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ABSTRACT

Zero-shot text classification (ZSC) seeks to assign texts to label spaces without
relying on task-specific labeled documents. Yet, practical deployments of em-
bedding models for classification often fall back on training task-specific classi-
fiers (e.g., linear probes on frozen embeddings) to recover task-specific perfor-
mance, reintroducing annotation costs and undermining the zero-shot setting. We
introduce contrastive label-embedding alignment, a simple, compute-efficient al-
ternative that uses only a handful of natural-language descriptions per label and
no labeled documents. We lightly fine-tune a base embedding model so that la-
bel verbalizers and their descriptions are aligned in a shared space: a symmet-
ric multi-positive contrastive objective pulls each verbalizer toward its associated
descriptions while pushing it away from others, capturing the many-to-one la-
bel-description relation. Across four benchmarks (topic, sentiment, intent, emo-
tion) and ten encoders (22M-600M parameters), as few as five descriptions per
label yield consistent gains, improving macro-F1 by +0.09 on average over zero-
shot baselines, corresponding to relative improvements of roughly 5-13% across
models. Compared to a few-shot SetFit baseline with 8 labeled examples per
class, our method attains higher mean performance with substantially lower vari-
ance across repeated runs, indicating improved stability in low-data regimes. The
method uses label descriptions as the sole supervision signal to learn a label-
specific embedding geometry for an off-the-shelf dual encoder via a symmetric
multi-positive contrastive objective, while retaining efficient pre-encodable dual-
encoder inference at test time.

1 INTRODUCTION

Text classification remains a central task in Natural Language Processing (NLP), supporting a wide
range of applications such as sentiment analysis across domains, topic categorization of diverse
document types, and intent detection in dialogue systems (Maas et al., |2011; Zhang et al.l [2015bj
Coucke et al., 2018; |[Larson et al.l 2019} [Sebastiani, 2002} |Aggarwal & Zhail [2012)). Formally,
the objective is to assign one or more labels from a predefined set to each text sample using only
the information contained in the text itself. While progress in supervised learning has led to sub-
stantial improvements in classification accuracy, these approaches rely on large-scale, high-quality
annotated datasets. Constructing such datasets is often prohibitively expensive and time-consuming,
particularly in specialized domains where expert annotation is required (Settles, 2012; Ratner et al.|
2017).

Zero-shot text classification (ZSC) has emerged as a compelling alternative, enabling models to as-
sign labels that were not observed during training (Yin et al.,|2019). ZSC methods exploit the seman-
tic relationships between input texts and candidate labels, typically leveraging pretrained language
models that encode these relationships based on extensive pretraining over large corpora (Brown
et al., |2020; [Liu et al. 2023). A widely adopted approach is to prompt large language models
(LLMs) with the input text and candidate label verbalizers, allowing the model to rank or score each
label. While effective, this strategy incurs considerable computational cost and latency, limiting its
practicality for large-scale or real-time applications (Brown et al., 2020; |Schick & Schiitze, 2021}
Liu et al., [2023)).
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Concurrently, text embedding models have seen substantial progress (Reimers & Gurevych, 2019
Gao et al.,[202 1} Muennighoff et al.,[2023)). These models map textual inputs to dense vector spaces,
positioning semantically similar texts close together. This structure enables efficient similarity-based
retrieval and, in principle, supports zero-shot classification by embedding both input texts and can-
didate label representations into a shared space and applying nearest-neighbor matching (Reimers
& Gurevych, 2019} |Gao et al., 2021} |Fei et al.l [2022). However, while such zero-shot approaches
are theoretically feasible, their performance in practice is often limited, especially on challenging
or fine-grained classification tasks. As a result, it is common to further adapt embedding models
for classification by training a linear probe or classifier head using labeled data (Neelakantan et al.
2022; [Enevoldsen et all 2025} |Chung et al., 2025)), thereby reintroducing the need for annotated
resources and undermining the zero-shot premise.

A parallel strand of research leverages external language and knowledge resources, including
dictionary-style definitions, encyclopedic entries such as Wikipedia, and lexical ontologies such
as WordNet, to provide semantic structure for zero-shot or “dataless” text classification. Early work
introduced lexical resources to enrich text representations and label semantics ((Miller, [1995), see
also (Scott & Matwin, [1998)), while Wikipedia-based methods mapped texts and labels into concept
spaces using explicit semantic representations (Gabrilovich & Markovitch, [2007) and later demon-
strated gains in downstream classification (Wang et alJ, [2009). More generally, dataless classifica-
tion methods formalized how labels and documents can be compared via semantic proxies rather
than task-specific annotations (Chang et al., 2008), and subsequent approaches operationalized la-
bel names and short natural-language descrlptlons as supervision signals for improved zero-shot
performance (Gao et al.| [2023; |Chai et al.,|2020; Meng et al.,|[2020).

Building on these insights, we propose ¢

contrastive  label-embedding  alignment, a seore Mat
description-based supervision framework tai- T, s ot
lored to dual-encoder text embedding models . L . i ooz A
in the zero-shot setting. Rather than relying on § - Cn,
labeled documents together with task-specific — "7™ I & i
classifier heads, which both require costly = |, e PAN
annotation and additional training, our method B

uses a small set of natural-language descriptions
per label as the sole supervision signal. We
embed both label verbalizers and descriptions
with a shared dual encoder and train it with a
symmetric multi-positive contrastive objective
that pulls each verbalizer toward its associated
descriptions while pushing it away from de-
scriptions of other labels, thereby inducing a
label-specific embedding geometry. At test time,

Figure 1: Contrastive label-embedding align-
ment. Label verbalizers (%) and their natural-
language descriptions (A) are encoded by a
shared text encoder fy, producing a similar-
ity matrix S € RP*L over all D descriptions

documents and label representations can be pre-
encoded once and compared via simple similarity
search, preserving the computational advantages
of dual-encoder inference while leveraging
description-based supervision to sharpen deci-
sion boundaries in the embedding space. Our
formulation is inspired by foundational work in
contrastive learning such as DrLIM, InfoNCE,
SimCLR, and CLIP, but adapts these ideas to
the alignment of textual label verbalizers with
natural-language descriptions (Hadsell et al.

and L verbalizers (green blocks indicate posi-
tive pairs). A rowwise InfoNCE loss pulls each
description toward its own verbalizer, while a
columnwise multi-positive loss aggregates each
verbalizer toward all its descriptions. In embed-
ding space S?~!, this yields tighter within-class
clusters and larger inter-class margins; gradients
V¢ L update only the encoder and require no la-
beled documents.

2006; lvan den Oord et al.,[2018; |Chen et al., 2020a; Radford et al., 2021b).

2 RELATED WORK

Zero-shot and ‘““dataless” text classification.

Early research in dataless classification replaced

labeled data with semantic proxies such as label names, seed words, or external knowledge bases
(e.g., WordNet, Wikipedia), enabling documents and labels to be compared in a shared semantic
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space (Miller; 1995 |Scott & Matwinl, [1998;; |Gabrilovich & Markovitch, 2007; |Chang et al., |2008;
Wang et al., 2009). More recent methods frame ZSC as textual entailment between input texts and
label verbalizers, often leveraging pretrained language models to provide the entailment signal (Yin
et all 2019). Another line explores natural-language label descriptions (e.g., definitions or short
summaries) as supervision, showing improved robustness and transfer across domains (Chai et al.,
2020; Meng et al., 2020} |Gao et al.l 2023)). Despite these advances, most approaches rely on cross-
encoder architectures, which require jointly encoding each document with every candidate label at
inference. This results in inference costs that scale linearly with the number of labels and prevents
caching of document embeddings, making such methods impractical for large label sets or real-time
deployment.

Few-shot learning. Few-shot methods fine-tune compact encoders on small labeled sets, bridging
the gap between zero-shot and fully supervised learning. SetFit exemplifies this paradigm in the
context of dual-encoder text embedding models: it first fine-tunes an embedding model contrastively
and then trains a lightweight classifier head on top of the resulting embeddings, achieving strong
results with limited supervision and modest compute (Tunstall et al., 2022). On the other hand,
parameter-efficient fine-tuning techniques (e.g., adapters, LoRA) reduce the compute cost of task-
specific training by limiting the number of updated parameters, but they do not alleviate the central
bottleneck of acquiring labeled examples (Houlsby et al.,|2019; Hu et al., [2022).

In-context learning with large models. Large language models (LLMs) can perform zero- or
few-shot classification via in-context learning (ICL), where label names and demonstration examples
are provided directly in the prompt (Dong et al., 2024; |Luo et al.l 2024). While often effective out
of the box, ICL comes with several challenges. Performance can be highly sensitive to the selection
and ordering of demonstrations, and although recent models support much larger context windows,
reliably exploiting long prompts remains difficult due to dilution and context “forgetting.” Moreover,
it is non-trivial to enforce consistently parseable, deterministic label outputs, which complicates
downstream use. Finally, inference is computationally expensive, as the model must process the
entire prompt together with each new example. In light of these issues, comparisons indicate that
fine-tuned encoders can offer more stable and compute-efficient behavior for sustained deployment
on targeted tasks (Mosbach et al., 2023).

Embedding models for classification and related tasks. Recent sentence and document em-
bedding models trained with large-scale contrastive or instruction-tuning objectives (e.g., SBERT,
SimCSE, ES, GTE, BGE, EmbeddingGemma, Qwen3-Embedding) provide strong transfer across
retrieval, semantic similarity, clustering, and text classification benchmarks (Reimers & Gurevych,
2019; |Gao et al., [2021; Wang et al., 2022; |Li et al., | 2023} (Xiao et al.| [2023; |Google DeepMind
& Google Research, 2025} [Zhang et al.l 2025). These dual-encoder architectures independently
encode inputs into a shared vector space, enabling efficient nearest-neighbor search and scalable
deployment. For classification, a common strategy is to train linear probes or lightweight classifier
heads on top of frozen embeddings (Neelakantan et al., [2022; Muennighoft et al.||2023; [Enevoldsen
et al.| 2025)), while retrieval and semantic similarity tasks are typically handled via direct similarity
scoring. In principle, the same machinery can support zero-shot classification by comparing doc-
ument embeddings to label representations, but naive instantiations often struggle on many tasks,
highlighting the need for better alignment between label semantics and the embedding space.

Contrastive learning. Contrastive learning objectives such as InfoNCE and SimCLR-style losses
encourage representations of semantically related views to be close in embedding space while sep-
arating unrelated examples, often using large batches or memory banks to provide in-batch nega-
tives (van den Oord et al.| [2018; (Chen et al 2020a). This paradigm has proved highly effective
for learning transferable representations across modalities. In vision-language settings, CLIP trains
dual encoders on large-scale image-text pairs, aligning the two modalities in a shared space and
enabling flexible retrieval of images from textual queries (and vice versa) via simple similarity com-
parisons (Radford et al) |2021b). In text-only settings, early work applied contrastive objectives
to augmented or paired text views (e.g., dropout-based augmentations, paraphrases, or neighboring
sentences), yielding sentence and document encoders with strong performance on semantic similar-
ity and related tasks (Reimers & Gurevych, |2019;|Gao et al., 2021)). Subsequent models scale this
recipe to much larger and more diverse corpora (e.g., ES, GTE, BGE), producing more “universal”
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embedding models that transfer well and can be easily adapted to a wide range of downstream tasks,
including retrieval, clustering, and classification benchmarks (Wang et al., 2022} |Li et al.| 2023;
X1ao et al., 2023). Our work adopts this contrastive dual-encoder perspective but tailors the objec-
tive to align label verbalizers with small sets of curated natural-language descriptions, shaping the
embedding space for zero-shot classification without relying on labeled documents.

3 CONTRASTIVE LABEL-EMBEDDING ALIGNMENT

At a high level, our goal is to reshape an off-the-shelf dual-encoder text embedding model so that
label verbalizers act as clean, well-positioned “representatives” of their labels in embedding space,
purely based on natural-language descriptions of what those labels mean. Figure [I] provides a vi-
sual summary. We start from a pretrained text encoder and assume access only to a small set of
descriptions per label, written as short paragraphs that spell out the intended meaning and scope of
each class. We then fine-tune the encoder with a contrastive objective that (i) pulls each descrip-
tion toward its correct label verbalizer and (ii) moves each verbalizer toward the dense region of its
own description cloud while repelling it from descriptions of other labels. Concretely, we construct
a description-verbalizer similarity matrix and optimize a combination of rowwise InfoNCE and a
columnwise multi-positive variant that captures the many-to-one relation between labels and their
descriptions.

Setup and notation. Let) = {1,..., L} denote the label set. For each y € ) we assume two
kinds of textual anchors:

* ashort verbalizer v, (e.g., for y = “Sports” we might use v,, = “This news snippet is about
sports.”), used at inference time to represent label y

* a small set of label descriptions D, = {dj}fgl, written as short paragraphs that clarify
the kinds of documents y should cover.

We denote the union of all descriptions and its size by
p=|Jp, D=> K,
yey yey
No labeled documents are used at training time; all supervision flows through these verbalizers and

descriptions.

Encoder and similarity scores. We use a single encoder fp with its native pooling map w()ﬂ
Given a text ¢ with S tokens, the encoder produces contextual token representations

fo(t) € R9X4,

These are pooled and ¢2-normalized to obtain a sentence embedding
__fe)

7 (fo ()],

so cosine similarity reduces to a dot product. With temperature 7 > 0, the similarity between a
description d and a verbalizer v is

e RY,

e(t)

e(d)Te(v
s(d,v) = M

We reuse the encoder architecture and pooling strategy from the base model and only update 6; no
additional layers or task-specific heads are introduced.

! Appendix [H|studies variants that (i) omit the verbalizer and use the label text directly, or (ii) replace it with
the mean embedding of the descriptions.
2We use the pooling native to the pretrained model, e.g., CLS-token, mean, or last-token pooling.
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Batch structure and anchors. Each training batch considers the cross-product between all de-
scriptions D and all verbalizers {vy, ..., vy}, forming the score matrix

DxL 2 k
S e RY*", Sy@:s(dy,vg).
It is helpful to view this matrix from two complementary perspectives:

* Row-anchors (descriptions). Each row corresponds to a single description d; and should
assign high probability to its correct label y while treating other labels ¢ # y as negatives.

* Column-anchors (verbalizers). Each column corresponds to verbalizer vy and should col-

lect probability mass from all of its positives {d}}ff:"‘ , While discounting descriptions of
other labels.

This row/column duality is central: rows enforce one-positive discrimination (each description
chooses a label), while columns implement multi-positive aggregation over a label’s description
set.

3.1 ROWWISE INFONCE: CLASSIFYING DESCRIPTIONS INTO LABELS

From the rowwise viewpoint, each description d: is a query that must identify its label y among all
L options. The induced distribution over labels is

exp{Sykg}
Sy exp{S}

The rowwise InfoNCE objective averages the cross-entropy against the correct label y:

K, L
Liows = % Z Z <logz eSvi — Sy}“y) (D
j=1

yeY k=1

p(l]dy) =

This is equivalent to a multiclass classifier over labels, where each description is a training example
and the verbalizers serve as the representative embeddings for each class. Intuitively, equation [I]
pulls each d; toward its own verbalizer v, while pushing it away from verbalizers v,,, tightening
the alignment between descriptions and their labels.

3.2 COLUMNWISE MULTI-POSITIVE INFONCE: AGGREGATING OVER DESCRIPTION SETS

The rowwise objective treats each description independently. However, a label is not defined by a
single canonical description, but by a set of complementary descriptions that cover different facets,
edge cases, or typical failure modes. The columnwise objective explicitly models this many-to-one
relation.

From the column perspective, each verbalizer v, has a set of positives D, = {dgk}kK:‘Z 1> and all
descriptions d; with y # ¢ are negatives. We define the global and positive-partition normalizers

Ky K,
Ze=Y > exp{Sy},  Zf =) exp{S4}).

y€Y k=1 k=1
The columnwise objective maximizes the aggregated positive mass relative to the global normalizer:

1 L

Ecols = Z
{=

(log Z, —log Z}). 2
1

This is a set-level multi-positive term: it optimizes the combined probability of a label’s positives
rather than treating them as independent single-positive examples.

The log-sum-exp structure has two important consequences:
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* Robustness to heterogeneous descriptions. Strong, representative descriptions contribute
more to Z,, while noisy or idiosyncratic descriptions contribute less. Formally, the gradi-
ent

accolsj eSZkZ eszkf

05k 4z}

induces adaptive within-positive weighting proportional to eSee /Z,;}, automatically down-
weighting outliers and emphasizing representative descriptionsE]

* Stability w.r.t. description count. Because the objective depends on the ratio Z j /Ze
and is normalized per label, it remains stable even when labels have different numbers of
descriptions K g

Geometrically, equation [2] pulls each v, toward the high-density region (“cloud”) formed by its
descriptions while repelling it from the description clouds of other labels.

3.3 FINAL OBJECTIVE AND CONNECTION TO STANDARD INFONCE

Our training loss is a simple symmetric combination of the rowwise and columnwise terms:
1 1
L= bl £rows + 2 ‘Ccols- (3)

This symmetry encourages consistency in both directions: descriptions should clearly identify their
label (rows), and each label should be well-explained by its description set (columns)E]

In standard InfoNCE-style contrastive learning with paired batches, one forms a square similarity
matrix whose diagonal entries are the unique positive pairs, and all off-diagonal entries act as in-
batch negatives. In our setting, the score matrix S € RP”*Z is rectangular, and positives are defined
by label consistency rather than by the matrix diagonal: any cell (d?f7 vg) with y = £ is a positive,
while all cells with y # ¢ serve as in-batch negatives, yielding an O(DL) softmax per batch. Unit-
norm embeddings constrain optimization to the hypersphere, and the temperature 7 controls the
sharpness of the row- and column-softmax distributions. Following common practice in contrastive
learning, we fix 7 = 0.07 (Gao et al.,[2021} |Chen et al., |2020b; Radford et al., 2021a).

3.4 INFERENCE AS DUAL-ENCODER CLASSIFICATION

At test time, we use the encoder as a standard dual encoder for classification. Given a document z,
we compute its embedding e(x) and score labels by similarity to the verbalizers:

score(y | ) = e(z) "e(v,), J = arg max score(y | x).
ye

Because both documents and verbalizers can be pre-encoded and stored, classification reduces to a
nearest-neighbor search over label representations. This preserves the computational advantages of
dual-encoder inference by allowing labels to be reused across large corpora.

3.5 GEOMETRIC INTUITION

The combined effect of £, ows and Lo}5 is easiest to understand in geometric terms. Initially, verbal-
izers and descriptions may be scattered: verbalizers can sit off-center relative to the document clouds
of their labels, and class regions may partially overlap. The rowwise term contracts each description
toward its own verbalizer and expands margins to other labels, encouraging a clear mapping from
descriptions to the label-specific reference representations. The columnwise term simultaneously
moves each verbalizer toward the barycenter of its description cloud while pushing it away from
descriptions of other labels, ensuring that verbalizers end up in high-density regions of the correct
class.

Figure [2illustrates this process on AGNews (Zhang et al.l 2015a)) using the a11-MiniIM-L6-v2
model. In the left panel, verbalizers (%) sit off-center relative to the document clouds, and class

3 Appendix [E| provides an analysis of the impact of noisy descriptions.
* Appendix [F highlights this stability empirically.
> Appendix |D| provides an empirical analysis of the loss components.
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regions partially overlap. The middle panel depicts the learning forces: each description d; (A)is
pulled toward v,, and pushed away from other verbalizers; each v, is pulled toward the barycenter
of {aly’“};C and repelled from descriptions of other labels. After optimization, the right panel shows
verbalizers relocated near the densest part of their label’s description cloud and larger inter-label
margins.

Fundamentally, although training uses only verbalizers and descriptions, the shared encoder is up-
dated and the feature space is globally reshaped. Documents with similar semantics are steered
toward their label’s “attractor direction,” reducing within-class dispersion and increasing between-
class separation. In the 2-D UMAP view, this manifests as tighter, better-separated clouds in the
right panel; in the full embedding space, it translates into more robust nearest-neighbor classifica-
tion based on label verbalizers.

UMAP-2

-3 2 -1 0 2 3 i -3 2 -1 0 1 2
UMAP-1 UMAP-1

1
UMAP-1

Figure 2: AGNews (Zhang et al.,|2015a). Left: embeddings before finetuning (stars denote label
verbalizers). Middle: schematic of our training forces (triangles denote label descriptions). Right:
embeddings after finetuning.

3.6 HYPERPARAMETERS

Batching and training length. Because description sets are small, we treat one sweep over all
description-verbalizer pairs as an epoch. When memory is constrained, we use gradient accumu-
lation so that a single optimizer update corresponds to one logical sweep. We cap the maximum
iterations liberally and apply early stopping on the training loss itself, a criterion that does not re-
quire labeled validation data.

Learning rate and uniformity selection. Performance is sensitive to the learning rate (LR).
Overly aggressive LRs can trigger representation collapse (especially mode collapse (Bardes et al.,
2021)) in our small-data regime, whereas simply reducing the LR avoids hard collapse but can stall
progress and undercut alignment. We follow the view that contrastive learning balances alignment
and uniformity on the hypersphere (Wang & Isolal 2020). In our setup, alignment is enforced by
the supervision signal (descriptions <+ verbalizers), so the main concern is to preserve uniformity so
that the embedding space does not degenerate.

We therefore select the LR using a label-free uniformity criterion computed on an unlabeled pool
Xy = {x;} from the target domain. Let z; = e(x;) be £2-normalized embeddings and ¢ > 0 a scale
parameter. Define

M
1
Lun(t) = log By 1 1E ] o log<M E:e‘t'“’”_z“”'g>7 o)
m=1

where (i, jm ) are random distinct indices from X,,. Lower values correspond to more uniform (i.e.,
less collapsed) embeddings. To select the LR, we run short warmups at candidate values and choose
the one that minimizes Ly;i(t); following [Wang & Isola (2020), we fix ¢ = 2. This criterion is
label-free, computationally inexpensive, and in practice lower values correlate with stronger down-
stream performance. Figure[§]in Appendix [J]illustrates this correlation across a range of models and
datasets, with additional details provided in the appendix.
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As a fallback, reusing the base model’s pretraining LR provides a safe, though non-optimized,
choice Y| Figure illustrates AGNews document embeddings from all-MiniLM-L6-v2 at the LR
chosen by this procedure; embeddings are reduced with PCA to R?® and projected onto the unit
sphere S? via £5-normalization]]

4 EXPERIMENTAL SETUP

We evaluate on four text-classification benchmarks: topic (AGNews (Zhang et al.,[2015a)), emotion
(EmotionDAIR (Saravia et al., 2018))), sentiment (RottenTomatoes (Pang & Lee} |2005)), and fine-
grained intent (Banking77 (Casanueva et al., 2020)). For each dataset and class, we write exactly
5 short descriptions that characterize typical documents; examples and ablations on the number
of descriptions are given in Appendices [A] and [B] For Banking77, we report main results on six
card-related intents to probe fine-grained distinctions and extend the analysis to the full label space,
precision, and recall in Appendix

We test our method on ten pretrained dual-encoder text embedding models spanning a range of
architectures and sizes (roughly 22M—600M parameters); Appendix [C|summarizes all models.

Training. We use AdamW (Loshchilov & Hutter, 2019)), training for at most 1000 iterations with
early stopping (patience = 10, tolerance A = 10~°), evaluated every 10 steps. Learning rates are
sweptover {1,3,5} x {107%,107°, 10~%} and selected using the uniformity score in Eq. equation
computed on 50,000 document pairs from the test subset of the target domain. To improve stability
in our small-data regime, we use linear warmup during the first 50% of training steps.

Evaluation. To ensure comparability across tasks with different label cardinalities and class bal-
ances, we use macro F; as our primary metric, which gives equal weight to every class and is
appropriate for both balanced and imbalanced multi-class settings (Sokolova & Lapalmel [2009).

Model AGNews Banking77 EmotionDAIR RottenTomatoes Avg
all-MiniLM-L6-v2 0.67 0.66 0.35 0.66 0.58
trained 0.79 (+0.12)  0.90 (+0.23)  0.43 (+0.09) 0.70 (+0.04) 0.70
e5-base-v2 0.75 0.79 0.44 0.83 0.70
trained 0.81 (+0.05) 0.96 (+0.17)  0.48 (+0.05) 0.82 (0.00) 0.77
e5-large-v2 0.78 0.79 0.44 0.85 0.72
trained 0.82 (+0.03) 0.96 (+0.17)  0.53 (+0.09) 0.86 (+0.00) 0.79
bge-base-en-v1.5 0.63 0.86 0.42 0.81 0.68
trained 0.82 (+0.19) 0.95 (+0.09)  0.47 (+0.06) 0.82 (+0.01) 0.77
bge-large-en-v1.5 0.75 0.84 0.44 0.82 0.71
trained 0.82 (+0.07) 0.95(+0.10)  0.56 (+0.12) 0.85 (+0.03) 0.80
gte-base-en-v1.5 0.73 0.86 0.44 0.84 0.72
trained 0.83 (+0.09) 0.95 (+0.08)  0.49 (+0.06) 0.85 (+0.01) 0.78
gte-modernbert-base 0.75 0.88 0.45 0.82 0.73
trained 0.80 (+0.05) 0.94 (+0.06)  0.49 (+0.04) 0.84 (+0.03) 0.77
gte-large-en-v1.5 0.72 0.92 0.40 0.87 0.73
trained 0.83 (+0.11) 0.95(+0.03)  0.50 (+0.10) 0.83 (-0.04) 0.78
Qwen3-Embedding-0.6B 0.63 0.88 0.48 0.76 0.69
trained 0.85 (+0.22) 0.92 (+0.03)  0.57 (+0.08) 0.88 (+0.12) 0.80
embeddinggemma-300m 0.53 0.80 0.49 0.64 0.61
trained 0.74 (+0.21) 0.94 (+0.14)  0.57 (+0.09) 0.73 (+0.09) 0.74

Table 1: Main results by model family. Each model has a base row (zero-shot) and a trained row,
with F1 scores and improvements reported in percentage points. Best trained F1 per dataset is
bold. For each model, the largest improvement is underlined. Averages are macro-averages across
datasets; trained averages include the mean improvement in parentheses.

SThis heuristic proved effective across many model-dataset combinations we tested.
"We avoid UMAP because its locality-crowding parameters can arbitrarily distort interpoint distances, mak-
ing it unsuitable for objectively visualizing uniformity.
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5 RESULTS AND ANALYSIS

We begin with the overall effect of label alignment across all models and datasets. Averaging over
ten encoders and four benchmarks (Table [I)), description-only training improves macro-F; from
roughly 0.68 to 0.77, i.e. by about +0.09 absolute. This confirms that aligning label verbalizers
with a compact set of semantically rich descriptions yields a consistent and robust gain in true zero-
shot transfer.

The magnitude of improvement varies by dataset. On AGNews, the mean increase is about +0.12
(range ~ +0.04 to +0.22), with particularly large jumps for smaller or less specialized encoders:
for example, bge-base-en-vi.5 improves from 0.63 to 0.82, and embeddinggemma-300m from 0.53
to 0.74. Banking77 shows a similarly strong average gain of about +0.11, with several models
registering double-digit improvements (e.g., all-MiniLM-L6-v2 from 0.66 to 0.90, e5-base-v2 and
e5-large-v2 from 0.79 to 0.96, and embeddinggemma-300m from 0.80 to 0.94). For EmotionDAIR,
the mean improvement is more modest, around +0.07 (typical range +0.04 to +0.12), while Rot-
tenTomatoes exhibits the smallest average gain (about +0.03), with changes spanning from slightly
negative to +0.12 depending on the encoder. This pattern suggests that topical and intent-based tasks
benefit most from description alignment, whereas emotion recognition and binary sentiment offer
less headroom, especially for already strong baselines.

Turning to dataset-specific winners, different models achieve the top post-training performance. On
AGNews, OQwen3-Embedding-0.6B reaches 0.85, reflecting one of the largest single improvements
in the table (+0.22). On Banking77, e5-large-v2 attains 0.96 (tied with e5-base-v2), matching the
best scores on this benchmark. For EmotionDAIR, embeddinggemma-300m achieves the highest
reported macro-F; at 0.57, and on RottenTomatoes, Qwen3-Embedding-0.6B again leads with
0.88. Considering macro-averaged F; across all four datasets, Qwen3-Embedding-0.6B and bge-
large-en-v1.5 reach the highest overall performance at 0.80, closely followed by e5-large-v2 at
0.79 and gte-base-en-v1.5 and gte-large-en-v1.5 around 0.78.

The cost-benefit profile shows that both compact and larger encoders profit, but in different regimes.
Smaller models often realize the largest relative improvements: all-MiniLM-L6-v2 gains about
+0.12 on average (from 0.58 to 0.70), including a jump from 0.66 to 0.90 on Banking77, while
embeddinggemma-300m improves by roughly +0.13 on average (0.61 — 0.74), with strong gains
on AGNews and Banking77. At the same time, the strongest models in the pool also benefit. Qwen3-
Embedding-0.6B records an average improvement of about +0.12 and achieves the best or tied-best
scores on two datasets, underlining that substantial gains are not limited to weaker encoders. Con-
versely, families such as ES and GTE start from already high baselines, particularly on RottenToma-
toes (0.82-0.87 before training), which naturally constrains the headroom for further improvement
and leads to more modest deltas.

Family-level trends are relatively stable. The ES models show average gains between roughly +0.06
and +0.08, BGE models between +0.08 and +0.09, and GTE models between +0.04 and +0.06.
Despite these modest increments, the GTE and BGE families remain among the strongest perform-
ers in absolute terms after description-tuning. Meanwhile, Gemma and Qwen perform above ex-
pectations given their parameter counts: embeddinggemma-300m becomes highly competitive after
tuning, and Qwen3-Embedding-0.6B reaches the top average score and leads on AGNews and Rot-
tenTomatoes.

The distribution of improvements also sheds light on dataset difficulty. EmotionDAIR stands out
as the most challenging benchmark: even the best fine-tuned model reaches only 0.57 macro-Fy,
well below the post-training levels on AGNews, Banking77, and RottenTomatoes. This suggests
that emotion recognition may require not only richer descriptions but also a larger and more diverse
description set per label to adequately capture subtle and context-dependent emotional cues. In con-
trast, AGNews and Banking77 benefit most strongly from description alignment, consistent with
the intuition that topical and intent semantics are well captured by concise, high-quality definitions.
On RottenTomatoes, the degree of improvement is inversely related to the encoder’s baseline qual-
ity: weaker models (e.g., MiniLM, Gemma, Qwen) gain noticeably, while the strongest encoders
improve only marginally and sometimes not at all.

Few-shot comparison. To contextualize our zero-shot description-only alignment, we compare
against SetFit (Tunstall et al., [2022)), a widely used few-shot method for embedding models. SetFit
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combines a contrastive pretraining stage with a lightweight classifier head. Following the original
setup, we train SetFit on EmotionDAIR with 8 samples per class and repeat the procedure 20 times
with different random draws of the training set. Our approach, by contrast, uses 5 descriptions per
class and generates 20 variations of the descriptions. Figure shows that our method achieves
a higher average macro-F1 and, more importantly, exhibits substantially smaller variance. While
SetFit can occasionally match or exceed our performance, it displays a long tail of poor outcomes,
reflecting its sensitivity to the specific few-shot samples selected.

In summary, description-only finetuning yields consistent performance gains across a diverse set
of encoders and tasks. The largest improvements occur on topic and intent classification, while
emotion recognition remains comparatively difficult. The method is particularly appealing in low-
compute settings, where smaller models realize disproportionate benefits, yet even strong off-the-
shelf encoders record non-trivial positive gains, and the best-performing models after training are
among the most parameter-efficient ones.

H Ours Classes

[ SetFit ¢ Business

) Science/Technology
Sports

*  World
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(a) EmotionDAIR results (b) AGNews embeddings

Figure 3: (a) Performance comparison of our approach with SetFit (Tunstall et al.l 2022)) on the
EmotionDAIR dataset (Saravia et al.,|2018]), across 20 runs with different sampled training sets. (b)
Visualization of AGNews document embeddings after finetuning a11-MiniLM-1L6-v2, projected
onto the hypersphere using PCA; colors indicate class membership.

6 CONCLUSION AND FUTURE WORK

We introduced contrastive label-embedding alignment for zero-shot text classification with dual-
encoder text embedding models, using short, human-written label descriptions as the sole super-
vision signal. By aligning label verbalizers with their descriptions via a symmetric multi-positive
contrastive objective, our method reshapes the embedding space into a label-aware geometry and
yields consistent, architecture-agnostic gains over naive zero-shot use of embeddings, averaging
+0.09 macro-F1 across ten encoders and four datasets. Compared with a few-shot SetFit pipeline
using 8 labeled examples per class, it attains higher average performance with substantially lower
variance across runs, while preserving efficient pre-encodable dual-encoder inference and avoiding
labeled documents entirely. A natural next step is to investigate the role of hyperspherical uniformity
more deeply, both in its empirical correlation with downstream performance and in ways it could be
incorporated directly into the training objective.

REPRODUCIBILITY STATEMENT

We will release the full codebase under an MIT license, including preprocessing scripts, training
and evaluation routines, the uniformity-based learning-rate selection code, and all logging utilities
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required to regenerate figures and tables. The label-description sets and the exact sampling protocol
used for the uniformity metric will be made publicly available. Fine-tuned checkpoints for all re-
ported models will be released in Hugging Face format, and we will document the exact pretrained
encoder revisions used.

All hyperparameters (optimizer, learning-rate grids, batch sizes, gradient accumulation, early-
stopping criteria) are specified in the main text at the point of use; the appendix provides additional
in-depth results. Experiments were run on NVIDIA A100 80 GB GPUs, with inference carried out
in bfloat1l6. We provide pinned package versions and configuration files to recreate the software
environment.

We do not fix random seeds during training. Instead, we verified empirically that the results and
conclusions are robust to stochasticity in initialization and sampling. We rely only on publicly
available datasets and pretrained encoders, which are properly cited. To our knowledge, there are no
legal or technical restrictions that would prevent exact reproduction of our results.
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A DATASETS OVERVIEW

Table [2] summarizes the datasets used in our experiments, including their domains, number of
classes, sources, and license terms. All datasets are publicly available via Hugging Face Dataset
For label verbalizers, we follow the setup of |[Laurer et al.|(2023).

Our selection deliberately covers four common zero-shot classification families: emotion recog-
nition on social media (EmotionDAIR), intent detection in a narrow banking domain (Banking77),
binary sentiment analysis for movie reviews (RottenTomatoes), and topic classification in news (AG-
News). This yields a mix of short, informal texts (EmotionDAIR, Banking77), longer and more
descriptive documents (AGNews), and highly domain-specific language (banking vs. movies vs.
general news). For all datasets we use the official test splits provided by the original authors (as
exposed through Hugging Face).

Task Domain Dataset # Classes  Source License

Emotion Social media  EmotionDAIR 6 Saravia et al.[(2018) Research/education only
Intent Banking Banking77 qﬂ Casanueva et al.[(2020) CC BY 4.0

Sentiment  Movies RottenTomatoes 2 Pang & Lee|(2005) CC01.0

Topic News AGNews 4 Zhang et al.[(2015a) Non-commercial

Table 2: Datasets used in the evaluation, covering emotion recognition, intent detection, sentiment
analysis, and topic classification.

B LABEL VERBALIZERS AND DESCRIPTIONS

Our method assumes a short verbalizer and a small set of natural-language descriptions for each
label. The verbalizer plays the role of a compact, sentence-level anchor (e.g., “This example news
text is about world news”), while the descriptions provide richer, paragraph-level semantics that
spell out the kinds of documents the label should cover. In practice, we construct these descriptions
manually, starting from the label verbalizers of [Laurer et al.| (2023) and expanding each label into
multiple complementary paraphrases. For AGNews, shown below, we write 5 descriptions per class
that: (i) emphasize different aspects of the underlying topic (e.g., actors, events, context), (ii) avoid
overlap with other labels (e.g., business vs. world news vs. sports), and (iii) remain generic enough
to apply across articles and time periods.

These descriptions are used exclusively during our description-only training stage; no dataset exam-
ples or ground-truth labels are required to construct them. At inference time, the model receives only
raw documents and the label representations (verbalizers, label names, or mean description embed-
dings; see Appendix [H) and must classify texts in a strict zero-shot manner. Table [3illustrates the
resulting description sets for AGNews; analogous description collections are created for Banking77,
EmotionDAIR, and RottenTomatoes.

$https://huggingface.co/datasets
For Banking77, we restrict evaluation to the six card-related intent classes for fine-grained classification.
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Category (verbalizer)

Descriptions

World News
Verbalizer: “This exam-
ple news text is about
world news.”

Coverage of international affairs and geopolitics: governments, elections,
diplomacy, conflicts, treaties, and sanctions. Stories focus on cross-border
events and their global implications rather than domestic business or sports
outcomes.

News about countries interacting on the world stage: summits, UN
resolutions, regional alliances, and humanitarian crises. Emphasis is on state
actors, policy decisions, and shifts in international relations.

Reporting on wars, ceasefires, peace talks, and military deployments across
regions. Articles highlight causes, stakeholders, civilian impact, and
reactions from other nations or international bodies.

Global society and policy issues such as migration, human rights, climate
diplomacy, and development aid. Pieces track how multiple countries
respond and coordinate.

International incidents and disasters (natural or man-made) where response,
accountability, and cross-national coordination are central. Focus remains on
worldwide context rather than local business ramifications.

Sports
Verbalizer: “This exam-
ple news text is about
sports.”

Results, previews, and analysis of professional or amateur competitions:
matches, tournaments, standings, and championships. Content centers on
performance, tactics, and outcomes on the field.

Athlete-focused updates including injuries, transfers, contracts, and
retirements. Stories emphasize team dynamics and competitive impact.
Coverage of leagues and events: scheduling, rule changes, drafts, and
officiating controversies. The angle is sporting governance and competitive
fairness.

Game recaps and statistical breakdowns highlighting key plays, records, and
milestones. The narrative ties individual performances to team results.
Profiles and human-interest features about coaches, players, and training
methods. Emphasis is on preparation, strategy, and competitive psychology.

Business

Verbalizer: “This exam-
ple news text is about
business news.”

Corporate news: earnings, revenue guidance, layoffs, executive changes, and
strategic shifts. Articles assess company performance and shareholder
impact.

Markets and finance coverage: stocks, bonds, commodities, currencies, and
macro sentiment. Focus is on price moves, drivers, and investor reactions.
Mergers, acquisitions, IPOs, and venture funding. Pieces explain valuations,
synergies, and regulatory hurdles.

Industry developments such as competition, supply chains, pricing, and
business models across sectors. Reporting connects firm-level actions to
market structure.

Policy and regulation affecting commerce: antitrust cases, trade policy, taxes,
and compliance. The lens is how rules shape corporate behavior and
profitability.

Science & Technology
Verbalizer: “This exam-
ple news text is about
science and technol-

Et)

ogy.

Scientific research findings across fields like biology, physics, medicine, and
climate science. Articles emphasize methods, evidence, and potential
applications or limitations.

Technology product and platform news: hardware, software, mobile, cloud,
and consumer gadgets. Coverage focuses on features, performance, and user
impact.

Al, data science, and computing breakthroughs including models, chips,
algorithms, and benchmarks. Stories discuss capabilities, risks, and
real-world use cases.

Space and astronomy updates: launches, missions, telescopes, and planetary
discoveries. Coverage highlights scientific goals and engineering challenges.
Cybersecurity and privacy incidents: vulnerabilities, breaches, hacks, and
defenses. Reporting centers on technical cause, affected users, and
mitigations.

Table 3: AGNews (Zhang et al.,[2015a) class verbalizer and class descriptions (5 per class).
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C EMBEDDING MODELS

Our benchmark covers ten publicly available embedding models spanning different architectures,
parameter scales, and training paradigms (Table ). We include (i) smaller sentence-transformer
style encoders such as all1-MiniLM-L6-v2, (ii) recent E5 and BGE models trained on large
synthetic contrastive corpora, (iii) the GTE family including a ModernBERT-based variant, and
(iv) two more recent architectures targeting embedding quality, embeddinggemma—-300m and
Owen3-Embedding—-0. 6B. This mix allows us to test description-tuning on both lightweight
models that are attractive in low-compute settings and larger, state-of-the-art encoders that already
perform strongly in zero-shot retrieval and classification benchmarks.

For each model, Table[d]reports publication year, base architecture (encoder vs. decoder), backbone,
main pre-training or fine-tuning corpus, parameter count, pooling strategy, and embedding dimen-
sionality. We always use the pooling operation recommended by the model authors (e.g., mean
pooling for ES, CLS pooling for GTE/BGE), and apply our description-only training on top of the
publicly released checkpoints without any additional task-specific pretraining. The diversity of ar-
chitectures and training recipes allows us to assess how robust our method is across model families,
as presented in the main results (Table [T).

Model Yr  Arch. Backbone FT / train data #P Pool Dim
all-MiniLM-L6-v2 2021 enc. MiniLM 1B paired sentences 227M mean 384
e5-base-v2 2023 enc. ES (BERT) 270M synthetic contrastive 110M mean 768
e5-large-v2 2023 enc. ES (BERT) same as above 335M  mean 1024
bge-base-en-vl1.5 2023 enc. BGE (RoB.) 1.5B pair data, contrastive 137M  CLS 768
bge-large—-en-v1.5 2023 enc. BGE (RoB.) same as above 434M  CLS 1024
gte-base-en-vl1l.5 2024 enc+ GTE MLM + contrastive pre-train 137M  CLS 768
gte-large-en-v1.5 2024 enc+ GTE same as above 434M  CLS 1024
gte-modernbert-base 2024  enc. ModernBERT same as above 149M CLS 768
embeddinggemma-300m 2025 enc. Gemma 3 (enc.) Multiling. corpus (320B tok), contrastive =~ 308M mean 768"
Qwen3-Embedding-0.6B 2025 dec. Qwen3 synthetic multiling. contrastive 0.6B  last 1024

Table 4: Architectural and training overview of the 10 embedding models used. Columns list publi-
cation year (Yr), encoder/decoder architecture (Arch.), backbone, principal fine-tuning (FT) or pre-
training data, parameter count (#P), pooling strategy (Pool), and embedding dimensionality (Dim).
“For embeddinggemma—-300m, dimensionality 768 corresponds to Matryoshka Representation
Learning (MRL) with nested sizes 512/256/128, a training scheme enabling shorter embeddings.

D CONTRASTIVE LOSS VARIANTS

Effect of the loss components. Table [5] compares the three objectives introduced in Section 3}
the rowwise InfoNCE loss L4ys, the columnwise loss L5, and their symmetric combination £ =
%Emws + %Lcols' Averaged over the four datasets, the symmetric loss is always at least as good as
the best of the two single-sided losses and typically improves macro-F; by a small but consistent
margin. Across the ten backbones, £ improves over L,ys by about +0.01 macro-F; on average
and over L5 by roughly +0.03 macro-F;. The gains are particularly visible for the smaller or less
specialized models (e.g., BGE-base, Gemma), where combining both directions yields up to +0.04

macro-F; compared to training only with L.

At the same time, the ablation confirms that L,y is the stronger of the two components when used
in isolation. For almost all backbones in Table@, L ows matches or slightly outperforms L. when
trained alone, indicating that using description vectors as anchors (rows) already captures most of
the benefit of description-tuning. The columnwise objective by itself is thus not sufficient to reach
the best performance, but it becomes beneficial once combined with the rowwise term.

Per-dataset behavior. The disaggregated results in Table [6] show that this pattern holds across
tasks. Out of the 40 (model, dataset) combinations, the symmetric loss £ achieves the best or tied-
best macro-F; in 34 cases; in the remaining 6 cases, either L,s or L5 is better, but never by
more than 0.03 absolute F;. On coarse-grained topic classification (AGNews) and binary senti-
ment (RottenTomatoes), the three losses are often very close, with £ typically providing a modest
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refinement on top of Lyows (€.g., €5-large, gte-base). The advantage of the symmetric objective be-
comes more pronounced on the fine-grained tasks Banking77 and EmotionDAIR. For instance, for
BGE-large on EmotionDAIR, L reaches 0.56 macro-F;, improving over both L4y (0.52) and L
(0.53); for Gemma on EmotionDAIR, the symmetric loss lifts performance from 0.45 (rows-only)
and 0.54 (cols-only) to 0.57. Similar trends hold for Qwen on EmotionDAIR and for several models
on Banking77.

There are a few isolated cases where a single-sided loss slightly dominates the symmetric one (e.g.,
Qwen on AGNews, Gemma on AGNews and RottenTomatoes, GTE-large on EmotionDAIR and
RottenTomatoes), but the margins are small (1-3 F; points) and not systematic across backbones or
tasks. We therefore view these as noise-level fluctuations rather than evidence against the symmetric
formulation.

Takeaways. Overall, the ablation supports our design choice. The rowwise term L;os i8 the pri-
mary driver of performance: using description embeddings as anchors already yields strong zero-
shot classifiers and consistently outperforms the columnwise variant when used in isolation. The
columnwise term L5 plays a complementary role: it is weaker on its own but, when combined
with Lows, acts as a regulariser that better structures the joint description-label space, leading to
small but robust gains across most backbones and datasets. Consequently, we adopt the symmetric
loss £ as our default objective in all subsequent experiments.

Model Erows £cols L
MiniLM

all-MiniLM-L6-v2 0.70 (0.20) 0.65 (0.18)  0.70 (0.20)
ES

e5-base-v2 0.76 (0.20) 0.76 (0.21)  0.77 (0.20)
e5-large-v2 0.78 (0.19) 0.77 (0.19)  0.79 (0.19)
BGE

bge-base-en-v1.5 0.76 (0.20) 0.74 (0.20) 0.77 (0.21)
bge-large-en-v1.5 0.78 (0.18) 0.78 (0.18) 0.80 (0.17)
GTE

gte-base-en-v1.5 0.77 (0.19) 0.76 (0.19)  0.78 (0.20)
gte-modernbert-base 0.77 (0.19) 0.74 (0.19) 0.77 (0.19)
gte-large-en-v1.5 0.77 (0.19) 0.77 (0.19) 0.78 (0.19)
Qwen

Qwen3-Embedding-0.6B  0.80 (0.16) 0.76 (0.18)  0.80 (0.16)
Gemma

embeddinggemma-300m  0.71 (0.19) 0.72 (0.16)  0.75 (0.15)

Table 5: Mean macro-F1 (std. in parentheses) for each loss, averaged over the four datasets AGNews,
Banking77, EmotionDAIR and RottenTomatoes. Best loss per model (row) is in bold.
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Model AGNews Banking77 EmotionDAIR  RottenTomatoes
»Crows »Ccols L Erows »Ccols L »Crows »Ccols L Erows »Ccols L

MiniLM

all-MiniLM-L6-v2 0.78 0.71 0.79 0.89 0.80 0.90 0.43 0.38 0.43 0.69 0.70 0.70

ES

e5-base-v2 0.78 0.80 0.81 0.95 0.95 0.96 0.48 0.45 0.48 0.82 0.83 0.82

e5-large-v2 0.81 0.80 0.82 0.95 0.95 0.96 0.52 0.51 0.53 0.85 0.84 0.86

BGE

bge-base-en-v1.5 0.81 0.75 0.82 0.95 0.94 0.95 0.47 0.47 047 0.81 0.81 0.82

bge-large-en-v1.5 0.82 0.80 0.82 0.94 0.94 0.95 0.52 0.53 0.56 0.84 0.84 0.85

GTE

gte-base-en-v1.5 0.82 0.80 0.83 0.94 0.92 0.95 0.49 0.48 0.49 0.83 0.84 0.85

gte-modernbert-base 0.80 0.71 0.80 0.94 0.92 0.94 0.49 0.48 0.49 0.83 0.84 0.84

gte-large-en-v1.5 0.82 0.79 0.83 0.93 0.94 0.95 0.50 0.51 0.50 0.84 0.86 0.83

Qwen

Qwen3-Embedding-0.6B 0.86 0.78 0.85 0.90 0.90 0.92 0.56 0.50 0.57 0.87 0.87 0.88

Gemma

embeddinggemma-300m 0.75 0.71 0.74 0.91 0.92 0.94 0.45 0.54 0.57 0.73 0.74 0.73

Table 6: Disaggregated macro-F; by dataset and loss. Entries are F; scores; for each model and
dataset, the best loss is in bold.

E ROBUSTNESS TO NOISY DESCRIPTIONS.

To test how sensitive our method is to imperfect descriptions, we run a controlled corruption ex-
periment on AGNews using embeddinggemma—300m. Starting from the original description set,
we progressively replace a fraction of descriptions with overly vague, non-discriminative sentences
(examples in Table . We vary the noise level in (0.0, 0.25, 0.5, 1.0), where (1.0) means that all
descriptions are vague. For each noise level and each loss (Lows, Lcols, and the symmetric £), we
train with the learning rate selected by the uniformity heuristic and track macro-F; over training
(Figured). Table[7]reports the final F; scores (taking into account early stopping).

Noise level  Liows  Leols L

0.00 075 071 0.74
0.25 0.64 0.71 0.67
0.50 059 0.64 0.61
1.00 041 045 035

Table 7: Macro-F; on AGNews for embeddinggemma—300m under different description noise
levels and losses.

With clean descriptions ((0.0) noise), the rowwise loss is strongest (0.75 vs. 0.71 for L), and
the symmetric loss (£) is only slightly behind at 0.74. Once we inject moderate noise (0.25 and
0.5), the behavior changes markedly. L,y degrades sharply (down to 0.64 and 0.59, i.e. —0.11 and
—0.16 absolute), whereas Ls is much more stable: at 25% noise it remains essentially unchanged
compared to the clean setting, and at 50% noise it still clearly dominates the other objectives (0.64
vs. 0.59 and 0.61). The symmetric objective £ interpolates between these regimes: with clean
descriptions it tracks Lys, but under moderate noise it moves closer to L5, preserving much of
the robustness provided by the column term. At the extreme noise level (1.0), when all descriptions
are vague, all three objectives degrade substantially, as expected when the supervision signal is
entirely uninformative.

These trends align with the analytical properties of L.s. By using a log-sum-exp over multiple
positives per label, it (i) reweights descriptions so that strong, representative ones dominate the
gradient while noisy/vague ones are down-weighted, and (ii) adds extra smoothing / regularization
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at the label level. In the moderate-noise regime, arguably the most realistic setting, this makes
Lols significantly more robust than a pure rowwise InfoNCE. The symmetric loss £ largely inherits
this robustness while retaining strong performance in the clean setting, indicating that combining
row- and columnwise objectives yields a good trade-off between peak accuracy and resilience to
imperfect description sets.

#  Vague AGNews description

Coverage about the news, containing information about events and happenings in the world. The text
discusses topics that may be of interest to readers who follow current events.

2 A piece of text about something that was reported by journalists or news organizations. It contains
sentences and paragraphs describing various matters.

3 This is a news article that provides information to readers. The content covers subjects that are deemed
newsworthy by editors and reporters.

4 Information presented in written form about things that have occurred or are occurring. The article is
structured with a headline and body text.

5 Some content about a topic that readers might find relevant. The writing style follows journalistic
conventions and presents facts or opinions.

Table 8: Examples of deliberately vague AGNews descriptions used to inject noise into the label
description set.

=== qoise = 0.00 === noise = 0.25 noise = 0.50 === qoise = 1.00
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Figure 4: Macro-F; on AGNews for embeddinggemma—300m under increasing description noise.

Each panel shows training curves for one loss (Liows, Leols, and the symmetric £); colors denote

noise levels (0.0, 0.25, 0.5, 1.0). The columnwise loss remains markedly more stable under moderate
noise, and the symmetric loss largely inherits this robustness.

F ROBUSTNESS TO IMBALANCED DESCRIPTION COUNTS

Figure [5] studies whether the proposed method is sensitive to imbalances in the number of descrip-
tions per label. We use a11-MiniLM-L6-v2 on AGNews and compare three setups: (i) the base
model without description training, (ii) a balanced configuration with the same number of descrip-
tions per label, and (iii) an imbalanced configuration where Business has 10 descriptions while the
remaining labels have only 3. For the symmetric objective £ (left panel), adding descriptions im-
proves F; across all labels relative to the base model, and giving extra descriptions to Business yields
a small additional gain for that label while Science/Tech, Sports, and World remain essentially un-
changed between the balanced and imbalanced setups. In contrast, under the pure rowwise 10ss L ows
(right panel), Business again benefits from the extra descriptions, but the other three labels incur a
small F; drop when moving from the balanced to the imbalanced configuration (on the order of 1-2
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points), although they still clearly outperform the base model. This pattern is consistent with the role
of the columnwise term in £. Because Ls optimizes a per-label normalized quantity ZZ’ /Zy, itis
inherently less sensitive to how many descriptions a label has: each label’s objective is scaled by its
own normalizer rather than competing directly with other labels for probability mass. As a result,
the symmetric loss £, which includes L5, can absorb an over-representation of Business without
harming the other classes, whereas the purely rowwise objective shows mild cross-label interference
when one label receives substantially more descriptions than the rest.

BN Base (no desc. training) Bl Equal descriptions/label BN Unequal descriptions/label

L Liows

0.9 -

0.7 - - - -
05 - Co Co Co . . Co Co Co .

pusines® Sd‘e“ceﬂec\‘ gport® Wond B“S-‘“ess g C.\e“ceITeC\‘ gport® wond

=)
3
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Figure 5: Per-label F; on AGNews for al1-MiniLM-L6-v2 under different description allocation
schemes. We compare the base model (no description training), a balanced setup with an equal
number of descriptions per label, and an imbalanced setup where Business has 10 descriptions while
the other labels have only 3. Left: symmetric loss £, where extra descriptions for Business slightly
improve that label without affecting the others. Right: rowwise loss Lows, Where Business gains
while the remaining labels incur a small F; drop but still outperform the base model.

G EFFECT OF THE NUMBER OF DESCRIPTIONS PER LABEL

Figure |6 investigates how performance varies with the number of descriptions per label when using
the default symmetric loss £. We vary K € {1,3,5,10,20} while keeping verbalizers fixed; rows
correspond to e5-base-v2 and e5-1large-v2, columns to the four datasets. Across all model-
dataset pairs, using a single description per label consistently underperforms, while moving from 1
to 3-5 descriptions yields a substantial jump in macro-F;. Beyond K = 5, the curves flatten and
often become mildly non-monotonic: additional descriptions bring at most small gains (e.g. Emo-
tionDAIR and RottenTomatoes) and sometimes slight degradation (e.g. AGNews and Banking77).

We believe this pattern is largely driven by description quality rather than by the number of de-
scriptions per se. In practice, we curated descriptions in a sensible order, using the clearest, most
representative ones first. As K grows, it becomes increasingly difficult to add new descriptions
that are both (i) genuinely novel and (ii) still precise and label-specific; later descriptions tend to
be either redundant or more generic. From the model’s perspective, increasing K therefore shifts
the label description set from “a few high-quality positives” to “a mixture of strong and weaker
positives,” effectively introducing a mild form of noise. This interpretation is consistent with our ex-
plicit noise ablation in Section [E} the method is robust to moderate levels of noisy descriptions, but
performance plateaus or slightly declines once weaker descriptions start to dominate the marginal
additions. Overall, the curves suggest that 3-5 carefully written descriptions per label capture most
of the benefit of description-tuning, and that pushing to 10-20 descriptions is only worthwhile if one
can maintain comparable quality.
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Figure 6: Effect of the number of descriptions per label on macro-F; for the symmetric loss £. Rows
correspond to e5-base-v2 (top) and e5-1large—v2 (bottom); columns correspond to AGNews,
Banking77, EmotionDAIR, and RottenTomatoes. Each curve plots macro-F; as the number of de-
scriptions per label K increases from 1 to 20. Performance improves sharply when going from 1 to
3-5 descriptions and then flattens or becomes slightly non-monotonic as additional descriptions are
added, which we attribute to the increasing difficulty of generating novel yet high-quality descrip-
tions at larger K.

H CHOICE OF INFERENCE ANCHOR

We finally ablate the choice of label representation (“anchor”) used during training and inference.
We compare three modes:

1. Label. We replace the verbalizer sentence by the raw label string (e.g., “Sports”) and use this as
the anchor both during training and at inference. 2. Verbalizer. Our default setting: we train and
evaluate with the full verbalizer sentence (e.g., “This news snippet is about sports.”). 3. Mean. We
train as in the default setting (with verbalizers), but at inference we instead score documents against
the mean embedding of each label’s descriptions, Kiy Sopeldy).

Figure [/| reports macro-F; for e5-base-v2 and e5-large-v2 across the four datasets. No
single mode dominates everywhere. For AGNews, the verbalizer gives the best performance; for
Banking77 and EmotionDAIR, using the raw label string tends to outperform the verbalizer; and for
RottenTomatoes the mean-of-descriptions is strongest. Across all model-dataset pairs, however, the
differences are small (typically within 1-2 F; points), and we do not observe statistically significant
differences between the three modes. This indicates that the method is not fragile to the precise
choice of anchor. Taken together, these results suggest that (i) training directly on label names is
a viable alternative to full verbalizers, and (ii) even when training with verbalizers, practitioners
can safely switch to mean description embeddings at inference time, which typically match the
performance of the default.

22



Under review as a conference paper at ICLR 2026

AGNew. BankingT’ EmotionDAIR RottenT' t

““““““““““““““““““““““““““““ PO A R R

083 - X - - P
I , e Co049- - b :
N [ - 094- - T o800 :
|- N ¥ : B b :
22 082- - X To048- I o0835° H
R R N L R 5 3 :
093 : P :
E-1n L N X B 3 N
BE L , [ : - 0830° :
°© st - T S 047 - - 3 H
| B ; - B :
E - E © 046 - - E -

Label Verbalizer Mean Label Verbalizer Mean Label Verbalizer Mean Label Verbalizer Mean
P T T ST S S S S S T T S A RS AR 0880 - ¢+ 1 -
: H [ ©052 - : H
E So095- - : t :
0.830 B T , T o0sTsc :
Al : H [ i - 3 :
T2 0825° : [ o051 - < 0870 % z
532 b To094- - : : H
E % 0s20: H [ : - 0865 - -
B i : t - 050~ - z :
EREH S ossl ; 0860 - H
0810 % : [ © a0l - Co0s :
Label Verbalizer Mean Label Verbalizer Mean Label Verbalizer Mean Label Verbalizer Mean

Label mode

Figure 7: Ablation over label representation. Bars show macro-F; when training and evaluating on
the raw label string (Label), training and evaluating on the full verbalizer sentence (Verbalizer, our
default), or training on verbalizers but using the mean description embedding at inference (Mean).
Rows correspond to e 5-base-v2 (top) and e5-1arge-v2 (bottom); columns correspond to AG-
News, Banking77, EmotionDAIR, and RottenTomatoes. The best choice varies mildly by dataset,
but the small differences are not statistically significant, indicating robustness to the particular infer-
ence anchor.

I PERFORMANCE ON LARGE LABEL SPACES

Finally, we test whether description-tuning remains effective when the label space is large. We use
the full 77-way Banking77 label set, writing only three descriptions per label, and evaluate on the
official test split. For the final runs, we train a11-MiniLM-L6-v2 with a learning rate of 1 x 10~°
and embeddinggemma-300m with 1 x 10~%, both selected via the uniformity-based procedure

from Section[3]

Table [9] shows that even under this harder setting, description-tuning yields substantial gains. For
all-MiniLM-L6-v2, macro-F; and accuracy increase by +0.07 (0.59—0.66), while precision
and recall both improve, with recall rising more strongly (0.62—0.69). The effect is even more pro-
nounced for embeddinggemma—300m: macro-F; improves by +0.09 (0.52—0.61) and accuracy
by +0.08, with recall jumping from 0.55 to 0.64 (+0.10) and precision from 0.60 to 0.64 (4-0.03). In
other words, the method substantially reduces false negatives, crucial in a large label space, without
sacrificing precision.

Overall, these results indicate that our description-only finetuning scales to high-cardinality label
spaces even with a very small description budget (three descriptions per label). The gains in macro-
F; and recall suggest that aligning labels to a compact set of descriptions helps the model better
cover many fine-grained intents rather than merely sharpening predictions for the most frequent
ones.

Model F Acc. Prec. Rec.
all-MiniLM-L6-v2 0.59 0.59 0.65 0.62
trained 0.66 (+0.07)  0.66 (+0.07) 0.69 (+0.04) 0.69 (+0.07)
embeddinggemma-300m 0.52 0.52 0.60 0.55
trained 0.61 (+0.09) 0.60 (+0.09) 0.64 (+0.03) 0.64 (+0.10)

Table 9: Base vs. trained performance on Banking77. Trained rows show absolute improvements in
parentheses.
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J  LEARNING-RATE SELECTION VIA UNIFORMITY

Uniformity-based learning rate selection. As discussed in Section [3] we treat the learning rate
(LR) as the main sensitive hyperparameter and select it using a label-free criterion based on the
uniformity loss Lyy; in equation[d] For each model-dataset pair, we run short warmup trainings over
a small grid of candidate LRs and evaluate L,,; on an unlabeled pool X, from the target domain.
We then choose the LR that minimizes L,y;, i.e., that yields the most uniform (least collapsed)
document embeddings on &X,,. Table [I(]lists the selected LRs; these are the hyperparameters used
for all results reported in the main table (Table|[T).

Model AGNews Banking77 EmotionDAIR  RottenTomatoes
all-MiniLM-L6-v2 1-107° 1-107 1-1074 3.107°
e5-base-v2 1-107%  3.107¢ 3.107* 1-1074
e5-large-v2 1-107*  1-107* 1-107* 5-107°
bge-base-en-v1.5 5.-100* 3.107* 5.107* 3.107°
bge-large-en-v1.5 1-100*  1-107* 3-1074 5-1076
gte-base-en-v1.5 1-107*  1.107* 5-1074 1-107°
gte-modernbert-base 5.-100*  5.107* 5-107* 5.107*
gte-large-en-v1.5 3-1074 5-107° 3-1074 1-107*
Qwen3-Embedding-0.6B 3 -107° 1-107° 3.107° 1-107°
embeddinggemma-300m 1-107*  3.107° 5-107° 5-107°

Table 10: Learning rates selected by minimizing the uniformity loss (L,y;) on an unlabeled pool
(&) for each model—dataset pair. The LRs are used in the main results (Table E[)

Relationship between uniformity and downstream performance. Appendix Figure[§]examines
how L,n;, measured on X, relates to downstream macro-F; after description-only training. Our
goal is not to treat L£,;,; as a perfect surrogate for macro-F1, but as a practical label-free heuristic for
LR selection. Across the 40 model-dataset pairs in Figure[8] 29/40 exhibit a statistically significant
negative Pearson correlation between L£,,; and macro-F; (p < 0.10): runs that yield more uniform
embeddings on X, (lower L,y;) tend to achieve higher macro-F;. The remaining 11/40 pairs show
weak, non-significant correlations, which are typically slightly negative or close to zero but never
strongly positive. In other words, lower uniformity does not guarantee higher macro-Fy, yet it is
empirically helpful in the majority of cases and, critically, does not appear to systematically harm
performance in the remainder. This supports using £,,; as a robust, label-free signal for picking a
reasonable learning rate in true zero-shot settings, while acknowledging that it is empirically useful
but not universally predictive.
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Figure 8: Scatter plots of uniformity loss L,; against Macro-F1 performance across datasets. Rows
correspond to embedding models, while columns correspond to datasets. Each subplot shows indi-
vidual runs with a different learning rate (dots), an ordinary least squares regression line with 95%
confidence interval (shaded), and the Pearson correlation coefficient between L,,,; and Macro-F1.
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