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1. Introduction

Symmetry plays an important role in the success of deep
neural networks (Bronstein et al., 2021). Many different
architectures have been developed to enforce various sym-
metries for modeling data with different structures and prop-
erties (Weiler & Cesa, 2019; Cohen et al., 2019a; Zaheer
et al., 2017; Wang et al., 2021; Finzi et al., 2020; Kondor
& Trivedi, 2018; Cohen et al., 2019b; Finzi et al., 2021;
Bekkers, 2019).

Existing equivariant networks require knowing the symme-
try explicitly before model implementation. However, for
certain functions or data distributions, the underlying sym-
metries may not yet discovered or challenging to articulate
through programming. There are different attempts towards
automatic symmetry discovery from data, but most of them
search only a limited portion of the space of all possible
symmetries, such as subsets of known groups (Benton et al.,
2020; Romero & Lohit, 2021) and finite groups (Zhou et al.,
2020). LieGAN (Yang et al., 2023) can discover various
types of symmetries, but its search space is still constrained
to general linear groups. To achieve successful discovery,
the observations have to be measured in an ideal coordinate
system where linear symmetry is present. Unfortunately,
this is often not true in many realistic tasks, such as high-
dimensional dynamical systems (Champion et al., 2019) and
vision tasks like object detection (Yu et al., 2022).

In this work, we aim to discover symmetries in latent space
by applying the LieGAN framework (Yang et al., 2023)
on latent representations learned by an encoder, and thus
extract a latent space that both possess ideal symmetry prop-
erties and faithfully describe the original observations. This
allows us to further expand the search space beyond linear
symmetries. The non-linearity introduced by the encoder
network may be able to capture the complicated mapping
from the observations with largely arbitrary coordinate sys-
tem to the intrinsic state variables. Then, it becomes pos-
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sible for symmetry discovery models like LieGAN to find
linear group actions on such a proper latent space. Such dis-
covery can then be applied in equivariant learning through
data augmentation procedure (Benton et al., 2020) or equiv-
ariant networks (Finzi et al., 2021; Yang et al., 2023) as
downstream layers.

From a broader view, symmetry discovery with deep learn-
ing is just an example of the computational approaches to
scientific discovery. Another major goal of this field is to
discover the governing equations from observations. Many
works have focused on identifying the governing equations
in latent space where simple models with parsimonious rep-
resentations are present (Champion et al., 2019; Fries et al.,
2022). However, the structure of the latent space remain
unconstrained in these works, so that their physical validity
is not guaranteed. Latent domain symmetry can act as a
regularizer in equation discovery, ensuring that the latent
state variables carry some realistic physical significance. To
this end, we aim to combine the symmetry discovery and
equation discovery methods such as SINDy Autoencoder
(Champion et al., 2019) in latent domain and see whether
symmetries can also refine the discovery of equations.

2. Method

Given the observation space X C R™ and observations
x; ~ px(x), we want to find a group G C GL(k), a low-
dimensional latent space Z C R™ and mapping from the
observation space to the latent space, ¢ : X — Z, so that
(1) ¢ maximally preserves the information in observations,
i.e. there exists an approximate inverse map ¢ : Z — X
s.t. o(o(x)) = x; (2) pz(¢(x)) is invariant under some
G-action on Z, 7 : GL(k) — GL(m), i.e. pz(¢(z)) =
pz(m(g)¢(z)), Vg, .

Figure 1 shows the structure of our proposed framework.
We use an autoencoder to learn the mapping between the
input space and the latent space, and the LieGAN framework
(Yang et al., 2023) to detect latent space symmetries in the
form of Lie algebra. Concretely, the model learns the Lie
algebra generators {L; € R***}¢_, and generates group
elements by sampling the linear combination coefficients
w; € R for the Lie algebra basis:

w; ~y(w), g =exp [ wily] (1)
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Figure 1. Structure of latent LieGAN. The encoder maps the high-
dimensional input to a low-dimensional latent space. The latent
representation is then transformed with the linear group action pro-
duced by LieGAN generator. The decoder reconstructs the inputs
from the original and the transformed representations. Finally, the
pairs of latent space representations and input space reconstruc-
tions are fed to the discriminator, whose job is to recognize the
difference between the original and the transformed samples.

Discriminator [~ lG AN

where 7 is a chosen distribution for the coefficients and
exp denotes the matrix exponential. Through adversarial
training, the generator learns a group of symmetry transfor-
mations that minimizes the difference between the original
and the transformed latent representations.

The latent dimension m, the group dimension k and the
group action p are selected based on tasks. The search space
of symmetry group G can also be reduced if needed.

The loss can then be formulated as

liotal =WGAN * IGAN + Wrecon * lrecon (2)
loan =Eqz 4| log D(¢(z)) +1og(1 — D(T(¢(2))))| (3)
lrecon ZE1||<P(¢(33)) - -17”2 (4)

where 1" and D denote the transformation generator and
discriminator in LieGAN.

Our method is analogous to latent space equation discov-
ery techniques (Champion et al., 2019) in terms of using
an autoencoder network for nonlinear coordinate transfor-
mations. In fact, our method can be jointly trained with
the objective of equation discovery simply by adding the
corresponding loss terms. Concretely, if we want to find a
governing equation in the latent space parameterized by 6:
z = Fy(z), where z = ¢(x), we can add the following term
to the joint objective:

leg =Eu 3| (V22)d — Fy(2)]|? )

While equation discovery and symmetry discovery are two
different objectives, we will show in the experiment that
learning a symmetric latent space can simplify its structure
and improve the performance of equation discovery.

3. Experiment: Reaction-Diffusion System

Many high-dimensional datasets in practical engineering
and science problems derive from dynamical systems gov-
erned by partial differential equations (PDE). As an example,
we consider a A — w reaction-diffusion system governed by

=(1 = (u® + 0%))u + Bu? + 0 )0 + di (uge + uyy)
vy = — Bu? +v*)u+ (1 — (u? +v?))v + do(ugy + Uyy)
(6)

with d; = d2 = 0.1 and 8 = 1. We discretize the 2D space
into a 100 x 100 grid, which leads to an input dimension
of 10*. Figure 2a visualizes a snapshot of this system. We
simulate the system up to 7' = 5000 timesteps with step
size At = 0.05.

We train the latent LieGAN to learn low-dimensional latent
representations for the high-dimensional snapshots, along
with the symmetry in the latent space. We are interested in
the equivariance of latent dynamics, i.e. z;11 = f(z¢) =
gzt+1 = f(gzt). Therefore, we take two consecutive snap-
shots as input, encode them to latent representations with the
same encoder weights and apply the same transformations
with LieGAN. We also combine our model with SINDy
autoencoder (Champion et al., 2019) simply by adding the
SINDy loss terms, in order to perform equation discovery
in the learned latent space.

Snapshot att=0

Latent repi ions at different timesteps
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Figure 2. Reaction-diffusion with 2D latent space.

We first set the latent dimension m = 2, which is also the
setting in Champion et al. (2019). Figure 2b shows how the
system evolves in the latent space throughout 7" = 5000
timesteps. The Lie algebra basis discovered by LieGAN is
I— [0.058 —3.074

3.047 —0.043
the latent space, which is also evident from the visualization.

. This suggests SO(2) symmetry in

For equation discovery, we apply SINDy with up to second
order polynomials as candidate functions with and without
LieGAN. The results are shown in table 1. With the SO(2)
symmetry introduced by LieGAN, the discovered equation
has a more symmetric form, and is more desirable in terms
of interpretation.
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Model Discovered equation
. 21 = 09122
LieGAN + SINDy .
Z9 = — 0912’1
. 2:’1 - — 08522
SINDy (Champion et al., 2019) .
Z9 = 0.9721

Table 1. Equation discovery for reaction-diffusion system.

This system is known to have 2 intrinsic dimensions. In
practice, estimating the intrinsic dimension of a high-
dimensional datasets remains a challenging problem, and it
is not always possible to choose the perfect latent dimension.
To study the behavior of our symmetry discovery model and
SINDy equation discovery method under a less ideal hy-
perparameter configuration, we set the latent dimension to
m = 3 and perform the same experiments as above.
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Figure 3. Reaction-diffusion with 3D latent space. (a) The latent
space representations before and after LieGAN transformations.
(b) LieGAN discovers the rotation symmetry around a particular
axis. (c) The discovered latent space with SINDy equation discov-
ery but without LieGAN.

Figure 3 shows the discovery results. The Lie algebra
representation displayed in figure 3b is skew-symmetric,
which indicates the symmetry of rotations around a particu-
lar axis. This can be easily confirmed from figure 3a, where
all the latent representations mapped from the original high-
dimensional inputs roughly dwell on a circular 2D subspace.
In contrast, the latent space learned without LieGAN ends
up with a more complicated structure, as shown in figure 3c.

The equation discovery results for this setting are listed
in table 2, where we also apply SINDy with up to second

order polynomials as candidate functions. The governing
equation has only first-order terms in the symmetric latent
space learned from LieGAN. On the other hand, applying
SINDy autoencoder alone results in a highly complicated
governing equation with second-order terms.

Model

Discovered equation
7;’1 = 0.4322 — 0.5323

LieGAN | 22 = — 0.51z1 + 0.6623
+SINDy

2':3 = 04721 — 05222
z1 = 0.6522 —0.1623 + 0.202’% + 0.1121 22
+0.292123 — 0.412223 — 0.1623
29 = —0.5721 +0.1829 — 0.242122 + 0.4621 23
SINDy

—0.1825 — 0.262223 + 0.2922

33 = 0.4521 — 0.5722 — 0.272% + 0.1823
— 0.19222’3

Table 2. Equation discovery on 3D latent space.
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Figure 4. Long-term simulation based on the discovered equations.
(a) Relative MSE losses at different timesteps. For LieGAN, the
prediction error increases slowly in latent space, but remains low in
input space. (b-c) Simulation trajectory in the latent space learned
with and without LieGAN.

One may argue that the simplicity of an equation is not
equivalent to its correctness or accuracy in terms of model-
ing. Indeed, there exist multiple feasible ways to encode the
input to a low-dimensional latent space. To verify the ac-
curacy of the discovered equations, we use these equations
to simulate the dynamics in the latent space. Concretely,
given the initial input frame z(, we obtain its latent repre-
sentation £y = ¢(x) and predict the future T timesteps
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by iteratively computing 2,41 = 2; + F(%;) - At, where
2 = F(z) denotes the discovered governing equation. We
then map the representations back to the input images by
&+ = @(2¢). Then, we calculate the relative mean square
error between the prediction and ground truth in both latent
space and input space, as is shown in figure 4a. For Lie-
GAN, the prediction error increases slowly in latent space,
but remains close to zero in input space. Figure 4b shows
that the simulated trajectory is approximately circular and
close to ground truth. On the other hand, if SINDy autoen-
coder is trained without LieGAN in this case, the simulated
trajectory quickly diverges from the true representations.

4. Conclusion & Future Work

In this work, we develop a method to discover nonlinear
symmetries from data by applying LieGAN (Yang et al.,
2023) on latent representations learned by an autoencoder.
We show that such generalization from linear symmetries to
nonlinear ones allows us to capture the intrinsic symmetry
in high-dimensional observations. Also, our method can
be jointly used with SINDy equation discovery to extract
governing equations with simpler forms and better long-
term prediction accuracy.

In the future, we will extend the experiment to other dynam-
ical systems to further demonstrate the ability of our method
to discover unknown symmetries. We also plan to study
how the knowledge of symmetry can be better incorporated
in the equation discovery process. For example, symmetry
can act as a constraint to compress the search space for
equations and accelerate the search. In general, our goal is
to provide a general framework for detecting arbitrary sym-
metries in data which can also be useful in miscellaneous
downstream tasks, such as data-driven prediction, discovery
of other scientific properties, etc.
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