

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTRASTIVE LABEL-EMBEDDING ALIGNMENT FOR ZERO-SHOT TEXT CLASSIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Zero-shot text classification (ZSC) seeks to assign texts to label spaces without relying on task-specific labeled documents. Yet, practical deployments of embedding models for classification often fall back on training task-specific classifiers (e.g., linear probes on frozen embeddings) to recover task-specific performance, reintroducing annotation costs and undermining the zero-shot setting. We introduce *contrastive label-embedding alignment*, a simple, compute-efficient alternative that uses only a handful of natural-language descriptions per label and no labeled documents. We lightly fine-tune a base embedding model so that label verbalizers and their descriptions are aligned in a shared space: a symmetric multi-positive contrastive objective pulls each verbalizer toward its associated descriptions while pushing it away from others, capturing the many-to-one label–description relation. Across four benchmarks (topic, sentiment, intent, emotion) and ten encoders (22M-600M parameters), as few as five descriptions per label yield consistent gains, improving macro-F1 by **+0.09** on average over zero-shot baselines, corresponding to relative improvements of roughly **5-13%** across models. Compared to a few-shot SetFit baseline with 8 labeled examples per class, our method attains higher mean performance with substantially lower variance across repeated runs, indicating improved stability in low-data regimes. The method uses label descriptions as the sole supervision signal to learn a label-specific embedding geometry for an off-the-shelf dual encoder via a symmetric multi-positive contrastive objective, while retaining efficient pre-encodable dual-encoder inference at test time.

1 INTRODUCTION

Text classification remains a central task in Natural Language Processing (NLP), supporting a wide range of applications such as sentiment analysis across domains, topic categorization of diverse document types, and intent detection in dialogue systems (Maas et al., 2011; Zhang et al., 2015b; Coucke et al., 2018; Larson et al., 2019; Sebastiani, 2002; Aggarwal & Zhai, 2012). Formally, the objective is to assign one or more labels from a predefined set to each text sample using only the information contained in the text itself. While progress in supervised learning has led to substantial improvements in classification accuracy, these approaches rely on large-scale, high-quality annotated datasets. Constructing such datasets is often prohibitively expensive and time-consuming, particularly in specialized domains where expert annotation is required (Settles, 2012; Ratner et al., 2017).

Zero-shot text classification (ZSC) has emerged as a compelling alternative, enabling models to assign labels that were not observed during training (Yin et al., 2019). ZSC methods exploit the semantic relationships between input texts and candidate labels, typically leveraging pretrained language models that encode these relationships based on extensive pretraining over large corpora (Brown et al., 2020; Liu et al., 2023). A widely adopted approach is to prompt large language models (LLMs) with the input text and candidate label verbalizers, allowing the model to rank or score each label. While effective, this strategy incurs considerable computational cost and latency, limiting its practicality for large-scale or real-time applications (Brown et al., 2020; Schick & Schütze, 2021; Liu et al., 2023).

054 Concurrently, text embedding models have seen substantial progress (Reimers & Gurevych, 2019;
 055 Gao et al., 2021; Muennighoff et al., 2023). These models map textual inputs to dense vector spaces,
 056 positioning semantically similar texts close together. This structure enables efficient similarity-based
 057 retrieval and, in principle, supports zero-shot classification by embedding both input texts and can-
 058 didate label representations into a shared space and applying nearest-neighbor matching (Reimers
 059 & Gurevych, 2019; Gao et al., 2021; Fei et al., 2022). However, while such zero-shot approaches
 060 are theoretically feasible, their performance in practice is often limited, especially on challenging
 061 or fine-grained classification tasks. As a result, it is common to further adapt embedding models
 062 for classification by training a linear probe or classifier head using labeled data (Neelakantan et al.,
 063 2022; Enevoldsen et al., 2025; Chung et al., 2025), thereby reintroducing the need for annotated
 064 resources and undermining the zero-shot premise.

065 A parallel strand of research leverages external language and knowledge resources, including
 066 dictionary-style definitions, encyclopedic entries such as Wikipedia, and lexical ontologies such
 067 as WordNet, to provide semantic structure for zero-shot or “dataless” text classification. Early work
 068 introduced lexical resources to enrich text representations and label semantics ((Miller, 1995), see
 069 also (Scott & Matwin, 1998)), while Wikipedia-based methods mapped texts and labels into concept
 070 spaces using explicit semantic representations (Gabrilovich & Markovitch, 2007) and later demon-
 071 strated gains in downstream classification (Wang et al., 2009). More generally, dataless classifica-
 072 tion methods formalized how labels and documents can be compared via semantic proxies rather
 073 than task-specific annotations (Chang et al., 2008), and subsequent approaches operationalized la-
 074 bel names and short natural-language descriptions as supervision signals for improved zero-shot
 075 performance (Gao et al., 2023; Chai et al., 2020; Meng et al., 2020).

076 Building on these insights, we propose *contrastive label-embedding alignment*, a
 077 description-based supervision framework tai-
 078 lored to dual-encoder text embedding models
 079 in the zero-shot setting. Rather than relying on
 080 labeled documents together with task-specific
 081 classifier heads, which both require costly
 082 annotation and additional training, our method
 083 uses a small set of natural-language descriptions
 084 per label as the *sole* supervision signal. We
 085 embed both label verbalizers and descriptions
 086 with a shared dual encoder and train it with a
 087 symmetric multi-positive contrastive objective
 088 that pulls each verbalizer toward its associated
 089 descriptions while pushing it away from de-
 090 scriptions of other labels, thereby inducing a
 091 label-specific embedding geometry. At test time,
 092 documents and label representations can be pre-
 093 encoded once and compared via simple similarity
 094 search, preserving the computational advantages
 095 of dual-encoder inference while leveraging
 096 description-based supervision to sharpen deci-
 097 sion boundaries in the embedding space. Our
 098 formulation is inspired by foundational work in
 099 contrastive learning such as DrLIM, InfoNCE,
 100 SimCLR, and CLIP, but adapts these ideas to
 101 the alignment of textual label verbalizers with
 102 natural-language descriptions (Hadsell et al.,
 103 2006; van den Oord et al., 2018; Chen et al., 2020a; Radford et al., 2021b).

2 RELATED WORK

104 **Zero-shot and “dataless” text classification.** Early research in dataless classification replaced
 105 labeled data with semantic proxies such as label names, seed words, or external knowledge bases
 106 (e.g., WordNet, Wikipedia), enabling documents and labels to be compared in a shared semantic

Figure 1: **Contrastive label-embedding alignment.** Label verbalizers (\star) and their natural-language descriptions (\blacktriangle) are encoded by a shared text encoder f_θ , producing a similarity matrix $S \in \mathbb{R}^{D \times L}$ over all D descriptions and L verbalizers (green blocks indicate positive pairs). A *rowwise* InfoNCE loss pulls each description toward its own verbalizer, while a *columnwise* multi-positive loss aggregates each verbalizer toward all its descriptions. In embedding space \mathbb{S}^{d-1} , this yields tighter within-class clusters and larger inter-class margins; gradients $\nabla_\theta \mathcal{L}$ update only the encoder and require no labeled documents.

space (Miller, 1995; Scott & Matwin, 1998; Gabrilovich & Markovitch, 2007; Chang et al., 2008; Wang et al., 2009). More recent methods frame ZSC as textual entailment between input texts and label verbalizers, often leveraging pretrained language models to provide the entailment signal (Yin et al., 2019). Another line explores natural-language label descriptions (e.g., definitions or short summaries) as supervision, showing improved robustness and transfer across domains (Chai et al., 2020; Meng et al., 2020; Gao et al., 2023). Despite these advances, most approaches rely on cross-encoder architectures, which require jointly encoding each document with every candidate label at inference. This results in inference costs that scale linearly with the number of labels and prevents caching of document embeddings, making such methods impractical for large label sets or real-time deployment.

Few-shot learning. Few-shot methods fine-tune compact encoders on small labeled sets, bridging the gap between zero-shot and fully supervised learning. SetFit exemplifies this paradigm in the context of dual-encoder text embedding models: it first fine-tunes an embedding model contrastively and then trains a lightweight classifier head on top of the resulting embeddings, achieving strong results with limited supervision and modest compute (Tunstall et al., 2022). On the other hand, parameter-efficient fine-tuning techniques (e.g., adapters, LoRA) reduce the compute cost of task-specific training by limiting the number of updated parameters, but they do not alleviate the central bottleneck of acquiring labeled examples (Houlsby et al., 2019; Hu et al., 2022).

In-context learning with large models. Large language models (LLMs) can perform zero- or few-shot classification via in-context learning (ICL), where label names and demonstration examples are provided directly in the prompt (Dong et al., 2024; Luo et al., 2024). While often effective out of the box, ICL comes with several challenges. Performance can be highly sensitive to the selection and ordering of demonstrations, and although recent models support much larger context windows, reliably exploiting long prompts remains difficult due to dilution and context “forgetting.” Moreover, it is non-trivial to enforce consistently parseable, deterministic label outputs, which complicates downstream use. Finally, inference is computationally expensive, as the model must process the entire prompt together with each new example. In light of these issues, comparisons indicate that fine-tuned encoders can offer more stable and compute-efficient behavior for sustained deployment on targeted tasks (Mosbach et al., 2023).

Embedding models for classification and related tasks. Recent sentence and document embedding models trained with large-scale contrastive or instruction-tuning objectives (e.g., SBERT, SimCSE, E5, GTE, BGE, EmbeddingGemma, Qwen3-Embedding) provide strong transfer across retrieval, semantic similarity, clustering, and text classification benchmarks (Reimers & Gurevych, 2019; Gao et al., 2021; Wang et al., 2022; Li et al., 2023; Xiao et al., 2023; Google DeepMind & Google Research, 2025; Zhang et al., 2025). These dual-encoder architectures independently encode inputs into a shared vector space, enabling efficient nearest-neighbor search and scalable deployment. For classification, a common strategy is to train linear probes or lightweight classifier heads on top of frozen embeddings (Neelakantan et al., 2022; Muennighoff et al., 2023; Enevoldsen et al., 2025), while retrieval and semantic similarity tasks are typically handled via direct similarity scoring. In principle, the same machinery can support zero-shot classification by comparing document embeddings to label representations, but naïve instantiations often struggle on many tasks, highlighting the need for better alignment between label semantics and the embedding space.

Contrastive learning. Contrastive learning objectives such as InfoNCE and SimCLR-style losses encourage representations of semantically related views to be close in embedding space while separating unrelated examples, often using large batches or memory banks to provide in-batch negatives (van den Oord et al., 2018; Chen et al., 2020a). This paradigm has proved highly effective for learning transferable representations across modalities. In vision-language settings, CLIP trains dual encoders on large-scale image-text pairs, aligning the two modalities in a shared space and enabling flexible retrieval of images from textual queries (and vice versa) via simple similarity comparisons (Radford et al., 2021b). In text-only settings, early work applied contrastive objectives to augmented or paired text views (e.g., dropout-based augmentations, paraphrases, or neighboring sentences), yielding sentence and document encoders with strong performance on semantic similarity and related tasks (Reimers & Gurevych, 2019; Gao et al., 2021). Subsequent models scale this recipe to much larger and more diverse corpora (e.g., E5, GTE, BGE), producing more “universal”

embedding models that transfer well and can be easily adapted to a wide range of downstream tasks, including retrieval, clustering, and classification benchmarks (Wang et al., 2022; Li et al., 2023; Xiao et al., 2023). Our work adopts this contrastive dual-encoder perspective but tailors the objective to align label verbalizers with small sets of curated natural-language descriptions, shaping the embedding space for zero-shot classification without relying on labeled documents.

3 CONTRASTIVE LABEL-EMBEDDING ALIGNMENT

At a high level, our goal is to reshape an off-the-shelf dual-encoder text embedding model so that label verbalizers act as clean, well-positioned “representatives” of their labels in embedding space, purely based on natural-language descriptions of what those labels mean. Figure 1 provides a visual summary. We start from a pretrained text encoder and assume access only to a small set of descriptions per label, written as short paragraphs that spell out the intended meaning and scope of each class. We then fine-tune the encoder with a contrastive objective that (i) pulls each description toward its correct label verbalizer and (ii) moves each verbalizer toward the dense region of its own description cloud while repelling it from descriptions of other labels. Concretely, we construct a description-verbalizer similarity matrix and optimize a combination of rowwise InfoNCE and a columnwise multi-positive variant that captures the many-to-one relation between labels and their descriptions.

Setup and notation. Let $\mathcal{Y} = \{1, \dots, L\}$ denote the label set. For each $y \in \mathcal{Y}$ we assume two kinds of textual anchors:

- a short *verbalizer* v_y (e.g., for $y = \text{“Sports”}$ we might use $v_y = \text{“This news snippet is about sports.”}$), used at inference time to represent label y ;¹
- a small set of *label descriptions* $\mathcal{D}_y = \{d_y^k\}_{k=1}^{K_y}$, written as short paragraphs that clarify the kinds of documents y should cover.

We denote the union of all descriptions and its size by

$$\mathcal{D} = \bigcup_{y \in \mathcal{Y}} \mathcal{D}_y, \quad D = \sum_{y \in \mathcal{Y}} K_y.$$

No labeled documents are used at training time; all supervision flows through these verbalizers and descriptions.

Encoder and similarity scores. We use a single encoder f_θ with its native pooling map $\pi(\cdot)$.² Given a text t with S tokens, the encoder produces contextual token representations

$$f_\theta(t) \in \mathbb{R}^{S \times d}.$$

These are pooled and ℓ_2 -normalized to obtain a sentence embedding

$$e(t) = \frac{\pi(f_\theta(t))}{\|\pi(f_\theta(t))\|_2} \in \mathbb{R}^d,$$

so cosine similarity reduces to a dot product. With temperature $\tau > 0$, the similarity between a description d and a verbalizer v is

$$s(d, v) = \frac{e(d)^\top e(v)}{\tau}.$$

We reuse the encoder architecture and pooling strategy from the base model and only update θ ; no additional layers or task-specific heads are introduced.

¹Appendix H studies variants that (i) omit the verbalizer and use the label text directly, or (ii) replace it with the mean embedding of the descriptions.

²We use the pooling native to the pretrained model, e.g., CLS-token, mean, or last-token pooling.

216 **Batch structure and anchors.** Each training batch considers the cross-product between all de-
 217 scriptions \mathcal{D} and all verbalizers $\{v_1, \dots, v_L\}$, forming the score matrix
 218

$$219 \quad S \in \mathbb{R}^{D \times L}, \quad S_{y\ell}^k = s(d_y^k, v_\ell).$$

220 It is helpful to view this matrix from two complementary perspectives:
 221

- 222 • *Row-anchors (descriptions).* Each row corresponds to a single description d_y^k and should
 223 assign high probability to its correct label y while treating other labels $\ell \neq y$ as negatives.
- 224 • *Column-anchors (verbalizers).* Each column corresponds to verbalizer v_ℓ and should col-
 225 lect probability mass from all of its positives $\{d_\ell^k\}_{k=1}^{K_\ell}$ while discounting descriptions of
 226 other labels.

227 This row/column duality is central: rows enforce *one-positive discrimination* (each description
 229 chooses a label), while columns implement *multi-positive aggregation* over a label’s description
 230 set.

232 3.1 ROWWISE INFONCE: CLASSIFYING DESCRIPTIONS INTO LABELS

234 From the rowwise viewpoint, each description d_y^k is a query that must identify its label y among all
 235 L options. The induced distribution over labels is

$$237 \quad p(\ell \mid d_y^k) = \frac{\exp\{S_{y\ell}^k\}}{\sum_{j=1}^L \exp\{S_{yj}^k\}}.$$

240 The rowwise InfoNCE objective averages the cross-entropy against the correct label y :

$$242 \quad \mathcal{L}_{\text{rows}} = \frac{1}{D} \sum_{y \in \mathcal{Y}} \sum_{k=1}^{K_y} \left(\log \sum_{j=1}^L e^{S_{yj}^k} - S_{yy}^k \right). \quad (1)$$

245 This is equivalent to a multiclass classifier over labels, where each description is a training example
 246 and the verbalizers serve as the representative embeddings for each class. Intuitively, equation 1
 247 pulls each d_y^k toward its own verbalizer v_y while pushing it away from verbalizers $v_{\ell \neq y}$, tightening
 248 the alignment between descriptions and their labels.

250 3.2 COLUMNWISE MULTI-POSITIVE INFONCE: AGGREGATING OVER DESCRIPTION SETS

252 The rowwise objective treats each description independently. However, a label is not defined by a
 253 single canonical description, but by a *set* of complementary descriptions that cover different facets,
 254 edge cases, or typical failure modes. The columnwise objective explicitly models this many-to-one
 255 relation.

256 From the column perspective, each verbalizer v_ℓ has a set of positives $\mathcal{D}_\ell = \{d_\ell^k\}_{k=1}^{K_\ell}$, and all
 257 descriptions d_y^k with $y \neq \ell$ are negatives. We define the global and positive-partition normalizers

$$259 \quad Z_\ell = \sum_{y \in \mathcal{Y}} \sum_{k=1}^{K_y} \exp\{S_{y\ell}^k\}, \quad Z_\ell^+ = \sum_{k=1}^{K_\ell} \exp\{S_{\ell\ell}^k\}.$$

262 The columnwise objective maximizes the aggregated positive mass relative to the global normalizer:

$$264 \quad \mathcal{L}_{\text{cols}} = \frac{1}{L} \sum_{\ell=1}^L \left(\log Z_\ell - \log Z_\ell^+ \right). \quad (2)$$

267 This is a *set-level* multi-positive term: it optimizes the combined probability of a label’s positives
 268 rather than treating them as independent single-positive examples.

269 The log-sum-exp structure has two important consequences:

270
 271 • **Robustness to heterogeneous descriptions.** Strong, representative descriptions contribute
 272 more to Z_ℓ^+ , while noisy or idiosyncratic descriptions contribute less. Formally, the gradient

273
$$\frac{\partial \mathcal{L}_{\text{cols},\ell}}{\partial S_{\ell\ell}^k} = \frac{e^{S_{\ell\ell}^k}}{Z_\ell} - \frac{e^{S_{\ell\ell}^k}}{Z_\ell^+}$$

 274
 275

276 induces *adaptive within-positive weighting* proportional to $e^{S_{\ell\ell}^k}/Z_\ell^+$, automatically down-
 277 weighting outliers and emphasizing representative descriptions.³

278 • **Stability w.r.t. description count.** Because the objective depends on the ratio Z_ℓ^+/Z_ℓ
 279 and is normalized per label, it remains stable even when labels have different numbers of
 280 descriptions K_ℓ .⁴

281 Geometrically, equation 2 pulls each v_ℓ toward the high-density region (“cloud”) formed by its
 282 descriptions while repelling it from the description clouds of other labels.

284 3.3 FINAL OBJECTIVE AND CONNECTION TO STANDARD INFONCE

286 Our training loss is a simple symmetric combination of the rowwise and columnwise terms:

287
$$\mathcal{L} = \frac{1}{2} \mathcal{L}_{\text{rows}} + \frac{1}{2} \mathcal{L}_{\text{cols}}. \quad (3)$$

289 This symmetry encourages consistency in both directions: descriptions should clearly identify their
 290 label (rows), and each label should be well-explained by its description set (columns).⁵

291 In standard InfoNCE-style contrastive learning with paired batches, one forms a square similarity
 292 matrix whose diagonal entries are the unique positive pairs, and all off-diagonal entries act as in-
 293 batch negatives. In our setting, the score matrix $S \in \mathbb{R}^{D \times L}$ is rectangular, and positives are defined
 294 by label consistency rather than by the matrix diagonal: any cell (d_y^k, v_ℓ) with $y = \ell$ is a positive,
 295 while all cells with $y \neq \ell$ serve as in-batch negatives, yielding an $O(DL)$ softmax per batch. Unit-
 296 norm embeddings constrain optimization to the hypersphere, and the temperature τ controls the
 297 sharpness of the row- and column-softmax distributions. Following common practice in contrastive
 298 learning, we fix $\tau = 0.07$ (Gao et al., 2021; Chen et al., 2020b; Radford et al., 2021a).

300 3.4 INFERENCE AS DUAL-ENCODER CLASSIFICATION

301 At test time, we use the encoder as a standard dual encoder for classification. Given a document x ,
 302 we compute its embedding $e(x)$ and score labels by similarity to the verbalizers:

304
$$\text{score}(y \mid x) = e(x)^\top e(v_y), \quad \hat{y} = \arg \max_{y \in \mathcal{Y}} \text{score}(y \mid x).$$

 305

306 Because both documents and verbalizers can be pre-encoded and stored, classification reduces to a
 307 nearest-neighbor search over label representations. This preserves the computational advantages of
 308 dual-encoder inference by allowing labels to be reused across large corpora.

309 3.5 GEOMETRIC INTUITION

311 The combined effect of $\mathcal{L}_{\text{rows}}$ and $\mathcal{L}_{\text{cols}}$ is easiest to understand in geometric terms. Initially, verbal-
 312 izers and descriptions may be scattered: verbalizers can sit off-center relative to the document clouds
 313 of their labels, and class regions may partially overlap. The rowwise term contracts each description
 314 toward its own verbalizer and expands margins to other labels, encouraging a clear mapping from
 315 descriptions to the label-specific reference representations. The columnwise term simultaneously
 316 moves each verbalizer toward the *barycenter* of its description cloud while pushing it away from
 317 descriptions of other labels, ensuring that verbalizers end up in high-density regions of the correct
 318 class.

319 Figure 2 illustrates this process on AGNews (Zhang et al., 2015a) using the `all-MiniLM-L6-v2`
 320 model. In the *left* panel, verbalizers (★) sit off-center relative to the document clouds, and class

321 ³Appendix E provides an analysis of the impact of noisy descriptions.

322 ⁴Appendix F highlights this stability empirically.

323 ⁵Appendix D provides an empirical analysis of the loss components.

regions partially overlap. The *middle* panel depicts the learning forces: each description d_y^k (\blacktriangle) is pulled toward v_y and pushed away from other verbalizers; each v_y is pulled toward the barycenter of $\{d_y^k\}_k$ and repelled from descriptions of other labels. After optimization, the *right* panel shows verbalizers relocated near the densest part of their label’s description cloud and larger inter-label margins.

Fundamentally, although training uses only verbalizers and descriptions, the shared encoder is updated and the feature space is globally reshaped. Documents with similar semantics are steered toward their label’s “attractor direction,” reducing within-class dispersion and increasing between-class separation. In the 2-D UMAP view, this manifests as tighter, better-separated clouds in the right panel; in the full embedding space, it translates into more robust nearest-neighbor classification based on label verbalizers.

Figure 2: **AGNews (Zhang et al., 2015a).** Left: embeddings before finetuning (stars denote label verbalizers). Middle: schematic of our training forces (triangles denote label descriptions). Right: embeddings after finetuning.

3.6 HYPERPARAMETERS

Batching and training length. Because description sets are small, we treat one sweep over all description-verbalizer pairs as an *epoch*. When memory is constrained, we use gradient accumulation so that a single optimizer update corresponds to one logical sweep. We cap the maximum iterations liberally and apply early stopping on the training loss itself, a criterion that does not require labeled validation data.

Learning rate and uniformity selection. Performance is sensitive to the learning rate (LR). Overly aggressive LRs can trigger *representation collapse* (especially mode collapse (Bardes et al., 2021)) in our small-data regime, whereas simply reducing the LR avoids hard collapse but can stall progress and undercut alignment. We follow the view that contrastive learning balances *alignment* and *uniformity* on the hypersphere (Wang & Isola, 2020). In our setup, alignment is enforced by the supervision signal (descriptions \leftrightarrow verbalizers), so the main concern is to *preserve uniformity* so that the embedding space does not degenerate.

We therefore select the LR using a label-free uniformity criterion computed on an unlabeled pool $\mathcal{X}_u = \{x_i\}$ from the target domain. Let $z_i = e(x_i)$ be ℓ_2 -normalized embeddings and $t > 0$ a scale parameter. Define

$$\mathcal{L}_{\text{uni}}(t) = \log \mathbb{E}_{i \neq j} \left[e^{-t \|z_i - z_j\|_2^2} \right] \approx \log \left(\frac{1}{M} \sum_{m=1}^M e^{-t \|z_{i_m} - z_{j_m}\|_2^2} \right), \quad (4)$$

where (i_m, j_m) are random distinct indices from \mathcal{X}_u . Lower values correspond to more uniform (i.e., less collapsed) embeddings. To select the LR, we run short warmups at candidate values and choose the one that *minimizes* $\mathcal{L}_{\text{uni}}(t)$; following Wang & Isola (2020), we fix $t = 2$. This criterion is label-free, computationally inexpensive, and in practice lower values correlate with stronger downstream performance. Figure 8 in Appendix J illustrates this correlation across a range of models and datasets, with additional details provided in the appendix.

378 As a fallback, reusing the base model’s pretraining LR provides a safe, though non-optimized,
 379 choice.⁶ Figure 3(b) illustrates AGNews document embeddings from *all-MiniLM-L6-v2* at the LR
 380 chosen by this procedure; embeddings are reduced with PCA to \mathbb{R}^3 and projected onto the unit
 381 sphere \mathbb{S}^2 via ℓ_2 -normalization.⁷

383 4 EXPERIMENTAL SETUP

386 We evaluate on four text-classification benchmarks: topic (AGNews (Zhang et al., 2015a)), emotion
 387 (EmotionDAIR (Saravia et al., 2018)), sentiment (RottenTomatoes (Pang & Lee, 2005)), and fine-
 388 grained intent (Banking77 (Casanueva et al., 2020)). For each dataset and class, we write exactly
 389 5 short descriptions that characterize typical documents; examples and ablations on the number
 390 of descriptions are given in Appendices A and B. For Banking77, we report main results on six
 391 card-related intents to probe fine-grained distinctions and extend the analysis to the full label space,
 392 precision, and recall in Appendix I.

393 We test our method on ten pretrained dual-encoder text embedding models spanning a range of
 394 architectures and sizes (roughly 22M–600M parameters); Appendix C summarizes all models.

395 **Training.** We use AdamW (Loshchilov & Hutter, 2019), training for at most 1000 iterations with
 396 early stopping (patience = 10, tolerance $\Delta = 10^{-5}$), evaluated every 10 steps. Learning rates are
 397 swept over $\{1, 3, 5\} \times \{10^{-4}, 10^{-5}, 10^{-6}\}$ and selected using the uniformity score in Eq. equation 4,
 398 computed on 50,000 document pairs from the test subset of the target domain. To improve stability
 399 in our small-data regime, we use linear warmup during the first 50% of training steps.

400 **Evaluation.** To ensure comparability across tasks with different label cardinalities and class bal-
 401 ances, we use **macro F₁** as our primary metric, which gives equal weight to every class and is
 402 appropriate for both balanced and imbalanced multi-class settings (Sokolova & Lapalme, 2009).

405 Model	406 AGNews	407 Banking77	408 EmotionDAIR	409 RottenTomatoes	410 Avg
411 <i>all-MiniLM-L6-v2</i>	412 0.67	413 0.66	414 0.35	415 0.66	416 0.58
417 <i>trained</i>	418 0.79 (+0.12)	419 0.90 (<u>+0.23</u>)	420 0.43 (+0.09)	421 0.70 (+0.04)	422 0.70
423 <i>e5-base-v2</i>	424 0.75	425 0.79	426 0.44	427 0.83	428 0.70
429 <i>trained</i>	430 0.81 (+0.05)	431 0.96 (<u>+0.17</u>)	432 0.48 (+0.05)	433 0.82 (0.00)	434 0.77
435 <i>e5-large-v2</i>	436 0.78	437 0.79	438 0.44	439 0.85	440 0.72
441 <i>trained</i>	442 0.82 (+0.03)	443 0.96 (<u>+0.17</u>)	444 0.53 (+0.09)	445 0.86 (+0.00)	446 0.79
447 <i>bge-base-en-v1.5</i>	448 0.63	449 0.86	450 0.42	451 0.81	452 0.68
453 <i>trained</i>	454 0.82 (<u>+0.19</u>)	455 0.95 (+0.09)	456 0.47 (+0.06)	457 0.82 (+0.01)	458 0.77
459 <i>bge-large-en-v1.5</i>	460 0.75	461 0.84	462 0.44	463 0.82	464 0.71
465 <i>trained</i>	466 0.82 (+0.07)	467 0.95 (+0.10)	468 0.56 (<u>+0.12</u>)	469 0.85 (+0.03)	470 0.80
471 <i>gte-base-en-v1.5</i>	472 0.73	473 0.86	474 0.44	475 0.84	476 0.72
477 <i>trained</i>	478 0.83 (<u>+0.09</u>)	479 0.95 (+0.08)	480 0.49 (+0.06)	481 0.85 (+0.01)	482 0.78
483 <i>gte-modernbert-base</i>	484 0.75	485 0.88	486 0.45	487 0.82	488 0.73
489 <i>trained</i>	490 0.80 (+0.05)	491 0.94 (<u>+0.06</u>)	492 0.49 (+0.04)	493 0.84 (+0.03)	494 0.77
495 <i>gte-large-en-v1.5</i>	496 0.72	497 0.92	498 0.40	499 0.87	500 0.73
501 <i>trained</i>	502 0.83 (+0.11)	503 0.95 (+0.03)	504 0.50 (+0.10)	505 0.83 (-0.04)	506 0.78
507 <i>Qwen3-Embedding-0.6B</i>	508 0.63	509 0.88	510 0.48	511 0.76	512 0.69
513 <i>trained</i>	514 0.85 (<u>+0.22</u>)	515 0.92 (+0.03)	516 0.57 (+0.08)	517 0.88 (+0.12)	518 0.80
519 <i>embeddinggemma-300m</i>	520 0.53	521 0.80	522 0.49	523 0.64	524 0.61
525 <i>trained</i>	526 0.74 (+0.21)	527 0.94 (+0.14)	528 0.57 (+0.09)	529 0.73 (+0.09)	530 0.74

424 Table 1: Main results by model family. Each model has a base row (zero-shot) and a trained row,
 425 with F1 scores and improvements reported in percentage points. Best trained F1 per dataset is
 426 **bold**. For each model, the largest improvement is underlined. Averages are macro-averages across
 427 datasets; trained averages include the mean improvement in parentheses.

429 ⁶This heuristic proved effective across many model-dataset combinations we tested.

430 ⁷We avoid UMAP because its locality-crowding parameters can arbitrarily distort interpoint distances, making
 431 it unsuitable for objectively visualizing uniformity.

432 **5 RESULTS AND ANALYSIS**

433

434

435 We begin with the overall effect of label alignment across all models and datasets. Averaging over
 436 ten encoders and four benchmarks (Table 1), description-only training improves macro-F₁ from
 437 roughly 0.68 to 0.77, i.e. by about **+0.09** absolute. This confirms that aligning label verbalizers
 438 with a compact set of semantically rich descriptions yields a consistent and robust gain in true zero-
 439 shot transfer.

440 The magnitude of improvement varies by dataset. On **AGNews**, the mean increase is about **+0.12**
 441 (range $\approx +0.04$ to $+0.22$), with particularly large jumps for smaller or less specialized encoders:
 442 for example, *bge-base-en-v1.5* improves from 0.63 to 0.82, and *embeddinggemma-300m* from 0.53
 443 to 0.74. **Banking77** shows a similarly strong average gain of about **+0.11**, with several models
 444 registering double-digit improvements (e.g., *all-MiniLM-L6-v2* from 0.66 to 0.90, *e5-base-v2* and
 445 *e5-large-v2* from 0.79 to 0.96, and *embeddinggemma-300m* from 0.80 to 0.94). For **EmotionDAIR**,
 446 the mean improvement is more modest, around **+0.07** (typical range $+0.04$ to $+0.12$), while **RottenTomatoes**
 447 exhibits the smallest average gain (about **+0.03**), with changes spanning from slightly
 448 negative to $+0.12$ depending on the encoder. This pattern suggests that topical and intent-based tasks
 449 benefit most from description alignment, whereas emotion recognition and binary sentiment offer
 450 less headroom, especially for already strong baselines.

451 Turning to dataset-specific winners, different models achieve the top post-training performance. On
 452 **AGNews**, *Qwen3-Embedding-0.6B* reaches **0.85**, reflecting one of the largest single improvements
 453 in the table ($+0.22$). On **Banking77**, *e5-large-v2* attains **0.96** (tied with *e5-base-v2*), matching the
 454 best scores on this benchmark. For **EmotionDAIR**, *embeddinggemma-300m* achieves the highest
 455 reported macro-F₁ at **0.57**, and on **RottenTomatoes**, *Qwen3-Embedding-0.6B* again leads with
 456 **0.88**. Considering macro-averaged F₁ across all four datasets, *Qwen3-Embedding-0.6B* and *bge-
 457 large-en-v1.5* reach the highest overall performance at **0.80**, closely followed by *e5-large-v2* at
 458 **0.79** and *gte-base-en-v1.5* and *gte-large-en-v1.5* around **0.78**.

459 The cost-benefit profile shows that both compact and larger encoders profit, but in different regimes.
 460 Smaller models often realize the largest relative improvements: *all-MiniLM-L6-v2* gains about
 461 **+0.12** on average (from 0.58 to 0.70), including a jump from 0.66 to 0.90 on **Banking77**, while
 462 *embeddinggemma-300m* improves by roughly **+0.13** on average (0.61 \rightarrow 0.74), with strong gains
 463 on **AGNews** and **Banking77**. At the same time, the strongest models in the pool also benefit. *Qwen3-
 464 Embedding-0.6B* records an average improvement of about **+0.12** and achieves the best or tied-best
 465 scores on two datasets, underlining that substantial gains are not limited to weaker encoders. Con-
 466 versely, families such as E5 and GTE start from already high baselines, particularly on **RottenToma-
 467 toes** (0.82-0.87 before training), which naturally constrains the headroom for further improvement
 468 and leads to more modest deltas.

469 Family-level trends are relatively stable. The E5 models show average gains between roughly **+0.06**
 470 and **+0.08**, BGE models between **+0.08** and **+0.09**, and GTE models between **+0.04** and **+0.06**.
 471 Despite these modest increments, the GTE and BGE families remain among the strongest per-
 472 formers in absolute terms after description-tuning. Meanwhile, Gemma and Qwen perform above
 473 expectations given their parameter counts: *embeddinggemma-300m* becomes highly competitive after
 474 tuning, and *Qwen3-Embedding-0.6B* reaches the top average score and leads on **AGNews** and **Rot-
 475 tenTomatoes**.

476 The distribution of improvements also sheds light on dataset difficulty. **EmotionDAIR** stands out
 477 as the most challenging benchmark: even the best fine-tuned model reaches only **0.57** macro-F₁,
 478 well below the post-training levels on **AGNews**, **Banking77**, and **RottenTomatoes**. This suggests
 479 that emotion recognition may require not only richer descriptions but also a larger and more diverse
 480 description set per label to adequately capture subtle and context-dependent emotional cues. In con-
 481 trast, **AGNews** and **Banking77** benefit most strongly from description alignment, consistent with
 482 the intuition that topical and intent semantics are well captured by concise, high-quality definitions.
 483 On **RottenTomatoes**, the degree of improvement is inversely related to the encoder’s baseline qual-
 484 ity: weaker models (e.g., MiniLM, Gemma, Qwen) gain noticeably, while the strongest encoders
 485 improve only marginally and sometimes not at all.

Few-shot comparison. To contextualize our zero-shot description-only alignment, we compare
 486 against SetFit (Tunstall et al., 2022), a widely used few-shot method for embedding models. SetFit

486 combines a contrastive pretraining stage with a lightweight classifier head. Following the original
 487 setup, we train SetFit on EmotionDAIR with 8 samples per class and repeat the procedure 20 times
 488 with different random draws of the training set. Our approach, by contrast, uses 5 descriptions per
 489 class and generates 20 variations of the descriptions. Figure 3(a) shows that our method achieves
 490 a higher average macro-F1 and, more importantly, exhibits substantially smaller variance. While
 491 SetFit can occasionally match or exceed our performance, it displays a long tail of poor outcomes,
 492 reflecting its sensitivity to the specific few-shot samples selected.

493 In summary, description-only finetuning yields consistent performance gains across a diverse set
 494 of encoders and tasks. The largest improvements occur on topic and intent classification, while
 495 emotion recognition remains comparatively difficult. The method is particularly appealing in low-
 496 compute settings, where smaller models realize disproportionate benefits, yet even strong off-the-
 497 shelf encoders record non-trivial positive gains, and the best-performing models after training are
 498 among the most parameter-efficient ones.

518 Figure 3: (a) Performance comparison of our approach with SetFit (Tunstall et al., 2022) on the
 519 EmotionDAIR dataset (Saravia et al., 2018), across 20 runs with different sampled training sets. (b)
 520 Visualization of AGNews document embeddings after finetuning `all-MiniLM-L6-v2`, projected
 521 onto the hypersphere using PCA; colors indicate class membership.

523 6 CONCLUSION AND FUTURE WORK

525 We introduced *contrastive label-embedding alignment* for zero-shot text classification with dual-
 526 encoder text embedding models, using short, human-written label descriptions as the sole super-
 527 vision signal. By aligning label verbalizers with their descriptions via a symmetric multi-positive
 528 contrastive objective, our method reshapes the embedding space into a label-aware geometry and
 529 yields consistent, architecture-agnostic gains over naïve zero-shot use of embeddings, averaging
 530 **+0.09** macro-F1 across ten encoders and four datasets. Compared with a few-shot SetFit pipeline
 531 using 8 labeled examples per class, it attains higher average performance with substantially lower
 532 variance across runs, while preserving efficient pre-encodable dual-encoder inference and avoiding
 533 labeled documents entirely. A natural next step is to investigate the role of hyperspherical uniformity
 534 more deeply, both in its empirical correlation with downstream performance and in ways it could be
 535 incorporated directly into the training objective.

536 REPRODUCIBILITY STATEMENT

538 We will release the full codebase under an MIT license, including preprocessing scripts, training
 539 and evaluation routines, the uniformity-based learning-rate selection code, and all logging utilities

540 required to regenerate figures and tables. The label-description sets and the exact sampling protocol
 541 used for the uniformity metric will be made publicly available. Fine-tuned checkpoints for all re-
 542 ported models will be released in Hugging Face format, and we will document the exact pretrained
 543 encoder revisions used.

544 All hyperparameters (optimizer, learning-rate grids, batch sizes, gradient accumulation, early-
 545 stopping criteria) are specified in the main text at the point of use; the appendix provides additional
 546 in-depth results. Experiments were run on NVIDIA A100 80 GB GPUs, with inference carried out
 547 in `bfloat16`. We provide pinned package versions and configuration files to recreate the software
 548 environment.

549 We do not fix random seeds during training. Instead, we verified empirically that the results and
 550 conclusions are robust to stochasticity in initialization and sampling. We rely only on publicly
 551 available datasets and pretrained encoders, which are properly cited. To our knowledge, there are no
 552 legal or technical restrictions that would prevent exact reproduction of our results.

554 REFERENCES

556 Charu C. Aggarwal and ChengXiang Zhai. A survey of text classification algorithms. In *Mining*
 557 *Text Data*, pp. 163–222. Springer, 2012. doi: 10.1007/978-1-4614-3223-4_6.

559 Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
 560 for self-supervised learning. *arXiv preprint arXiv:2105.04906*, 2021. URL <https://arxiv.org/abs/2105.04906>.

562 Tom B. Brown, Benjamin Mann, Nick Ryder, and et al. Language models are few-
 563 shot learners. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 564 2020. URL <https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf>.

566 Iñigo Casanueva, Tadas Temcinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
 567 intent detection with dual sentence encoders. In *Proceedings of the 28th International Conference*
 568 *on Computational Linguistics*, 2020.

570 Diyi Chai, Hongliang Fei, and Ping Li. Description based text classification with reinforcement
 571 learning. In *Proceedings of ICML*, volume 119 of *Proceedings of Machine Learning Research*,
 572 pp. 1385–1395, 2020. URL <https://proceedings.mlr.press/v119/chai20a/chai20a.pdf>.

574 Ming-Wei Chang, Lev Ratinov, Dan Roth, and Vivek Srikumar. Importance of semantic representa-
 575 tion: Dataless classification. In *Proceedings of the 23rd AAAI Conference on Artificial Intelligence*
 576 (*AAAI*), 2008.

578 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 579 contrastive learning of visual representations. In *Proceedings of ICML*, pp. 1597–1607, 2020a.
 580 URL <https://proceedings.mlr.press/v119/chen20j/chen20j.pdf>.

581 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 582 contrastive learning of visual representations. *arXiv preprint arXiv:2002.05709*, 2020b.

584 Isaac Chung, Imene Kerboua, Marton Kardos, Roman Solomatin, and Kenneth Enevoldsen. Main-
 585 taining mteb: Towards long term usability and reproducibility of embedding benchmarks. *arXiv*
 586 *preprint arXiv:2506.21182*, 2025.

587 Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy,
 588 Clément Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, Maël Primet,
 589 and Joseph Dureau. Snips voice platform: an embedded spoken language understanding sys-
 590 tem for private-by-design voice interfaces. In *arXiv preprint arXiv:1805.10190*, 2018. URL
 591 <https://arxiv.org/abs/1805.10190>.

593 Xinwei Dong, Shujian Huang, Jiajun Chen, et al. A survey on in-context learning. *EMNLP 2024*,
 594 2024. URL <https://aclanthology.org/2024.emnlp-main.64/>.

594 Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, et al. Mmteb:
 595 Massive multilingual text embedding benchmark. *arXiv preprint arXiv:2502.13595*, 2025.

596

597 Yu Fei, Zhao Meng, Ping Nie, Roger Wattenhofer, and Mrinmaya Sachan. Beyond prompting: Mak-
 598 ing pre-trained language models better zero-shot learners by clustering representations. In *Pro-
 599 ceedings of EMNLP*, pp. 8560–8579, 2022. URL <https://aclanthology.org/2022.emnlp-main.587.pdf>.

600

601 Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using wikipedia-based
 602 explicit semantic analysis. In *Proceedings of the 20th International Joint Conference on Artificial
 603 Intelligence (IJCAI)*, 2007.

604

605 Lingyu Gao, Debanjan Ghosh, and Kevin Gimpel. The benefits of label-description training for zero-
 606 shot text classification. In *Proceedings of EMNLP*, 2023. URL <https://aclanthology.org/2023.emnlp-main.853>.

607

608 Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
 609 embeddings. In *Proceedings of EMNLP*, 2021. URL <https://arxiv.org/abs/2104.08821>.

610

611 Google DeepMind and Google Research. Introducing embeddinggemma: Best-in-class open multi-
 612 lingual text embeddings under 500m parameters. Google Developers Blog, 2025. URL <https://developers.googleblog.com/en/introducing-embeddinggemma/>. Accessed Sep 2025.

613

614

615 Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
 616 mapping. In *Proceedings of CVPR*, pp. 1735–1742, 2006. doi: 10.1109/CVPR.2006.100.

617

618 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
 619 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 620 In *Proceedings of ICML*, 2019. URL <https://arxiv.org/abs/1902.00751>.

621

622 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 623 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv:2106.09685*,
 624 2022. URL <https://arxiv.org/abs/2106.09685>.

625

626 Steven Larson, Anish Mahendran, Andrew Lee, and et al. An evaluation dataset for intent classi-
 627 fication and out-of-scope prediction. In *Proceedings of EMNLP-IJCNLP*, pp. 1311–1316, 2019.
 628 URL <https://aclanthology.org/D19-1131.pdf>.

629

630 Moritz Lauer, Wouter van Atteveldt, Andreu Casas, and Kasper Welbers. Building Efficient Uni-
 631 versal Classifiers with Natural Language Inference, December 2023. URL <http://arxiv.org/abs/2312.17543>. *arXiv:2312.17543* [cs].

632

633 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
 634 general text embeddings with multi-stage contrastive learning. *arXiv:2308.03281*, 2023. URL
 635 <https://arxiv.org/abs/2308.03281>.

636

637 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
 638 train, prompt, and predict: A systematic survey of prompting methods in nlp. *ACM Computing
 639 Surveys*, 2023. URL <https://arxiv.org/abs/2107.13586>.

640

641 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 642 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

643

644 Man Luo, Xin Xu, Yue Liu, Panupong Pasupat, and Mehran Kazemi. In-context learning with
 645 retrieved demonstrations for language models: A survey. *arXiv preprint arXiv:2401.11624*, 2024.
 646 URL <https://arxiv.org/abs/2401.11624>.

647

648 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
 649 Potts. Learning word vectors for sentiment analysis. In *Proceedings of ACL-HLT*, pp. 142–150,
 650 2011. URL <https://aclanthology.org/P11-1015/>.

648 Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, and Jiawei Han. Text classification using
 649 label names only: A language model self-training approach. In *Proceedings of EMNLP*, 2020.
 650 URL <https://aclanthology.org/2020.emnlp-main.724.pdf>.

651

652 George A. Miller. Wordnet: A lexical database for english. *Communications of the ACM*, 38(11):
 653 39–41, 1995. doi: 10.1145/219717.219748.

654

655 Marius Mosbach, Nicolas Meier, Michael A. Hedderich, and Dietrich Klakow. Few-shot fine-tuning
 656 vs. in-context learning: A fair comparison on challenging datasets. In *Findings of ACL*, 2023.
 657 URL <https://aclanthology.org/2023.findings-acl.779/>.

658

659 Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Reza Rezagholizadeh, Giuseppe Attanasio,
 660 Noémie Leprétre, Daniel J. Beutel, Milad Moradi, Yacine Jernite, Douwe Kiela, et al.
 661 Mteb: Massive text embedding benchmark. In *Proceedings of EACL*, 2023. URL <https://aclanthology.org/2023.eacl-main.148/>.

662

663 Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qim-
 664 ing Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam,
 665 Boris Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr, Fe-
 666 lipe Petroski Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne
 667 Jang, Peter Welinder, and Lilian Weng. Text and code embeddings by contrastive pre-training.
 arXiv:2201.10005, 2022. URL <https://arxiv.org/abs/2201.10005>.

668

669 Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
 670 with respect to rating scales. In *ACL*, 2005.

671

672 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 673 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 674 Sutskever. Learning transferable visual models from natural language supervision. *arXiv preprint*
 arXiv:2103.00020, 2021a.

675

676 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 677 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 678 Sutskever. Learning transferable visual models from natural language supervision. In *Proceed-
 ings of ICML*, 2021b. URL <https://arxiv.org/abs/2103.00020>.

679

680 Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
 681 Snorkel: Rapid training data creation with weak supervision. *PVLDB*, 11(3):269–282, 2017. doi:
 10.14778/3157794.3157797.

682

683 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 684 networks. In *Proceedings of EMNLP-IJCNLP*, pp. 3982–3992, 2019. URL <https://aclanthology.org/D19-1410>.

685

686 Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. Carer: Con-
 687 textualized affect representations for emotion recognition. In *Proceedings of EMNLP 2018*, pp.
 688 3687–3697, Brussels, Belgium, 2018. doi: 10.18653/v1/D18-1404.

689

690 Timo Schick and Hinrich Schütze. Exploiting cloze questions for few-shot text classification and
 691 natural language inference. In *Proceedings of EACL*, 2021. URL <https://arxiv.org/abs/2001.07676>.

692

693 Sam Scott and Stan Matwin. Text classification using wordnet hypernyms. In *Usage of WordNet in
 694 Natural Language Processing Systems (Workshop at COLING-ACL)*, pp. 45–52, 1998.

695

696 Fabrizio Sebastiani. Machine learning in automated text categorization. *ACM Computing Surveys*,
 697 34(1):1–47, 2002. doi: 10.1145/505282.505283.

698

699 Burr Settles. *Active Learning*. Synthesis Lectures on Artificial Intelligence and Machine Learning.
 Morgan & Claypool, 2012. doi: 10.2200/S00429ED1V01Y201207AIM018.

700

701 Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classifica-
 tion tasks. *Information Processing & Management*, 45(4):427–437, 2009.

702 Lewis Tunstall, Edward Beeching, Nathan Lambert, Benoit Delangue, Leandro von Werra, Ab-
 703 hishek Thakur, Philipp Schmid, Sylvain Gugger, Omar Sanseviero, and Nils Reimers. Efficient
 704 few-shot learning without prompts. In *NeurIPS 2022 Workshop on Efficient Natural Language*
 705 *and Speech Processing*, 2022. URL <https://arxiv.org/abs/2209.11055>.

706 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive pre-
 707 dictive coding. *arXiv preprint arXiv:1807.03748*, 2018. URL <https://arxiv.org/abs/1807.03748>.

708

710 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan
 711 Majumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training.
 712 arXiv:2212.03533, 2022. URL <https://arxiv.org/abs/2212.03533>.

713 Pu Wang, Jian Hu, Hua-Jun Zeng, and Zheng Chen. Using wikipedia knowledge to improve
 714 text classification. *Knowledge and Information Systems*, 19(3):265–281, 2009. doi: 10.1007/
 715 s10115-008-0152-4.

716 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
 717 alignment and uniformity on the hypersphere. In Hal Daumé III and Aarti Singh (eds.), *Pro-
 718 ceedings of the 37th International Conference on Machine Learning*, volume 119 of *Pro-
 719 ceedings of Machine Learning Research*, pp. 9929–9939. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/wang20k.html>.

720

722 Shitao Xiao, Fan Cui, Yuxiang Zhang, et al. Packed resources for general chinese embeddings (bge)
 723 and flagembedding. arXiv:2309.07597, 2023. URL [https://arxiv.org/abs/2309.
 724 07597](https://arxiv.org/abs/2309.07597).

725

726 Wenpeng Yin, Jamaal Hay, and Dan Roth. Benchmarking zero-shot text classification: Datasets,
 727 evaluation and entailment approach. In *Proceedings of EMNLP-IJCNLP*, pp. 3914–3923, 2019.
 728 URL <https://aclanthology.org/D19-1404>.

729

730 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
 731 sification. In *NIPS*, 2015a.

732

733 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classifi-
 734 cation. In *Proceedings of NeurIPS*, 2015b. URL <https://arxiv.org/abs/1509.01626>.

735

736 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 737 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Ad-
 738 vancing text embedding and reranking through foundation models. arXiv:2506.05176, 2025. URL
 739 <https://arxiv.org/abs/2506.05176>.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A DATASETS OVERVIEW**
757758 Table 2 summarizes the datasets used in our experiments, including their domains, number of
759 classes, sources, and license terms. All datasets are publicly available via Hugging Face Datasets⁸.
760 For label verbalizers, we follow the setup of Laurer et al. (2023).
761762 Our selection deliberately covers four common zero-shot classification families: emotion recog-
763 nition on social media (*EmotionDAIR*), intent detection in a narrow banking domain (*Banking77*),
764 binary sentiment analysis for movie reviews (*RottenTomatoes*), and topic classification in news (*AG-
765 News*). This yields a mix of short, informal texts (*EmotionDAIR*, *Banking77*), longer and more
766 descriptive documents (*AGNews*), and highly domain-specific language (banking vs. movies vs.
767 general news). For all datasets we use the official test splits provided by the original authors (as
768 exposed through Hugging Face).
769

Task	Domain	Dataset	# Classes	Source	License
Emotion	Social media	EmotionDAIR	6	Saravia et al. (2018)	Research/education only
Intent	Banking	Banking77	6 ⁹	Casanueva et al. (2020)	CC BY 4.0
Sentiment	Movies	RottenTomatoes	2	Pang & Lee (2005)	CC0 1.0
Topic	News	AGNews	4	Zhang et al. (2015a)	Non-commercial

775 Table 2: Datasets used in the evaluation, covering emotion recognition, intent detection, sentiment
776 analysis, and topic classification.
777778 **B LABEL VERBALIZERS AND DESCRIPTIONS**
779780 Our method assumes a short verbalizer and a small set of natural-language descriptions for each
781 label. The verbalizer plays the role of a compact, sentence-level anchor (e.g., “This example news
782 text is about world news”), while the descriptions provide richer, paragraph-level semantics that
783 spell out the kinds of documents the label should cover. In practice, we construct these descriptions
784 manually, starting from the label verbalizers of Laurer et al. (2023) and expanding each label into
785 multiple complementary paraphrases. For AGNews, shown below, we write 5 descriptions per class
786 that: (i) emphasize different aspects of the underlying topic (e.g., actors, events, context), (ii) avoid
787 overlap with other labels (e.g., business vs. world news vs. sports), and (iii) remain generic enough
788 to apply across articles and time periods.
789790 These descriptions are used exclusively during our description-only training stage; no dataset exam-
791 ples or ground-truth labels are required to construct them. At inference time, the model receives only
792 raw documents and the label representations (verbalizers, label names, or mean description embed-
793 dings; see Appendix H) and must classify texts in a strict zero-shot manner. Table 3 illustrates the
794 resulting description sets for AGNews; analogous description collections are created for Banking77,
795 *EmotionDAIR*, and *RottenTomatoes*.
796
797
798
799
800
801
802
803
804
805
806
807
8088⁸<https://huggingface.co/datasets>9For *Banking77*, we restrict evaluation to the six card-related intent classes for fine-grained classification.

Category (verbalizer)	Descriptions
World News	<p>Verbalizer: "This example news text is about world news."</p> <ul style="list-style-type: none"> Coverage of international affairs and geopolitics: governments, elections, diplomacy, conflicts, treaties, and sanctions. Stories focus on cross-border events and their global implications rather than domestic business or sports outcomes. News about countries interacting on the world stage: summits, UN resolutions, regional alliances, and humanitarian crises. Emphasis is on state actors, policy decisions, and shifts in international relations. Reporting on wars, ceasefires, peace talks, and military deployments across regions. Articles highlight causes, stakeholders, civilian impact, and reactions from other nations or international bodies. Global society and policy issues such as migration, human rights, climate diplomacy, and development aid. Pieces track how multiple countries respond and coordinate. International incidents and disasters (natural or man-made) where response, accountability, and cross-national coordination are central. Focus remains on worldwide context rather than local business ramifications.
Sports	<p>Verbalizer: "This example news text is about sports."</p> <ul style="list-style-type: none"> Results, previews, and analysis of professional or amateur competitions: matches, tournaments, standings, and championships. Content centers on performance, tactics, and outcomes on the field. Athlete-focused updates including injuries, transfers, contracts, and retirements. Stories emphasize team dynamics and competitive impact. Coverage of leagues and events: scheduling, rule changes, drafts, and officiating controversies. The angle is sporting governance and competitive fairness. Game recaps and statistical breakdowns highlighting key plays, records, and milestones. The narrative ties individual performances to team results. Profiles and human-interest features about coaches, players, and training methods. Emphasis is on preparation, strategy, and competitive psychology.
Business	<p>Verbalizer: "This example news text is about business news."</p> <ul style="list-style-type: none"> Corporate news: earnings, revenue guidance, layoffs, executive changes, and strategic shifts. Articles assess company performance and shareholder impact. Markets and finance coverage: stocks, bonds, commodities, currencies, and macro sentiment. Focus is on price moves, drivers, and investor reactions. Mergers, acquisitions, IPOs, and venture funding. Pieces explain valuations, synergies, and regulatory hurdles. Industry developments such as competition, supply chains, pricing, and business models across sectors. Reporting connects firm-level actions to market structure. Policy and regulation affecting commerce: antitrust cases, trade policy, taxes, and compliance. The lens is how rules shape corporate behavior and profitability.
Science & Technology	<p>Verbalizer: "This example news text is about science and technology."</p> <ul style="list-style-type: none"> Scientific research findings across fields like biology, physics, medicine, and climate science. Articles emphasize methods, evidence, and potential applications or limitations. Technology product and platform news: hardware, software, mobile, cloud, and consumer gadgets. Coverage focuses on features, performance, and user impact. AI, data science, and computing breakthroughs including models, chips, algorithms, and benchmarks. Stories discuss capabilities, risks, and real-world use cases. Space and astronomy updates: launches, missions, telescopes, and planetary discoveries. Coverage highlights scientific goals and engineering challenges. Cybersecurity and privacy incidents: vulnerabilities, breaches, hacks, and defenses. Reporting centers on technical cause, affected users, and mitigations.

Table 3: AGNews (Zhang et al., 2015a) class verbalizer and class descriptions (5 per class).

864

C EMBEDDING MODELS

865
 866 Our benchmark covers ten publicly available embedding models spanning different architectures,
 867 parameter scales, and training paradigms (Table 4). We include (i) smaller sentence-transformer
 868 style encoders such as `all-MiniLM-L6-v2`, (ii) recent E5 and BGE models trained on large
 869 synthetic contrastive corpora, (iii) the GTE family including a ModernBERT-based variant, and
 870 (iv) two more recent architectures targeting embedding quality, `embeddinggemma-300m` and
 871 `Qwen3-Embedding-0.6B`. This mix allows us to test description-tuning on both lightweight
 872 models that are attractive in low-compute settings and larger, state-of-the-art encoders that already
 873 perform strongly in zero-shot retrieval and classification benchmarks.

874 For each model, Table 4 reports publication year, base architecture (encoder vs. decoder), backbone,
 875 main pre-training or fine-tuning corpus, parameter count, pooling strategy, and embedding dimen-
 876 sionality. We always use the pooling operation recommended by the model authors (e.g., mean
 877 pooling for E5, CLS pooling for GTE/BGE), and apply our description-only training on top of the
 878 publicly released checkpoints without any additional task-specific pretraining. The diversity of ar-
 879 chitectures and training recipes allows us to assess how robust our method is across model families,
 880 as presented in the main results (Table 1).

Model	Yr	Arch.	Backbone	FT / train data	#P	Pool	Dim
<code>all-MiniLM-L6-v2</code>	2021	enc.	MiniLM	1B paired sentences	22.7M	mean	384
<code>e5-base-v2</code>	2023	enc.	E5 (BERT)	270M synthetic contrastive	110M	mean	768
<code>e5-large-v2</code>	2023	enc.	E5 (BERT)	same as above	335M	mean	1024
<code>bge-base-en-v1.5</code>	2023	enc.	BGE (RoB.)	1.5B pair data, contrastive	137M	CLS	768
<code>bge-large-en-v1.5</code>	2023	enc.	BGE (RoB.)	same as above	434M	CLS	1024
<code>gte-base-en-v1.5</code>	2024	enc.+	GTE	MLM + contrastive pre-train	137M	CLS	768
<code>gte-large-en-v1.5</code>	2024	enc.+	GTE	same as above	434M	CLS	1024
<code>gte-modernbert-base</code>	2024	enc.	ModernBERT	same as above	149M	CLS	768
<code>embeddinggemma-300m</code>	2025	enc.	Gemma 3 (enc.)	Multiling. corpus (320B tok), contrastive	308M	mean	768 [*]
<code>Qwen3-Embedding-0.6B</code>	2025	dec.	Qwen3	synthetic multiling. contrastive	0.6B	last	1024

891 Table 4: Architectural and training overview of the 10 embedding models used. Columns list publi-
 892 cation year (Yr), encoder/decoder architecture (Arch.), backbone, principal fine-tuning (FT) or pre-
 893 training data, parameter count (#P), pooling strategy (Pool), and embedding dimensionality (Dim).

894 ^{*}For `embeddinggemma-300m`, dimensionality 768 corresponds to Matryoshka Representation
 895 Learning (MRL) with nested sizes 512/256/128, a training scheme enabling shorter embeddings.

896

D CONTRASTIVE LOSS VARIANTS

900 **Effect of the loss components.** Table 5 compares the three objectives introduced in Section 3:
 901 the rowwise InfoNCE loss $\mathcal{L}_{\text{rows}}$, the columnwise loss $\mathcal{L}_{\text{cols}}$, and their symmetric combination $\mathcal{L} =$
 902 $\frac{1}{2}\mathcal{L}_{\text{rows}} + \frac{1}{2}\mathcal{L}_{\text{cols}}$. Averaged over the four datasets, the symmetric loss is always at least as good as
 903 the best of the two single-sided losses and typically improves macro-F₁ by a small but consistent
 904 margin. Across the ten backbones, \mathcal{L} improves over $\mathcal{L}_{\text{rows}}$ by about +0.01 macro-F₁ on average
 905 and over $\mathcal{L}_{\text{cols}}$ by roughly +0.03 macro-F₁. The gains are particularly visible for the smaller or less
 906 specialized models (e.g., BGE-base, Gemma), where combining both directions yields up to +0.04
 907 macro-F₁ compared to training only with $\mathcal{L}_{\text{cols}}$.

908 At the same time, the ablation confirms that $\mathcal{L}_{\text{rows}}$ is the stronger of the two components when used
 909 in isolation. For almost all backbones in Table 5, $\mathcal{L}_{\text{rows}}$ matches or slightly outperforms $\mathcal{L}_{\text{cols}}$ when
 910 trained alone, indicating that using description vectors as anchors (rows) already captures most of
 911 the benefit of description-tuning. The columnwise objective by itself is thus not sufficient to reach
 912 the best performance, but it becomes beneficial once combined with the rowwise term.

913 **Per-dataset behavior.** The disaggregated results in Table 6 show that this pattern holds across
 914 tasks. Out of the 40 (model, dataset) combinations, the symmetric loss \mathcal{L} achieves the best or tied-
 915 best macro-F₁ in 34 cases; in the remaining 6 cases, either $\mathcal{L}_{\text{rows}}$ or $\mathcal{L}_{\text{cols}}$ is better, but never by
 916 more than 0.03 absolute F₁. On coarse-grained topic classification (AGNews) and binary senti-
 917 ment (RottenTomatoes), the three losses are often very close, with \mathcal{L} typically providing a modest

refinement on top of $\mathcal{L}_{\text{rows}}$ (e.g., e5-large, gte-base). The advantage of the symmetric objective becomes more pronounced on the fine-grained tasks Banking77 and EmotionDAIR. For instance, for BGE-large on EmotionDAIR, \mathcal{L} reaches 0.56 macro-F₁, improving over both $\mathcal{L}_{\text{rows}}$ (0.52) and $\mathcal{L}_{\text{cols}}$ (0.53); for Gemma on EmotionDAIR, the symmetric loss lifts performance from 0.45 (rows-only) and 0.54 (cols-only) to 0.57. Similar trends hold for Qwen on EmotionDAIR and for several models on Banking77.

There are a few isolated cases where a single-sided loss slightly dominates the symmetric one (e.g., Qwen on AGNews, Gemma on AGNews and RottenTomatoes, GTE-large on EmotionDAIR and RottenTomatoes), but the margins are small (1-3 F₁ points) and not systematic across backbones or tasks. We therefore view these as noise-level fluctuations rather than evidence against the symmetric formulation.

Takeaways. Overall, the ablation supports our design choice. The rowwise term $\mathcal{L}_{\text{rows}}$ is the primary driver of performance: using description embeddings as anchors already yields strong zero-shot classifiers and consistently outperforms the columnwise variant when used in isolation. The columnwise term $\mathcal{L}_{\text{cols}}$ plays a complementary role: it is weaker on its own but, when combined with $\mathcal{L}_{\text{rows}}$, acts as a regulariser that better structures the joint description-label space, leading to small but robust gains across most backbones and datasets. Consequently, we adopt the symmetric loss \mathcal{L} as our default objective in all subsequent experiments.

Model	$\mathcal{L}_{\text{rows}}$	$\mathcal{L}_{\text{cols}}$	\mathcal{L}
MiniLM			
all-MiniLM-L6-v2	0.70 (0.20)	0.65 (0.18)	0.70 (0.20)
E5			
e5-base-v2	0.76 (0.20)	0.76 (0.21)	0.77 (0.20)
e5-large-v2	0.78 (0.19)	0.77 (0.19)	0.79 (0.19)
BGE			
bge-base-en-v1.5	0.76 (0.20)	0.74 (0.20)	0.77 (0.21)
bge-large-en-v1.5	0.78 (0.18)	0.78 (0.18)	0.80 (0.17)
GTE			
gte-base-en-v1.5	0.77 (0.19)	0.76 (0.19)	0.78 (0.20)
gte-modernbert-base	0.77 (0.19)	0.74 (0.19)	0.77 (0.19)
gte-large-en-v1.5	0.77 (0.19)	0.77 (0.19)	0.78 (0.19)
Qwen			
Qwen3-Embedding-0.6B	0.80 (0.16)	0.76 (0.18)	0.80 (0.16)
Gemma			
embeddinggemma-300m	0.71 (0.19)	0.72 (0.16)	0.75 (0.15)

Table 5: Mean macro-F1 (std. in parentheses) for each loss, averaged over the four datasets AGNews, Banking77, EmotionDAIR and RottenTomatoes. Best loss per model (row) is in bold.

972 973 974	Model	AGNews			Banking77			EmotionDAIR			RottenTomatoes		
		$\mathcal{L}_{\text{rows}}$	$\mathcal{L}_{\text{cols}}$	\mathcal{L}									
975 MiniLM													
976	all-MiniLM-L6-v2	0.78	0.71	0.79	0.89	0.80	0.90	0.43	0.38	0.43	0.69	0.70	0.70
977 E5													
978	e5-base-v2	0.78	0.80	0.81	0.95	0.95	0.96	0.48	0.45	0.48	0.82	0.83	0.82
979	e5-large-v2	0.81	0.80	0.82	0.95	0.95	0.96	0.52	0.51	0.53	0.85	0.84	0.86
980 BGE													
981	bge-base-en-v1.5	0.81	0.75	0.82	0.95	0.94	0.95	0.47	0.47	0.47	0.81	0.81	0.82
982	bge-large-en-v1.5	0.82	0.80	0.82	0.94	0.94	0.95	0.52	0.53	0.56	0.84	0.84	0.85
983 GTE													
984	gte-base-en-v1.5	0.82	0.80	0.83	0.94	0.92	0.95	0.49	0.48	0.49	0.83	0.84	0.85
985	gte-modernbert-base	0.80	0.71	0.80	0.94	0.92	0.94	0.49	0.48	0.49	0.83	0.84	0.84
986	gte-large-en-v1.5	0.82	0.79	0.83	0.93	0.94	0.95	0.50	0.51	0.50	0.84	0.86	0.83
987 Qwen													
988	Qwen3-Embedding-0.6B	0.86	0.78	0.85	0.90	0.90	0.92	0.56	0.50	0.57	0.87	0.87	0.88
989 Gemma													
990	embeddinggemma-300m	0.75	0.71	0.74	0.91	0.92	0.94	0.45	0.54	0.57	0.73	0.74	0.73
991													

Table 6: Disaggregated macro-F₁ by dataset and loss. Entries are F₁ scores; for each model and dataset, the best loss is in bold.

996 E ROBUSTNESS TO NOISY DESCRIPTIONS.

998 To test how sensitive our method is to imperfect descriptions, we run a controlled corruption ex-
999 periment on AGNews using embeddinggemma-300m. Starting from the original description set,
1000 we progressively replace a fraction of descriptions with overly vague, non-discriminative sentences
1001 (examples in Table 8). We vary the noise level in (0.0, 0.25, 0.5, 1.0), where (1.0) means that *all*
1002 descriptions are vague. For each noise level and each loss ($\mathcal{L}_{\text{rows}}$, $\mathcal{L}_{\text{cols}}$, and the symmetric \mathcal{L}), we
1003 train with the learning rate selected by the uniformity heuristic and track macro-F₁ over training
1004 (Figure 4). Table 7 reports the final F₁ scores (taking into account early stopping).

1005	Noise level	$\mathcal{L}_{\text{rows}}$	$\mathcal{L}_{\text{cols}}$	\mathcal{L}
1006	0.00	0.75	0.71	0.74
1007	0.25	0.64	0.71	0.67
1008	0.50	0.59	0.64	0.61
1009	1.00	0.41	0.45	0.35
1010				

Table 7: Macro-F₁ on AGNews for embeddinggemma-300m under different description noise levels and losses.

1014 With clean descriptions ((0.0) noise), the rowwise loss is strongest (0.75 vs. 0.71 for $\mathcal{L}_{\text{cols}}$), and
1015 the symmetric loss (\mathcal{L}) is only slightly behind at 0.74. Once we inject moderate noise (0.25 and
1016 0.5), the behavior changes markedly. $\mathcal{L}_{\text{rows}}$ degrades sharply (down to 0.64 and 0.59, i.e. -0.11 and
1017 -0.16 absolute), whereas $\mathcal{L}_{\text{cols}}$ is much more stable: at 25% noise it remains essentially unchanged
1018 compared to the clean setting, and at 50% noise it still clearly dominates the other objectives (0.64
1019 vs. 0.59 and 0.61). The symmetric objective \mathcal{L} interpolates between these regimes: with clean
1020 descriptions it tracks $\mathcal{L}_{\text{rows}}$, but under moderate noise it moves closer to $\mathcal{L}_{\text{cols}}$, preserving much of
1021 the robustness provided by the column term. At the extreme noise level (1.0), when all descriptions
1022 are vague, all three objectives degrade substantially, as expected when the supervision signal is
1023 entirely uninformative.

1024 These trends align with the analytical properties of $\mathcal{L}_{\text{cols}}$. By using a log-sum-exp over multiple
1025 positives per label, it (i) reweights descriptions so that strong, representative ones dominate the
gradient while noisy/vague ones are down-weighted, and (ii) adds extra smoothing / regularization

1026 at the label level. In the moderate-noise regime, arguably the most realistic setting, this makes
 1027 $\mathcal{L}_{\text{cols}}$ significantly more robust than a pure rowwise InfoNCE. The symmetric loss \mathcal{L} largely inherits
 1028 this robustness while retaining strong performance in the clean setting, indicating that combining
 1029 row- and columnwise objectives yields a good trade-off between peak accuracy and resilience to
 1030 imperfect description sets.

#	Vague AGNews description
1	Coverage about the news, containing information about events and happenings in the world. The text discusses topics that may be of interest to readers who follow current events.
2	A piece of text about something that was reported by journalists or news organizations. It contains sentences and paragraphs describing various matters.
3	This is a news article that provides information to readers. The content covers subjects that are deemed newsworthy by editors and reporters.
4	Information presented in written form about things that have occurred or are occurring. The article is structured with a headline and body text.
5	Some content about a topic that readers might find relevant. The writing style follows journalistic conventions and presents facts or opinions.

1042
 1043 Table 8: Examples of deliberately vague AGNews descriptions used to inject noise into the label
 1044 description set.

1045
 1046
 1047 Figure 4: Macro-F1 on AGNews for embeddinggemma-300m under increasing description noise.
 1048 Each panel shows training curves for one loss ($\mathcal{L}_{\text{rows}}$, $\mathcal{L}_{\text{cols}}$, and the symmetric \mathcal{L}); colors denote
 1049 noise levels (0.0, 0.25, 0.5, 1.0). The columnwise loss remains markedly more stable under moderate
 1050 noise, and the symmetric loss largely inherits this robustness.
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062

F ROBUSTNESS TO IMBALANCED DESCRIPTION COUNTS

1069
 1070 Figure 5 studies whether the proposed method is sensitive to imbalances in the number of descriptions per label. We use all-MiniLM-L6-v2 on AGNews and compare three setups: (i) the base
 1071 model without description training, (ii) a balanced configuration with the same number of descriptions per label, and (iii) an imbalanced configuration where *Business* has 10 descriptions while the
 1072 remaining labels have only 3. For the symmetric objective \mathcal{L} (left panel), adding descriptions im-
 1073 proves F1 across all labels relative to the base model, and giving extra descriptions to *Business* yields
 1074 a small additional gain for that label while *Science/Tech*, *Sports*, and *World* remain essentially un-
 1075 changed between the balanced and imbalanced setups. In contrast, under the pure rowwise loss $\mathcal{L}_{\text{rows}}$
 1076 (right panel), *Business* again benefits from the extra descriptions, but the other three labels incur a
 1077 small F1 drop when moving from the balanced to the imbalanced configuration (on the order of 1-2
 1078 1079

1080 points), although they still clearly outperform the base model. This pattern is consistent with the role
 1081 of the columnwise term in \mathcal{L} . Because $\mathcal{L}_{\text{cols}}$ optimizes a per-label normalized quantity Z_ℓ^+ / Z_ℓ , it is
 1082 inherently less sensitive to how many descriptions a label has: each label’s objective is scaled by its
 1083 own normalizer rather than competing directly with other labels for probability mass. As a result,
 1084 the symmetric loss \mathcal{L} , which includes $\mathcal{L}_{\text{cols}}$, can absorb an over-representation of *Business* without
 1085 harming the other classes, whereas the purely rowwise objective shows mild cross-label interference
 1086 when one label receives substantially more descriptions than the rest.

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1105 Figure 5: Per-label F₁ on AGNews for all-MiniLM-L6-v2 under different description allocation
 1106 schemes. We compare the base model (no description training), a balanced setup with an equal
 1107 number of descriptions per label, and an imbalanced setup where *Business* has 10 descriptions while
 1108 the other labels have only 3. Left: symmetric loss \mathcal{L} , where extra descriptions for *Business* slightly
 1109 improve that label without affecting the others. Right: rowwise loss $\mathcal{L}_{\text{rows}}$, where *Business* gains
 1110 while the remaining labels incur a small F₁ drop but still outperform the base model.

1111

1112

G EFFECT OF THE NUMBER OF DESCRIPTIONS PER LABEL

1113

1114

1115 Figure 6 investigates how performance varies with the number of descriptions per label when using
 1116 the default symmetric loss \mathcal{L} . We vary $K \in \{1, 3, 5, 10, 20\}$ while keeping verbalizers fixed; rows
 1117 correspond to e5-base-v2 and e5-large-v2, columns to the four datasets. Across all model-
 1118 dataset pairs, using a single description per label consistently underperforms, while moving from 1
 1119 to 3-5 descriptions yields a substantial jump in macro-F₁. Beyond $K = 5$, the curves flatten and
 1120 often become mildly non-monotonic: additional descriptions bring at most small gains (e.g. Emotion-
 1121 DAIR and RottenTomatoes) and sometimes slight degradation (e.g. AGNews and Banking77).

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1122 We believe this pattern is largely driven by *description quality* rather than by the number of de-
 1123 scriptions per se. In practice, we curated descriptions in a sensible order, using the clearest, most
 1124 representative ones first. As K grows, it becomes increasingly difficult to add new descriptions
 1125 that are both (i) genuinely novel and (ii) still precise and label-specific; later descriptions tend to
 1126 be either redundant or more generic. From the model’s perspective, increasing K therefore shifts
 1127 the label description set from “a few high-quality positives” to “a mixture of strong and weaker
 1128 positives,” effectively introducing a mild form of noise. This interpretation is consistent with our ex-
 1129 plicit noise ablation in Section E: the method is robust to moderate levels of noisy descriptions, but
 1130 performance plateaus or slightly declines once weaker descriptions start to dominate the marginal
 1131 additions. Overall, the curves suggest that 3-5 carefully written descriptions per label capture most
 1132 of the benefit of description-tuning, and that pushing to 10-20 descriptions is only worthwhile if one
 1133 can maintain comparable quality.

Figure 6: Effect of the number of descriptions per label on macro-F1 for the symmetric loss \mathcal{L} . Rows correspond to $e5\text{-base}\text{-}v2$ (top) and $e5\text{-large}\text{-}v2$ (bottom); columns correspond to AGNews, Banking77, EmotionDAIR, and RottenTomatoes. Each curve plots macro-F1 as the number of descriptions per label K increases from 1 to 20. Performance improves sharply when going from 1 to 3-5 descriptions and then flattens or becomes slightly non-monotonic as additional descriptions are added, which we attribute to the increasing difficulty of generating novel yet high-quality descriptions at larger K .

H CHOICE OF INFERENCE ANCHOR

We finally ablate the choice of label representation (“anchor”) used during training and inference. We compare three modes:

1. **Label.** We replace the verbalizer sentence by the raw label string (e.g., “Sports”) and use this as the anchor both during training and at inference.
2. **Verbalizer.** Our default setting: we train and evaluate with the full verbalizer sentence (e.g., “This news snippet is about sports.”).
3. **Mean.** We train as in the default setting (with verbalizers), but at inference we instead score documents against the mean embedding of each label’s descriptions, $\frac{1}{K_y} \sum_k e(d_y^k)$.

Figure 7 reports macro-F1 for $e5\text{-base}\text{-}v2$ and $e5\text{-large}\text{-}v2$ across the four datasets. No single mode dominates everywhere. For AGNews, the verbalizer gives the best performance; for Banking77 and EmotionDAIR, using the raw label string tends to outperform the verbalizer; and for RottenTomatoes the mean-of-descriptions is strongest. Across all model-dataset pairs, however, the differences are small (typically within 1-2 F1 points), and we do not observe statistically significant differences between the three modes. This indicates that the method is not fragile to the precise choice of anchor. Taken together, these results suggest that (i) training directly on label names is a viable alternative to full verbalizers, and (ii) even when training with verbalizers, practitioners can safely switch to mean description embeddings at inference time, which typically match the performance of the default.

Figure 7: Ablation over label representation. Bars show macro-F₁ when training and evaluating on the raw label string (*Label*), training and evaluating on the full verbalizer sentence (*Verbalizer*, our default), or training on verbalizers but using the mean description embedding at inference (*Mean*). Rows correspond to e5-base-v2 (top) and e5-large-v2 (bottom); columns correspond to AGNews, Banking77, EmotionDAIR, and RottenTomatoes. The best choice varies mildly by dataset, but the small differences are not statistically significant, indicating robustness to the particular inference anchor.

I PERFORMANCE ON LARGE LABEL SPACES

Finally, we test whether description-tuning remains effective when the label space is large. We use the full 77-way *Banking77* label set, writing only three descriptions per label, and evaluate on the official test split. For the final runs, we train `all-MiniLM-L6-v2` with a learning rate of 1×10^{-5} and `embeddinggemma-300m` with 1×10^{-4} , both selected via the uniformity-based procedure from Section 3.

Table 9 shows that even under this harder setting, description-tuning yields substantial gains. For `all-MiniLM-L6-v2`, macro-F₁ and accuracy increase by $+0.07$ ($0.59 \rightarrow 0.66$), while precision and recall both improve, with recall rising more strongly ($0.62 \rightarrow 0.69$). The effect is even more pronounced for `embeddinggemma-300m`: macro-F₁ improves by $+0.09$ ($0.52 \rightarrow 0.61$) and accuracy by $+0.08$, with recall jumping from 0.55 to 0.64 ($+0.10$) and precision from 0.60 to 0.64 ($+0.03$). In other words, the method substantially reduces false negatives, crucial in a large label space, without sacrificing precision.

Overall, these results indicate that our description-only finetuning scales to high-cardinality label spaces even with a very small description budget (three descriptions per label). The gains in macro-F₁ and recall suggest that aligning labels to a compact set of descriptions helps the model better cover many fine-grained intents rather than merely sharpening predictions for the most frequent ones.

Model	F ₁	Acc.	Prec.	Rec.
all-MiniLM-L6-v2	0.59	0.59	0.65	0.62
trained	0.66 (+0.07)	0.66 (+0.07)	0.69 (+0.04)	0.69 (+0.07)
embeddinggemma-300m	0.52	0.52	0.60	0.55
trained	0.61 (+0.09)	0.60 (+0.09)	0.64 (+0.03)	0.64 (+0.10)

Table 9: Base vs. trained performance on Banking77. Trained rows show absolute improvements in parentheses.

1242 **J LEARNING-RATE SELECTION VIA UNIFORMITY**
1243

1244 **Uniformity-based learning rate selection.** As discussed in Section 3, we treat the learning rate
 1245 (LR) as the main sensitive hyperparameter and select it using a *label-free* criterion based on the
 1246 uniformity loss \mathcal{L}_{uni} in equation 4. For each model-dataset pair, we run short warmup trainings over
 1247 a small grid of candidate LRs and evaluate \mathcal{L}_{uni} on an unlabeled pool \mathcal{X}_u from the target domain.
 1248 We then choose the LR that minimizes \mathcal{L}_{uni} , i.e., that yields the most uniform (least collapsed)
 1249 document embeddings on \mathcal{X}_u . Table 10 lists the selected LRs; these are the hyperparameters used
 1250 for all results reported in the main table (Table 1).

Model	AGNews	Banking77	EmotionDAIR	RottenTomatoes
all-MiniLM-L6-v2	$1 \cdot 10^{-5}$	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-5}$
e5-base-v2	$1 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-4}$
e5-large-v2	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$5 \cdot 10^{-5}$
bge-base-en-v1.5	$5 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$3 \cdot 10^{-5}$
bge-large-en-v1.5	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$5 \cdot 10^{-6}$
gte-base-en-v1.5	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$1 \cdot 10^{-5}$
gte-modernbert-base	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$
gte-large-en-v1.5	$3 \cdot 10^{-4}$	$5 \cdot 10^{-5}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-4}$
Qwen3-Embedding-0.6B	$3 \cdot 10^{-5}$	$1 \cdot 10^{-5}$	$3 \cdot 10^{-5}$	$1 \cdot 10^{-5}$
embeddinggemma-300m	$1 \cdot 10^{-4}$	$3 \cdot 10^{-5}$	$5 \cdot 10^{-5}$	$5 \cdot 10^{-5}$

1263 Table 10: Learning rates selected by minimizing the uniformity loss (\mathcal{L}_{uni}) on an unlabeled pool
 1264 (\mathcal{X}_u) for each model-dataset pair. The LRs are used in the main results (Table 1).
 1265

1266 **Relationship between uniformity and downstream performance.** Appendix Figure 8 examines
 1267 how \mathcal{L}_{uni} , measured on \mathcal{X}_u , relates to downstream macro-F₁ after description-only training. Our
 1268 goal is not to treat \mathcal{L}_{uni} as a perfect surrogate for macro-F₁, but as a practical label-free *heuristic* for
 1269 LR selection. Across the 40 model-dataset pairs in Figure 8, **29/40** exhibit a statistically significant
 1270 *negative* Pearson correlation between \mathcal{L}_{uni} and macro-F₁ ($p \leq 0.10$): runs that yield more uniform
 1271 embeddings on \mathcal{X}_u (lower \mathcal{L}_{uni}) tend to achieve higher macro-F₁. The remaining **11/40** pairs show
 1272 weak, non-significant correlations, which are typically slightly negative or close to zero but never
 1273 strongly positive. In other words, lower uniformity does not guarantee higher macro-F₁, yet it is
 1274 empirically helpful in the majority of cases and, critically, does not appear to systematically harm
 1275 performance in the remainder. This supports using \mathcal{L}_{uni} as a robust, label-free signal for picking a
 1276 reasonable learning rate in true zero-shot settings, while acknowledging that it is empirically useful
 1277 but not universally predictive.

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 8: Scatter plots of uniformity loss \mathcal{L}_{uni} against Macro-F1 performance across datasets. Rows correspond to embedding models, while columns correspond to datasets. Each subplot shows individual runs with a different learning rate (dots), an ordinary least squares regression line with 95% confidence interval (shaded), and the Pearson correlation coefficient between \mathcal{L}_{uni} and Macro-F1.