delay information of the received signals. Each received
signal, arriving via a different path, carries a distinct phase shift defined by its propagation delay. The
algorithm used for this process is called the matched filter.

Differentiable Matched Filter This algorithm is implemented by correlating the received signal
with an ideal reference signal. From Eq.[I] the reference signal for a single reflector and a single
antenna is known. For multiple antenna measurements, we have:

Nan
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where N,y is the number of antennas, 7; represent the round-trip delay corresponding to the ¢-th
antenna, and s(i, t) denotes the received signal at time ¢ from the -th antenna. We omit the transmitted
amplitude A since it is constant. This process effectively averages out signals that are inconsistent
with the hypothesized signal model, a matched filter (MF) power image is shown in Fig. [3b]

To enable integration into a differentiable rendering framework, we also compute the backpropa-
gation of MF. Both the forward and backward passes are implemented in parallel on the GPU. All
implementation details are provided in Appendix and
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Figure 4: Overview of the GeRaF framework. (1) Lensless sampling replaces ray-based methods.
(2) A neural implicit model predicts geometry, reflectivity, and power. (3) RF volumetric rendering
simulates physical signal propagation. (4) Matched filtering produces MF power images (heatmaps).
(5) An L2 loss compares the rendered and ground truth power for end-to-end training.

4 Overview

Given raw RF signals and the positions of all antennas across multiple antenna planes, GeRaF aims to
reconstruct the surface geometry of the object by predicting a signed distance function (SDF), without
requiring any additional information. GeRaF consists of five main components, illustrated in Fig. 4}
(1) We begin with point sampling. Unlike the ray-based sampling used in vision-based methods [39],
we propose a lensless sampling strategy that aligns with the physical nature of radar sensing. Details
are provided in Sec.[6] (2) The sampled points are passed through three sub-networks to predict the
scene’s geometry, reflective properties, and radar signal power. (3) Using these predictions, along
with surface normals (computed as gradients of the SDF), reflection directions, and power decay,
we perform physics-based RF volumetric rendering for each antenna, as described in Sec. |5 To
correctly compute opacity and transmittance under the lensless setting, we introduce a novel lensless
alpha blending strategy, detailed in Sec. [6] (4) Next, we apply a matched filter (MF), defined
in Eq.[E.2] to compute the reflected power at each sampled point and generate the rendered MF
heatmap. This step converts high-frequency time-domain signals into a lower-dimensional spatial
representation of the scene. (5) Finally, we apply an L2 loss to minimize the discrepancy between the
rendered heatmap and the ground truth, enabling end-to-end optimization of the entire framework via
backpropagation.

5 Physics-based RF Volumetric Rendering

We begin this section with a simple ray-tracing-based sampling strategy. Assume we sample a single
ray emitted from a receiver antenna located at x,5¢ in the direction w,.. A point x along the ray can
then be represented as X = Xant + ur, where « is the sampling distance along the ray, and r is the
unit direction vector opposite to w,.. We first present Signal Tracing, which computes the frequency
and phase shift of the signal. Then, we introduce Signal Amplitude Rendering, which "renders" the
amplitude term of the received signal.

5.1 Signal Tracing

The Signal Tracing generates expected signal responses for all possible propagation paths based
on a hypothesized scene or spatial configuration. Simulating the received signal corresponds to
modeling the received chirp at each individual antenna. Using the single-reflector expression in
Eq.[T} the reference signal for a scene with multiple reflectors is the superposition of contributions
from all reflectors. However, in practice, there are no explicit “reflectors”; instead, we are dealing
with a continuous 3D scene. We treat every point x in the computational space (2, as a potential
reflector, regardless of whether it lies in free space or on the surface of an object. Instead, volume
density and reflective properties are encoded in the amplitude term A(x). The received signal is
expressed in Eq. 4|and is implemented in parallel on the GPU. Implementation details are provided in



Appendix [A.4]and[A.3].
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5.2 Signal Amplitude Tracing

The amplitude of the reflected radio frequency signal is influenced by several factors, including
surface geometry, material reflectivity, reflection angle, and power decay due to propagation distance.
Unlike vision-based NeRF rendering [39]], radar sensing involves a round-trip path, requiring us to
model both the incoming ray from the transmitter and the outgoing ray to the receiver.

Given the opaque density [53] p(u), the accumulated transmittance along the incoming path can
be computed as T'(u) = exp (— fou p(v) dv) . However, due to the round-trip path of radar signals,

the effective accumulated transmittance becomes 7'(u)?2, meaning that only a fraction 7'(u)? of the
signal remains after returning to the receiver.

By combining volumetric rendering, reflectivity, the reflection angle and power decay as defined in
Eq.[2} the amplitude of the reflected signal at the receiver antenna (rx), assuming a symmetric return
path along the same ray, is given by:

Arx (Xant, wr) = a(u) (wo - wy) y(u) T(u)2 p(u) A{x dt, )

where a(u) is the reflectivity at distance u, w,, is the outgoing direction computed as w, = w; — 2(n -
w;)n, with w; being the incoming direction and n the surface normal (obtained from the gradient of
the SDF),  is the power decay, and A/, is the transmitted input power. The proportional constant, a,
in Eq. [2]remains fixed across all points on the ray. Therefore, without loss of generality, we absorb
this constant into the transmitted amplitude term A, and define an effective transmitted amplitude
Al

Opaque density representation To represent volume density and accumulated transmittance, we
start from the SDF. The scene is defined by an SDF f : R3 — R, which maps a spatial location
x € R3 to its signed distance from the nearest surface of the object. This function is parameterized
by a MLP. The object surface S is defined as the zero-level set of the SDF.

Following [55]], we use the S-density function ¢, (f(x)), defined as the derivative of the sigmoid
function ®,(f(x)). The opaque density p(u) is computed based on the rate of change of the
occupancy field @, along the ray direction.

Signal representation We employ a separate MLP that takes the 3D spatial position x as input to
predict the reflection coefficient a. The effective input amplitude A7, is treated as a learnable global
parameter, since the transmitted amplitude is fixed and consistent across all experiments.

Discretization We adopt the same discretization scheme as in [S5]], using alpha-blending for opaque
density and transmittance estimation. The surface normal n is computed as the gradient of the SDF.

Integration According to Eq.[4] the signal received at each antenna is computed as an integration
over the amplitude defined in Eq.[5} To evaluate this integral, we apply Monte Carlo sampling by
tracing Ny, rays per antenna across space.

However, when combining all components, the overall computational complexity becomes pro-
hibitively high. Assuming we sample IV, depth points along each ray, and trace IV, rays for each
antenna. The MLP network incurs a computational cost of Ciy,jp. The complexity of the signal tracing
step for both forward and backpropagation is given by

O(NrayNzNant mlp)~ (6)

In practice, to achieve 1mm resolution, the number of voxels becomes very large. If the synthetic
aperture antenna array contains on the order of 10° antennas, the total computation quickly reaches
unrealistic limits. Even with GPU acceleration, a single forward pass in this setting has previously
taken over one hour to compute. This scale far exceeds the number of available GPU threads and
makes backpropagation-based learning infeasible under this brute-force computation strategy.
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Figure 5: Left: Naive sampling traces rays across the entire space for each antenna, resulting in the
highest computational complexity. Middle: Lensless sampling strategy samples points along the
radar’s primary ray direction and reuses network predictions across antennas. Alpha blending and
transmittance are calculated using lens-less alpha blending. Right: Signal Tracing Bank: subset of
antennas is processed in each iteration, reducing computation for both forward and backward passes.

6 Lensless Sampling & Lensless Alpha Blending

To make volumetric rendering computationally feasible, we observe that the previous Monte Carlo
sampling strategy contains significant redundancy. Specifically, rays emitted from different antennas
frequently intersect at the same spatial locations, leading to duplicated computations. A straightfor-
ward solution might be to adopt uniform grid-based sampling in 3D space. However, this approach
fails to preserve the structure of transmittance accumulation along individual rays, which is critical
for accurate signal modeling.

To address both redundancy and physical correctness, we propose lensless sampling. The key insight
is to share the computation of opaque density and accumulated transmittance across different antennas,
where p(u) and T'(u) only need to be computed once for each position, for all antenna rays that
intersect the pose.

Primary Ray We first sample parallel rays aligned with the radar’s primary direction w,,. The starting
points X,p, of these rays are sampled within the antenna aperture, and points are then sampled along
each ray. Initially, we ignore the fact that p(u) and T'(u) depend on the real ray direction, effectively
replacing all individual receive directions w, with the shared primary direction w,. The sampled
points are formulated as X = Xapr + up, making the assumption that these values are shared across
all rays that pass through the same spatial location. Specifically, for each position, we compute p(u)
and T'(u) by using [55] once and reuse them for all antennas. We choose the radar’s primary direction
as the ray direction in order to minimize the discrepancy between the approximate and the actual rays
emitted from the antennas.

Lensless Alpha Blending Neglecting the dependencies of p(u) and T'(u) on the ray direction
can, in principle, lead to inaccuracies. However, we prove in Appendix [B.T|that when computing

a; =1 —exp (— f:"“ p(u) du) , the influence of the ray direction cancels out, and «; remains

identical to the value computed along the primary ray.

Furthermore, for the accumulated transmittance, we can show that, starting from the logistic distribu-
tion, the difference in T'(u) across different ray directions is equal to the difference in sigmoid-SDF
values at the ray origins. Details of the derivation are provided in Appendix Formally, the
transmittance along a real ray direction 7'(u’) can be efficiently derived from the transmittance along
the primary ray direction 7'(u) by adjusting with the sigmoid-SDF values at the respective ray origins,
rather than computing a ray-dependent product of accumulated alpha values:

T(u') = T(u) = ©s(f(x(us))) + s (f (x(us))), ©)

where ®(+) denotes the cumulative density function (CDF) of logistic distribution, and x(u), x(u’)
are the starting points of the respective rays. The power decay term ~y, as well as the time and phase
components, are computed deterministically using the actual rays. Additionally, the Sigmoid-SDF
value at the ray origin, used to correct accumulated transmittance, is excluded from backpropagation,

ensuring computational efficiency.

Signal Tracing Bank In Eq. we iterate over sampled points, and for each point, we perform
signal tracing across all antennas. Within each signal tracing operation, we again loop over all
sampled points along the ray. Although these computations are unavoidable, we can significantly
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Figure 6: Left: Experimental results of objects with nothing between the radar and the object. Right:
Results when the object is occluded from the radar. The camera scan done in line of sight.

reduce the computational burden by leveraging the fact that the matched filter contains no trainable
parameters. This allows us to reuse signal tracing results of most antennas from previous iterations.
During training, we implement a memory bank mechanism. We divide the antenna aperture into
patches, analogous to convolutional processing. In each training iteration, signal tracing is performed
only for antennas within a single patch, while the signal tracing results for antennas in the other
patches are retrieved from the memory bank. After each iteration, the memory bank is updated with
the newly computed results for the current patch.

Computational complexity By reusing the primary rays, we only need to evaluate the shared opaque
density and accumulated transmittance O(NrayNZlep) times for both the forward and backward
passes. The lensless approximation affects only the forward computation, and with the introduction of
the Signal Tracing Bank, the effective antenna size becomes constant per iteration. Thus, the overall
learnable component complexity is reduced to O(NrayNZlep). For the deterministic components
of signal tracing and matched filtering, the computation time remains bounded by O(N..y N, N;) for
both forward and backward propagation. This results in a total complexity that is significantly lower
than the original formulation given in Eq.[d]
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Dynamic loss masking Simply minimizing the
difference between the rendered radar image and
the ground truth using an L2 loss is not effective
in radar imaging. This is because radar mea-
surements are based on reflected signals, which
are affected not only by the presence of volume
density but also by the reflection direction. This
means that a weak signal response in the rendered radar image can be caused by two distinct factors:



(1) low volume density at the sampled location, or (2) high volume density with the signal being
reflected away from the receiver due to geometric misalignment. This inherent ambiguity makes
direct supervision unreliable.

To address this, we introduce a masking strategy during training. If a sampled point has exhibited
high matched filter response in any previous iteration but produces low power in the current iteration,
we treat it as unreliable and exclude it from the loss computation. This prevents penalizing the model
for physically valid signal paths that fail to reflect back to the receiver.

8 Experiments

Dataset & Implementation As there are no publicly available radar datasets for near range imaging,
we collected our own dataset using a TI 1843BOOST mmWave radar [53] with a DCA1000EVM for
raw data collection, attached to a Franka Research 3 controlled via the FrankaPy library [64]. We
emulate 2D arrays by moving the radar with the robotic arm for 17-68 array viewpoints per object.
For ground truth collection we used the Scaniverse App with an iPhone, which uses camera and
LiDAR scans to compute 3D meshes and pointclouds. We trained our model for 50,000 iterations
over 32 hours on a single NVIDIA H100 GPU. See the Appendix [C|for detailed data description and
training hyperparameters.

Comparison to Baseline As baseline, we compare
results from GeRaF to the matched filter summation
F11 CD(mm)] of all images. Since the .corresponding output is a
heatmap, we threshold the image and perform Poisson

Table 1: Quantitative results (*occluded).

Object MF _Ours MF Ours  gyiface reconstruction on the point cloud. Qualitative
Wrench 052 088 029 0.07 comparisons are shown in Fig.[f] The object imaged
Bunny 056 0.81 0.03 0.01 is shown in the first row, followed by the camera scan,
Elephant  0.65  0.79 025 0.14  then the baseline matched filter reconstruction, and
Bottle 044 097 035 0.05 finally the output from GeRaF. The first four columns
Knife 044 071 059 049

Star 080 086 060 050 show reconstruction results when the object is in line
Knife* 045 083 084 026 of sight of the radar, and the. lz}st three columns show
Elephant® 042 052 052  0.46 results for the object when it is occluded with a box
Boat* 051 069 035 030 or large sheet of paper. In the non-line-of-sight data
Wrench* 063 086 029 014 processing, the box is cropped out of the MF image
to just reconstruct inside the box. It is clear that the
extracted meshes from the matched filter ground truth are not as complete as the outputs from GeRaF,
and our method works even when vision methods would fail (eg. when line of sight is completely
blocked).

Though the output of GeRaF is perhaps, not as detailed as
the camera scans, this is primarily because our scans are
limited to a single pitch axis, limiting the amount of reflec-
tions we can receive back from the objects, this limitation
is discussed in more detail in Appendix [F] Fig.[§]shows ex-
amples of the similarity between the rendered output and
the ground truth radar heatmap. More qualitative results
will be included in supplementary material.

Quantitative results are shown in Tab. [T} for F1-Score
(F1) and the Chamfer Distance (CD) in millimeters, ex-
plained in Appendix [C] where points were sampled uni-
formly on the camera mesh, the matched filter mesh and
GeRaF’s mesh. We can see that our method outperforms
the Matched Filter (MF) baseline in both F-Score and
Chamfer distance with a slight drop in accuracy when the Real Rendered
items are moved into the box. More ablation studies are
included in supplementary material.

.
_—

Figure 8: Rendered heatmaps compared
to real heatmaps.

Novel View Synthesis We also demonstrate GeRaF’s ca-

pability in novel view synthesis (NVS) [39]. To evaluate this, we split the available views into training
and test sets. GeRaF is trained using only the training views and evaluated on the held-out test views.
To assess the quality of the synthesized matched filter images, we compute the Peak Signal-to-Noise



Ratio (PSNR) between the rendered outputs and the ground truth matched filter images. PSNR is a
widely used metric for evaluating image reconstruction fidelity, where higher values indicate closer
similarity to the reference. The Peak Signal-to-Noise Ratio (PSNR) is computed as:

®

MAX?
PSNR = 10 - log; ,

MSE

where M AX is the maximum possible pixel value of the image, and MSE is the mean squared
error between the synthesized image and the ground truth. Unlike RGB images, matched filter (MF)
images do not have a fixed maximum pixel value. To make PSNR computation meaningful, we
normalize each MF image by dividing it by its maximum value. As a result, the maximum possible
pixel intensity is set to M AX = 1.0 for all PSNR evaluations.

We present four novel view synthesis results on the Bunny object in Fig. [9] The selected views
include the front, left, back, and right sides of the object. In each case, GeRaF produces visualizations
that closely match the ground truth. Quantitatively, the synthesized matched filter images achieve
PSNR values around 30 dB, demonstrating the feasibility and effectiveness of GeRaF for novel view
synthesis tasks.
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Figure 9: Novel view synthesis on four selected novel planes. We visualize the 3D matched filter
images by projecting them along three axes using maximum intensity projection.

9 Conclusion

In this paper, we proposed the first method for applying differentiable rendering to radio frequency in
the context of high resolution geometry reconstruction. Our method addresses the fundamental differ-
ences between RF and optical imaging, and we show evaluation on real captured data. We proposed a
physics-aware volumetric rendering pipeline that incorporates radar-specific signal propagation and
reflection models and a novel lensless sampling strategy to significantly reduce computational cost
while maintaining resolution. Though there are limitations, discussed in Appendix [H we believe that
this paper serves as the first step towards making millimeter-level geometry reconstruction feasible
with neural representation learning.
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Appendix

This appendix is organized as follows:

* Section [A] provides more extensive radar background information.

* Section [B]provides the proof for our lenless alpha blending.

* Section [C]describes in detail the experimental parameters for collecting data.
* Section [D|describes the setup for the Novel View Synthesis experiment.

* Section [E] presents ablation studies.

* Section [F] goes into detail on limitations, future work and societal impact.

A Radar Background

A.1 Free-space Power Decay

In free space, the power of a radio frequency signal attenuates proportionally to the square of the
distance it travels due to spherical spreading. When considering a round-trip path, where the signal
travels from the transmitter to a point in space and then reflects back to the receiver, the decay is
even more pronounced. This is known as round-trip free-space path loss, and the power decay factor
reflected from distance w is given by:

P ! P )

6 ——
rx (47‘(‘u)4 tx

This expression accounts for two instances of inverse-square spreading: one during transmission to
the point and another during reflection back to the receiver. As such, the received power decreases
proportionally to 1/u*.

A.2 Radar Reflections

Building off of Sec. (3] we primarily expect specular reflections, albeit some flexibility in the signals
which return to the receiver. Even though a perfectly specular signal will only return to the receiver
if the reflecting surface is normal to the transmitted chirp, in actuality, there is a margin in which
the signal is not perfectly specular, yet some signal still returns. Similar to commons ways of
modeling diffused reflections, we follow a shifted Lambertian model [44},43]], sometimes also called
the directive model. We represent the incident direction by the unit vector w;, the surface normal by
n, and the ideal specular reflection direction by:

Wo =w; —2(n - w;)n (10)

The ray which returns to the receiver antenna is denoted as w,., and is calculated by taking the unit
vector that goes from the surface point to the receiver location. The received power is modulated by
the directional scaling factor:

(we - wr) (11)

following the scaled Lambertian model men-
tioned above. S

"

|

[

A.3 Near Field vs. Far Field 1
RGN I .

I

I

I

YYYY

Reflector is nearby

Wireless imaging systems operate differently N Y

depending on the distance between the sensor f Y Y Y

and the target. This is denoted as near-field (or Reflector is far away
near range) and far-field (or far range) imaging.
When an object is in the far-field, this is catego-
rized as when the distance between the object
and the radar are much larger than the wave-
length and the aperture of the antenna system.
For example, 10’s of meters away. In this case,

Figure 10: Difference between far-field and near-
field rays. On the left, it’s shown that the incoming
rays can be approximated as nearly parallel, while
on the right, when the object is close to the anten-
nas, we can no longer make this assumption.
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the incoming waves can be approximated as planar [44]. Meaning all the incoming signals are
parallel to each other. This significantly simplifies the image reconstruction, assuming the antennas
are uniformly spaced, because (1) the corresponding filter weights can be reused across depth and
(2) the weights are uniform, allowing us to use beamforming and Fourier Transforms to speed up
computation time [3l]. However, operating in the far-field comes at the cost of lower resolution
reconstruction, since the RF waves spread out the further it travels.

On the other hand, in this paper, we are operating in
the near-field. This mean the object is much closer to
the antenna aperture, within a meter in our case. Im-
portantly, this means that the incoming waves that are
reflected from the object in the scene can no longer
be approximated as parallel. The difference in sig-
nal paths is illustrated in Fig.[I0] In this case, it is
required that the exact signal propagation paths are
taken into account, otherwise the radar images ap-
pear distorted [57) 145]. To correctly reconstruct an
undistorted radar image, we need to use a matched
filter (see Sec.[3), which comes with a high compu-
tational complexity, albeit a higher resolution image. Matched Filter Beamform

For example, in Fig. [l 1] a heatmap of a wrench is  pjgure 11: Difference between processing
shown when processed with beamforming vs. using  radar data captured in near-field with matched
the matched filter. filter vs beamforming.

A.4 Differentiable Matched Filter & Signal Tracing

We have the forward path of the Matched Filter shown in Eq.[E.2}

Nal’][
P(x,) = Z Z s(i,t) . ed2mkTit | o327 fri X5 € Qpgss
i=1 t
The backpropagated gradient to the signal s(i, t) is given by:
oL — Z 1 . oL . e—j27rk:7-,;t . e—j27rf7'¢ (]2)

P(x) 0P(x)

Signal Tracing is given by Eq[4]

5(77 t) = Z A (xj) eijQﬂ—ijt eijzﬂpf'rj,

X Eths

The backpropagated gradient to the amplitude A (x;) is given by:

N,
oL - oL . .
7 L pJ2mkTit | _g2wfT; 13
A (%) Zi:l Zt Bs(it) ¢ (13)

A.5 Code Implementation

Differentiable Matched Filter We implement both the forward and backpropagation of the matched
filter in CUDA using parallel computation. The corresponding pseudocode is shown in Alg.
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Algorithm 1 Differentiable Matched Filter Algorithm

[1] Forward: Input signal s(i,t) where i = 0,..., Ngpe — 1, £ =0,..., N; — 1;
sampling points x; where j =0, ..., Npay Ny —
for Parallel j =0, ..., NN, — 1do

P(Xj) ~—0

fori:0,~~~,Nant_1d0

fort=0,...,N; —1do
P(x;) < P(x;) + s(i,t) - e/27kit . gi2mf7i

P(x;) < [[P(x;)]

Output: P(x;) for all j

[2] Backward: Gradient of matched filter power #&(j) forj =0,..., NuyNs — 1;
Input signal s(é,¢) where i = 0,..., Nypy — 1, t =0,..., Ny — 1;
Sampling points x; where j = 0, ..., Ny Ns — 1
for Parallel : = 0,..., Ny — 1 do
for P%rallelt =0,...,N;,—1do

9s(i,t) t) <0
for j =0,..., NyyNs — 1 do
oL oL —j52mwkT; —j2nfT;
Bs(z t) A 9s(i,t) + P(xj) 8P(x7) e™? beemarnd

Output: ( o) for all 7,1

Signal Tracing We implement both the forward and backpropagation in CUDA using parallel

computation. The corresponding pseudocode is shown in Alg.

Algorithm 2 Signal Tracing

[1] Forward: Sampling points x; where j = 0, ..., Ny Ny — 1;
Amplitude A (x;) where j =0, ..., Ny Ny — 1
for Parallel : = 0,..., Ny — 1 do
for Parallelt =0,..., N, — 1 do
s(i,t) < 0
for j =0,..., NpyN; —1do
5(i,t) < s(i,t) + A (x) - e I27kTit L g=527fTi

Output: s(i,t) for all 7t
[2] Backward: Gradient of signal 5 ( ) fori=0,...,Ngpe—1,£=0,...,N; — 1
Sampling points x; where j = 0, ..., Ny Ny — 1
for Parallel j =0, ..., Ny Ns — 1 do

oL
2Anxy) <0

fori=0,. Nam—ldo
fortfo .,N; —1do

oL oL j2rkTit | j2wfT;
(')A,x(xj) Ay e i (95(7, H € e

Output: 5 A ( )for all j

B Lensless Alpha Blending

B.1 Alpha

Following [55l], the opaque density computed along the primary ray p is defined as:

()
o = < 2,(xw) )

where ¢4 (x) and @, (z) denote the probability density function (PDF) and cumulative distribution

function (CDF) of the logistic distribution, respectively.
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The corresponding alpha value over the interval [u;, u;1] is then:

a;=1—exp (— /u+ p(u)du) —1—exp (— /u+ (m du) s

i i

When changing from the primary ray p to a real ray r, the derivative term in the numerator transforms
as:

du’
du

aw
du

dd, do,
SR (fx(w) = = e (F(x(w))

= pl(u/) : ) (16)

where u and v’ are the sampling parameters along the primary and real rays, respectively, and p’(u’)
denotes the opaque density computed along the real ray.
) . (17)
By substituting the transformed opaque density from Eq.[T6]into Eq.[T7} we obtain:
u;+1
a; =1—exp 7/ pl(u)ydu | = al, (18)

demonstrating that the computed «; remains unchanged when transitioning from the primary ray to
the real ray.

In integration, we have:

Ui41 Ui41 du
a; =1—exp (—/ p(u) du) =1—exp (—/ p(u) du’ - ’d’

i i

B.2 Transmittance

Following [55]], in the primary ray direction p, we define the transmittance as:

T(u)p(u) = [V (x(u)) - Bl 65(Fx(u))) = ~ T =(F(x(u)), (19)

where ¢(-) and ®4(-) are the PDF and CDF of the logistic distribution, respectively.

Given the transmittance is defined as T'(u) = exp (— [’ p(v) dv), differentiating both sides yields:

= e (=[] =—pew (= [ porar) = st

which implies:

T(u)o) = (). 20)
Combining Eq.[T9]and Eq. 20 we obtain:
Ao, _ar
8 ) = ~ T w). e

Because the geometry-dependent signed distance function (SDF) does not vary with ray direction,
we assume the boundary condition:

O (f(x(w))) = Du(f(x(u))).

Then, given the starting CDF values ®;(f(x(us))) on the primary ray p and ®(f(x(u’))) on the
real ray r, integrating Eq. 21| leads to:

T(u') = T(u) = @5(f (x(u))) = a(f (x(us))), (22)
which completes the proof of Eq.
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Front View
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Figure 12: Subset of matched filter images used as ground truth in GeRaF. The first row shows
the radar heatmaps summed across the depth, giving a front view of the object relative to GeRaF’s
coordinate system, the second row is summed across the horizontal axis (azimuth), giving a side view
and the last row is summed along the vertical axis (elevation), giving a top down or bird’s eye view.

C Experiment Details

Data Collection Setup We collected our own dataset using a TT 1843BOOST mmWave radar [53]]
with a DCA1000EVM for raw data collection, attached to a Franka Research 3 controlled via the
FrankaPy library [64]. We emulate 2D arrays by moving the radar with the robotic arm for 17-68
(more scans were made for more complex objects) different array viewpoints, which are each 0.14m
% 0.25m in size with an antenna spacing of ~ (% — %) between all antennas. Each imaging plan was
shifted circularly (yaw) around the center of the objects location to measure various viewpoints. A
subset of the ground truth heatmaps are visualized in Fig. Though the actual groundtruth used in
GeRaF is a 3D heatmap, for ease of visualization, we plot the 3D heatmap summed along each of the
3 dimensions (depth, azimuth, elevation), respectively. Each of the columns show the radar heatmap

from a different scanning plane.

In order to capture 360° scans, we use a rotation platform to rotate the object which was placed
aroun 0.3-0.5m away. The radar parameters were set to have a starting frequency of 77 GHz usable
sweeping bandwidth of 3.59 GHz, giving 0.04m in range resolution. The slope used is 70.15(MHz/1s)
capturing 64 ADC samples with a 1250ksps sampling rate for each chirp.

Training Setup For the SDF Network, we use an MLP with § layers and a hidden dimension of 256.
We apply sinusoidal positional encoding with 10 frequency levels as input. The Reflectivity Network
is implemented as an MLP with 4 layers and a hidden dimension of 256. The signal power prediction
is implemented as a single trainable parameter.

We trained our model for 50,000 iterations over 32 hours on a single NVIDIA H100 GPU, using
mmDetection3D [10] as the code base. We used an initial learning rate of 1 x 1073, but due to the
sparsity of the input, the learning rate for the SDF Network was reduced to 1 x 10~*. Training was
performed using the AdamW optimizer with cosine annealing learning rate scheduling.

Metric Calculation The metrics used to compare GeRaF and the matched filter baseline against the
camera ground truth are the F1-Score (evaluated with 7 = 0.01) and Chamfer distance. These two
metrics evaluate the similarity between two 3D point clouds. For mesh to point cloud conversion, we
sample uniformly along the meshes for each of the three candidates with 5000 points. We then align
the matched filter point clouds to the camera baseline and align GeRaF’s point clouds to the camera
baseline.

The F1-Score is calculated by finding the nearest point in the camera point cloud and computing the
distance in both directions. Precision and recall are computed as the proportions of these distances
that fall below 7, and the F1-Score is derived by:

=2 Precfis.ion - Recall (23)
Precision + Recall
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The Chamfer distance computes the pairwise distance between two pointclouds by finding the nearest
neighbors for each point between point clouds and calculating the squared distance, returning the
average distance. This is calculated in both directions.

D Novel View Synthesis

We also demonstrate GeRaF’s capability in novel view
synthesis (NVS) [39]. To evaluate this, we split the avail-
able views into training and test sets. Figure[T3]illustrates
the detailed data split. The results are shown in Fig. 0]

E Ablation Studies

E.1 Number of Radar Scanning Planes

We study the effect of varying the number of radar scan-
ning planes (analogous to the number of views in vision-
based reconstruction) used during training. A total of 104 ) ] )
planes were measured to cover a full 360-degree view of ~Figure 13: Novel view synthesis setting.
the object. We uniformly sampled subsets of these planes Lhe blue plgnes represent nov.el. VIEWS
to simulate different input settings. that are not included during training.

Even with only 8 planes, GeRaF is able to reconstruct

the basic shape of the Bunny, though the result contains

noticeable noise and inaccurate details. When the number of planes is fewer than 40, the reconstructed
shape becomes visibly distorted, and the noise level increases significantly. With more than 72 planes,
the overall shape is correctly reconstructed, and differences are mostly limited to fine details. This
indicates that GeRaF is robust to the number of input planes once a sufficient coverage threshold is
met.

Overall, the results show a clear trend: increasing the number of radar scanning planes improves the
reconstruction quality, yielding more accurate geometry and less noise.

E.2 Number of Temporal Sample

R—— T ——
We study the effect of the number of temporal el y K \‘ b N
samples IV; on geometry reconstruction quality. X :ﬁ\ ( \\:1 g

According to the matched filter equation:

Nplanes = 8 = planes
Nant Ny ) ) F11=0.75|CD4=0.19  F11=081 |CD I=0.12 F11=0.84]CD I=0.13
P(X) _ S(’Z:,t) eg27rk:7it eg27rf’ri \
E g ) Y
=1 t=1 b

A ;’ &: : - - /
increasing the number of temporal samples im- 7 -g =

proves resolution. However, the computational
Nplanes =

cost of the matched filter increases with /V;.

Nplanes = 10: Nplanes =
F11=0.72 | CD !=0.18 F11=0.81 |CD I=0.163 F11=0.81 |CD {=0.01

To assess this trade-off, we evaluate reconstruc-
tion quality under different values of Ny, as
shown in Fig. [I3] Empirically, we observe no
significant degradation in performance as IV,
varies, demonstrating GeRaF’s robustness to
noise. While using fewer temporal samples can
theoretically reduce the quality of the ground
truth matched filter image, the increase in latency with larger /V; remains relatively limited. Consider-
ing the balance between performance and efficiency, we set /Ny = 64 in our final implementation.

Figure 14: Ablation study on the number of radar
scanning planes. F1 denotes the F1-Score and CD
denotes the Chamfer Distance. 1 indicates higher
values are better, while | indicates lower values
are better.
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Lat = 3.66s|MEM = 8.4GB  Lat = 4.06s|MEM = 8.4GB  Lat = 4.54s|MEM = 8.4GB

Lat = 3.57s|MEM = 8.4GB  Lat = 3.84s|MEM = 8.4GB  Lat = 4.06s|MEM = 8.4GB

Figure 15: Top: Ablation study on the number of temporal samples N;. Bottom: Ablation study on
the positional encoding frequency level Nyei. Lat denotes latency, and MEM denotes GPU memory

usage.

E.3 Positional Encoding Frequency Level

We apply sinusoidal positional encoding as in NeRF [39], where each input z is mapped to a

higher-dimensional space using:

v(z) = [sin(2°7z), cos(2°7z), ..., sin(2Ne "), cos(2Nea T rz)]

with NVjeye controlling the number of frequency bands.

Low frequency levels (e.g., 2°, 2!) capture coarse, smooth
variations, while high frequency levels (e.g., 27, 21°) cap-
ture fine, high-frequency details such as sharp edges or
thin structures. The number of frequency levels Njeye con-
trols the trade-off between expressiveness and overfitting:
a higher NVjey) enables modeling of finer details, whereas
a lower Nyl reduces model complexity and helps prevent
overfitting to noise.

To assess this trade-off, we evaluate reconstruction quality
under different positional encoding frequency levels Nieyel,
as shown in the bottom of Fig.[T5]

We observe that higher frequency levels enable better re-
construction of fine details in the Bunny and improve ro-
bustness to noise in radio frequency signals. Additionally,
increasing Ny leads to higher computational latency,
but the increase is relatively limited. Considering this
trade-off, we set NVjeye; = 10 in our final configuration.

E.4 Resolution
In Section 6 of the main submission, we discuss the com-

putational resources required by different training-time
sampling resolutions.

21

Lat = 2.37s|MEM = 4.3GB Lat = 3.66s|MEM = 8.4GB

Figure 16: Top: Ablation study on the
number of ray samples N.,. Bottom:
Ablation study on the number of depth
samples IV,. Lat denotes latency, and
MEM denotes GPU memory usage.



For the number of sampling rays, results show that increasing the number of rays leads to higher
memory usage and longer latency, but surprisingly worse reconstruction performance. A possible
explanation is that in radio frequency data, denser sampling introduces more noise, which slows
convergence. As a result, under a fixed number of training iterations, higher sampling resolutions
may lead to suboptimal solutions due to insufficient convergence. Based on these observations, we
set Ny = 1024 in our final configuration.

For the number of depth samples N,, results indicate that fewer depth samples lead to lower
reconstruction detail and a coarser overall shape. Although reducing depth samples improves training
efficiency linearly in time, it comes at the cost of reduced fidelity. Therefore, we set [N, = 32 as our
final configuration to balance quality and performance.

E.5 Dynamic loss masking

In Section 7 of the main submission, we discuss the mo- —
tivation for using dynamic loss masking. The primary .
reason is the inherent ambiguity in interpreting low-power \‘
regions in matched filter (MF) imaging. Specifically, a 7 - i
weak signal response in the rendered radar image may 5 \rj
arise from two distinct causes: (1) low volume density ‘ .
at the sampled location, or (2) high volume density with . .
the signal being reflected away from the receiver due to ™ ™Mking L=

. . . . . . . F11=0.63 | CD {=0.32 F11=0.81|CD {=0.01
geometric misalignment. This ambiguity makes direct
supervision unreliable in low-reflection regions. Figure 17: Ablation study on dynamic
loss masking. "w.o." denotes without
masking, and "w." denotes with mask-

ing.

N

As shown in the top of Fig. training without dynamic
loss masking leads to incorrect reconstruction. The model
tends to interpret low-intensity regions as low density,
resulting in artifacts—such as a distorted ear in the Bunny
example—where the true geometry reflects weakly due to its orientation rather than material absence.
This highlights the importance of masking unreliable regions during training to improve geometric
fidelity.

E.6 Effect of Radar physics

We introduce radar physics in Section 3 of the main submission. Radar reflections are dominated by
specular effects and are commonly approximated using the Lambertian model [44]. In this section,
we study the effect of incorporating the Lambertian model into our formulation.

To isolate its impact, we remove the w, - w, term from Eq. 5 in the main submission. As shown at
the Fig. the visual difference between using and not using the Lambertian model appears minor.
However, quantitative results indicate that omitting the Lambertian term leads to worse performance.
Specifically, in the left-side view, the reconstructed bottom of the Bunny appears significantly larger
than in the right-side view, contributing to higher Chamfer Distance error.

That said, the Lambertian model does not fully capture the physical behavior of radar reflections,
especially under specular and material-dependent conditions. Thus, while it provides a useful
approximation, the Lambertian model is not an optimal representation of true radar physics.

F Discussion

F.1 Potential Societal Impacts

There are a few potential negative impacts that RF neural representations could cause. Being able to
perform 3D reconstruction of things behind occlusions could potentially raise concerns for privacy.
Additionally like many other learning based work, the heavy compute power raises concerns over the
environment sustainability. However, this work could also potentially help with things like suspicious
package detection.

22



i B
w.o. radar physics
F11=0.72 | CD l= 0.19

* /
.
[

Ww.0. radar physics

F17=0.70 | CD I=0.21

w.o. radar phy;ics
F1 7= 0.55|CD l= 0.35

w. radar physics
F11=0.81|CD !=0.01

w. radar physics

F17=0.79|CD l=0.14

{k

<

w. radar physics
F1 1= 0.97 | CD l= 0.05

Figure 18: Ablation study on radar physics. "Without radar physics" indicates that the Lambertian
model [44]] is not used.

F.2 Limitations & Future Work

Radar Scans Our method currently is limited by the diversity of the networks radar heatmap ground
truths collected. More specifically, if there was a point that existed on the surface of the object, which
never reflects back to the radar in any of the scans taken, then the network has no way of creating
a point in that location, because it has never received any reflection from that location, making it
invisible. Future work is required for dealing with unseen surfaces, and more comprehensive scanning
methods.

Materials We currently tested the system with objects made of metals, which allows for more clear
reflections. On the other hand, metal objects are very specular, meaning more radar scans are required
to receive signals from all parts of the object. Dealing with objects made of other materials or a
composition of materials is left for future work, which will require significantly adjusting the radar
reflection model.

Thick Occlusions We have shown results for some occlusions (cardboard, paper), however, in the
case of thicker occlusions this problem is not so straightforward since this requires the network to
predict two or more surfaces rather than ignoring the weak occlusion reflections. Future work is
required to extend the surface reconstruction to deal with multiple surfaces.

Better Radio Frequency Model As discussed in the radar physics section, unlike vision-based
inverse rendering which often adopts the Cook-Torrance BRDF [11], with components such as the
Fresnel term, Schlick-GGX geometry function, and Trowbridge-Reitz GGX distribution to model
diffraction and metallic reflections, the radio frequency (RF) domain still relies on the simplified
Lambertian model. This model is not even sufficient for accurate forward rendering, leading to
significant reflection errors. As a result, inverse rendering based on such a coarse approximation
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cannot reliably reconstruct detailed geometry, since the underlying reflection model introduces
substantial errors.

Lower Computational Complexity Even with the introduction of lens-less sampling and alpha
blending, which make real-time differentiable rendering feasible, the computational cost remains
significantly higher compared to vision-based rendering. In the vision domain, reflective models
benefit from techniques such as split-sum approximation [41]] and spherical harmonics [54]], which
avoid costly Monte Carlo sampling by operating efficiently over 1D rays.

However, directly applying these techniques to radar reflection is not feasible, since traditional alpha
blending operates along 1D rays, whereas radar rendering requires sampling over a 3D space. This
dimensional difference introduces substantial complexity.Therefore, future work should explore how
to achieve 3D space sampling with computational complexity comparable to that of 1D ray-based
sampling, in order to further improve the efficiency of RF-based differentiable rendering.

Accurate multi-level surface representation In vision-based geometry reconstruction, multi-level
surfaces are typically not a concern, as surfaces occluded by others are not visible in RGB images and
therefore do not contribute to reconstruction. However, this is not the case in radar sensing, where
signals can penetrate and reflect off multiple layers of geometry, resulting in observable multi-level
surfaces. As a result, representing and reconstructing such multi-layered structures becomes a key
challenge in RF-based 3D reconstruction. Developing an effective multi-level surface representation
is thus essential for fully leveraging the unique capabilities of radar.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contribution claims to address the problem of re-formulating neural
geometry reconstruction for radio frequency, which is explains in detail in Sec. [5]and results
shown in Fig. [

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, it is discussed in Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not have any theoretical results, only real-world experiments.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our methodology (sampling and rendering) is detailed in Sec. [ and full
details of the network setup and experiment set up are included in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We plan to release the training code, experiment code and dataset in the future.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details are discussed in the main paper and in more details in the
Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper addresses an optimization problem where the evaluation focuses on
geometry reconstruction. As such, statistical significance measures are not applicable or
necessary in this context.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes the details are in Sec.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We fully adhere to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The potential impacts are discussed in Appendix [/
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Currently, this work does not pose risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: This paper builds off the of the code base released by mmdDetection3d [[10]

(Apache 2.0 license), Nerf [39] (MIT License) and NeuS [55] (MIT License), which is cited
in the introduction and implementation.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not have any new assets released.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowd sourcing or human research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowd sourcing or human research.
Guidelines:

* The answer NA means that the paper does not involve crowd sourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our work does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Technical Background
	Overview
	Physics-based RF Volumetric Rendering
	Signal Tracing
	Signal Amplitude Tracing

	Lensless Sampling & Lensless Alpha Blending
	Optimization
	Experiments
	Conclusion
	Radar Background
	Free-space Power Decay
	Radar Reflections
	Near Field vs. Far Field
	Differentiable Matched Filter & Signal Tracing
	Code Implementation

	Lensless Alpha Blending
	Alpha
	Transmittance

	Experiment Details
	Novel View Synthesis
	Ablation Studies
	Number of Radar Scanning Planes
	Number of Temporal Sample 
	Positional Encoding Frequency Level
	Resolution
	Dynamic loss masking
	Effect of Radar physics

	Discussion
	Potential Societal Impacts
	Limitations & Future Work


