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ABSTRACT

Zero-shot text classification (ZSC) aims to assign labels without task-specific
annotation by exploiting the semantics of human-readable labels. In practice,
embedding-based ZSC often falls back on training a linear probe, reintroducing
annotation costs. We propose description-only supervision, a simple, compute-
efficient alternative that requires only a handful of natural-language descriptions
per label. We lightly finetune a base embedding model with a contrastive objective
that pulls each label verbalizer toward its associated descriptions while pushing it
away from others, using a multi-positive formulation to capture the many-to-one
label-description relation. Across four benchmarks (topic, sentiment, intent, emo-
tion) and ten encoders (22M-600M parameters), as few as five descriptions per
label yield consistent gains, improving macro-F1 by +0.10 on average over zero-
shot baselines. Compared to a few-shot SetFit baseline with 8 examples per class,
our method attains higher mean performance with substantially lower variance
across 20 runs, indicating improved stability in low-data regimes. The approach
preserves the dual-encoder advantage (pre-encodable labels/documents), avoids
labeled documents entirely, and adds minimal engineering overhead.

1 INTRODUCTION

Text classification remains a central task in Natural Language Processing (NLP), supporting a wide
range of applications such as sentiment analysis across domains, topic categorization of diverse
document types, and intent detection in dialogue systems (Maas et al., [2011; [Zhang et al.| [2015b;
Coucke et al., 2018} [Larson et al., 2019; |Sebastiani, 2002} Aggarwal & Zhai, 2012). Formally,
the objective is to assign one or more labels from a predefined set to each text sample using only
the information contained in the text itself. While progress in supervised learning has led to sub-
stantial improvements in classification accuracy, these approaches rely on large-scale, high-quality
annotated datasets. Constructing such datasets is often prohibitively expensive and time-consuming,
particularly in specialized domains where expert annotation is required (Settles}, 2012; Ratner et al.,
2017).

Zero-shot text classification (ZSC) has emerged as a compelling alternative, enabling models to
assign labels that were not observed during training ((Yin et al., |2019)). ZSC methods exploit
the semantic relationships between input texts and candidate labels, typically leveraging pretrained
language models that encode these relationships based on extensive pretraining over large corpora
((Brown et al.,|2020; [Liu et al., 2023))). A widely adopted approach is to prompt large language mod-
els (LLMs) with the input text and candidate label verbalizers, allowing the model to rank or score
each label. While effective, this strategy incurs considerable computational cost and latency, limit-
ing its practicality for large-scale or real-time applications ((Brown et al., |2020; Schick & Schiitze,
2021} Liu et al., [2023)).

Concurrently, text embedding models have seen substantial progress ((Reimers & Gurevychl 2019
Gao et al.,|2021; Muennighoff et al.|[2023)). These models map textual inputs to dense vector spaces,
positioning semantically similar texts close together. This structure enables efficient similarity-based
retrieval and, in principle, supports zero-shot classification by embedding both input texts and can-
didate label representations into a shared space and applying nearest-neighbor matching ((Reimers
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& Gurevych, 2019} |Gao et al., 2021} [Fei et al., 2022)). However, while such zero-shot approaches
are theoretically feasible, their performance in practice is often limited, especially on challenging
or fine-grained classification tasks. As a result, it is common to further adapt embedding models
for classification by training a linear probe or classifier head using labeled data ((Neelakantan et al.,
2022; [Enevoldsen et al.|, [2025}; (Chung et al., 2025)), thereby reintroducing the need for annotated
resources and undermining the zero-shot premise.

A parallel strand of research leverages external language and knowledge resources, including
dictionary-style definitions, encyclopedic entries such as Wikipedia, and lexical ontologies such
as WordNet, to provide semantic structure for zero-shot or “dataless” text classification. Early work
introduced lexical resources to enrich text representations and label semantics ((Miller, [1995), see
also (Scott & Matwin, 1998)), while Wikipedia-based methods mapped texts and labels into concept
spaces using explicit semantic representations ((Gabrilovich & Markovitch,[2007)) and later demon-
strated gains in downstream classification ((Wang et al.l [2009)). More generally, dataless classifi-
cation methods formalized how labels and documents can be compared via semantic proxies rather
than task-specific annotations ((Chang et al., |2008)), and subsequent approaches operationalized
label names and short natural-language descriptions as supervision signals for improved zero-shot
performance ((Gao et al.} 2023} |Chai et al., [2020; [Meng et al., 2020)).

Building on these insights, we introduce a description-only contrastive alignment framework specif-
ically designed for embedding models in the zero-shot setting. Our approach requires only a handful
of natural-language descriptions per label, each clarifying the types of documents a given label is
intended to capture. We employ a contrastive objective that explicitly pulls each label verbalizer to-
ward its associated descriptions, while pushing it away from unrelated descriptions. In this way, the
model learns to capture the many-to-one correspondence between labels and their natural-language
descriptions, fostering more robust and discriminative representations. Our formulation draws in-
spiration from foundational work in contrastive learning, such as DrLIM, InfoNCE, SimCLR, and
CLIP, but adapts these ideas to the alignment of textual label verbalizers with natural-language
descriptions ((Hadsell et al.l 2006} van den Oord et al., 2018}, |Chen et al., [2020a; Radford et al.,
2021b)).

2 RELATED WORK

Zero-shot and “‘dataless” text classification. Early research in dataless classification replaced
labeled data with semantic proxies such as label names, seed words, or external knowledge bases
(e.g., WordNet, Wikipedia), enabling documents and labels to be compared in a shared semantic
space (Miller; 1995 |Scott & Matwinl, [1998; |Gabrilovich & Markovitch, 2007; |Chang et al., |2008;
Wang et al., 2009). More recent methods frame ZSC as textual entailment between input texts and
label verbalizers, often leveraging pretrained language models to provide the entailment signal (Yin
et all 2019). Another line explores natural-language label descriptions (e.g., definitions or short
summaries) as supervision, showing improved robustness and transfer across domains (Chai et al.,
2020; Meng et al., 2020} |Gao et al., 2023)). Despite these advances, most approaches rely on cross-
encoder architectures, which require jointly encoding each document with every candidate label at
inference. This results in inference costs that scale linearly with the number of labels and prevents
caching of document embeddings, making such methods impractical for large label sets or real-time
deployment.

Few-shot learning. Few-shot methods fine-tune compact encoders on small labeled sets, bridging
the gap between zero-shot and fully supervised learning. SetFit exemplifies this paradigm: it trains
a sentence encoder contrastively, followed by a lightweight classifier head, achieving strong results
with limited supervision and modest compute (Tunstall et al., 2022). Parameter-efficient fine-tuning
(e.g., adapters, LoRA) further reduces trainable parameters (Houlsby et al., 2019; Hu et al., |2022)),
but these methods remain dependent on labeled examples, in contrast to purely description-driven
zero-shot approaches.

In-context learning with large models. Large language models (LLMs) can perform zero- or
few-shot classification via in-context learning (ICL), where label names and demonstration examples
are provided in the prompt (Dong et al.,[2024; [Luo et al.| 2024). While effective out of the box, ICL
has limitations: sensitivity to demonstration choice, prompt length constraints, and high inference
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costs. Comparisons show that fine-tuned encoders can be more stable and compute-efficient for
sustained deployment on targeted tasks (Mosbach et al., 2023)).

Embedding models for retrieval and ZSC. Recent embedding models trained with large-
scale contrastive or instruction-tuning objectives (e.g., SBERT, SimCSE, ES5, GTE, BGE, Embed-
dingGemma, Qwen3-Embedding) provide strong transfer across retrieval and classification bench-
marks (Reimers & Gurevych, |2019;|Gao et al., 2021; |Wang et al.| 2022; |Li et al., [2023} |Xiao et al.}
2023};|Google DeepMind & Google Researchl 2025} [Zhang et al., [ 2025)). These dual-encoder archi-
tectures allow independent encoding of documents and labels, enabling efficient nearest-neighbor
classification. However, their naive zero-shot performance often lags on fine-grained tasks, so the
typical remedy is to train a linear probe or lightweight classifier head on top of frozen embeddings,
which reintroduces the need for labeled data and departs from the zero-shot premise (Muennighoff]
et al.,[2023; Neelakantan et al., 2022).

Contrastive learning for label-description alignment. Contrastive learning objectives such as
InfoNCE (van den Oord et al., |2018), SimCLR (Chen et al., |2020a)), and CLIP (Radford et al.,
2021b) align paired views while separating negatives. Adapting this principle to text-only settings
allows label names or descriptions to be treated as natural-language supervision signals. Our work
follows this line: by aligning label verbalizers with small sets of curated descriptions, we encode
many-to-one label-description correspondences in the embedding space, without relying on labeled
documents.

3 CONTRASTIVE LABEL-EMBEDDING ALIGNMENT

The core idea of our approach is exemplified in Figure We start with a base text-embedding
model fp : text — R, pretrained on large-scale corpora with self-supervised objectives. Our
method requires only a small set of natural-language descriptions per label, which elucidate the
types of documents the label should encompass as a short paragraph. We then lightly finetune
the embedding model using a contrastive learning objective that aligns each label verbalizer with
its associated descriptions while repelling unrelated ones. Specifically, we combine InfoNCE over
descriptions and verbalizers with a multi-positive variant that captures the many-to-one relation
between labels and their descriptions.

More formally, let Y = {1,..., L} be the label set. For each y € ) we assume (i) a short verbalizer
vy (e.g., for y = Sports we have the verbalizer v, = “This news snippet is about sports.”), and (ii)

a small set of label descriptions D, = {d;}ﬁl. Table [3|in the appendix shows an example for
AGNews (Zhang et al.,2015a). The set of all descriptions and its size are

p=|Jp, D=> K,
yeY yeY
We use a single encoder fy with pooling map 77() and /5 normalization,
_m{fe(®))
I (fo (e

so cosine similarity equals the dot product. With temperature 7 > 0, the similarity between a
description d and verbalizer v is

e RY,

e(t)

d T
s(d,v) = eld) e(v) e(v).
T
Batch structure and anchors. A training batch forms the cross-product between all descriptions
D and all verbalizers {vy, ..., vy}, yielding the score matrix
S e RP*E, Sykg = s(d?f, vg).

We view descriptions as row-anchors: each row (a single d; ) should prefer its own label y over all
other labels. Dually, verbalizers are column-anchors: each column ¢ should gather probability mass

"We use the pooling native to the pretrained model, e.g., CLS-token, mean, or last-token pooling.
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from its positives {d/@}kKé 1 While discounting descriptions of other labels. This row/column duality
is important: rows enforce one-positive discrimination, while columns implement multi-positive
aggregation.

Rowwise InfoNCE. Each description dyk has a single positive for that row, namely v, and L — 1
negatives. The induced distribution over labels is

exp{S},
Pt
ijl eXp{Sykj}
The rowwise InfoNCE objective averages the cross-entropy against the correct label y:

K, L
Liows = % Z Z <logz eSvi — Syky). (D
j=1

yeY k=1

p(l]dy) =

Intuitively, equationpulls each di toward v, while pushing it away from v,,,.

Columnwise multi-positive InfoNCE. Each verbalizer vy has a set of positives D, = {d} kK:Z 1
all d; with y # /¢ are negatives. Define

K, K,
Ze=y Y exp{Syt, Z7 =) exp{Sfi}

yeY k=1 k=1
The columnwise objective maximizes the aggregated positive mass against the global normalizer:

1 L

Ecols = Z
=

(log Z, —log Z}). 2)
1

This multi-positive term optimizes the set-level probability of a label’s positives: strong descriptions
can compensate for weaker or idiosyncratic ones (log-sum-exp behaves as a smooth max), and its
gradient

k k
a‘Ccols7€ eSU eSM

oS}k Zy Vs
induces adaptive within-positive weighting proportional to St /Z ,T , down-weighting outliers while
emphasizing representative descriptions. Because the loss is computed per label and depends on
the ratio Z 2‘ /Zy, it is also stable to the raw number of descriptions per class. Collectively, these
properties pull each verbalizer toward the high-density region (“cloud”) of its own descriptions
while repelling it from other labels’ descriptions.

Final objective. We use a simple symmetric combination
L= % Erows + % £cols~ (3)

All off-diagonal pairs act as in-batch negatives, yielding an O(DL) softmax per batch. Unit-norm
embeddings constrain optimization to the hypersphere, and the temperature 7 controls the sharpness
of both row- and column-softmax distributions. We fix 7 = 0.07 following common practice in
contrastive learning (Gao et al., 2021} [Chen et al.,|2020b} [Radford et al., [2021a)).

Inference. Given a document z, we compute e(x) and score labels by similarity to verbalizers:

T

score(y | x) = e(x) ' e(vy), § = arg max score(y | x).
: L

Geometric intuition. The rowwise term contracts each description toward its own verbalizer and
expands margins to other labels. The columnwise term simultaneously moves each verbalizer toward
the barycenter of its descriptions while pushing it away from non-matching descriptions. Together
they produce a progressive alignment: initially scattered verbalizers and descriptions coalesce into
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tight, label-specific clusters with widened inter-label separation. Figure [T] illustrates this on AG-
News (Zhang et al., [2015a) with the canonical al1-MiniLM-L6-v2 model. In the left panel,
stars (verbalizers) sit off-center relative to the document clouds, and class regions partially overlap.
The middle panel depicts the learning forces: each description triangle d?f is pulled toward v, and

pushed away from other verbalizers; each v, is pulled toward the barycenter of {d;C }1. and repelled
from other labels’ descriptions. After optimization, the right panel shows verbalizers relocated near
the densest part of their label’s description cloud and larger inter-label margins. Although training
uses only verbalizers and descriptions, the shared encoder is updated, globally reshaping the fea-
ture space: documents with similar semantics align to their label’s “attractor direction,” reducing
within-class dispersion and increasing between-class separation. The 2-D UMAP view renders this
as tighter, better-separated clouds in the right panel.
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Figure 1: AGNews (Zhang et al., 2015a). Left: embeddings before finetuning (stars denote label
verbalizers). Middle: schematic of our training forces (triangles denote label descriptions). Right:
embeddings after finetuning.

3.1 HYPERPARAMETERS

Batching and training length. Because description sets are small, we treat one sweep over all
description-verbalizer pairs as an epoch and, when memory is constrained, use gradient accumula-
tion so a single optimizer update corresponds to one logical sweep. We cap the maximum iterations
liberally and apply early stopping on the training loss with patience = 10 and tolerance A = 10~°:
training halts if the loss fails to improve by at least A over 10 consecutive checks.

Learning rate and uniformity selection. Performance is sensitive to the learning rate (LR): too-
aggressive LRs can trigger representation collapse (especially mode collapse (Bardes et al., [2021))
in our small-data regime, while simply reducing the LR avoids hard collapse but can stall progress
and undercut alignment. We therefore adopt the view that contrastive learning balances alignment
and uniformity on the hypersphere (Wang & Isola, 2020). In our setup, alignment is enforced by the
supervision signal (descriptions <> verbalizers), so the key is to preserve uniformity so the embed-
ding space does not degenerate. Therefore, we select the LR using a label-free uniformity criterion
computed on an unlabeled pool X,, = {z;} from the target domain.

Let z; = e(x;) be £3-normalized embeddings and ¢ > 0 a scale parameter. Define

M
1
Euni(t) = log Ei¢j{6_tllzi_zﬂ‘3} ~ 1Og<M § e_tlz'hyL_Zjnng) , 4)
m=1

where (i, jm) are random distinct indices from X,. Lower values correspond to more uniform
(i.e., less collapsed) embeddings. To select the learning rate, we run short warmups at candidate
values and choose the one that minimizes L,;(t); following Wang & Isolal (2020), we fix ¢ = 2.
This criterion is label-free, computationally inexpensive, and in practice lower values correlate with
stronger downstream performance. Figure [3] in the appendix illustrates this correlation across a
range of models and datasets. As a fallback, reusing the base model’s pretraining LR provides a
safe, though non-optimized, choiceE| Figure illustrates AGNews document embeddings from

2This heuristic proved effective across many model-dataset combinations we tested.



Under review as a conference paper at ICLR 2026

all-MiniLM-L6-v2 at the LR chosen by this procedure; embeddings are reduced with PCA to R? and
projected onto the unit sphere S? via ég—normalizationE]

4 EXPERIMENTAL SETUP

We evaluate our method across a diverse set of text-classification tasks, including topic classifica-
tion (AGNews (Zhang et al., [2015a)), emotion recognition (EmotionDAIR (Saravia et al., 2018)),
sentiment analysis (RottenTomatoes (Pang & Lee, [2005)), and fine-grained intent detection (Bank-
ing77 (Casanueva et al., 2020)), for a total of four datasets. Table E] in the appendix provides the
source and further details for each dataset. For each dataset and each class, we write exactly 5 short
descriptions that characterize typical documents in that class. We do not tune these descriptions;
they are generic summaries intended to capture the label semantics, and we leave optimizing de-
scription quality to future work. Table [3|in the appendix shows an example for AGNews (Zhang
et al., 2015a). For Banking77 (Casanueva et al., [2020), we evaluate on six card-related intents to
probe fine-grained classification.

We experiment with ten pretrained text-embedding models spanning a range of architectures and
sizes (roughly 22M-600M parameters). Table[d]in the appendix summarizes the models used.

Training. We use the AdamW optimizer (Loshchilov & Hutter, [2019). We train for at most 1000
iterations with early stopping (patience = 10, tolerance A = 10~?), evaluating the stopping criterion
every 10 steps. We sweep learning rates over {1,3,5} x {1074,1075,107¢} and select the LR with
the best uniformity score (Eq. . The uniformity score is computed on a pool of 50,000 pairs (i, j)
sampled from the fest subset of the target-domain documents; these pairs are used when evaluating
Luni(t). For increased stability given the small training dataset, we apply a linear warmup of the
learning rate during the first 50% of training steps.

Evaluation. We report macro F; to accommodate both binary and multi-class datasets (Sokolova &
Lapalme, [2009).

5 RESULTS AND ANALYSIS

We begin with the overall effect of label alignment across all models and datasets. Averaging over
ten encoders and four benchmarks (Table E]) the method yields a consistent absolute macro-F1
improvement of +0.10. This result demonstrates that aligning label verbalizers with a compact
set of semantically rich descriptions provides a broadly applicable and reliable gain in zero-shot
transfer.

The magnitude of improvement, however, varies by dataset. The largest benefits are observed on
AGNews, where the mean increase reaches +0.13 (range +0.03 to +0.29). Substantial gains also
occur on Banking77 (mean +0.11, range +0.02 to +0.29) and EmotionDAIR (mean +0.09,
range +0.01 to 4-0.30). By contrast, RottenTomatoes records the smallest average improvement
(+0.06), but also the widest spread (from no gain up to +0.35), reflecting a strong dependence on
the underlying encoder’s initial quality.

Turning to dataset-specific winners, different models achieve the top post-finetuning performance.
On AGNews, Qwen3-Embedding-0.6B reaches 0.84, while on Banking77, GTE-base-en-vi1.5 at-
tains 0.96. For EmotionDAIR, Qwen3-Embedding-0.6B again leads at 0.58, and on RottenToma-
toes, GTE-large-en-v1.5 achieves 0.87. Considering macro-averaged F1 across tasks, BGE-large-
en-vl.5 and GTE-large-en-v1.5 tie at the top with 0.79, closely followed by GTE-base-en-vi.5,
E5-large-v2, and Qwen3-0.6B at 0.78.

The cost-benefit profile shows that both compact and larger encoders benefit, albeit in different
ways. Smaller models often realize the largest relative improvements: for example, all-MiniLM-
L6-v2 improves by 4+0.31 on average (0.38 — 0.69), including +0.36 on RottenTomatoes, while
embeddinggemma-300m gains +0.13 (0.61 — 0.74). At the same time, the strongest model in the
pool, Owen3-0.6B, records an average +0.09 and achieves best-in-class results on two datasets,

3We avoid UMAP because its locality-crowding parameters can arbitrarily distort interpoint distances, mak-
ing it unsuitable for objectively visualizing uniformity.
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underscoring that substantial gains are not limited to smaller encoders. In contrast, families such
as ES and GTE start from already high baselines (0.82-0.87 on RottenTomatoes), which naturally
constrains the headroom for further improvement and results in more modest deltas.

Examining family-level trends, the improvements are relatively stable. The ES models consistently
show average deltas between +0.05 and +0.07, BGE models between +0.07 and +0.08, and
GTE models between +0.04 and +0.06. Despite these modest increments, GTE remains among
the strongest performers after finetuning. Meanwhile, Gemma and Qwen models perform above
expectation given their parameter counts, with Qwen notably securing the top scores on AGNews
and EmotionDAIR.

The distribution of improvements also provides insight into dataset difficulty. EmotionDAIR
emerges as the most challenging benchmark: even the best finetuned model reaches only 0.58
macro-F1. This suggests that emotion recognition may require not only richer descriptions but also
multiple complementary ones per label, so that different linguistic manifestations of the same emo-
tion are adequately represented. In contrast, AGNews and Banking77 benefit most strongly from
description alignment, consistent with the fact that topical and intent-based semantics are well cap-
tured by concise definitions. On RottenTomatoes, the degree of improvement inversely correlates
with the encoder’s baseline quality: weaker models gain considerably, while stronger ones improve
only marginally.

Few-shot comparison. To contextualize our zero-shot description-only alignment, we compare
against SetFit (Tunstall et al., |2022), a widely used few-shot method for embedding models. SetFit
combines a contrastive pretraining stage with a lightweight classifier head. Following the original
setup, we train SetFit on EmotionDAIR with 8 samples per class and repeat the procedure 20 times
with different random draws of the training set. Our approach, by contrast, uses 5 descriptions per
class and generates 20 variations of the descriptions. Figure shows that our method achieves
a higher average macro-F1 and, more importantly, exhibits substantially smaller variance. While
SetFit can occasionally match or exceed our performance, it displays a long tail of poor outcomes,
reflecting its sensitivity to the specific few-shot samples selected.

In summary, description-only finetuning yields consistent performance gains across a diverse set of
encoders and tasks. The largest improvements occur on topic and intent classification datasets, while
emotion recognition remains comparatively difficult. The method is particularly attractive in low-
compute settings, where smaller models realize disproportionate benefits, yet even state-of-the-art
encoders record large positive gains.
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Model AGNews Banking77  EmotionDAIR  RottenTomatoes Avg
MiniLM

all-MiniLM-L6-v2 0.47 0.59 0.13 0.34 0.38
trained 0.76 (+0.29) 0.88 (+0.28)  0.43 (+0.30) 0.69 (+0.36) 0.69 (+0.31)
ES

e5-base-v2 0.76 0.80 0.45 0.84 0.71
trained 0.80 (+0.04) 0.94 (+0.14)  0.47 (+0.02) 0.83 (+0.00) 0.76 (+0.05)
eS-large-v2 0.77 0.79 0.43 0.85 0.71
trained 0.80 (+0.03) 0.94 (+0.15)  0.53 (+0.10) 0.85 (+0.00) 0.78 (+0.07)
BGE

bge-base-en-v1.5 0.63 0.86 0.42 0.82 0.68
trained 0.82 (+0.18) 0.95(+0.09)  0.46 (+0.04) 0.82 (+0.00) 0.76 (+0.08)
bge-large-en-v1.5 0.75 0.84 0.45 0.82 0.72
trained 0.81 (+0.06) 0.94 (+0.10)  0.55 (+0.10) 0.85 (+0.03) 0.79 (+0.07)
GTE

gte-base-en-v1.5 0.73 0.87 0.44 0.84 0.72
trained 0.83 (+0.10)  0.96 (+0.09)  0.50 (+0.06) 0.85 (+0.01) 0.78 (+0.06)
gte-modernbert-base 0.75 0.88 0.46 0.82 0.73
trained 0.81 (+0.06) 0.95(+0.07)  0.47 (+0.01) 0.85 (+0.03) 0.77 (+0.04)
gte-large-en-v1.5 0.72 0.93 0.40 0.87 0.73
trained 0.83 (+0.11) 0.95(+0.03)  0.51 (+0.10) 0.87 (+0.01) 0.79 (+0.06)
Qwen

Qwen3-Embedding-0.6B 0.64 0.89 0.48 0.76 0.69
trained 0.84 (+0.20) 091 (+0.02)  0.58 (+0.09) 0.81 (+0.04) 0.78 (+0.09)
Gemma

embeddinggemma-300m 0.53 0.81 0.50 0.59 0.61
trained 0.72 (+0.18) 0.93 (+0.12)  0.57 (+0.07) 0.73 (+0.14) 0.74 (+0.13)

Table 1: Main results by model family. Each model has a base row (zero-shot) and a trained row,
with F1 scores and improvements reported in percentage points. Best trained F1 per dataset is
bold. For each model, the largest improvement is underlined. Averages are macro-averages across
datasets; trained averages include the mean improvement in parentheses.
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Figure 2: (a) Performance comparison of our approach with SetFit (Tunstall et al.l 2022)) on the
EmotionDAIR dataset (Saravia et al.} 2018]), across 20 runs with different sampled training sets. (b)
Visualization of AGNews document embeddings after finetuning a11-MiniLM-1L6-v2, projected
onto the hypersphere using PCA; colors indicate class membership.
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6 CONCLUSION AND FUTURE WORK

We introduced description-only supervision for zero-shot text classification with embedding models,
a contrastive label-embedding alignment method that relies only on short, human-written descrip-
tions per label. By aligning label verbalizers with their descriptions via a multi-positive contrastive
objective, the approach yields consistent, architecture-agnostic improvements over naive zero-shot
use of embeddings, averaging +0.10 macro-F1 across ten encoders and four datasets. Compared
with a few-shot SetFit pipeline using 8§ labeled examples per class, our method attains higher av-
erage performance with markedly smaller variance across repeated runs, despite using no labeled
documents, making it well suited for settings with tight annotation and compute budgets.

Looking ahead, we see value in examining how performance scales with the number and diversity
of descriptions per class, providing clearer guidance on how much description-level supervision is
needed in practice. Another promising direction is to investigate the role of hyperspherical uni-
formity more deeply, both in its correlation with downstream performance and in ways it can be
integrated directly into the training objective. Extending the approach to multilingual settings of-
fers a natural testbed for evaluating generality and robustness across languages. Finally, tightening
the theoretical connection between uniformity, alignment dynamics, and generalization may yield
sharper insights into why description-only supervision is effective and how it can be further im-
proved.

REPRODUCIBILITY STATEMENT

We will release the full codebase under an MIT license, including preprocessing scripts, training
and evaluation routines, the uniformity-based learning-rate selection code, and all logging utilities
required to regenerate figures and tables. The label-description sets and the exact sampling protocol
used for the uniformity metric will be made publicly available. Fine-tuned checkpoints for all re-
ported models will be released in Hugging Face format, and we will document the exact pretrained
encoder revisions used.

All hyperparameters (optimizer, learning-rate grids, batch sizes, gradient accumulation, early-
stopping criteria) are specified in the main text at the point of use; the appendix provides additional
in-depth results. Experiments were run on NVIDIA A100 80 GB GPUs, with inference carried out
in bfloat1l6. We provide pinned package versions and configuration files to recreate the software
environment.

We do not fix random seeds during training. Instead, we verified empirically that the results and
conclusions are robust to stochasticity in initialization and sampling. We rely only on publicly
available datasets and pretrained encoders, which are properly cited. To our knowledge, there are no
legal or technical restrictions that would prevent exact reproduction of our results.
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A DATASETS OVERVIEW

Table [2] summarizes the datasets used in our experiments, including their domains, number of
classes, sources, and license terms. All datasets are publicly available via Hugging Face Dataset
For label verbalizers, we follow the setup of |[Laurer et al.|(2023).

Task Domain Dataset # Classes  Source License

Emotion Social media  EmotionDAIR 6 Saravia et al.|(2018) Research/education only
Intent Banking Banking77 fﬂ Casanueva et al.[(2020) CC BY 4.0

Sentiment  Movies RottenTomatoes 2 Pang & Lee (2005) CC01.0

Topic News AGNews 4 Zhang et al.[(2015a) Non-commercial

Table 2: Datasets used in the evaluation, covering emotion recognition, intent detection, sentiment
analysis, and topic classification.

B LABEL DESCRIPTIONS

Ynttps://huggingface.co/datasets
>For Banking77, we restrict evaluation to the six card-related intent classes for fine-grained classification.

14


https://huggingface.co/datasets

Under review as a conference paper at ICLR 2026

Category (verbalizer)

Descriptions

World News
Verbalizer: “This exam-
ple news text is about
world news.”

Coverage of international affairs and geopolitics: governments, elections,
diplomacy, conflicts, treaties, and sanctions. Stories focus on cross-border
events and their global implications rather than domestic business or sports
outcomes.

News about countries interacting on the world stage: summits, UN
resolutions, regional alliances, and humanitarian crises. Emphasis is on state
actors, policy decisions, and shifts in international relations.

Reporting on wars, ceasefires, peace talks, and military deployments across
regions. Articles highlight causes, stakeholders, civilian impact, and
reactions from other nations or international bodies.

Global society and policy issues such as migration, human rights, climate
diplomacy, and development aid. Pieces track how multiple countries
respond and coordinate.

International incidents and disasters (natural or man-made) where response,
accountability, and cross-national coordination are central. Focus remains on
worldwide context rather than local business ramifications.

Sports
Verbalizer: “This exam-
ple news text is about
sports.”

Results, previews, and analysis of professional or amateur competitions:
matches, tournaments, standings, and championships. Content centers on
performance, tactics, and outcomes on the field.

Athlete-focused updates including injuries, transfers, contracts, and
retirements. Stories emphasize team dynamics and competitive impact.
Coverage of leagues and events: scheduling, rule changes, drafts, and
officiating controversies. The angle is sporting governance and competitive
fairness.

Game recaps and statistical breakdowns highlighting key plays, records, and
milestones. The narrative ties individual performances to team results.
Profiles and human-interest features about coaches, players, and training
methods. Emphasis is on preparation, strategy, and competitive psychology.

Business

Verbalizer: “This exam-
ple news text is about
business news.”

Corporate news: earnings, revenue guidance, layoffs, executive changes, and
strategic shifts. Articles assess company performance and shareholder
impact.

Markets and finance coverage: stocks, bonds, commodities, currencies, and
macro sentiment. Focus is on price moves, drivers, and investor reactions.
Mergers, acquisitions, IPOs, and venture funding. Pieces explain valuations,
synergies, and regulatory hurdles.

Industry developments such as competition, supply chains, pricing, and
business models across sectors. Reporting connects firm-level actions to
market structure.

Policy and regulation affecting commerce: antitrust cases, trade policy, taxes,
and compliance. The lens is how rules shape corporate behavior and
profitability.

Science & Technology
Verbalizer: “This exam-
ple news text is about
science and technol-

Et)

ogy.

Scientific research findings across fields like biology, physics, medicine, and
climate science. Articles emphasize methods, evidence, and potential
applications or limitations.

Technology product and platform news: hardware, software, mobile, cloud,
and consumer gadgets. Coverage focuses on features, performance, and user
impact.

Al, data science, and computing breakthroughs including models, chips,
algorithms, and benchmarks. Stories discuss capabilities, risks, and
real-world use cases.

Space and astronomy updates: launches, missions, telescopes, and planetary
discoveries. Coverage highlights scientific goals and engineering challenges.
Cybersecurity and privacy incidents: vulnerabilities, breaches, hacks, and
defenses. Reporting centers on technical cause, affected users, and
mitigations.

Table 3: AGNews (Zhang et al.,[2015a) class verbalizer and class descriptions (5 per class).
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C MODELS OVERVIEW

Model Yr  Arch. Backbone FT / train data #P Pool Dim
all-MiniLM-L6-v2 2021 enc. MiniLM 1B paired sentences 227M  mean 384
e5-base-v2 2023 enc. ES (BERT) 270M synthetic contrastive 110M mean 768
e5-large-v2 2023 enc. E5 (BERT) same as above 335M mean 1024
bge-base-en-v1.5 2023 enc. BGE (RoB.) 1.5B pair data, contrastive 137M  CLS 768
bge-large-en-v1.5 2023 enc. BGE (RoB.) same as above 434M CLS 1024
gte-base-en-v1.5 2024 enc+ GTE MLM + contrastive pre-train 137M  CLS 768
gte-large-en-vl1.5 2024 enc+ GTE same as above 434M  CLS 1024
gte-modernbert-base 2024  enc. ModernBERT same as above 1499M CLS 768
embeddinggemma-300m 2025 enc. Gemma 3 (enc.) Multiling. corpus (320B tok), contrastive ~ 308M  mean 768"
Qwen3-Embedding-0.6B 2025 dec. Qwen3 synthetic multiling. contrastive 0.6B  last 1024

Table 4: Architectural and training overview of the 10 embedding models used. Columns list publi-
cation year (Yr), encoder/decoder architecture (Arch.), backbone, principal fine-tuning (FT) or pre-
training data, parameter count (#P), pooling strategy (Pool), and embedding dimensionality (Dim).
“For embeddinggemma—-300m, dimensionality 768 corresponds to Matryoshka Representation
Learning (MRL) with nested sizes 512/256/128, a training scheme enabling shorter embeddings.

D RELATIONSHIP BETWEEN UNIFORMITY AND MACRO-F1 ACROSS

LEARNING RATES
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Figure 3: Scatter plots of uniformity loss L,; against Macro-F1 performance across datasets. Rows
correspond to embedding models, while columns correspond to datasets. Each subplot shows indi-
vidual runs with a different learning rate (dots), an ordinary least squares regression line with 95%
confidence interval (shaded), and the Pearson correlation coefficient between L,,,; and Macro-F1.
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