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Abstract

We introduce OctoNet, a large-scale, multi-modal, multi-view human activity
dataset designed to advance human activity understanding and multi-modal learn-
ing. OctoNet comprises 12 heterogeneous modalities (including RGB, depth,
thermal cameras, infrared arrays, audio, millimeter-wave radar, Wi-Fi, IMU, and
more) recorded from 41 participants under multi-view sensor setups, yielding over
67.72M synchronized frames. The data encompass 62 daily activities spanning
structured routines, freestyle behaviors, human-environment interaction, healthcare
tasks, etc. All modalities are annotated by high-fidelity 3D pose labels captured
via a professional motion-capture system, allowing precise alignment and rich
supervision across sensors and views. OctoNet is one of the most comprehensive
datasets of its kind, enabling a wide range of learning tasks such as human activity
recognition, 3D pose estimation, multi-modal fusion, cross-modal supervision,
and sensor foundation models. Extensive experiments have been conducted to
demonstrate the sensing capacity using various baselines. OctoNet offers a unique
and unified testbed for developing and benchmarking generalizable, robust models
for human-centric sensing AI.

1 Introduction

Understanding human activity is fundamental for embodied AI, as it forms the foundation for
intelligent systems that can seamlessly interact with and navigate the physical world [56]. Accu-
rate modeling, perception, and interpretation of human behaviors are essential for developing AI
agents that collaborate with humans [63], assist in real-world tasks [44, 53], and adapt to practical
environments [10, 68].

Despite growing interest in human-centric AI, much of today’s embodied and perceptual AI is
dominated by vision-first paradigms [13, 32]. However, the physical world is far more sensor-rich
than a camera lens, with a rich spectrum of sensing signals available in real-world environments,
such as Radio Frequency (RF) (e.g., Wi-Fi, millimeter-wave radars, UWB), inertial measurement
units (IMUs), and thermal sensors. These non-visual modalities offer unique and complementary
information that is particularly critical in poor-lighting, occluded, and privacy-sensitive scenarios.
Despite their proven potential, learning across these diverse modalities remains largely underexplored.
This limitation is primarily compounded by the lack of large, unified benchmarks across diverse,
heterogeneous modalities, which fundamentally hinders progress in several key areas: 1) Multi-modal
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Figure 1: Overview of sensing modalities in OctoNet. The system integrates wearable sensors
(marked with ∗) and non-contact modalities spanning the frequency spectrum, unified through
high-fidelity 3D poses from a professional motion-capture system. These poses provide an explicit
representation to align and correlate multi-modal data streams.

fusion: most current efforts focus on vision-language models, leaving other sensing modalities
underutilized; 2) Cross-modal understanding: learning relationships across sensing types is often
infeasible without extensive, aligned data collection; 3) Sensing foundation models: Building
foundation models for non-visual sensors heavily relies on massive, diverse multi-modal datasets.
Moreover, the scarcity of such data also restricts exploration in areas like cross-modal data generation,
modality translation, and robust perception under varying environmental and sensory configurations.

To address these challenges, we introduce OctoNet, a large-scale, multi-modal dataset for human
activity understanding. OctoNet features 62 diverse activity classes, spanning both structured
tasks (e.g., falling down, dancing, drawing zigzag, programmed aerobics) and freestyle actions
(e.g., impromptu sports, random walk), performed by 41 participants. The data were captured
simultaneously using 12 heterogeneous sensing modalities (Figure 1), yielding over 67.72 million
synchronized frames. Additionally, OctoNet provides high-fidelity 3D skeletal pose annotations
obtained via an OptiTrack motion-capture system [45], offering precise ground truth for human
activities. By aligning a diverse range of signals, OctoNet supports a wide spectrum of research
tasks, including human activity recognition, 3D pose estimation, multi-modal fusion, cross-modal
alignment, and the development of foundation models for physical sensing. The key contributions
and features of OctoNet are listed as follows:

❶ Comprehensive perception modalities: As shown in Figure 1, to the best of our knowledge,
OctoNet is the first dataset that comprehensively covers 12 distinct data modalities encompassing a
wide spectrum of electromagnetic (e.g., RGB-D, ToF, thermal, infrared, mmWave, UWB, Wi-Fi) and
non-electromagnetic (e.g., acoustic, inertial, physiological) signals to record human activities.

❷ Precision poses as the label: Besides the activity labels, we integrate high-fidelity 3D poses
captured via a motion-capture system as additional labels for human activities. These pose labels
serve as fundamental and explicit common representations, offering deep insights into understanding
human activities and enhancing generalizability.

❸ Large-scale and diverse coverage: To the best of our knowledge, OctoNet represents the largest
human activity dataset to date for several modalities, including thermal, IRA, and ToF, and ranks
among the largest for others such as Wi-Fi and UWB/mmWave radars. This scale, combined with
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Table 1: Summary of existing single- and multi-modality datasets. OctoNet provides both action
labels and high-fidelity 3D whole-body keypoint (3DKP) annotations. #Frames: total frames across
all modalities; *: RGB-only datasets (no depth).

Dataset Modalities Annotations #Subj #Act #Seq #Frame
RGB-D ToF Thermal IRA mmWave UWB Wi-Fi Acoustic IMU HR MoCap 3DKP Action

CMU Panoptic [25] ✓ - - - - - - - - - - ✓ - 8 5 65 154M
NTU RGB+D [58] ✓ - - - - - - - - - - ✓ ✓ 40 60 56k 4M
Kinetics-700 [5] ✓* - - - - - - - - - - - ✓ - 700 650.3k -

KAIST-MP [19] ✓* - ✓ - - - - - - - - - - 1.18k - - 95.3k
PETS2017 [49] ✓* - ✓ - - - - - - - - - ✓ - 10 36 -
CAMEL [14] ✓* - ✓ - - - - - - - - - - - - 26 44.5k

RF-Pose3D [83] ✓* - - - ✓ - - - - - - ✓ ✓ >5 5 - -
mmMesh [77] ✓* - - - ✓ - - - - - - ✓ ✓ 20 8 - 3k
mmBody [6] ✓ - - - ✓ - - - - - ✓ ✓ ✓ 20 100 - 200k

Bocus UWB [3] ✓* - - - - ✓ - - - - - - ✓ 1 3 - 2.9M

Widar 3.0 [84] - - - - - - ✓ - - - - - ✓ 17 22 - 17.8k
WiPose [24] ✓* - - - - - ✓ - - - - ✓ ✓ 10 16 - 96k
GoPose [55] ✓* - - - - - ✓ - - - - ✓ ✓ 10 >9 - 676.2k

Ubicoustics [27] - - - - - - - ✓ - - - - ✓ 12 30 - -
SAMoSA [41] - - - - - - - ✓ ✓ - - - ✓ 20 26 1560 -

UTD-MHAD [7] ✓ - - - - - - - ✓ - - ✓ ✓ 8 27 861 -
USC-HAD [81] - - - - - - - - ✓ - - - ✓ 14 12 840 -

Total Capture [66] ✓* - - - - - - - ✓ - ✓ ✓ ✓ 5 4 60 1.9M
Stanford-ECM [42] ✓* - - - - - - - ✓ ✓ - - ✓ 10 24 113 -
Opportunity++ [9] ✓* - - - - ✓ - - ✓ - - - ✓ 4 43 24 -
mRI [2] ✓ - - - ✓ - - - ✓ - - ✓ ✓ 20 12 300 160k
OPERAnet [4] ✓ - - - - ✓ ✓ - - - - ✓ ✓ 6 6 61 -
MM-Fi [78] ✓ - - - ✓ - ✓ - - - - ✓ ✓ 40 27 1080 320.8k
XRF55 [70] ✓ - - - ✓ - ✓ - - - - - ✓ 39 55 42.9k -

OctoNet (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 41 62 8.76k 67.72M

its comprehensive modality coverage, enables a wide range of learning paradigms, from supervised
to self-supervised and cross-modal learning, and fosters the development of models that generalize
across subjects, activities, sensing conditions, and modalities.

2 Related work

Single modality datasets. Many existing datasets for human activity recognition are confined to
a single modality, including RGB-D [5, 22, 25, 58], thermal [14, 19, 49], acoustic [12, 15, 27, 71],
IMUs [7, 46, 81], and RF radars [3, 83, 84]. While each of these datasets demonstrates strengths
within its specific field, they are hampered by inherent limitations of the sensors used, such as privacy
concerns, occlusion issues, signal drifting, and constraints in spatial resolutions.

Multi-modality datasets. Recently, an increasing number of datasets have sought to integrate
multiple modalities to better understand human behaviors. These datasets often feature core modalities
such as RGB-D and IMU, while incorporating additional signals to enrich data representation. For
example, Total Capture [66] combines RGB-D and IMU data, Stanford-ECM [42] supplements
this with heart rate signals, and mRI [2] includes mmWave data. Some studies further incorporate
various RF modalities, such as MM-Fi [78], XRF55 [70], and OPERAnet [4]. As highlighted in Table
1, existing multi-modal datasets typically provide limited subsets of available sensing modalities.
Additionally, RF-based datasets [2, 9, 42, 66, 78] suffer from limited participants and limited sets of
meaningful activities. Moreover, reliance on RGB-D data for human pose estimation [2, 78] can be
susceptible to occlusions and inaccuracies.

To this end, we propose an extensive and highly integrated multi-modal dataset that encompasses a
full spectrum of sensing modalities. As detailed in Table 1, we aim to deliver an all-in-one solution
that comprehensively captures human activities. We also provide high-fidelity 3D poses as labels,
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Table 2: Modality-specific dataset statistics. The data dimension column indicates the shape of data
after preprocessing for our training pipeline. The raw data are provided in the released dataset. ✝: The
“×3” indicates three color channels (RGB). ❂: For FMCW, the first dimension represents the # points,
with 150 as the maximum number. ▲: We preprocess the acoustic data into Mel-Spectrograms.

Modality Total Frames Sampling Number of Data Dimension Storage
Rate (Hz) Nodes (per frame) Size (GB)

RGB-D 7.82M 29.95 3 480× 640 (×3)✝ 522.45
ToF 645.08k 7.32 1 8× 8× 18 6.03
Thermal 1.50M 8.80 2 240× 320 42.51
IRA 3.02M 6.91 5 24× 32 18.03
mmWave (FMCW)❂ 3.74M 8.81 5 150× 4 5.52
mmWave (SFCW) 280.28k 3.20 1 400× 100 167.16
UWB 1.49M 17.07 1 1× 1535 19.34
Wi-Fi 27.35M 75.62 4 2× 114 94.85
Acoustic▲ 5.39M 48000 2 1× 128 15.46
IMU 5.42M 60.01 17 13× 17 9.02
Heart Rate 90.10k 1.03 1 1 0.007
MoCap 10.97M 120 50 20× 3 82.04

enhancing generalization capabilities and enabling versatile approaches to human activity recognition
without reliance on predefined sets. Furthermore, we carefully select the human activities involving
body-motion, human-object interaction, human-computer interaction, human-human interactions and
medical conditions, which are tailored for broad real-world applications.

3 Data collection platform

3.1 Modality overview

Visual-related modalities. We adopt RGB-D cameras, time-of-flight sensors (ToF), thermal cam-
eras, and infrared array sensors (IRA). Specifically, we use three Intel RealSense D455C cameras [1]
that employ stereoscopic depth sensing to capture RGB and depth frames at an average frame rate
of 29.95 Hz. We deploy a Single Photon Avalanche Diode (SPAD) sensor (STMicroelectronics
VL53L8CH [61]) that measures distance by emitting modulated infrared pulses and timing their
returns [28]. For thermal imaging, two Seek Thermal S304SP Mosaic Core cameras [57] are equipped
with uncooled microbolometers to capture thermal images. We also employ five MLX90640 infrared
arrays [37] that convert captured infrared radiation into approximate temperature readings.

Radio-Frequency (RF) signals. We incorporate two types of millimeter-wave (mmWave) radars
with different modulation schemes, i.e., Frequency-Modulated Continuous Wave (FMCW) and
Stepped-Frequency Continuous Wave (SFCW). For FMCW, we utilize five Texas Instruments (TI)
IWR1843Boost mmWave radars [65] to capture three-dimensional point-cloud data. For SFCW,
we use a Vayyar IMAGEVK-74 radar [67] with a bandwidth of 4 GHz and 20 transmitter and 20
receiver antennas. A Novelda XeThru X4M200 Ultra-Wideband (UWB) radar [43] is also employed,
which has a bandwidth of 2.5 GHz and provides a maximum detection range of 9.9 m. Moreover, we
integrate Wi-Fi sensing for its best ubiquity. We use a Xiaomi AX6000 router [76] as the transmitter
and four Raspberry Pi Compute Module 4 devices (with Intel AX200 NICs) [20, 54] as receivers.
Packets are sent from the transmitter through one antenna to each of four receivers on channel 36
(5.18 GHz) with a bandwidth of 40 MHz. Each receiver monitors this channel separately using two
antennas, resulting in a total of 8 Wi-Fi links.

Others. We also capture acoustic, inertial, and physiological data. We employ a MiniDSP UMA-
8-SP USB microphone array [39] and a UMIK-2 microphone [40] to capture the acoustic events
in the environment. To enable active acoustic sensing [64, 69, 82], we also deploy a speaker that
emits sounds at inaudible frequencies [35] simultaneously. For inertial tracking, we include an Xsens
Awinda Research Kit [50], comprising 17 MTw Awinda wireless motion trackers. Besides, heart
rate data are collected using a Polar H10 heart rate sensor [51]. The sensor is worn as a chest strap,
ensuring reliable and consistent measurements throughout the data collection period.
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1 Table Example

Table 1: Modality allocation per sensing node (transposed).

Modality Node-X
1 2 3 4 5

RGB-D ↭ - ↭ - ↭
ToF - - - ↭ -
Thermal ↭ - ↭ - -
IRA ↭↭↭↭↭
FMCW ↭↭↭↭↭
SFCW - - ↭ - -
UWB ↭ - - - -
Microphone↭ - - ↭ -
Speaker - - - ↭ -
HR ↭ - - - -

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 2: Overview of our multi-modal data collection setup. (a) Top-down layout, node configuration,
and data collection scenes. (b) Representative raw data samples from different modalities. (c)
Synchronized multi-view captures illustrating concurrent data collection.

Motion-capture system (MoCap). We employ an OptiTrack motion-capture system [45] with 12
Primex 13 cameras. 50 markers are attached to the human body to reconstruct the human skeleton.
We summarize the detailed modality information in Table 2.

3.2 Node-wise modality deployment

As illustrated in Figure 2(a), the overall configuration consists of five customized nodes, with specific
available modalities provided in the corresponding table. Node-1 is positioned to face participants
directly and integrates the most modalities on a single mini-PC platform. The remaining nodes share a
similar hardware architecture but are equipped with different sets of modalities. Following the typical
data collection procedure for Wi-Fi sensing [84], we arrange four Wi-Fi receivers in a rectangular
configuration. Notably, one Wi-Fi receiver (receiver 4) is deliberately obstructed using a 3 cm-thick
wooden board, blocking its direct path to the Wi-Fi transmitter and creating a Non-Line-Of-Sight
(NLOS) condition. Furthermore, we attach three reflective markers to each node (labeled Node-1–5).
These markers are tracked by the motion-capture system to obtain the precise locations of the nodes.

3.3 Time synchronization

To ensure temporal alignment across all nodes and modalities during data collection, we utilize a
synchronization mechanism based on the Network Time Protocol (NTP). A master mini-PC serves
as the central NTP server, distributing a global timestamp reference for all nodes. Each modality
independently aligns its local time with this shared reference, ensuring temporal consistency across
data streams. However, constantly sending synchronization signals would strain the network resources
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and potentially introduce latency. To mitigate this, we implement a one-time broadcast of a reference
start timestamp from an NTP server.

4 Dataset construction

Subjects. We recruit 41 participants (22 males, 19 females), aged 19–70 years, with heights ranging
from 151 to 192 cm and weights from 41 to 99 kg. The cohort includes individuals of British,
Chinese, European, and Indian backgrounds, ensuring broad demographic representation in terms
of body types, movement patterns, and ethnicity. Before each session, participants read and sign
the consent form in accordance with the approved protocol. We inform them of the research goals,
data collection procedures, and any potential risks. Our team assists participants in attaching the
necessary markers. An on-site coordinator oversees the sessions, managing the start and end of
each experiment. We provide instructional slides if a participant is unfamiliar with a particular
activity. Participation is entirely voluntary. Each session lasts approximately 1 hour, and we provide
equivalent compensation of 12 USD, which exceeds the local minimum wage. This study is approved
by our university’s Institutional Review Board (IRB), and detailed IRB approval and user consent are
provided in Appendix A.

Multiple scenes. We conduct our data collection sessions in three different settings, as shown in
Figure 1(a), designed to reflect different real-world environments: an office (Scene 1), a laboratory
(Scene 2), and a living room (Scene 3). We deploy OptiTrack in each scene for motion capture.

Activity categories. We attentively curate the activity sets to select the most representative activities
encountered in daily life. We divide the activities into two main categories as follows.

62 Activities. After thoroughly investigating the existing datasets, we select the 62 most representative
activities. These activities are further grouped into five subcategories based on interaction contexts:
body-motion only [5, 7, 16, 21, 23, 26, 58–60, 70, 72, 73, 75], human-object interaction [16, 26, 27,
29, 58, 62, 70, 73], human-computer interaction [7, 30, 31, 36, 52, 58, 70, 72, 74, 79, 80, 84], human-
human interaction [5, 15, 16, 26, 52, 58, 70], and medical conditions [30, 38, 58]. This taxonomy
covers a broad range of human actions from prior work, enabling comprehensive evaluation across
daily activities, social interactions, human–device engagement, and healthcare scenarios. We also
ensure a balanced class distribution, with each class comprising 1.45–1.62% of the samples (average
1.61%, i.e., 1/62). Detailed activity definitions are provided in Appendix D.

Programmed aerobics and freestyle. To capture both structured and spontaneous movements, the
second category includes a standardized aerobics routine and freestyle activities. The programmed
aerobics sequence consists of synchronized, full-body movements in a five-minute session, providing
structured data for evaluating pose estimation across sequential actions. In the freestyle session,
participants perform three to five self-chosen movements, yielding diverse and unstructured data.
Together, these components support robust and generalizable modeling of complex human dynamics.

Annotation protocol. During each experimental session, participants repeat the 62 activities
continuously with specifically assigned activity labels. Furthermore, we adopt human pose as the
additional labels for human activities by leveraging the motion-capture system to obtain 3D Skeletal
KeyPoints (3DKP) as the ground truth. The rationale behind this is twofold. First, in addition to
activity classification, the dataset enables human pose estimation by providing precise pose ground
truth. Second, since pose provides a fundamental and interpretable representation of human motion,
learning from pose data could facilitate few-shot or zero-shot activity recognition without relying on
a predefined set of actions, thereby greatly enhancing generalizability for future studies.

5 Benchmark and evaluation

To demonstrate the practical utility of OctoNet, we establish baseline results on two key tasks: human
activity recognition (HAR) and 3D human pose estimation (HPE). We conduct experiments on
individual sensing modalities using standard network architectures from both the vision and sensor
domains. Our evaluations do not aim for optimized performance, but instead provide baselines to
demonstrate the dataset’s effectiveness and capacity. To further validate the dataset, we evaluate
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both multi-modal fusion methods and recent representative approaches for RGB, IMU, and acoustic
modalities on HAR. We detail our evaluation protocols, metrics, and models below, and summarize
the results in Tables 3, 4, 5, and 6. Further details are provided in the supplementary materials.

5.1 Evaluation protocols

Task setting. To balance the comprehensiveness and computational efficiency, HAR is evaluated
under two configurations: (1) a curated 10-class subset and (2) the full 62-class activity set. The 10
selected actions span locomotion, gestures, and interactions (i.e., sit, walk, bow, dance, fall down,
jump, draw zigzag, draw circle clockwise, kick someone, and push someone), providing a compact yet
diverse benchmark for modality comparison. The full 62-class setup introduces greater variability and
complexity, approximating real-world recognition scenarios. HPE, in contrast, focuses on fine-grained
spatial reconstruction by estimating 3D skeletal keypoints from the same inputs. Together, these two
tasks offer complementary views of human motion—semantic recognition and spatial reconstruction.

Test set setting. To comprehensively assess the robustness and generalization of the model, we
apply three test set settings across both HAR and HPE: (1) In-Domain (ID): Training and testing
are conducted on data from the same pool of users and scenes. Specifically, data from Scene 1 and
Scene 2 are used with a 7:1:2 split for training, validation, and testing. (2) Cross-Scene (CS): Models
trained in-domain are evaluated on Scene 3, which remains entirely unseen during training, to assess
robustness to environmental variations. (3) Cross-User (CU): Models are trained on a subset of users
and tested on unseen users from Scene 1, evaluating subject-level generalization. This unified setup
enables systematic assessment of how different sensing modalities perform under domain shifts, and
highlights key challenges in multi-modal robustness and adaptation.

5.2 Evaluation metrics

HAR. Following the HAR benchmarks [70], we use top-1 classification accuracy as the metric.

HPE. For HPE, we report the Mean Per Joint Position Error (MPJPE)—the average Euclidean
distance between predicted and ground-truth 3D joint coordinates. Ground-truth poses are captured
by the OptiTrack system, and evaluation is performed on 20 consistently annotated joints, with
MPJPE measured in millimeters across all settings.

5.3 Baseline methods

We evaluate HAR and HPE performance using four widely adopted architectures: ResNet [17],
DenseNet [18] and Swin-T [33], commonly used in visual tasks, and RFNet [11] tailored for RF
signals. All the above models are trained from scratch and adapted as necessary to modality-specific
input formats. We intentionally select common architectures rather than SOTA models specific to
each modality. This decision is motivated by two factors. First, several modalities, especially IRAs
and ToF sensors, are relatively underexplored, with no well-established models available. Second, we
aim to ensure a consistent and fair comparison across modalities by using architectures with flexible
input handling and minimal modality-specific engineering. This approach provides a unified and
interpretable baseline that future work can build upon. For multi-modal fusion, we employ the above
architectures as backbones and concatenate intermediate features for fusion. At the same time, we
benchmark our dataset on the recent representative approaches used for comparison, including Video
Swin [34] (RGB), CALANet [47] (IMU), and HTS-AT [8] (acoustic).

5.4 Results and analysis

Human activity recognition. Table 3 reports HAR accuracy across all sensing modalities, models,
and protocols for both the 10-class and 62-class settings. Vision-based modalities (RGB and Depth)
achieve high accuracy, especially in the 10-class task. RGB with Swin-T reaches 94.9% (10-class) and
93.1% (62-class), while Depth yields 86.3% (10-class) and 81.7%(62-class), confirming the strength
of visual information for activity recognition. IMU and UWB also perform strongly and consistently.
IMU achieves 98.3% on the 10-class and 95.7% on the full 62-class, directly capturing motion
with minimal environmental interference. UWB attains 98.3% (ResNet) in-domain accuracy and
remains robust under cross-scene and cross-user conditions, reflecting its strong sensing capability.
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ToF and Thermal perform competitively, with ToF (RFNet) reaching 89.3%/75.9% and Thermal
(DenseNet) 91.7%/85.4%. Both highlight the potential of privacy-preserving human sensing. In
contrast, IRA, Acoustic, and SFCW radar show lower performance—IRA (25.6%) suffers from
coarse resolution and garment-induced attenuation, while Acoustic and SFCW achieve 40–60% due
to noise and weak discriminative cues. Cross-domain evaluations (CU and CS) show consistent
performance drops, underscoring domain-shift challenges. In the 10-class setting, RGB falls from
94.9% to 37.0% (CU) and 12.1% (CS) with Swin-T, indicating reliance on scene-specific cues. IMU
generalizes better, retaining 82.9% and 47.5% in CU and CS. This suggests motion-coupled sensors
are less affected by environment than vision or thermal modalities. Overall, the results reveal a clear
modality hierarchy: visual and wearable sensors perform best, RF-based modalities show moderate
yet promising results, while low-resolution thermal and acoustic signals are weakest. The consistent
domain-shift degradation highlights OctoNet’s value as a benchmark for multi-modal robustness,
generalization, and fusion.

Comparisons of representative approaches. As shown in Table 4, we evaluate recent representative
approaches for three commonly used modalities. For RGB data, we implement Video-Swin [34],
a state-of-the-art vision transformer for video-based activity recognition, trained from scratch. It
achieves 93.2% accuracy on the 10-class subset and 91.3% on the full 62-class setting, confirming the
strong visual discriminability of our dataset. For IMU signals, we adopt CALANet [47], which attains
high in-domain performance of 94.9% and 85.1% on the two settings, respectively, highlighting the
reliability of wearable sensing for motion characterization. For acoustic data, we use HTS-AT [8],
pretrained on AudioSet [15]. While it reaches 80.0% accuracy in-domain, its performance drops
notably under cross-user and cross-scene conditions, similar to the other approaches.

Modality fusion. To evaluate the effectiveness of cross-modality fusion, we conduct experiments on
the 10-class subset using representative modality combinations. As shown in Table 5, fusion substan-
tially improves in-domain performance across all configurations, with accuracies approaching 99%.
The fusion of Thermal, IRA, and IMU achieves the highest robustness, maintaining 75.2% under
cross-user and 52.7% under cross-scene evaluations, demonstrating the complementary strengths of
low-cost thermal sensing and wearable motion data. In contrast, fusions involving visual modalities
(e.g., RGB, FMCW, Acoustic) perform well in-domain but degrade more sharply under domain shifts,
indicating stronger dependence on environmental consistency. These results highlight that integrating
heterogeneous sensing modalities, particularly those combining motion, temperature, and spatial
cues, can significantly enhance generalization and resilience to domain variation.

3D human pose estimation. Table 6 reports MPJPE results across sensing modalities and evaluation
protocols (ID, CU, and CS). Vision-based modalities (RGB and Depth) achieve the lowest errors
under in-domain conditions, with 133.3 mm and 131.4 mm MPJPE using ResNet, respectively.
However, their performance degrades sharply under domain shifts. RGB rises to 473.9 mm in
the cross-scene setting, reflecting strong dependence on background appearance and lighting. To
ensure fairness across all modalities, no preprocessing (e.g., person cropping) is applied to vision
inputs. This decision preserves comparability but causes vision models to overfit to domain-specific
context, limiting generalization. RF-based modalities (UWB, Wi-Fi, FMCW, and SFCW) exhibit
heterogeneous robustness. UWB attains competitive in-domain performance (142.4 mm MPJPE with
ResNet) and only moderate deterioration across domains. Wi-Fi shows a large domain gap (147.3
mm to 399.4 mm), reflecting pronounced sensitivity to multipath propagation and environmental
entanglement. FMCW and SFCW achieve reasonable accuracy under controlled conditions but
degrade under scene shifts, consistent with RF sensing’s environmental dependence. Thermal
sensing exhibits superior cross-scene generalization, with MPJPE rising from 142.8 mm to 308.8 mm
using ResNet, indicating reduced sensitivity to background and illumination compared with RGB
and Depth. IMU maintains stable performance across settings (147.9 mm → 252.9 mm → 289.7
mm), demonstrating the robustness of body-centric measurements. In contrast, IRA and acoustic
produce substantially higher errors (244.0–398.0 mm and 243.6–441.4 mm, respectively), reflecting
the difficulty for general-purpose models in extracting reliable spatial cues from low-resolution or
indirect signals. Overall, these results highlight distinct generalization behaviors among sensing
modalities: vision excels in-domain but is scene-dependent; RF and thermal modalities offer a trade-
off between precision and robustness; and egocentric sensors like IMU generalize best across users
and environments. Such observations underscore OctoNet’s value as a comprehensive benchmark for
studying domain shift and cross-modality robustness in 3D human pose estimation.
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Table 3: HAR accuracy (%) across modalities, models, and protocols. Results are shown for the
10-class subset (left) and full 62-class setting (right). “N/A” denotes model incompatibility. Accuracy
is given to one decimal with the standard error of the mean as x.x.

Modality Protocol Model
ResNet DenseNet Swin-T RFNet

RGB
ID 91.5±2.6 / 93.4±0.9 93.2±2.3 / 91.2±1.0 94.9±2.0 / 93.1±0.9 89.7±2.8 / 60.9±1.8
CU 46.0±3.4 / 12.3±0.9 68.2±3.2 / 24.7±1.2 37.0±3.3 / 7.7±0.7 45.0±3.4 / 9.2±0.8
CS 14.9±3.0 / 4.1±0.7 33.3±4.0 / 11.3±1.1 12.1±2.8 / 1.7±0.4 13.5±2.9 / 3.1±0.6

Depth
ID 89.7±2.8 / 86.6±1.2 90.6±2.7 / 83.2±1.3 86.3±3.2 / 81.7±1.4 87.2±3.1 / 40.0±1.8
CU 41.2±3.4 / 11.1±0.9 64.9±3.3 / 27.3±1.2 46.0±3.4 / 14.4±1.0 45.0±3.4 / 11.2±0.9
CS 17.7±3.2 / 3.9±0.7 22.7±3.5 / 12.2±1.1 23.4±3.6 / 4.3±0.7 28.4±3.8 / 4.8±0.7

ToF
ID 86.8±3.1 / 70.3±1.6 N/A 82.6±3.5 / 51.8±1.8 89.3±2.8 / 75.9±1.5
CU 44.5±3.4 / 11.8±0.9 N/A 46.4±3.4 / 15.3±1.0 78.7±2.8 / 28.3±1.2
CS 25.5±3.7 / 8.0±0.9 N/A 22.7±3.5 / 4.7±0.7 44.7±4.2 / 18.6±1.3

Thermal
ID 90.1±2.7 / 85.0±1.3 91.7±2.5 / 85.4±1.3 85.1±3.2 / 79.2±1.5 47.1±4.6 / 28.6±1.6
CU 50.2±3.5 / 25.7±1.2 64.5±3.4 / 32.5±1.3 46.8±3.5 / 15.6±1.0 15.3±2.5 / 1.0±0.3
CS 36.9±4.1 / 13.4±1.2 44.0±4.2 / 21.0±1.4 36.2±4.1 / 10.1±1.0 17.7±3.2 / 2.1±0.5

IRA
ID 25.6±4.0 / 1.8±0.5 N/A 14.0±3.2 / 3.7±0.7 19.0±3.6 / 4.2±0.7
CU 19.9±2.8 / 2.6±0.4 N/A 22.3±2.9 / 2.8±0.4 21.8±2.8 / 3.2±0.5
CS 18.4±3.3 / 0.8±0.3 N/A 20.6±3.4 / 3.8±0.6 21.3±3.5 / 2.7±0.6

FMCW
ID 39.3±4.5 / 24.0±1.6 74.4±4.1 / 46.3±1.8 36.8±4.5 / 5.0±0.8 38.5±4.5 / 12.6±1.2
CU 27.0±3.1 / 8.9±0.8 44.1±3.4 / 16.1±1.0 24.2±3.0 / 4.4±0.6 26.5±3.0 / 7.2±0.7
CS 26.0±4.3 / 5.3±1.0 14.4±3.5 / 7.5±1.2 14.4±3.5 / 3.6±0.8 26.0±4.3 / 4.3±0.9

SFCW
ID 30.6±4.2 / 9.0±1.0 59.5±4.5 / 13.0±1.2 26.4±4.0 / 0.9±0.3 28.1±4.1 / 5.1±0.8
CU 12.3±2.3 / 1.6±0.3 4.3±1.4 / 1.2±0.3 7.6±1.8 / 1.6±0.3 13.3±2.3 / 2.2±0.4
CS 11.3±2.7 / 2.5±0.5 15.6±3.1 / 1.5±0.4 7.8±2.3 / 1.6±0.4 17.0±3.2 / 1.5±0.4

UWB
ID 98.3±1.2 / 93.8±0.9 88.4±2.9 / 80.1±1.4 100.0±0.0 / 90.4±1.1 94.2±2.1 / 75.8±1.5
CU 62.6±3.3 / 21.5±1.1 59.7±3.4 / 27.4±1.2 17.1±2.6 / 2.7±0.4 64.5±3.3 / 13.5±0.9
CS 27.0±3.7 / 6.7±0.8 20.6±3.4 / 6.3±0.8 21.3±3.5 / 2.4±0.5 12.1±2.8 / 1.7±0.4

Wi-Fi
ID 93.3±2.3 / 91.1±1.0 90.8±2.6 / 91.0±1.0 91.7±2.5 / 92.3±1.0 81.7±3.5 / 60.5±1.8
CU 13.3±2.3 / 3.4±0.5 11.4±2.2 / 4.8±0.6 12.3±2.3 / 2.3±0.4 19.9±2.8 / 4.3±0.6
CS 19.1±3.3 / 2.4±0.5 11.3±2.7 / 1.9±0.5 13.5±2.9 / 2.8±0.6 11.3±2.7 / 1.1±0.4

Acoustic
ID 40.8±4.5 / 45.5±1.8 60.0±4.5 / 54.6±1.8 36.7±4.4 / 32.1±1.7 29.2±4.2 / 19.1±1.4
CU 37.0±3.3 / 19.9±1.1 42.7±3.4 / 16.4±1.0 27.5±3.1 / 8.4±0.8 20.4±2.8 / 7.1±0.7
CS 26.2±3.7 / 9.3±1.0 25.5±3.7 / 8.7±1.0 12.8±2.8 / 1.9±0.5 13.5±2.9 / 5.1±0.7

IMU
ID 96.6±1.7 / 96.5±0.7 97.4±1.5 / 95.7±0.7 98.3±1.2 / 95.7±0.7 94.0±2.2 / 35.8±1.8
CU 73.5±3.0 / 43.9±1.4 74.4±3.0 / 34.6±1.3 82.9±2.6 / 40.8±1.3 66.4±3.3 / 13.8±0.9
CS 62.4±4.1 / 43.1±1.7 62.4±4.1 / 31.5±1.6 47.5±4.2 / 34.4±1.6 54.6±4.2 / 12.4±1.1

Table 4: HAR accuracy (%) of representative models across modalities and protocols, with standard
error of the mean shown as x.x.

Modality Model In-Domain 10/62 Cross-User 10/62 Cross-Scene 10/62
RGB Video-Swin 93.2±2.3 / 91.3±1.0 26.5±3.0 / 5.1±0.6 11.3±2.7 / 2.1±0.5
IMU CALANet 94.9±2.0 / 85.1±1.3 44.5±3.4 / 17.8±1.0 31.9±3.9 / 22.3±1.4
Acoustic HTS-AT 80.0±3.7 / 63.7±1.7 48.3±3.4 / 25.1±1.2 35.5±4.0 / 22.1±1.4

6 Limitations and future work

OctoNet introduces a first-of-its-kind comprehensive and richly annotated multi-modal dataset. Yet
there are several limitations for improvement: First, to enable high-precision 3D pose tracking with
the OptiTrack system, participants were required to wear standardized garments, including a hat,
shirt, pants, and shoes that covered their regular clothing. While necessary for motion-capture system,
these garments attenuate the body’s natural thermal radiation, potentially reducing the accuracy of
readings captured by thermal cameras and infrared arrays. Furthermore, the uniform attire reduces
visual variability in the RGB modality, limiting diversity in appearance-based learning tasks. Second,
all data in OctoNet were collected in laboratory environments. While this ensures high data quality, it
may limit model generalization to real-world environments of varying conditions. Future extensions
will consider capturing in-the-wild activities in more variable, dynamic settings. Lastly, OctoNet
currently includes 12 diverse sensing modalities spanning a broad portion of the sensing spectrum, but
excludes a common modality, LiDAR, as it is uncommon to employ LiDAR for HAR applications.
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Table 5: HAR accuracy (%) of different modality fusion configurations on the 10-class subset.

Fused Modalities Model In-Domain Cross-User Cross-Scene

RGB, FMCW, Acoustic DenseNet 99.2 66.5 39.8
Depth, ToF, UWB, Wi-Fi ResNet 99.2 46.9 29.0
Thermal, IRA, IMU ResNet 99.9 75.2 52.7

Table 6: HPE results (MPJPE in millimeters; lower is better) across sensing modalities under
three protocols: In-Domain (ID), Cross-User (CU), and Cross-Scene (CS). “N/A” denotes model
incompatibility. Values are to one decimal with standard error of the mean as x.x.

Modality Protocol Model
ResNet DenseNet Swin-T RFNet

RGB
ID 133.3±4.4 147.2±5.1 269.6±6.2 162.8±4.6
CU 199.8±4.2 204.8±4.8 286.2±5.7 223.7±4.5
CS 473.9±5.0 524.6±4.3 273.0±7.0 331.8±6.5

Depth
ID 131.4±4.5 147.4±4.6 248.2±6.5 194.8±5.7
CU 197.1±4.6 212.5±4.6 256.2±5.8 230.7±5.3
CS 363.6±5.6 436.4±5.3 305.1±7.0 444.2±5.8

ToF
ID 152.5±5.2 N/A 252.1±6.0 162.2±5.0
CU 205.7±5.0 N/A 257.3±5.7 193.7±4.8
CS 361.2±5.4 N/A 303.9±7.0 363.7±4.8

Thermal
ID 142.8±4.7 147.0±4.9 259.9±5.9 254.3±6.1
CU 216.9±4.4 222.4±4.7 259.9±5.8 308.2±5.7
CS 308.8±5.9 325.4±5.3 313.3±6.8 403.4±7.0

IRA
ID 244.4±6.8 N/A 261.1±6.4 265.1±6.7
CU 373.3±5.8 N/A 261.1±5.9 299.1±5.8
CS 398.8±7.2 N/A 313.0±6.8 313.4±7.3

FMCW
ID 198.5±5.7 185.4±5.4 272.5±7.3 220.9±6.0
CU 244.0±4.9 236.8±4.7 263.0±6.0 272.0±5.1
CS 369.4±10.6 389.8±9.8 338.8±10.1 328.3±10.2

SFCW
ID 206.7±6.2 202.9±6.2 264.2±6.4 270.7±6.6
CU 314.6±5.4 334.4±5.4 259.1±5.9 408.1±23.4
CS 352.2±7.0 408.9±7.0 339.7±8.9 392.7±10.3

UWB
ID 142.4±4.8 158.0±5.2 260.5±6.1 159.5±5.0
CU 241.2±4.8 239.0±4.7 261.3±5.8 241.6±4.6
CS 310.0±6.5 327.6±6.6 312.5±6.8 295.8±6.8

Wi-Fi
ID 147.3±4.7 147.4±4.9 262.2±6.0 186.8±5.3
CU 270.4±5.6 267.8±5.8 256.3±5.8 274.2±5.6
CS 399.4±5.7 322.1±6.8 312.8±6.8 400.9±8.3

Acoustic
ID 258.8±6.9 256.8±6.7 271.2±6.7 243.6±6.8
CU 304.1±5.8 312.8±5.8 260.6±5.8 291.8±5.6
CS 367.2±6.8 441.4±6.9 312.0±6.8 323.3±7.2

IMU
ID 147.9±5.0 159.3±5.5 251.6±6.4 180.9±5.3
CU 252.9±4.9 274.3±5.0 259.9±5.9 266.3±5.0
CS 289.7±6.8 324.0±6.7 310.8±6.9 328.4±6.9

7 Conclusion

We introduce OctoNet, a new benchmark that brings together extensive multi-sensor data, precise
annotations, and diverse human activities to support next-generation models for embodied perception.
By releasing synchronized recordings across 12 sensing types grounded in high-fidelity 3D pose
labels, we aim to facilitate research on fusion, generalization, and cross-modal understanding. We
anticipate OctoNet will serve as a valuable asset for the community and lay the groundwork for future
progress in human-centric AI.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplementary material, but if

they appear in the supplementary material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplementary material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplementary
material?
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Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplementary material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplementary

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g.negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: In the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: See section 4.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplementary material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: See section 4 and the supplementary material.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: No large language model (LLM) was employed as a core, original, or non-
standard component in our research methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Ethics statement

All participants provide written informed consent and receive compensation higher than the minimum
hourly wage under local labor regulations. We obtained ethics approval from the Institutional Review
Board (EA240308). We remove all the personal identifiers and inform participants that de-identified
data will be made publicly available for research purposes. All collected data have been carefully
examined to ensure the absence of security or safety risks, and the dataset is hosted on HuggingFace
with privacy safeguards that preclude the collection of any additional personal information. Overall,
this study poses minimal foreseeable harm to participants, and we adhere to all relevant institutional
and ethics guidelines throughout data collection, processing, sharing, and publication.

B Dataset toolbox

To facilitate the use of the data, we convert the sensing data from various modalities into open,
widely used formats. We also provide a dataset toolbox in our public GitHub repository https:
//github.com/aiot-lab/OctoNet, which includes a PyTorch-compatible dataloader. Users may
download the data from the provided link and follow step-by-step instructions in the repository to
easily load and preprocess the dataset.

For the RGB data containing identifiable attributes, an anonymized version with explicit permission
from all participants is available upon request by completing an application form. Please refer to
the repository documentation for details on the application process and usage terms. Additionally,
a sample dataset, including RGB data with extra approval from the user for distribution, is directly
available for immediate exploration.

C Implementation

Our experiments are implemented in PyTorch [48] and trained on an Intel Xeon Gold 5418Y (2 GHz,
96 cores, 512 GB RAM) and eight NVIDIA GeForce RTX 4090 GPUs. We open-source both our
code and the datasets under the CC BY-NC 4.0 license for the benefit of the research community.

D Details on 62 activities

We include overall 62 most representative activities in the real world. They are further grouped into
five categories: body-motion only, human-object interaction, human-computer interaction, human-
human interaction and medical conditions, as illustrated in Table 7. Additionally, we provide the
visual illustration of the activities, as displayed in Figure 3.
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Table 7: The overview of 62 activities. They are colored by category: Body-Motion Only,
Human-Object Interaction, Human-Computer Interaction, Medical Conditions,

Human-Human Interaction
ID Activity Name ID Activity Name ID Activity Name
1 Sitting 2 Walking 3 Bowing
4 Sleeping 5 Dancing 6 Jogging
7 Falling Down 8 Jumping 9 Jumping Jack

10 Squatting 11 Lunging 12 Turning
13 Push-Up 14 Leg Raising 15 Air Drumming
16 Boxing 17 Shaking Head 18 Answering Phone
19 Eating 20 Drinking 21 Wiping Face
22 Picking Up 23 Jumping Rope 24 Mopping Floor
25 Brushing Hair 26 Bicep Curl 27 Playing Phone
28 Brushing Teeth 29 Typing 30 Thumbs-Up
31 Thumbs-Down 32 Making OK Sign 33 Making Victory Sign
34 Drawing Circle Clockwise 35 Drawing Circle Counterclockwise 36 Stop Sign
37 Pulling Hand In 38 Pushing Hand Away 39 Handwave
40 Sweeping 41 Clapping 42 Sliding
43 Drawing Zigzag 44 Dodging 45 Bowling
46 Lifting Up A Hand 47 Tapping 48 Spreading and Pinching
49 Drawing Triangle 50 Sneezing 51 Coughing
52 Staggering 53 Yawning 54 Blowing Nose
55 Stretching Oneself 56 Touching Face 57 Shaking Hands
58 Hugging 59 Pushing Someone 60 Kicking Someone
61 Punching Someone 62 Conversation

Sitting Walking Bowing Sleeping Dancing Jogging Falling Down Jumping Jumping Jack

Squatting Lunging Turning Push-Up Leg Raising Air Drumming Boxing Shaking Head Answering Phone

Eating Drinking Wiping Face Picking Up Jumping Rope Mopping Floor Brushing Hair Bicep Curl Playing Phone

Brushing Teeth Typing Thumbs-Up Thumbs-Down Making OK Sign Making Victory Sign Drawing Circle 
Clockwise

Drawing Circle 
Counterclockwise

Stop Sign

Pulling Hand In Pushing Hand 
Away

Handwave Sweeping Clapping Sliding Drawing Zigzag Dodging Bowling

Lifting Up A Hand Tapping Spreading and Pinching
(Spreading)

Spreading and Pinching
(Pinching)

Drawing Triangle Sneezing Coughing Staggering Yawning

Blowing Nose Stretching Oneself Touching Face Shaking Hands Hugging Pushing Someone
Kicking Someone Punching Someone Conversation

Kicking Someone Punching Someone Conversation

Figure 3: An illustration of the 62 distinct activities, which are further grouped into five subcategories
reflecting different interaction contexts. Note that we split spreading and pinching for visualization.
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