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Abstract

Diffusion models have achieved remarkable success in Text-to-Image generation tasks, leading
to the development of many commercial models. However, recent studies have reported that
diffusion models often repeatedly generate memorized images in train data when triggered
by specific prompts, potentially raising social issues ranging from copyright to privacy
concerns. To sidestep the memorization, recent studies have been conducted to develop
memorization mitigation methods for diffusion models. Nevertheless, the lack of benchmarks
hinders the assessment of the true effectiveness of these methods. In this work, we present
MemBench, the first benchmark for evaluating image memorization mitigation methods.
Our benchmark includes a large number of memorized image trigger prompts in various
Text-to-Image diffusion models. Furthermore, in contrast to the prior work evaluating
mitigation performance only on trigger prompts, we present metrics evaluating on both
trigger prompts and general prompts, so that we can see whether mitigation methods address
the memorization issue while maintaining performance for general prompts. Through our
MemBench evaluation, we revealed that existing memorization mitigation methods notably
degrade overall performance of diffusion models and need to be further developed. The code
and datasets are available at https://github.com/chunsanHong/MemBench_code

1 Introduction

Text-to-Image (T2I) generation has shown significant advancements and successes with the advance of diffusion
models. Compared to previous generative models, text-conditional diffusion models excel in generating diverse
and high quality images from user-desired text prompts, which has led to the vast release of commercial
models such as MidJourney. However, recent studies (Somepalli et al., 2023a;b; Carlini et al., 2023) have
revealed that certain text prompts tend to keep replicating images in the train dataset which can cause
private data leakage leading to potentially serious privacy issues. This issue has already triggered controversy
in the real world: specific prompts containing the term “Afghan” have been known to reproduce copyrighted
images of the Afghan girl when using MidJourney (Wen et al., 2024b). One of the major issues with such
prompts is that, regardless of initial random noise leveraged in the reverse process of the diffusion model, they
always invoke almost or exactly same memorized images (Wen et al., 2024b; Carlini et al., 2023; Webster,
2023).

†Co-corresponding authors.
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To address this matter, Wen et al. (2024b) and Somepalli et al. (2023b) have proposed mitigation methods to
prevent the regeneration of identical images in the train dataset invoked from certain text prompts. However,
the evaluation of these memorization mitigation methods has lacked rigor and comprehensiveness due to the
absence of benchmarks. As an adhoc assessment method, the current studies (Wen et al., 2024b; Somepalli
et al., 2023b) have adopted the following workaround: 1) simulating memorization by fine-tuning T2I diffusion
models for overfitting on a separate small and specific dataset of {image, prompt} pairs, and 2) assessing
whether the images used in the fine-tuning are reproduced from the query prompts after applying mitigation
methods. However, it remains unclear whether such results can be extended to practical scenarios with the
existing large-scale pre-trained diffusion models and can represent the effectiveness for resolving memorization.

In this work, we present MemBench, the first benchmark for evaluating image memorization mitigation
methods for diffusion models. Our MemBench includes the following key features to ensure effective evaluation:
(1) MemBench provides 3,000, 1,500, 309, and 1,352 memorized image trigger prompts for Stable Diffusion 1, 2,
DeepFloydIF (Shonenkov et al., 2023), and Realistic Vision (CivitAI, 2023), respectively. In contrast, previous
work (Webster, 2023) only provided 325, 210, 162, and 354 prompts. By increasing the number of prompts, we
enhance the reliability of the evaluation. (2) We take into account a general prompt scenario to assess the side-
effects of mitigation methods, which has been overlooked in prior work. The prior mitigation methods (Wen
et al., 2024b; Ren et al., 2024; Somepalli et al., 2023b) have been evaluated solely on memorized image trigger
prompts, but has often exposed the side-effect of performance degrading. Ideally, the performance on general
prompts should be maintained even after mitigation methods are deployed. (3) We suggest to use multiple
metrics. As previous mitigation works (Wen et al., 2024b; Somepalli et al., 2023b) have measured, MemBench
includes SSCD (Pizzi et al., 2022), which measures the similarity between memorized and generated images,
and CLIP Score (Hessel et al., 2021), which measures Text-Image alignment. Additionally, MemBench
involves Aesthetic Score (Schuhmann et al., 2022) to assess image quality, which has been overlooked by
prior work and allows to penalize unuseful trivial solutions. (4) We propose the reference performance that
mitigation methods should achieve to be considered effective. In previous works (Ren et al., 2024; Wen
et al., 2024b; Somepalli et al., 2023b), the effectiveness of mitigation methods has been demonstrated by
measuring the decrease in SSCD and the extent to which the CLIP Score is maintained before and after
applying the mitigation method. However, this does not necessarily confirm whether image memorization has
been adequately mitigated. Therefore, we provide guidelines on the target values.

Benchmark Contributions. We observe several limitations of current mitigation methods by evaluating
those in MemBench, which consists of large test data, diverse metrics, and scenarios. We confirm that
mitigation methods decrease Text-Image alignment when applied to the image generation of trigger prompts.
We found that even when accepting a significant sacrifice in Text-Image alignment and applying a mitigation
method with very high strength, its SSCD value still fails to reach the reference performance we proposed.
Furthermore, we reveal a new observation that these methods significant decrease Aesthetic Score, which
highlights the generation of low-quality images. We clarify that while previous work (Ren et al., 2024)
measured FID, FID does not effectively measure image quality. We also found that in addition to lower
general quality, the variance in the quality of generated images increases. In the general prompt scenario,
mitigation methods degrade generation performance, making practical application difficult.

Technical Contributions. Our additional contribution lies in offering an effective algorithm to search
for memorized image trigger prompts. The absence of such benchmarks originates from the significant
challenge of collecting prompts that induce memorized images. Existing searching methods (Carlini et al.,
2023; Webster et al., 2023) require extensive computational resources, large system memory, and access to
the diffusion model’s training data to function. Furthermore, with the LAION dataset now private1, these
methods have become unusable. In contrast, our proposed searching algorithm, based on Markov Chain
Monte Carlo (MCMC), offers a more efficient approach to searching for problematic prompts directly within
an open token space, without relying on any dataset. Notably, our method is currently the only available
approach that can operate under these constraints.

Emperical Findings. We analyzed the memorized images found by our method and confirmed that these
include commercial products that are actually being sold. Furthermore, we provide a possible explanation for

1https://laion.ai/notes/laion-maintenance/
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why diffusion models trained on LAION-5B, where image deduplication has been applied, still exhibit image
memorization: layout duplication.

2 Related Work

Memorization in Diffusion Models. Recently, diffusion models have been reported to replicate the images
in the train dataset (Somepalli et al., 2023a;b; Carlini et al., 2023). Empirically, previous works (Somepalli
et al., 2023b; Gu et al., 2023) attribute image memorization to duplicated images in the training data. Biroli
et al. (2024) theoretically analyze the training dynamics of diffusion models and suggest that memorization
arises from transitions into a feature-space fixed point regime.

Memorization Mitigation Methods. Memorization mitigation methods are divided into two categories:
the inference time methods and the training time methods. The inference time methods aim to prevent the
generation of images that are already memorized in pretrained diffusion models during the generation process.
Somepalli et al. (2023b) propose a rule-based text embedding augmentation to mitigate memorization. This
includes adding Gaussian noise to text embeddings or inserting random tokens in the prompt. Wen et al.
(2024b) propose a loss that predicts if a prompt will induce a memorized image, and present a mitigation
strategy that applies adversarial attacks on this loss to modify the text embeddings of trigger prompts. Both
of these works evaluate their methods by intentionally overfitting the diffusion model on specific small {image,
text} pairs to induce the memorization effect, and then checking whether the images are regenerated from
the corresponding prompts when their methods are applied. Ren et al. (2024) analyze the impact of trigger
prompts on the cross-attention layer of diffusion models and propose a corresponding mitigation method.

Train time methods aim to prevent diffusion models from memorizing training data during model training by
employing specific training techniques. Although several methods (Daras et al., 2024; Liu et al., 2024) have
been proposed, experiments have been conducted only on small models and datasets such as CIFAR-10 and
CelebHQ. While some experiments (Ren et al., 2024; Wen et al., 2024b) have been conducted on large models
such as Stable Diffusion, they only assess whether the fine-tuning dataset is memorized when fine-tuning the
model. To date, no train time mitigation method has been tested by training large-scale diffusion models
from scratch to evaluate its effectiveness.

In this work, we focus on the inference time methods, considering the practical scenarios of utilizing existing
large-scale pre-trained diffusion models, such as Stable Diffusion. To effectively evaluate these methods,
we introduce MemBench, which provides sufficient test data and appropriate metrics for comprehensive
assessment.

Training Data Extraction Attack. Our MemBench is constructed by our proposed computational method
that shares a similar vein with the following attack methods. Carlini et al. (2023) propose a method to
search for memorized image trigger prompts in Stable Diffusion. In the pre-processing stage, they embed
the entire training set of Stable Diffusion into the CLIP (Radford et al., 2021) feature space and cluster
these embeddings to identify the most repeated images. In the post-processing stage, Stable Diffusion is
used to generate 500 images for each prompt corresponding to these clustered images. The similarity among
these 500 generated images is measured, and only those prompts that produce highly similar images are
sampled. Finally, image retrieval is performed on the training data using generated images from these selected
prompts to verify if the generated images match the training data images. The pre-processing involves CLIP
embedding and clustering of 160M images, while the post-processing involves generating 175M images, i.e.,
computationally demanding. Webster (2023) propose an advanced searching algorithm. In the pre-processing
stage, an encoder is trained to compress CLIP embeddings. Then, 2B CLIP embeddings are compressed and
clustered using KNN (Webster et al., 2023). In the post-processing stage, Webster introduces an effective
method that performs a few inferences of the diffusion model to predict whether a prompt will induce
memorized images. This method is applied to 20M prompts acquired from the pre-processing stage.

Both methods share common bottlenecks: they are memory inefficient and require extremely high computa-
tional costs. Moreover, the most fundamental problem is their reliance on training data as candidate trigger
prompts. With LAION becoming inaccessible1, these methods can no longer be reproducible and utilized.
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However, our method can search more for trigger prompts efficiently than those methods even without any
pre-processing steps and any dataset.

In another line of research, Chen et al. (2024) propose a method for extracting training data from unconditional
diffusion models. In contrast, several studies (Somepalli et al., 2023b; Gu et al., 2023) indicate that conditioning
plays a critical role in memorization, with unconditional models being less susceptible to it. Furthermore,
since T2I diffusion models are the ones widely applied in real-world scenarios, our work focuses on constructing
a memorization benchmark for T2I diffusion models.

Benchmark Dataset. Since the only existing dataset that can be used for evaluating mitigation methods is
the small dataset released by Webster (2023), Ren et al. (2024) evaluate their method on the Webster dataset,
while it is not originally purposed as a benchmark dataset. The dataset is constructed by the training data
extraction attack method proposed by Webster, which is not scalable; thus, the dataset remains a small scale.
Also, Ren et al. did not measure the loss of semantic preservation after mitigation, which is an important
criterion but overlooked. Our benchmark is the first benchmark for evaluating those mitigation methods with
carefully designed metrics and sufficient test data.

3 Searching Memorized Image Trigger Prompt with MCMC

We present our proposed scalable computational method to construct our MemBench dataset. Given a
pre-trained diffusion model, we computationally search memorized image trigger text prompt. In this section,
we first brief the preliminaries, formulate the search as an optimization problem, and propose a Markov Chain
Monte Carlo algorithm.

3.1 Preliminary

Diffusion Models. Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) is a representative
diffusion model designed to approximate the real data distribution q(x) with a model pθ(x). For each x0 ∼ q(x),
DDPM constructs a discrete Markov chain {x0, x1, . . . , xT } that satisfies q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI).

This is referred to as the forward process, where {βt}T
t=1 is a sequence of positive noise scales. Conversely,

the reverse process generates images according to pθ(xt−1|xt) = N (xt; µθ(xt, t), Σθ(xt, t)). DDPM starts
by sampling xT from a Gaussian distribution, and then undergoes a stochastic reverse process to generate
the sample x0, i.e. an image. With a parametrized denoising network ϵθ, this generation process can be
expressed as:

xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtw, (1)

where αt = 1− βt, ᾱt =
∏t

i=1 αt, σt can be
√

β or
√

1− ¯αt−1
1−ᾱt

βt, and w ∼ N (0; I). The equations may vary
depending on hyper-parameter choices and the numerical solver used (Song et al., 2021a;b).

Classifier Free Guidance (CFG). In T2I diffusion models such as Stable Diffusion (Rombach et al.,
2022), CFG (Ho & Salimans, 2022) is commonly employed to generate images better aligned with the desired
prompt. Given a text prompt p and the text encoder f(·) of the pre-trained CLIP (Radford et al., 2021),
predicted noise is replaced as follows:

ϵ̃θ,f (x, p, t) = ϵθ(x, f(∅), t) + s · (ϵθ(x, f(p), t)− ϵθ(x, f(∅), t)), (2)

where ∅ denotes the empty string, and s is the guidance scale.

Image Memorization and Similarity Measurement Score. We follow the definition of image
memorization suggested by Carlini et al. (2023):

Definition 1 (τ-Image Memorization) Given a train set Dtrain = {(xtrain,i, ptrain,i)}N
i=1, a generated

image x from a diffusion model ϵθ trained on Dtrain, and a similarity measurement score ρ, image memo-
rization of x is defined as:

Mτ (x,Dtrain) = I [∃xtrain ∈ Dtrain s.t. ρ(x, xtrain) > τ ] , (3)
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where τ is a threshold, I is indicator function, and M(·) indicates whether the image is memorized.

As in prior works (Wen et al., 2024b; Ren et al., 2024; Somepalli et al., 2023b), we utilize SSCD (Pizzi et al.,
2022) score as a similarity measurement score, ρ. SSCD is a model designed to identify copied or manipulated
images by learning robust image representations through self-supervised learning. SSCD score is defined as
the cosine similarity between the features extracted from two images using the SSCD model. The model
ensures effective image copy detection across diverse scenarios, such as cropping or filtering.

Memorized Image Trigger Prompt Prediction. Wen et al. (2024b) proposed an efficient method to
predict whether a prompt will generate an image included in the training data. The prior works found that
prompts inducing memorized images do so regardless of the initial noise, xT (Carlini et al., 2023; Webster,
2023), i.e., repeatedly generating the same or almost identical images despite different xT . To quickly identify
this case, Wen et al. (2024b) propose a measure to predict whether a prompt will induce a memorized image
using only the first step of the diffusion model, without generating the image. This measure, referred to as
dθ, is formulated as follows:

dθ(p) = ExT ∼N (0,I)[||ϵθ(xT , f(p), T )− ϵθ(xT , f(∅), T )||2]. (4)

In this context, the larger Dθ(p), the higher the probability that the image generated by the prompt is
included in the training data. Denoting image x generated from diffusion model ϵθ with prompt p as
x(ϵθ, p), we re-purpose it by expressing as dθ(p) ∝ E[M(x(ϵθ, p),Dtrain)], where we omit τ for simplicity.
To validate the effectiveness of detecting whether a prompt is a memorized image trigger prompt, Wen et al.
construct a dataset containing memorized prompts provided by Webster (2023) and non-memorized prompts
from LAION (Schuhmann et al., 2022), COCO (Lin et al., 2014), lexica.art (Santana, 2022) and randomly
generated strings. The reported area under the curve (AUC) of the receiver operating characteristic (ROC)
curve is 0.960 and 0.990 when the number of initial noises is 1 and 4, respectively.

3.2 Memorization Trigger Prompt Searching as an Optimization Problem

Our objective is to construct a memorized image trigger prompts dataset and verify corresponding memorized
images, i.e. to construct Dmem = {p | E[M(x(ϵθ, p),Dtrain)] > κ, p ∈ T } where κ is the threshold and T
is space of all possible prompts. As mentioned in Section 2, the prior works (Carlini et al., 2023; Webster,
2023) utilized Dtrain to search for candidate prompts that could become Dmem. They then generated images
from these candidate prompts and conducted image retrieval to find memorized images within Dtrain which
is expensive. Moreover, since the training dataset, LAION, is no longer accessible, this approach becomes
infeasible. Thus, we approach the problem from a different perspective. We search for candidate prompts
that could become Dmem without using Dtrain. Then, we generate images from these candidate prompts and
use a Reverse Image Search API2 to find images on the web akin to generated ones by regarding the web as
the training set. Finally, we perform a human verification process.

Given that dθ(p) ∝ E[M(x(ϵθ, p),Dtrain)], constructing Dmem can be conceptualized as an optimization
problem where we treat the prompt space as a reparametrization space and aim to find prompts yielding high
dθ(p). To formulate the optimization problem, we define the prompt space. Given a finite set W containing
all possible words (tokens), where |W| = m, we model a sentence p with n words as an ordered tuple drawn
from the Cartesian product of W , represented as P =Wn. To solve the optimization problem, we treat dθ(·)
as a negative energy function and model the target Boltzmann distribution π such that higher values of dθ(·)
correspond to higher probabilities as

π(p) = edθ (p)/K

Z , (5)

where Z =
∑

p∈P edθ(p)/K is a regularizer and K is a temperature constant. By sampling from modeled
target distribution π(p) in a discrete, finite, multivariate, and non-differentiable space P, we can obtain
prompts that maximize dθ(p), which are likely to be memorized image trigger prompts.

2https://tineye.com/
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3.3 Constructing MCMC by Leveraging dθ

To tackle the aforementioned challenging optimization problem, we propose to use Markov Chain Monte
Carlo (MCMC) (Hastings, 1970) to sample from the target distribution π(p). This method allows us to
efficiently explore the discrete prompt space and find prompts likely to induce memorized images, effectively
navigating P to identify optimal prompts. From any arbitrary distribution of sentence, π0, Markov Chain
with transition matrix T can be developed as follows:

πi+1 = πiT. (6)

It is well known that Markov Chains satisfying irreducibility and aperiodicity converge to certain distribution
π∗ (Robert et al., 1999), which can be formulated as πn = π0Tn → π∗ independent of π0. The transition
matrix can vary depending on the algorithm used to solve the MCMC. By carefully choosing the sampling
algorithm, we can ensure that the final distribution π∗ reached by the transition matrix converges to desired
target distribution π (Robert et al., 1999; Geman & Geman, 1984; Hastings, 1970). Considering the multi-
dimensional nature of our parameter space, we employ the Gibbs sampling algorithm (Geman & Geman,
1984) for simplicity. Gibbs sampling is an MCMC sampling algorithm method where, at each step, only
one coordinate of the multi-dimensional variable is updated to transition from the current state to the next
state. Gibbs sampling algorithm has proven the convergence of the transition matrix and is known for fast
convergence in multi-dimensional problems (Johnson et al., 2013; Terenin et al., 2020; Papaspiliopoulos &
Roberts, 2008). We adopt random scan Gibbs sampling, which involves randomly selecting an index and
updating the value at that index. This process can be expressed as the sum of n transition matrices, as
follows:

T =
∑n

i=1
1
n ·Ti, (7)

[Ti]pj→pj+1 =
{

π(pj+1
i |pj

−i) if pj
−i = pj+1

−i

0 else,
(8)

where p−i = {p1, p2, ..., pi−1, pi+1, ..., pn} and pj is a j-th state prompt. Integrating Equation 5 into the
above formulas, the final transition matrix is obtained as follows:

[T]pj→pj+1 =


1
n

(
e

dθ (Pi=pj+1
i

,P−i=pj
−i

)/K∑
w∈W

e
dθ (Pi=w,P−i=pj

−i
)/K

)
if pj

−i = pj+1
−i ,

0 else,

(9)

where detailed derivation is provided in Appendix B. Since it is impractical to compute dθ(·) for all w ∈ W,
we approximate W as top Q samples obtained from BERT (Devlin et al., 2018). This means that the i-th
element of the prompt p is masked and BERT is used to predict the word, from which the top Q samples are
selected as candidate words. Additionally, this approximation can induce the generated prompts to be more
semantically fluent. Mathematical derivation is complex, but the algorithm is straightforward: the process
iteratively 1) selects and replace a word into [MASK] token from the sentence, 2) predicts top Q words via
BERT and computes proposal distribution, and 3) replaces it according to the proposal distribution. Please
refer to Algorithm 1 for details.

3.4 Dataset Construction by Leveraging MCMC

We conduct dataset construction in two stages: 1) using a masked sentence as the prior and employing
MCMC to find memorized image trigger prompts, and 2) using the memorized image trigger prompts as the
prior for augmentation through MCMC.

Using Masked Sentence as Prior. This stage aims to discover new memorized images. The sentence
is initialized with sentence of length n [MASK] token, i.e. p0 = {[MASK], [MASK], ... , [MASK]}. We
then employ Algorithm 1 initialized with p0 to obtain the candidate prompt. Similar to the conventional
approach (Carlini et al., 2023) to extract train images, we then generate 100 images for this prompt and
leverage DBSCAN (Ester et al., 1996) clustering algorithm with SSCD (Pizzi et al., 2022) to extract images
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Algorithm 1 Memorized Image Trigger Prompt Searching via Gibbs sampling
1: Input: Diffusion model θ, BERT model ϕ, initial sentence p0 with length n, iteration number N , number

of proposal words Q, termination threshold κ, hyperparameter K, γ, {r1, . . . , rn}
2: p∗ ← p0

3: while dθ(p∗) < κ do
4: for j = 0 to N do
5: Randomly select index i ∈ {1, . . . , n}
6: WQ ← arg topQ pϕ(w | pj

−i)

7: p(pj+1
i | pj

−i)← e
dθ (Pi=pj+1

i
,P−i=pj

−i
)/K∑

w∈WQ
e

dθ (Pi=w,P−i=pj
−i

)/K

8: pj+1
i ← Sample from p(pj+1

i | pj
−i)

9: pj+1 ← (pj
1, pj

2, . . . , pj+1
i , . . . , pj

n)
10: end for
11: p∗ ← arg maxp∈{p0,p1,...,pn} dθ(p)
12: end while
13: return p∗

Table 1: Comparison of the number of memorized images and trigger prompts in each dataset. Our dataset
is significantly larger in terms of the number of trigger prompts across all models. Please note that images
sharing the same layout, as shown in Figure 4, have been counted as a single image.

Stable Diffusion 1 Stable Diffusion 2 DeepFloydIF Realistic Vision
Trigger

Prompt #
Mem.

Image #
Trigger

Prompt #
Mem.

Image #
Trigger

Prompt #
Mem.

Image #
Trigger

Prompt #
Mem.

Image #
Webster (2023) 325 111 210 25 162 17 354 119
MemBench 3000 151 1500 55 309 51 1352 148

forming at least 20 nodes. Those images are employed to Reverse Image Search API to find train image
sources and human verification is conducted.

Using Found Trigger Prompts as Prior. This stage aims to augment memorized image trigger prompts.
We leverage the prompts found in the previous stage or those provided by Webster (2023) as the prior, π0.
In this process, we employ a slightly modified algorithm to enhance diversity. Instead of running a single
chain for one prompt, we run n separate chains for each word position in an n-length sentence, treating
each position as the first updating index in Gibbs sampling. This method ensures a varied exploration of
the prompt space. We then save the top 100 prompts with the highest dθ(·). We retained all prompts
generated during the MCMC sampling process and then selected 20 augmented prompts per original prompt,
considering diversity. The detailed process is provided in Appendix C.

4 Dataset Statistics and Efficiency of the Proposed Algorithm

4.1 Dataset Statistics

Table 1 presents the number of memorized images and trigger prompts obtained using the methodology
described in Section 3. For both Stable Diffusion 1 and 2, the number of prompts has increased more
than fivefold for each model and more than 9 times in total compared to those reported by Webster
(2023). The number of memorized images included in the dataset has also increased, with Stable Diffusion 2
showing an increase of over twofold. Additionally, we provide memorized images and trigger prompts for
DeepFloydIF (Shonenkov et al., 2023), which has a cascaded structure, and Realistic Vision (CivitAI, 2023),
an open-source diffusion model. For these two models, we provide a larger number of memorized images and
trigger prompts than Webster et al. We have also applied our algorithm to the more recent model, Stable
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Figure 1: (a) Components of memorized images in Stable Diffusion 1. (b) A histogram of SSCD values for
the trigger prompts discovered by Webster (2023) and those in MemBench. For each trigger prompt, 10
images were generated, and the SSCD values were measured against the memorized image and then averaged.
Using these averaged SSCD values, we constructed a histogram with SSCD bins for all trigger prompts from
Webster (2023), and performed the same procedure for our trigger prompts. As shown, the mean SSCD values
of our trigger prompts are significantly more diverse, whereas those from Webster (2023) are concentrated in
the higher SSCD range.

Table 2: Comparison of the efficiency of our method and other prompt space optimization methods. Experiment
was done on 1 A100 GPU. “-” denotes the failure of the valid search.

Greedy Search ZeroCap PEZ ConZIC Ours
Hours/Memorized Image 5.7 - - 3.81 2.08

Diffusion 3 (Esser et al., 2024). Please refer to Appendix E for the results. The composition of the images
included in MemBench is shown in Figure 1a, illustrating that the memorized images encompass a substantial
number of commercial product images and human images. Specifically, commercial products include phone
cases, furniture, clothing, and baggage; artwork includes cartoons and brand logos; and human-related images
include radio albums, actors, bands, movie posters, and soccer players. Please refer to Appendix C.3 for the
data component of other models.

Furthermore, we observe that the degree of memorization in the trigger prompts found by Webster (2023),
E[M(x(ϵθ, p),Dtrain)], is excessively high. This presents a drawback for their direct use as benchmarks, as
they consist only of prompts that are particularly difficult for mitigation methods to handle. As a result, when
mitigation methods are applied with limited strength, their effectiveness may not be clearly observed, making
comparisons between different approaches more challenging. This problem arises because the prompts are
taken directly from the training of diffusion models. In contrast, our method searches trigger prompts through
MCMC sampling in an open prompt space, allowing us to obtain a much broader range of memorization
levels. We validate this by measuring the SSCD values of images generated by trigger prompts and visualizing
them in a histogram, as shown in Fig. 1b.

4.2 Efficacy of Memorized Image Trigger Prompt Searching

In this section, we validate the efficiency of our method in discovering memorized images without access to
Dtrain. The task of finding memorized image trigger prompts without Dtrain is defined as follows: without any
prior information, the method must automatically find trigger prompts that induce memorized images. This
involves: 1) selecting candidate prompts, 2) generating 100 images for each candidate prompt, 3) applying
DBSCAN (Ester et al., 1996) clustering with SSCD to get candidate images and using a Reverse Image
Search API to verify those images’ presence on the web. To the best of our knowledge, this task is novel, so
we provide naive baselines. As the first baseline, we perform a greedy search by measuring Dθ for all prompts
in the prompt dataset and selecting the top 200 prompts as candidate prompts. For the prompt dataset, we
leveraged DiffusionDB, which contains 13M prompts collected from diffusion model users. Additionally, we
provide three other baselines, all of which are algorithms that solve optimization problems in the prompt
space. For two of these baselines, we adapt ZeroCap (Tewel et al., 2022) and ConZIC (Zeng et al., 2023),
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(a) Images in LAION (b) Stable Diffusion Generated (c) Mitigation Applied(a) Images in LAION (b) Stable Diffusion Generated (c) Mitigation Applied
Figure 2: The necessity of measuring the Aesthetic score. Images generated with the mitigation
method applied are not desirable but achieve a low SSCD while maintaining a high CLIP Score. The trigger
prompts used to generate the images were: “the no limits business woman podcast”, “wall view 003”, and
“united states throw blanket”, respectively.

methods designed to maximize the CLIP Score for zero-shot image captioning, by replacing their objective
function with Dθ. Similarly, we also adapt PEZ (Wen et al., 2024a) by substituting its objective function
with Dθ to serve as another baseline. For each of these three methods, we conducted 200 iterations and
obtained prompts. For our method, we performed 200 MCMC runs with 150 iterations each, and selected the
resulting prompts as candidate prompts. For more detailed implementation, please refer to Appendix G.

The results are shown in Table 2. Our method significantly outperforms other methods. The results in Table 2
demonstrate that our method significantly outperforms others. To generate 200 candidate prompts, ZeroCap
and PEZ required 44 and 33 hours, respectively, on an A100 GPU but failed to identify any memorized image
trigger prompts. ZeroCap’s sequential prediction hindered the prompt being optimized to have higher Dθ

values than general prompts. For PEZ, we observed that the prompts were optimized to produce images
with a specific color (e.g., sunflower fields, grassy fields), and the prompts themselves were very unnatural.
ConZIC identified 6 memorized images in 24 hours but struggled with local minima and lacked diversity in
its optimization process, resulting in lower efficiency compared to our method.

Comparing with baselines (Carlini et al., 2023; Webster, 2023) that leverage LAION itself is challenging, as
the dataset is no longer available and the elements for reimplementation are omitted in the corresponding
papers. However, as mentioned in Section 2, their memory-inefficient and computationally intensive methods
provided only a few memorized images and trigger prompts.

5 MemBench: Metrics, Scenarios and Reference Performance

Metrics. We present rigorous metrics for correctly evaluating mitigation methods, which include similarity
score, Text-Image alignment score, and quality score. Following previous works, we adopt SSCD (Pizzi
et al., 2022) as the similarity score and measure max SSCD between a generated image using trigger prompt
and memorized images. In detail, if a prompt p∗ triggers images {x∗

1, ..., x∗
k} included in Dtrain, we measure

maxx∈{x∗
1 ,...,x∗

k
} SSCD(x(p∗, ϵθ), x). Secondly, we adopt CLIP Score (Hessel et al., 2021) to measure Text-

Image alignment between prompt and generated images. Lastly, We adopt an Aesthetic Score (Schuhmann
et al., 2022) as the image quality score. While previous works (Wen et al., 2024b; Somepalli et al., 2023b)
did not assess image quality scores, we observed issues shown in Figure 2. When memorization mitigation
methods are applied, we observe that image quality degrades, the rich context generated by the diffusion
model is destroyed, or distorted images are formed. While Ren et al. (2024) measured FID, they reported
that FID decreases when mitigation methods are applied. They attribute this phenomenon to the mitigation
method preventing memorized images from being generated, thereby increasing the diversity of generated
images. As a result, compared to FID which focuses on diversity, Aesthetic Score offers a more straightforward
way to evaluate individual image quality and highlight image quality degradation issues.

Scenarios. To ensure that memorization mitigation methods can be generally applied to diffusion models,
we provide two scenarios: the memorized image trigger prompt scenario and the general prompt scenario.
First, the memorized image trigger prompt scenario evaluates whether mitigation methods can effectively
prevent the generation of memorized images. This scenario uses the memorized image trigger prompts we
identified in Section 3. We generate 10 images for each trigger prompt and measure the Top-1 SSCD and
the mean values of the Top-3 SSCD. We also measure the proportion of images with SSCD exceeding 0.5.

9
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(a) (b) (c) (d)

Figure 3: Examples of memorized images found using the Reverse Image Search API. (a), (c) Shirt/rug
currently sold commercially, (b), (d) four images generated by Stable Diffusioon

Figure 4: Results of images found by leveraging Reverse Image Search API to the images generated from
trigger prompts. While prior works (Carlini et al., 2023; Webster, 2023) have attributed memorization in
diffusion models to image repetition, this does not explain why memorization still occurs in LAION-5B, where
image deduplication has been applied. We suggest that layout duplication shown in the figure may account
for such remaining cases of memorization.

For CLIP Score and Aesthetic Score, we calculate the average value across all generated images. Second,
the general prompt scenario ensures that the performance of the diffusion model does not degrade when
using prompts other than trigger prompts. We leverage the COCO (Lin et al., 2014) validation set as general
prompts. In this scenario, images are generated once per prompt, and the average CLIP Score and Aesthetic
Score are measured.

Reference Performance. We propose a reference performance for interpreting the performance of
mitigation methods. An effective mitigation method should be able to reduce SSCD while maintaining CLIP
Score. However, although SSCD is a metric designed to compare the structural similarity of images for copy
detection tasks, it inevitably includes semantic meaning due to the self-supervised nature of the trained
neural network. On the other hand, the semantic meaning of the trigger prompt should still be reflected
in the generated image to maintain CLIP Score even when a mitigation method is applied. Therefore, it
is uncertain how much the SSCD between memorized images and generated images can be reduced while
maintaining the CLIP Score between trigger prompts and generated images. In this regard, we provide a
reference performance to indicate how much SSCD can be reduced while maintaining a high CLIP Score. We
assume querying images with trigger prompts via the Google Image API3 as a strong proxy model for the
generative model and provide the reference performance. Please refer to Appendix D for details.

6 Deeper Analysis into Image Memorization

In this section, we provide a deeper analysis of the memorized images and trigger prompts in MemBench.
Firstly, we have found that Stable Diffusion regenerates commercial products currently on sale.
While prior works (Carlini et al., 2023; Somepalli et al., 2023a) have suggested the possibility that diffusion
models could memorize commercial images, we are the first to confirm this. Unlike the previous studies that
used image retrieval from LAION to find memorized images (Carlini et al., 2023; Webster, 2023), we leverage
a Reverse Image Search API to find those, which enable us this verification. As shown in Figure 3.b, Stable

3https://developers.google.com/custom-search
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Table 3: Performance evaluation of image memorization mitigation methods in MemBench. n, l, and c
are hyperparameters that control the strength of their corresponding mitigation methods. Please refer to
Appendix G.3 for the details of hyper-parameters.

MemBench COCO
Hyper-params Top-1 SSCD ↓ Top-3 SSCD ↓ SSCD > 0.5 ↓ CLIP ↑ Aesth. ↑ Aesth. std. ↓ CLIP ↑ Aesth. ↑ Aesth. std. ↓

Base 0.641 0.605 0.451 0.273 5.25 0.43 0.321 5.37 0.36
Reference Performance 0.088 - - 0.310 - - - - -

RNA(Somepalli et al., 2023b)
n = 1 0.479 0.425 0.241 0.270 5.18 0.53 0.314 5.34 0.36
n = 2 0.389 0.338 0.165 0.270 5.14 0.55 0.310 5.33 0.37
n = 3 0.329 0.280 0.121 0.267 5.13 0.56 0.307 5.30 0.37
n = 4 0.287 0.239 0.089 0.264 5.10 0.58 0.304 5.29 0.39
n = 5 0.254 0.213 0.074 0.262 5.08 0.59 0.302 5.28 0.39
n = 6 0.228 0.189 0.055 0.258 5.06 0.59 0.298 5.24 0.38

RTA (Somepalli et al., 2023b)
n = 1 0.497 0.446 0.265 0.269 5.20 0.52 0.316 5.34 -
n = 2 0.397 0.347 0.175 0.268 5.19 0.53 0.314 5.32 0.36
n = 3 0.330 0.285 0.129 0.266 5.17 0.54 0.310 5.29 0.36
n = 4 0.282 0.240 0.094 0.264 5.15 0.55 0.306 5.27 0.37
n = 5 0.257 0.217 0.080 0.262 5.14 0.53 0.302 5.26 0.37
n = 6 0.228 0.190 0.056 0.258 5.10 0.56 0.299 5.27 0.38

Wen et al. (2024b)
l = 7 0.410 0.346 0.134 0.270 5.16 0.54 0.321 5.37 0.36
l = 6 0.355 0.289 0.089 0.270 5.15 0.55 0.321 5.37 0.36
l = 5 0.312 0.246 0.059 0.269 5.14 0.56 0.321 5.37 0.36
l = 4 0.259 0.199 0.035 0.268 5.13 0.57 0.321 5.37 0.36
l = 3 0.181 0.139 0.015 0.264 5.11 0.59 0.321 5.37 0.36
l = 2 0.096 0.075 0.001 0.242 4.97 0.64 0.321 5.37 0.36

Ren et al. (2024)
c = 1.0 0.289 0.247 0.083 0.263 5.17 0.57 0.316 5.33 0.38
c = 1.1 0.283 0.239 0.071 0.260 5.17 0.57 0.313 5.31 0.38
c = 1.2 0.278 0.232 0.058 0.257 5.15 0.58 0.309 5.28 0.39
c = 1.3 0.275 0.227 0.050 0.254 5.14 0.58 0.304 5.26 0.39

Diffusion replicates images of commercially available shirts when given a specific prompt. Figure 3.d further
illustrates the replication of layouts; for a commercially sold carpet, all layouts have been reproduced.

Secondly, we explore the cause of image memorization in Stable Diffusion 2, trained on LAION-5B, whose
duplicates are removed. Previous works (Somepalli et al., 2023b; Gu et al., 2023) suggested that image
memorization issues arise from duplicate images in the training data. Webster et al. (2023) confirmed that
the LAION-2B dataset contains many duplicate images likely to be memorized. However, Stable Diffusion 2
still exhibits image memorization issues while reduced. We hypothesize that this memorization arises due
to layout duplication. Figure 4 shows the images found by Reverse Image Search API that are memorized
by Stable Diffusion. We found that there are often over 100 images on the web with the same layout but
different color structures. LAION-5B underwent deduplication based on URLs4, but this process may not
have removed these images. These layout memorizations are also obviously subject to copyright, posing
potential social issues. Additional examples are provided in Appendix H.

7 Evaluation of Image Memorization Mitigation Methods

In this section, we evaluate image memorization mitigation methods on our MemBench in Stable Diffusion 1.
For results of Stable Diffusion 2, please refer to Appendix F.2.

Baselines. We use Stable Diffusion 1.4 as the base model. The image memorization mitigation methods
evaluated include: 1) RTA (Somepalli et al., 2023b), which applies random token insertion to the prompt, 2)
RNA (Somepalli et al., 2023b), which inserts a random number between [0, 106] into the prompt, 3) method
proposed by Wen et al. (2024b) that applies adversarial attacks to text embeddings, and 4) method proposed
by Ren et al. (2024) that rescales cross-attention. Image generation is performed using the DDIM (Song
et al., 2021a) Scheduler with a guidance scale of 7.5 and 50 inference steps.

Results. We present the experimental results in Table 3. As shown in Table 3, for all methods, lowering
the SSCD significantly reduces both the CLIP Score and the Aesthetic Score. This indicates a degradation in
text-image alignment and image quality. In particular, upon examining images with low Aesthetic Scores, we
observe that issues in Figure 2 occur across all methods. Moreover, when hyper-parameters are set as high

4https://laion.ai/blog/laion-5b/
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values for mitigation methods, it leads not only to a lower Aesthetic Score but also to a much larger standard
deviation. This indicates that diffusion model outputs become unreliable. Please refer to Appendix F.1 for
the FID values. As reported by Wen et al. (2024b), all methods exhibit a trade-off between SSCD and CLIP
Score. Regarding the reference performance obtained via API search, it can be observed that the SSCD can
be reduced to 0.088 while maintaining a high CLIP Score. Due to the inherent limitations of the Stable
Diffusion baseline model, the CLIP Score cannot exceed 0.273 when mitigation methods are applied. However,
mitigation methods should aim to reduce the Top-1 SSCD to around 0.088 while maintaining at least this
level of CLIP Score.

To provide a more detailed analysis of each method, we observe that the approach proposed by Wen et
al. achieves the best performance in the trade-off between SSCD and CLIP Score. However, to reduce the
proportion of images with SSCD exceeding 0.5—indicative of image memorization—to nearly zero, their
method still requires a reduction in CLIP Score by 0.025. Given the scale of the CLIP Score, this drop
suggests that the generated images may be only marginally related to the given prompts. Moreover, a
significant decrease in the Aesthetic Score is also observed. On the other hand, the method proposed by Wen
et al. has an additional advantage: it does not result in any performance drop in the general prompt scenario
on the COCO dataset, making it the most suitable option for practical applications as of now.

The most recent method proposed by Ren et al. (2024) shows a considerable reduction in the CLIP Score.
Even at the lowest hyper-parameter setting (c = 1.0), the reductions in both CLIP Score and Aesthetic
Score are substantial, limiting its general applicability to diffusion models. The most basic approaches, RNA
and RTA, show a decrease in CLIP Score by 0.015 at the hyper-parameter setting (n = 6) that lowers the
proportion of images with SSCD exceeding 0.5 to 0.05. This is expected, given the nature of these methods:
both attempt to prevent image memorization by adding irrelevant tokens to the prompts. As a result, RNA
and RTA are unreliable for application to diffusion models.

8 Conclusion

We have presented MemBench, the first benchmark for evaluating image memorization mitigation methods
in diffusion models. MemBench includes various memorized image trigger prompts, appropriate metrics,
and a practical scenario to ensure that mitigation methods can be effectively applied in practice. We have
provided the reference performance that mitigation methods should aim to achieve. Through MemBench, we
have confirmed that existing image memorization mitigation methods are still insufficient for application to
diffusion models in practical scenarios. The lack of a benchmark may have previously hindered the research of
effective mitigation methods. However, we believe that our benchmark will facilitate significant advancements
in this field.

Limitations and Future Work. Another contribution of our work is providing an algorithm for efficiently
searching memorized image trigger prompts based on MCMC. Our approach is faster than other searching
algorithms we have tried, yet it does not exhibit exceptionally high speed. Consequently, due to time
constraints, we were unable to provide a larger number of memorized images. However, our method allows
for the continuous search of more memorized images and their corresponding trigger prompts, and we plan to
update the dataset regularly. Additionally, we aim to enhance the efficiency of our memorized image trigger
prompt searching algorithm in the future.
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A Broader Impact Statement

Our work introduces a technique for extracting the training data of diffusion models. This could potentially
harm the rights of model owners or image copyright holders. Therefore, it is crucial to handle this technique
with caution to avoid any infringement issues. For more details, please refer to Appendix I.

B Detailed Derivation of Transition Matrix

In this section, we provide a detailed derivation of the transition matrix that was omitted in Section 3. To
recap, the transition matrix of the random scan Gibbs sampler for sampling the target distribution π is
defined as follows:

T =
n∑

i=1

1
n
·Ti, (10)

[Ti]pj→pj+1 =
{

π(pj+1
i |pj

−i) if pj
−i = pj+1

−i

0 else,
(11)

where n is the total length of sentence, p−i = {p1, p2, ..., pi−1, pi+1, ..., pn} and pj is a j-th state prompt.
We proceed to derive the conditional probability distribution of the target distribution π(p) = edθ (p)/K

Z :

π(pj+1
i | pj

−i) =
π(Pi = pj+1

i ,P−i = pj
−i)

π(pj
−i)

(12)

=
π(Pi = pj+1

i ,P−i = pj
−i)∑

w∈W π(Pi = w,P−i = pj
−i)

(13)

= edθ(Pi=pj+1
i

,P−i=pj
−i

)/K∑
w∈W edθ(Pi=w,P−i=pj

−i
)/K

(14)

By substituting Equation 14 into Equation 11, we ultimately derive the transition matrix as defined earlier in
Equation 9.

[T]pj→pj+1 =

 1
n · (

e
dθ (Pi=pj+1

i
,P−i=pj

−i
)/K∑

w∈W
e

dθ (Pi=w,P−i=pj
−i

)/K
) if pj

−i = pj+1
−i ,

0 else.

(15)

C Data Construction Details

In this section, we provide a detailed explanation of the data construction process described in Section 3.4. We
explain 1) how memorized image trigger prompts and corresponding memorized images for Stable Diffusion 1
and 2 in Table 1 were found, 2) implementation details of the data augmentation algorithm using MCMC,
and 3) its efficiency.

For Stable Diffusion 1 and Realistic Vision, we initialized sentences with n-length mask tokens and implemented
Algorithm 1 to find new memorized image trigger prompts and corresponding memorized images (please
refer to Section 3.4 “Using Masked Sentence as Prior”). We then perform the MCMC process with
p0 initialized by trigger prompts to perform the augmentation (please refer to Section 3.4 “Using Found
Trigger Prompts as Prior”). For Stable Diffusion 2 and DeepFloydIF, the process of finding trigger
prompts using masked sentences was omitted. This was due to two reasons: firstly, the prediction accuracy
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Algorithm 2 Memorized Image Trigger Prompt Augmentation via Gibbs Sampling
1: Input: Diffusion model θ, BERT model ϕ, initial sentence p0 with length n, iteration number N , number

of proposal words Q, termination threshold κ, early stop counter threshold s, hyperparameter K.
2: Initialize early stop counter c← 0
3: Initialize prompt bank B ← {p0}
4: for k = 0 to n do
5: for j = 0 to N do
6: if j = 0 then
7: i← k
8: else
9: Randomly select index i ∈ {1, . . . , n}

10: end if
11: WQ ← arg topQ pϕ(w | pj

−i)

12: p(pj+1
i | pj

−i)← e
dθ (Pi=pj+1

i
,P−i=pj

−i
)/K∑

w∈WQ
e

dθ (Pi=w,P−i=pj
−i

)/K

13: pj+1
i ← Sample from p(pj+1

i | pj
−i)

14: pj+1 ← (pj
1, pj

2, . . . , pj+1
i , . . . , pj

n)
15: Add {(pj

1, pj
2, . . . , pj

i−1, w, pj
i+1, . . . , pj

n) | ∀w ∈ WQ} to B
16: if dθ(pj+1) < κ then
17: c← c + 1
18: else
19: c← 0
20: end if
21: if c > s then
22: break
23: end if
24: end for
25: end for
26: return B

Algorithm 3 Diversity Sampling
1: Input: Text encoder ϕ, augmented prompts B, return prompts number N
2: Randomly select p∗ ∈ B
3: Initialize return prompt list R ← {p∗}
4: while |R| < N do
5: p∗ ← arg minp∈B maxpr∈R

ϕ(p)·ϕ(pr)
∥ϕ(p)∥∥ϕ(pr)∥

6: B ← B \ {p∗}
7: R ← R∪ {p∗}
8: end while
9: return R

of dθ for memorized image trigger prompts is lower for these models. Secondly, as Stable Diffusion 2 is
trained on the deduplicated LAION-5B and LAION-A, the memorized image trigger prompts are sparser,
making optimization from a masked sentence initialization difficult. Therefore, for Stable Diffusion 2 and
DeepFloydIF, only the trigger prompt augmentation algorithm was leveraged. The prompts were initialized
in two ways before undergoing the data augmentation process: 1) using trigger prompts found from Stable
Diffusion 1, and 2) using trigger prompts provided by Webster (2023). We further elaborate on the data
augmentation process below.
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C.1 Data Augmentation Leveraging MCMC

Trigger prompt augmentation was carried out using a different approach from trigger prompt searching
(Algorithm 1). The process of generating candidate trigger prompts through prompt augmentation is detailed
in Algorithm 2. We initialized p0 with the trigger prompt itself and then performed MCMC. As explained in
Section 3.4, in trigger prompt augmentation, we run n separate chains for each word position in an n-length
sentence, treating each position as the first updating index in Gibbs sampling. During the MCMC process,
all prompts with calculated dθ values were stored in the prompt bank. Additionally, we adopted an early
stop counter. The prompts returned by Algorithm 2 tend to have low diversity due to the nature of Gibbs
Sampling. Therefore, Algorithm 3 is applied to all returned prompts to create a smaller, more diverse subset
of prompts. Afterward, these prompts undergo an image generation process, followed by human verification,
before being added to the dataset.

C.2 Data Augmentation Performance

(a) (b)

Figure 5: Memorized image utilized for toy
experiment. Each image refers to (a) train
data image in Stable Diffusion, (b) gener-
ated image using Stable Diffusion. The
SSCD between (a) and (b) is measured to
be 0.707.

We present an evaluation of Algorithm 2, our proposed method
for augmenting memorized image trigger prompts. To assess the
effectiveness of Algorithm 2, we examine whether the prompts
generated during the algorithm’s execution indeed trigger mem-
orized images. Although Algorithm 2 is designed to return only
the top T candidate trigger prompts, for this experiment, we
investigate all the prompts generated during the execution of
Algorithm 2 to measure its performance. Given the extensive
time required to verify all candidate trigger prompts, we present
a toy experiment focusing on a specific prompt: “The no limits
business woman podcast,” which generates an image identical
to Figure 5.a. For the experiment, we set the hyperparameters
of Algorithm 2 as follows: K = 1.5, N = 50, Q = 200, κ = 3,
and s = 3. The experiment was conducted using a single A100
GPU.

For those prompts generated during Algorithm 2, we filtered only prompts that show dθ(p) > 5 and generated
10 images for each. Then we measure the Top-1 SSCD (Pizzi et al., 2022) with the image in Figure 5.a.
We found that there were 4217 unique prompts with a Top-1 SSCD exceeding 0.7, indicating that they
replicate train data image (as seen in Figure 5). Algorithm 2 took 7 minutes on an A100 GPU, producing
4217 augmented trigger prompts within this time frame. In addition, we categorized these prompts based on
the number of words changed from the original prompt. Specifically, there were 753 trigger prompts with one
word changed, 1923 with two words changed, 1352 with three words changed, 179 with four words changed,
and 10 with five words changed. Interestingly, even with the modification of five out of the six words in the
sentence, the altered prompts can still effectively induce memorized images. This demonstrates our method’s
efficiency in generating a large number of augmented trigger prompts in a short period.

C.3 Detailed Data Component of MemBench

In addition to the component analysis of memorized images in Stable Diffusion 1 presented in Sec. 4.1, we
extend this analysis to Stable Diffusion 2, Realistic Vision, and DeepFloydIF. The results are shown in Figure 6.
Notably, memorized images related to Humans disappear in both Stable Diffusion 2 and DeepFloydIF. We
attribute this to the fact that both models were trained on datasets with image duplication removed. As
discussed in Sec. 6, image memorization in such cases is likely due to layout duplication. Since human-related
images are less likely to involve layout-level duplication, they are less prone to being memorized under these
conditions.
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(a) Realistic Vision (b) Stable Diffusion 2 (c) DeepFloydIF
Figure 6: Components of memorized images in Realistic Vision, Stable Diffusion 2, and DeepFloydIF.

D Reference Performance Based on Image Search API

In Section 5, we posited that the Google Image Search API5 serves as a strong proxy model for the generative
model and presented the measured reference performance. We provide the details of this approach in this
section. Before explaining our use of the Google Image Search API, it is important to reiterate our goal in
presenting reference performance: to determine the extent to which the SSCD (Pizzi et al., 2022) between
the memorized image and the generated image can be minimized while maintaining the semantic content of
the trigger prompt. To address this question, we utilized the Google Image Search API to measure reference
performance as follows: 1) Query 100 images using the memorized image trigger prompt via the API. 2)
Measure the CLIP Score (Hessel et al., 2021) between the 100 images and the trigger prompt. 3) Retain only
the image with the Top-1 CLIP Score. 4) Measure the SSCD between this retained image and the memorized
image triggered by the prompt in Stable Diffusion. 5) Repeat steps 1-4 for all memorized image trigger
prompts in MemBench. After completing these steps, we reported the average Top-1 CLIP Score and the
average SSCD of images with the Top-1 CLIP Score in Section 7. Our findings show that the SSCD can
be reduced to 0.200 while maintaining a CLIP Score of 0.329. This indicates that the minimum achievable
SSCD with maintaining CLIP Score is 0.210. Therefore, we should strive to develop mitigation methods
that achieve this or better. Please note that we did not measure Aesthetic Score (Schuhmann et al., 2022)
and evaluate the reference performance in COCO (Lin et al., 2014) settings, since comparing them with the
mitigation method is not meaningful.

E Extension to Stable Diffusion 3

We applied our algorithm to Stable Diffusion 3. However, as the training data for Stable Diffusion 3 is publicly
unknown (no information is available), we were unable to perform the verification process, Reverse Image
Search API. Thus, the searched images and prompts for Stable Diffusion 3 cannot serve as a memorization
benchmark. To be used as a memorization benchmark, two critical steps are essential: 1) Candidate Trigger
Prompt Search Step and 2) Verification Step, where we confirm whether the repeated images actually exist in
the training data, thereby verifying that they are indeed memorized images, as noted in Section 3.2. Without
the verification step, we are not sure whether the searched images and prompts are memorized. Nevertheless,
in Figure 7, we present the trigger prompts and duplicated images identified by our MCMC algorithm for
Stable Diffusion 3. Although we cannot verify them due to the aforementioned limitations, we believe they
represent strong candidates for memorized images.

F Evaluation of Image Memorization Mitigation Method on MemBench

F.1 FID of Mitigation Methods Measured on MemBench

In this section, we present the FID values measured on MemBench when applying mitigation methods to
Stable Diffusion 1. As shown in Table 4, FID values increase when mitigation methods are applied. This

5https://developers.google.com/custom-search
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Vibrant ebony bmw rising inside steering wheel. Walnut size lan exclusive jeep operating customs.

Label above aqua pale translucent polo shirt. Fiery eyes mature female leopard aka tigers.

Figure 7: Trigger prompt searched by our MCMC algorithm and generated images with corresponding prompt.
The repeated and very similar images strongly suggest the occurrence of memorization. Notably, the last
images show a tendency to repeat specific text at the bottom left. This is a common feature of memorized
images generated by diffusion models, where text, URLs, or similar elements from the source image are
replicated. This strongly suggests that these repeated images are indeed memorized images.

Table 4: FID scores of mitigation methods measured on MemBench.

Base RTA (Somepalli et al., 2023b) RNA (Somepalli et al., 2023b) Wen et al. (2024b) Ren et al. (2024)
FID ↓ 116.07 75.33 85.32 64.21 86.79

aligns with the findings reported by Ren et al. (2024), as FID also captures diversity. Since the Stable
Diffusion model generates identical images for trigger prompts, the generated images exhibit low diversity,
leading to higher FID values. In contrast, when mitigation methods are applied, memorized images are
not generated, resulting in increased diversity and consequently lower FID values. Therefore, FID does not
effectively measure image quality but rather measures diversity. Image quality should instead be assessed
using the Aesthetic Score we propose.

F.2 Evaluation of Image Memorization Mitigation Method on Other Diffusion Models

In this section, we evaluate image memorization mitigation methods on our MemBench in other diffusion
models. We present the experimental results of Stable Diffusion 2 in Table 5. When each memorization
mitigation method is applied, although SSCD (Pizzi et al., 2022) is reduced, there is a drop in both CLIP
Score (Hessel et al., 2021) and Aesthetic Score (Schuhmann et al., 2022). Additionally, compared to the
reference performance provided by the Google Image Search API, the performance of these methods is
insufficient. The method proposed by Wen et al. (2024b) shows less capability in reducing SSCD while
maintaining the CLIP Score compared to RNA (Somepalli et al., 2023b) and RTA (Somepalli et al., 2023b)
in the memorized image trigger prompt scenario. However, in the practical scenario of the COCO validation
set, its performance remains equivalent to the base Stable Diffusion 2. We present the experimental results of
DeepFloydIF in Table 6

G Details of Experiments

G.1 Implementation Details of Baselines in Memorized Image Trigger Prompt Searching Experiment

In this section, we provide implementation details of other baselines that we have tried to search the memorized
image trigger prompts, presented in Section 4.2. All three algorithms (Wen et al., 2024a; Zeng et al., 2023;
Tewel et al., 2022) that we provide are originally intended to solve various optimization problems in the text
space, using specific objective functions. For our experiments to search for memorized image trigger prompts,
we replaced each method’s objective function with Dθ.
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Table 5: Performance evaluation of image memorization mitigation methods in MemoBench for Stable
Diffusion 2.

MemBench COCO
Top-1 SSCD ↓ Top-3 SSCD ↓ SSCD > 0.5 ↓ CLIP ↑ Aesthetic ↑ CLIP ↑ Aesthetic ↑

Base 0.629 0.593 0.448 0.281 5.41 0.333 5.35
Reference Performance (API search) 0.207 - - 0.301 - - -

RNA(Somepalli et al., 2023b)
n = 1 0.568 0.525 0.349 0.278 5.34 0.328 5.35
n = 2 0.539 0.491 0.289 0.276 5.30 0.326 5.35
n = 3 0.501 0.446 0.224 0.273 5.24 0.324 5.35
n = 4 0.453 0.395 0.161 0.271 5.21 0.322 5.35
n = 5 0.424 0.368 0.130 0.270 5.19 0.320 5.34

RTA (Somepalli et al., 2023b)
n = 1 0.590 0.549 0.365 0.276 5.35 0.332 5.34
n = 2 0.562 0.515 0.317 0.275 5.31 0.330 5.31
n = 3 0.529 0.475 0.261 0.272 5.26 0.329 5.30
n = 4 0.479 0.428 0.211 0.272 5.21 0.325 5.27
n = 5 0.452 0.393 0.167 0.271 5.17 0.324 5.25

Wen et al. (2024b)
l = 70 0.577 0.535 0.311 0.273 5.30 0.333 5.35
l = 60 0.553 0.502 0.251 0.269 5.26 0.333 5.35
l = 50 0.501 0.423 0.154 0.263 5.19 0.333 5.35
l = 40 0.398 0.322 0.065 0.253 5.15 0.333 5.35

Ren et al. (2024)
c = 1.0 0.592 0.556 0.419 0.273 5.40 0.331 5.36
c = 1.1 0.586 0.548 0.391 0.270 5.39 0.326 5.33
c = 1.2 0.580 0.539 0.349 0.267 5.37 0.320 5.30
c = 1.3 0.574 0.529 0.295 0.262 5.34 0.313 5.27

Top-1 SSCD ↓ Top-3 SSCD ↓ SSCD > 0.5 ↓ CLIP ↑ Aesthetic ↑
Base 0.619 0.576 0.467 0.279 5.05
Wen et al. (2024b) 0.614 0.572 0.467 0.266 5.06
RNA(Somepalli et al., 2023b) 0.497 0.446 0.280 0.270 4.96
RTA(Somepalli et al., 2023b) 0.476 0.426 0.240 0.276 4.94

Table 6: Evaluation of Memorization Mitigation Method on DeepFloydIF. The hyperparameters used are as
follows: RTA and RNA were set with n = 4, Wen et al. (2024b) with l = 1. The method proposed by Wen
et al. (2024b) relies on applying adversarial attacks to the model, but it seems to be less effective due to the
structural characteristics of DeepFloydIF, which utilizes a cascaded diffusion architecture.

ZeroCap (Tewel et al., 2022). ZeroCap is an optimization method developed for zero-shot image
captioning tasks. This method leverages a pre-trained CLIP (Radford et al., 2021) to measure the CLIP
similarity between an image and the current caption, and manipulate the prompt to maximize this CLIP
Score, searching the best caption that describes the image. ZeroCap predicts the next word using a large
language model (LLM) and sequentially adds tokens to the prompt in a manner that maximizes CLIP
similarity. Additionally, a Context Cache is introduced for gradient descent, where the Context Cache is a set
of key-value pairs derived when the current prompt is embedded into the LLM. The optimization function
is consistute of 1) CLIP similarity loss between the image and the prompt, and 2) the cross-entropy (CE)
loss between the distribution of the predicted token of the original Context Cache and that of the updated
Context Cache. ZeroCap performs gradient descent on the optimization function to update the Context
Cache five times, after which the token predicted by this Context Cache is designated as the next token to
continue the sentence. Furthermore, beam search is utilized in this process. In our experiments, we replaced
the CLIP similarity loss with Dθ and implemented the algorithm accordingly. All hyper-parameters were set
to match those in the original paper.

To generate 200 candidate prompts using ZeroCap, it took approximately 44 hours on an A100 GPU, yet
not a single memorized image trigger prompt was found. While Dθ values were higher compared to those of
general prompts (captions from COCO validation set), they were still lower than the values for actual trigger
prompts. This suggests an inherent issue with ZeroCap’s sequential prediction method.
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PEZ (Wen et al., 2024a). The PEZ algorithm is an optimization technique designed to find prompts
that will induce a diffusion model to generate a specific desired image. The algorithm operates in two main
steps for each iteration: 1) perform gradient descent on the prompt in the continuous space with respect to
the diffusion model’s CLIP model, and 2) project the updated prompt back into the discrete space of the
CLIP’s embedding space. In our adaptation of this algorithm, we utilized Dθ(p) as the objective function for
calculating the gradient. All hyper-parameters were set to match those in the original paper.

To generate 200 candidate prompts using PEZ, it took approximately 33 hours on an A100 GPU. However,
similar to ZeroCap, not a single memorized image trigger prompt was found. Although the Dθ values were
comparable to those of actual trigger prompts, memorized images were not discovered. Upon inspection,
we observed that the prompts were optimized to produce images with a specific color (e.g., sunflower fields,
grassy fields), and the prompts themselves were very unnatural. This suggests that the optimization process
did not result in the desired memorized image trigger prompts.

ConZIC (Zeng et al., 2023). ConZIC, like ZeroCap, is a technique designed to optimize the CLIP
Score for zero-shot image captioning tasks. Similar to our approach, ConZIC selects a single word within
the sentence, predicts the word using BERT, and then replace it with the word which shows the highest
value of objective function. The objective function here is a sum of the CLIP similarity and the conditional
probability distribution from BERT. In our experiments, we substituted the CLIP similarity with Dθ as the
objective function.

To generate 200 candidate prompts using ConZIC, it took approximately 24 hours on an A100 GPU. Unlike
the other methods, ConZIC successfully identified 6 memorized images. However, ConZIC’s optimization
process is designed to consistently update the prompt to maximize the objective function, which tends to
result in getting stuck in local minima and the lack of diversity. These lead to less efficiency compared to our
method.

G.2 Hyper-Parameters in Image Memorization Mitigation Methods

In Section 7, we evaluated the performance of image memorization mitigation methods on MemBench and
presented the results in Table 3. However, due to space constraints, we omitted the explanations of various
hyper-parameters in the table. Here, we provide a detailed explanation of these hyper-parameters. Firstly,
RTA (Somepalli et al., 2023b) and RNA (Somepalli et al., 2023b) are methods that insert random words or
numbers into the prompt. The parameter n in the table indicates the number of words or numbers inserted.
The method proposed by Wen et al. (2024b) involves updating the prompt embedding to minimize Dθ. Here,
the threshold for lowering Dθ(p), denoted as the early stopping loss l, becomes a hyper-parameter, i.e. the
prompt p is updated until Dθ(p) < l. All other hyper-parameters followed the settings in the original paper:
an Adam optimizer with a learning rate of 0.05 and a maximum of 10 steps was used for training. Ren et al.
(2024) provides a method that inversely amplifies the attention score for the beginning token by adjusting
the input logits of the softmax operator in the cross-attention. To be precise, let the original input logits be
denoted as s = (s1, s2, . . . , sN ), where si is the logit of the i-th token. The re-scaled logit vector s′ is:

s′ = (Cs1, s2, . . . , sN−S ,−∞, ...,−∞). (16)

Here, the scale factor C for the beginning token s1 becomes a hyper-parameter. Additionally, as shown in
Table 3, when C = 1, the performance differs significantly from the base Stable Diffusion. This is because the
input logits for the summary token are all replaced with negative infinity.

G.3 Hyper-Parameters in Memorized Image Trigger Prompt Searching Leveraging MCMC

In Table 7, we present the hyper-parameters used in our algorithm for finding memorized image trigger
prompts via MCMC.
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Table 7: Hyper-parameters leveraged in memorized image trigger prompt searching using our algorithm.
Here, n represents the sentence length, N is the iteration number, Q denotes the number of proposal words,
K stands for the temperature, κ is the termination threshold, s is the early stop counter threshold, and T is
the number of return candidate prompts.

Model Method n N Q K κ s T

Stable Diffusion 1 Algorithm 1 8 150 200 0.1 5 - -
Algorithm 2 - 20 200 1.5 3 3 100

Stable Diffusion 2 Algorithm 2 - 20 200 5.0 50 3 100

H Additional Examples of Memorized Images

In this section, we present the trigger prompts identified by our algorithm along with the generated images
from Stable Diffusion using these prompts. Additionally, for each image, we provide the corresponding
images presumed to be from the training data, identified using the Reverse Image Search API. The layout
repetition of the generated images and those found through the API strongly indicate that Stable Diffusion
has memorized the training data. Moreover, we have confirmed that the majority of these images are currently
available for commercial sale. We leveraged DDIM (Song et al., 2021a) scheduler to generate images.

(a) Diffusion Generated Images (b) API Searched Images

Figure 8: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “Cozy kitchen painted”.

(a) Diffusion Generated Images (b) API Searched Images

Figure 9: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “Grey standard wall mural”.
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(a) Diffusion Generated Images (b) API Searched Images

Figure 10: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “Iphone case covered with skull”.

(a) Diffusion Generated Images (b) API Searched Images

Figure 11: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “Iphone case covered with skull”.

(a) Diffusion Generated Images (b) API Searched Images

Figure 12: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “Iphone case covered with skull”.

(a) Diffusion Generated Images (b) API Searched Images

Figure 13: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “Knit line Africa American quilt house lace boots”.
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(a) Diffusion Generated Images (b) API Searched Images

Figure 14: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “Knit line Africa American quilt house lace boots”.

(a) Diffusion Generated Images (b) API Searched Images

Figure 15: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “Travel luggage cover”.

(a) Diffusion Generated Images (b) API Searched Images

Figure 16: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “United states throw blanket”.

(a) Diffusion Generated Images (b) API Searched Images

Figure 17: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “United states throw blanket”.
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(a) Diffusion Generated Images (b) API Searched Images

Figure 18: Examples of memorized images found using the Reverse Image Search API. The prompt used for
image generation is “Uranus center as ozone temperature map”.
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I Datasheet

I.1 Motivation

Q1 For what purpose was the dataset created? Was there a specific task in mind? Was there a
specific gap that needed to be filled? Please provide a description.

• MemBench is a benchmark designed for evaluating memorization mitigation methods in diffusion
models. Recently, many diffusion models have been highlighted for their issues with image
memorization, prompting the development of various memorization mitigation methods. However,
due to the absence of a benchmark to properly evaluate these methods, their effectiveness has
not been adequately assessed. To address this, we developed MemBench, which includes a large
number of memorized image trigger prompts and appropriate metrics for evaluation.

Q2 Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?

• Chunsan Hong, Tae-Hyun Oh, and Minhyuk Sung from KAIST created the dataset.

Q3 Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.

• Please refer to Acknowledgement section (Sec. 8).

Q4 Any other comments?

• No.

I.2 Composition

Q5 What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people
and interactions between them; nodes and edges)? Please provide a description.

• It includes links to the images memorized by Text-to-Image diffusion models and the prompts
that trigger these images.

Q6 How many instances are there in total (of each type, if appropriate)?

• Please refer to Section 1

Q7 Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is
the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or
unavailable).

• It will be a sample of all existing trigger prompts that induce memorized images in Stable Diffusion.
However, to the best of our knowledge, we have secured the largest number of trigger prompts,
and we plan to add more in the future.

Q8 What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description.

• Input trigger prompt and URLs of memorized images triggered by the corresponding prompt.

Q9 Is there a label or target associated with each instance? If so, please provide a description.

• No.
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Q10 Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.

• No.

Q11 Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.

• Yes, in our benchmark, relationships between individual instances are made explicit. For example,
each trigger prompt in our dataset is explicitly linked to the memorized image it induces. This is
done by including pairs of trigger prompts and their corresponding memorized images, clearly
showing the relationship between them. Additionally, each image in the benchmark is linked
to the specific Text-to-Image diffusion model that memorized it, providing a clear mapping of
model-instance relationships.

Q12 Are there recommended data splits (e.g., training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.

• No.

Q13 Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide
a description.

• No.

Q14 Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are there
guarantees that they will exist, and remain constant, over time; b) are there official archival versions
of the complete dataset (i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please provide descriptions of all external resources and
any restrictions associated with them, as well as links or other access points, as appropriate.

• The dataset includes the URLs of the memorized images.
• Regarding (a), we provide multiple URLs for each memorized image to ensure the dataset’s

longevity, even if one hosting source goes down.
• Regarding (b), since the memorized images are not copyrighted by us, we cannot provide the

images directly.
• Regarding (c), these images should be used solely for evaluating the effectiveness of mitigation

methods and should not be used for commercial training or distribution.

Q15 Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.

• No.

Q16 Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

• No.

Q17 Does the dataset relate to people? If not, you may skip the remaining questions in this section.

• No.

Q18 Does the dataset identify any subpopulations (e.g., by age, gender)?

• No.
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Q19 Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? If so, please describe
how.

• The memorized images include faces of celebrities, such as Emma Watson.

Q20 Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.

• No.

Q21 Any other comments?

• Although the memorized images we discovered do not contain offensive or confidential elements,
they do include images of currently sold products and faces of celebrities. For instance, there
are images of Emma Watson. Therefore, these images should be used solely for evaluating the
effectiveness of memorization mitigation methods.

I.3 Collection Process

Q22 How was the data associated with each instance acquired? Was the data directly ob-
servable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or language)?
If data was reported by subjects or indirectly inferred/derived from other data, was the data vali-
dated/verified? If so, please describe how.

• Our method discovers memorized images without any prior information by leveraging BERT
models, diffusion models, and the Reverse Image Search API. For more details, please refer to
Section 3.

Q23 What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? How were these
mechanisms or procedures validated?

• Our method employs the Reverse Image Search API6 and Google Image Search API7 to discover
memorized images. For more details, please refer to Section 3, 5.

Q24 If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

• No.

Q25 Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?

• None. The process was automated.

Q26 Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the instances was
created.

• The data was collected from April 2024 to May 2024.
6https://tineye.com/
7https://developers.google.com/custom-search
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Q27 Were any ethical review processes conducted (e.g., by an institutional review board)? If
so, please provide a description of these review processes, including the outcomes, as well as a link or
other access point to any supporting documentation.

• No.

Q28 Does the dataset relate to people? If not, you may skip the remaining questions in this section.

• People may appear in the memorized images.

Q29 Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?

• Our method employs the Reverse Image Search API and Google Image Search API to discover
memorized images. For more details, please refer to Section 3, 5.

Q30 Were the individuals in question notified about the data collection? If so, please describe
(or show with screenshots or other information) how notice was provided, and provide a link or other
access point to, or otherwise reproduce, the exact language of the notification itself.

• Our automated memorized image trigger prompt searching algorithm did not involve any partici-
pation of individuals.

Q31 Did the individuals in question consent to the collection and use of their data? If
so, please describe (or show with screenshots or other information) how consent was requested and
provided, and provide a link or other access point to, or otherwise reproduce, the exact language to
which the individuals consented.

• Our automated memorized image trigger prompt searching algorithm did not involve any partici-
pation of individuals.

Q32 If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses? If so, please provide a description, as
well as a link or other access point to the mechanism (if appropriate).

• Our automated memorized image trigger prompt searching algorithm did not involve any partici-
pation of individuals.

Q33 Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted? If so, please provide a description
of this analysis, including the outcomes, as well as a link or other access point to any supporting
documentation.

• We discuss the limitation of our current work in Section 8, and we plan to further investigate and
analyze the impact of our benchmark in future work.

Q34 Any other comments?

• No.

I.4 Preprocessing, Cleaning, and/or Labeling

Q35 Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? If so, please provide a description. If not, you may skip the
remainder of the questions in this section.

• No.

Q36 Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? If so, please provide a link or other access point to the
“raw” data.
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• N/A.

Q37 Is the software used to preprocess/clean/label the instances available? If so, please provide
a link or other access point.

• N/A.

Q38 Any other comments?

• No.

I.5 Uses

Q39 Has the dataset been used for any tasks already? If so, please provide a description.

• Not yet. MemBench is a new benchmark.

Q40 Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.

• Not yet. We plan to provide links to works that use our benchmark.

Q41 What (other) tasks could the dataset be used for?

• Image memorization mitigation in diffusion models.

Q42 Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a future user might need to know to avoid uses that could result in unfair treatment of
individuals or groups (e.g., stereotyping, quality of service issues) or other undesirable harms (e.g.,
financial harms, legal risks) If so, please provide a description. Is there anything a future user could
do to mitigate these undesirable harms?

• No.

Q43 Are there tasks for which the dataset should not be used? If so, please provide a description.

• The images we provide must not be used for training generative models. Since these images
include faces of celebrities and currently sold products, they should never be used or distributed
for the training of generative models.

Q44 Any other comments?

• No.

I.6 Distribution and License

Q45 Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please provide
a description.

• Yes, this benchmark will be open-source.

Q46 How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?

• The code and datasets are available at https://github.com/chunsanHong/MemBench_code

Q47 When will the dataset be distributed?

• It has already been distributed through the above link.
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Q48 Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license and/or
ToU, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms
or ToU, as well as any fees associated with these restrictions.

• The dataset will be distributed under the Creative Commons Attribution 4.0 International (CC
BY 4.0) license for the URLs and trigger prompts, not for the images themselves, as the images
themselves are not owned by us. We will provide terms of use document specifying that the
dataset is intended solely for research and evaluation of memorization mitigation methods and
should not be used for training generative models. The GitHub repository, where the benchmark
will be distributed, will contain the code licensed under the MIT License. The terms of use and
licensing information will be accessible via the GitHub repository when it becomes available.

Q49 Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with
these restrictions.

• Yes, third parties own the images referenced by the URLs in our dataset. These images include
those of celebrities and currently sold products, which are protected under their respective
intellectual property rights. The URLs provided are for reference purposes only and must not
be used for training or commercial distribution. Any use of the images must comply with the
respective third-party terms and conditions. There are no fees associated with these restrictions,
but users must respect the IP rights of the original content owners.

Q50 Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any supporting documentation.

• No.

Q51 Any other comments?

• No.

I.7 Maintenance

Q52 Who will be supporting/hosting/maintaining the dataset?

• Chunsan Hong, the first author, will maintain the dataset.

Q53 How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

• Through the GitHub discussions that will be opened soon.
• Through the email of the author.

Q54 Is there an erratum? If so, please provide a link or other access point.

• No.

Q55 Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? If so, please describe how often, by whom, and how updates will be communicated to
users (e.g., mailing list, GitHub)?

• MemBench will be updated. We plan to search for more memorized image trigger prompts and
corresponding memorized images using our continuous algorithm.

Q56 If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe these
limits and explain how they will be enforced.
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• N/A.

Q57 Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to users.

• We will host other versions.

Q58 If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions be
validated/verified? If so, please describe how. If not, why not? Is there a process for communicat-
ing/distributing these contributions to other users? If so, please provide a description.

• Through the email of the author.

Q59 Any other comments?

• No.
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