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ABSTRACT

Recent embedding-based methods have achieved great successes in exploiting en-
tity alignment from knowledge graph (KG) embeddings of multiple modalities. In
this paper, we study embedding-based entity alignment (EEA) from a perspective
of generative models. We show that EEA shares similarities with typical generative
models and prove the effectiveness of the recently developed generative adversarial
network (GAN)-based EEA methods theoretically. We then reveal that their incom-
plete objective limits the capacity on both entity alignment and entity synthesis
(i.e., generating new entities). We mitigate this problem by introducing a genera-
tive EEA (GEEA) framework with the proposed mutual variational autoencoder
(M-VAE) as the generative model. M-VAE enables entity conversion between KGs
and generation of new entities from random noise vectors. We demonstrate the
power of GEEA with theoretical analysis and empirical experiments on both entity
alignment and entity synthesis tasks. The source code and datasets are available at
github.com/zjukg/GEEA.

1 INTRODUCTION

As one of the most prevalent tasks in the knowledge graph (KG) area, entity alignment (EA) has
recently made great progress and developments with the support of the embedding techniques (Chen
et al., 2017; Sun et al., 2017; Zhang et al., 2019; Chen et al., 2020; Liu et al., 2021; Chen et al.,
2022a;b; Guo et al., 2022a;b; Chen et al., 2024). By encoding the relational and other information
into low-dimensional vectors, the embedding-based entity alignment (EEA) methods are friendly for
development and deployment, and have achieved state-of-the-art performance on many benchmarks.

The objective of EA is to maximize the conditional probability p(y|x), where x, y are a pair of
aligned entities belonging to source KG X and target KG Y , respectively. If we view x as the input
and y as the label (and vice versa), the problem can be solved by a discriminative model. To this end,
we need an EEA model which comprises an encoder module and a fusion layer (Zhang et al., 2019;
Chen et al., 2020; Liu et al., 2021; Chen et al., 2022a;b; Lin et al., 2022) (see Figure 1). The encoder
module uses different encoders to encode multi-modal information into low-dimensional embeddings.
The fusion layer then combines these sub-embeddings to a joint embedding as the output.

We also need a predictor, as shown in the yellow area in Figure 1. The predictor is usually independent
of the EEA model and parameterized with neural layers (Chen et al., 2017; Guo et al., 2020) or based
on the embedding distance (Sun et al., 2017; 2018). In either case, it learns the probability p(y|x)
where p(y|x) = 1 if the two entities x, y are aligned and 0 otherwise. The difference lies primarily in
data augmentation. The existing methods employ different strategies to construct more training data,
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Figure 1: Illustration of embedding-based entity alignment. The modules in the blue area belong to
the EEA model, while those in the yellow area belong to the predictor.

e.g., negative sampling (Chen et al., 2017; Sun et al., 2017; Wang et al., 2018) and bootstrapping (Sun
et al., 2018; Pei et al., 2019a; Guo et al., 2022a).

In fact, entity alignment is not the ultimate aim of many applications. The results of entity alignment
are used to enrich each other’s KGs, but there are often entities in the source KG that do not have
aligned counterparts in the target KG, known as dangling entities (Sun et al., 2021; Luo & Yu, 2022).
For instance, a source entity Star Wars (film) may not have a counterpart in the target KG, which
means we cannot directly enrich the target KG with the information of Star Wars (film) via entity
alignment. However, if we can convert entities like Star Wars (film) from the source KG to the target
KG, it would save a major expenditure of time and effort for many knowledge engineering tasks,
such as knowledge integration and fact checking. Hence, we propose conditional entity synthesis
to generate new entities for the target KG with the entities in the source KG as input. Additionally,
generating new entities from random variables may contribute to the fields like Metaverse and video
games where the design of virtual characters still relies on hand-crafted features and randomized
algorithms (Khalifa et al., 2017; Lee et al., 2021). For example, modern video games feature a
large number of non-player characters (NPCs) with unique backgrounds and relationships, which are
essential for creating immersive virtual worlds. Designing NPCs is a laborious and complex process,
and using the randomized algorithms often yields unrealistic results. By storing the information and
relationships of NPCs in a KG, one can leverage even a small initial training KG to generate high-
quality NPCs with coherent backgrounds and relationships. Therefore, we propose unconditional
entity synthesis for generating new entities with random noise vectors as input.

We propose a generative EEA (abbr., GEEA) framework with the mutual variational autoencoder
(M-VAE) to encode/decode entities between source and target KGs. GEEA is capable of generating
concrete features, such as the exact neighborhood or attribute information of a new entity, rather
than only the inexplicable embeddings as previous works have done (Pei et al., 2019a;b; Guo et al.,
2022b). We introduce the prior reconstruction and post reconstruction to control the generation
process. Briefly, the prior reconstruction is used to generate specific features for each modality, while
the post reconstruction ensures these different kinds of features belong to the same entity. We conduct
experiments to validate the performance of GEEA, where it achieves state-of-the-art performance in
entity alignment and generates high-quality new entities in entity synthesis.

2 REVISIT EMBEDDING-BASED ENTITY ALIGNMENT

In this section, we revisit embedding-based entity alignment by a theoretical analysis of how the
generative models contribute to entity alignment learning, and then discuss their limitations.

2.1 PRELIMINARIES

Entity Alignment Entity alignment aims to find the implicitly aligned entity pairs {(x, y)|x ∈
X , y ∈ Y}, where X , Y denote the source and target entity sets, and (x, y) represents a pair of
aligned entities referring to the same real-world object. An EEA modelM uses a small number of
aligned entity pairs S (a.k.a., seed alignment set) as training data to infer the remaining alignment
pairs T in the testing set. We consider three different modalities: relational graphs Gx, Gy , attributes
Ax, Ay , and images Ix, Iy . Other types of information can be also given as features for X and Y .

For instance, the relational graph feature of an entity Star Wars (film) is represented as triplets, such
as (Star Wars (film), founded by, George Lucas). Similarly, the attribute feature is represented as
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attribute triplets, e.g., (Star Wars (film), title, Star Wars (English)). For the image feature, we follow
the existing multi-modal EEA works to use a constant pretrained embedding from a vision model as
the image feature of Star Wars (film) (Liu et al., 2021; Lin et al., 2022). The EEA modelM takes the
above multi-modal features x = (gx, ax, ix, ...) as input, where gx, ax, ix denote the relational graph
information, attribute information and image information of x, respectively. The output consists of
the embeddings for each modality (i.e., sub-embeddings) and a final output embedding x (i.e., joint
embedding) that combines all modalities:

x =M(x) = Linear(Concat(Mg(gx),Ma(ax),Mi(ix), ...)) (1)
= Linear(Concat(gx,ax, ix, ...)), (2)

whereMg,Ma, andMi denote the EEA encoders for different modalities (also see Figure 1). gx,
ax, and ix denote the embeddings of different modalities. Similarly, we obtain y by y =M(y).

Entity Synthesis We consider two entity synthesis tasks: conditional entity synthesis and uncondi-
tional entity synthesis. Conditional entity synthesis aims to generate entities in the target KG with
the dangling entities in the source KG as input. Formally, the model takes an entity x as input and
convert it to an entity yx→y for the target KG. It should also produce the corresponding concrete
features, such as neighborhood and attribute information specific to the target KG. On the other hand,
the unconditional entity synthesis involves generating new entities in the target KG with random
noise variables as input. Formally, the model takes a random noise vector z as input and generate a
target entity embedding yz→y which is then converted back to concrete features.

For instance, to reconstruct the neighborhood (or attribute) information of Star Wars (film) from its
embedding, we can leverage a decoder module to convert the embedding into a probability distribution
of all candidate entities (or attributes). As the image features are constant pretrained embeddings, we
can use the image corresponding to the nearest neighbor of the reconstructed image embedding of
Star Wars (film) as the output image.

Generative Models Generative models learn the underlying probability distribution p(x) of the
input data x. Take variational autoencoder (VAE) (Kingma & Welling, 2013) as an example, the
encoding and decoding processes can be defined as:

h = Encoder(x) (Encoding) (3)
z = µ+ σ ⊙ ϵ = Linearµ(h) + Linearσ(h)⊙ ϵ (Reparameterization Trick) (4)

xx→x = Decoder(z) (Decoding), (5)

where h is the hidden output. VAE uses the reparameterization trick to rewrite h as coefficients µ,
σ in a deterministic function of a noise variable ϵ ∈ N (ϵ;0, I), to enable back-propagation. xx→x

denotes that this reconstructed entity embedding is with x as input and for x. VAE generates new
entities by sampling a noise vector z and converting it to x.

2.2 EEA BENEFITS FROM THE GENERATIVE OBJECTIVES

Let x ∼ X , y ∼ Y be two entities sampled from the entity sets X , Y , respectively. The main target of
EEA is to learn a predictor that estimates the conditional probability pθ(x|y) (and reversely pθ(y|x)),
where θ represents the parameter set. For simplicity, we assume that the reverse function pθ(y|x)
shares the same parameter set with pθ(x|y).
Now, suppose that one wants to learn a generative model for generating entity embeddings:

log p(x) = log p(x)

∫
pθ(y|x)dy (6)

= Epθ(y|x)
[
log

p(x,y)

pθ(y|x)

]
+DKL(pθ(y|x) ∥ p(y|x)), (7)

where the left-hand side of Equation (7) is the evidence lower bound (ELBO) (Kingma & Welling,
2013), and the right-hand side is the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951)
between our parameterized distribution pθ(y|x) (i.e., the predictor) and the true distribution p(y|x).
In typical generative learning, p(y|x) is intractable because y is a noise variable sampled from a
normal distribution, and thus p(y|x) is unknown. However, in EEA, we can obtain a few samples by
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using the training set, which leads to a classical negative sampling loss (Sun et al., 2017; Cao et al.,
2019; Zhang et al., 2019; Chen et al., 2020; Guo et al., 2020; Sun et al., 2020a; Liu et al., 2021; Chen
et al., 2022a;b; Guo et al., 2022a;b; Lin et al., 2022):

Lns =
∑
i

[− log(pθ(y
i|xi)p(yi|xi)) + 1

Nns

∑
j ̸=i

log
(
pθ(y

j |xi)(1− p(yj |xi))
)
], (8)

where (yi,xi) denotes a pair of aligned entities in the training data. The randomly sampled entity yj

is regarded as the negative entity. i, j are the entity IDs. Nns is the normalization constant. Here, Lns
is formulated as a cross-entropy loss with the label p(yj |xi) defined as:

p(yj |xi) =
{
0, if i ̸= j,

1, otherwise
(9)

Given that EEA typically uses only a small number of aligned entity pairs for training, the observation
of p(y|x) may be subject to bias and limitations. To alleviate this problem, the recent GAN-based
methods (Pei et al., 2019a;b; Guo et al., 2022b) propose leveraging entities outside the training set
for unsupervised learning. The common idea behind these methods is to make the entity embeddings
from different KGs indiscriminative to a discriminator, such that the underlying aligned entities shall
be encoded in the same way and have similar embeddings. To formally prove this idea, we dissect
the ELBO in Equation (7) as follows:

Epθ(y|x)
[
log

p(x,y)

pθ(y|x)

]
= Epθ(y|x)

[
log pθ(x|y)

]
−DKL(pθ(y|x) ∥ p(y)) (10)

The complete derivation in this section can be found in Appendix A.1. Therefore, we have:

log p(x) = Epθ(y|x)
[
log pθ(x|y)

]
︸ ︷︷ ︸

reconstruction term

−DKL(pθ(y|x) ∥ p(y))︸ ︷︷ ︸
distribution matching term

+DKL(pθ(y|x) ∥ p(y|x))︸ ︷︷ ︸
prediction matching term

(11)

The first term aims to reconstruct the original embedding x based on y generated from x, which
has not been studied in existing discriminative EEA methods (Guo et al., 2020; Liu et al., 2021; Lin
et al., 2022). The second term enforces the distribution of y conditioned on x to match the prior
distribution of y, which has been investigated by the GAN-based EEA methods (Pei et al., 2019a;b;
Guo et al., 2022b). The third term represents the main objective of EEA (as described in Equation (8)
where the target p(y|x) is partially observed).

Note that, p(x) is irrelevant to our parameter set θ and can be treated as a constant during optimization.
Consequently, maximizing the ELBO (i.e., maximizing the first term and minimizing the second
term) will result in minimizing the third term:
Proposition 1. Maximizing the reconstruction term and/or minimizing the distribution matching
term subsequently minimizes the EEA prediction matching term.

The primary objective of EEA is to minimize the prediction matching term. Proposition 1 provides
theoretical evidence that the generative objectives naturally contribute to the minimization of the
EEA objective, thereby enhancing overall performance.

2.3 THE LIMITATIONS OF GAN-BASED EEA METHODS

The GAN-based EEA methods leverage a discriminator to discriminate the entities from one KG
against those from another KG. Supposed that x, y are embeddings produced by an EEA model
M, sampled from the source KG and the target KG, respectively. The GAN-based methods train a
discriminator D to distinguish x from y (and vice versa), with the following objective:

argmax
x,y,ψ

[
Ex∼X logDϕ(Mψ(x)) + Ey∼Y logDϕ(Mψ(y))

]
(Generator) (12)

+argmax
ϕ

[
Ex∼X logDϕ(Mψ(x)) + Ey∼Y log(1−Dϕ(Mψ(y)))

]
(Discriminator) (13)

Here, the EEA model M takes entities x, y as input and produces the output embeddings x, y,
respectively. D is the discriminator that learns to predict whether the input variable is from the target
distribution. ϕ, ψ are the parameter sets ofM, D, respectively.
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It is important to note that both x =Mψ(x) and y =Mψ(y) do not follow a fixed distribution (e.g.,
a normal distribution). They are learnable vectors during training, which is significantly different
from the objective of a typical GAN, where variables like x (e.g., an image) and z (e.g., sampled from
a normal distribution) have deterministic distributions. Consequently, the generator in Equation (12)
can be overly strong, allowing x, y to be consistently mapped to plausible positions to deceive D.

Therefore, one major issue with the existing GAN-based methods is mode collapse (Srivastava et al.,
2017; Pei et al., 2019b; Guo et al., 2022b). Mode collapse often occurs when the generator (i.e., the
EEA model in our case) over-optimizes for the discriminator. The generator may find some outputs
appear most plausible to the discriminator and consistently produces those outputs. This is harmful
for EEA as irrelevant entities are encouraged to have similar embeddings. We argue that mode
collapse is more likely to occur in the existing GAN-based EEA methods, which is why they often
use a very small weight (e.g., 0.001 or less) to optimize the generator against the discriminator (Pei
et al., 2019b; Guo et al., 2022b).

Another limitation of the existing GAN-based methods is their inability to generate new entities. The
generated target entity embedding yx→y cannot be converted back to the native concrete features,
such as the neighborhood {y1, y2, ...} or attributes {a1, a2, ...}.

3 GENERATIVE EMBEDDING-BASED ENTITY ALIGNMENT

3.1 MUTUAL VARIATIONAL AUTOENCODER

In many generative tasks, such as image synthesis, the conditional variable (e.g., a textual description)
and the input variable (e.g., an image) differ in modality. However, in our case, they are entities
from different KGs. Therefore, we propose mutual variational autoencoder (M-VAE) for efficient
generation of new entities. One of the most important characteristics of M-VAE lies in the variety of
the encode-decode process. It has four different flows:

The first two flows are used for self-supervised learning, i.e., reconstructing the input variables:

xx→x, zx→x = VAE(x), yy→y, zy→y = VAE(y), ∀x, ∀y, x ∈ X , y ∈ Y (14)

We use the subscript x→x to denote the flow is from x to x, and similarly for y→y. zx→x, zy→y are
the latent variables (as defined in Equation 4) of the two flows, respectively. In EEA, the majority
of alignment pairs are unknown, but all information of the entities is known. Thus, these two flows
provide abundant examples to train GEEA in a self-supervised fashion.

The latter two flows are used for supervised learning, i.e., reconstructing the mutual target variables:

yx→y, zx→y = VAE(x), xy→x, zy→x = VAE(y), ∀(x, y) ∈ S. (15)

It is worth noting that we always share the parameters of VAEs across all flows. We wish the rich
experience gained from reconstructing the input variables (Equation (14)) can be flexibly conveyed to
reconstructing the mutual target (Equation (15)).

3.2 DISTRIBUTION MATCH

The existing GAN-based methods directly minimize the KL divergence (Kullback & Leibler, 1951)
between two embedding distributions, resulting in the over-optimization of generator and incapability
of generating new entities. In this paper, we propose to draw support from the latent noise variable z
to avoid these two issues. The distribution match loss is defined as follows:

Lkld = DKL(p(zx→x), p(z
∗)) +DKL(p(zy→y), p(z

∗)). (16)

where p(zx→x) denotes the distribution of zx→x, and p(z∗) denotes the target normal distribution.
We do not optimize the distributions of zx→y , zy→x in the latter two flows, because they are sampled
from seed alignment set S, a (likely) biased and small training set.

Minimizing Lkld can be regarded as aligning the entity embeddings from respective KGs to a fixed
normal distribution. We provide a formal proof that the entity embedding distributions of two KGs
will be aligned although we do not implicitly minimize DKL(p(x), p(y)):
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Figure 2: The workflow of GEEA. Top: different sub-VAEs process different sub-embeddings, and
the respective decoders convert the sub-embeddings back to concrete features. Bottom-left: the entity
alignment prediction loss is retained. Bottom-center: the latent variables of sub-VAEs are used for
distribution matching. Bottom-right: The reconstructed sub-embeddings are feed into the fusion layer
in the EEA model to produce the reconstructed joint embedding for post reconstruction.

Proposition 2. Let z∗, zx→x, zy→y be the normal distribution, and the latent variable distribu-
tions w.r.t. X and Y , respectively. Jointly minimizing the KL divergence DKL(p(zx→x), p(z

∗)),
DKL(p(zy→y), p(z

∗)) will contribute to minimizing DKL(p(x), p(y)):

DKL(p(x), p(y)) ∝ DKL(p(zx→x), p(z
∗)) +DKL(p(zy→y), p(z

∗)) (17)

Proof. Please see Appendix A.2.

3.3 PRIOR RECONSTRUCTION

The prior reconstruction aims to reconstruct the sub-embedding of each modality and recover the
original concrete feature from the sub-embedding. Take the relational graph information of flow
x→ y as an example, we first employ a sub-VAE to process the input sub-embedding:

gx→y, z
g
x→y = VAEg(gx) (18)

where VAEg denotes the variational autoencoder for relational graph information. gx is the graph
embedding of x, and gx→y is the reconstructed graph embedding for y based on x. zgx→y is the
corresponding latent variable. To recover the original features (i.e., the neighborhood information of
y), we consider a prediction loss defined as:

Lgx→y
= gy logDecoderg(gx→y) + (1− gy) log(1− Decoderg(gx→y)) (19)

Here, Lgx→y
is a binary cross-entropy (BCE) loss. We employ a decoder Decoderg to convert the

reconstructed sub-embedding gx→y to a probability estimation regarding the neighborhood of y.

3.4 POST RECONSTRUCTION

We propose post reconstruction to ensure the reconstructed features of different modalities belong to
the same entity. We re-input the reconstructed sub-embeddings {gx→y,ax→y, ...} to the fusion layer
(defined in the EEA modelM) to obtain a reconstructed joint embedding yx→y. We then employs
mean square error (MSE) loss to match the reconstructed joint embedding with the original one:

yx→y = Fusion({gx→y,ax→y, ...}), ∀(x, y) ∈ S (20)
Lx→y = MSE(yx→y,NoGradient(y)), ∀(x, y) ∈ S, (21)

where Lx→y denotes the post reconstruction loss for the reconstructed joint embedding yx→y . Fusion
represents the fusion layer inM, and MSE is the mean square error. We use the copy value of the
original joint embedding NoGradient(y) to avoid y inversely match yx→y .
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Table 1: Entity alignment results on DBP15K datasets, without surface information and iterative
strategy. ↑: higher is better; ↓: lower is better. Average of 5 runs, the same below.

Models DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN

Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑ MRR↑
MUGNN (Cao et al., 2019) .494 .844 .611 .501 .857 .621 .495 .870 .621
AliNet (Sun et al., 2020a) .539 .826 .628 .549 .831 .645 .552 .852 .657
decentRL (Guo et al., 2020) .589 .819 .672 .596 .819 .678 .602 .842 .689

EVA (Liu et al., 2021) .680 .910 .762 .673 .908 .757 .683 .923 .767
MSNEA (Chen et al., 2022a) .601 .830 .684 .535 .775 .617 .543 .801 .630
MCLEA (Lin et al., 2022) .715 .923 .788 .715 .909 .785 .711 .909 .782
NeoEA (MCLEA) (Guo et al., 2022b) .723 .924 .796 .721 .909 .789 .717 .910 .787

GEEA .761 .946 .827 .755 .953 .827 .776 .962 .844

Table 2: Results on FB15K-DB15K and FB15K-YAGO15K datasets.

Models # Paras (M) /
Training time (s)

FB15K-DB15K FB15K-YAGO15K

Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑ MRR↑
EVA 10.2/1,467.6 .199 .448 .283 .153 .361 .224
MSNEA 11.5/775.2 .114 .296 .175 .103 .249 .153
MCLEA 13.2/285.4 .295 .582 .393 .254 .484 .332

GEEASMALL 11.2/217.3 .322 .602 .417 .270 .513 .352
GEEA 13.9/252.4 .343 .661 .450 .298 .585 .393

0.0
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0.4
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0.8

0 200 400 600 800

EVA MSNEA
MCLEA GEEA

Epoch

M
R

R

Figure 3: MRR results on
FBDB15K, w.r.t. epochs.

3.5 IMPLEMENTATION DETAILS

We take Figure 2 as an example to illustrate the workflow of GEEA. First, the sub-embeddings
outputted byM are used as input for sub-VAEs (top-left). Then, the reconstructed sub-embeddings
are passed to respective decoders to predict the concrete features of different modalities (top-right).
The conventional entity alignment prediction loss is also retained in GEEA (bottom-left). The latent
variables outputted by sub-VAEs are further used to match the predefined normal distribution (bottom-
center). The reconstructed sub-embeddings are fed into the fusion layer to obtain a reconstructed joint
embedding, which is used to match the true joint embedding for post reconstruction (bottom-right).
The final training loss is defined as:

L =
∑
f∈F

( ∑
m∈{g,a,i,...}

Lmf︸ ︷︷ ︸
prior reconstruction

+ Lf︸︷︷︸
post reconstruction

)
︸ ︷︷ ︸

reconstruction term

+
∑

m∈{g,a,i,...}

Lkld,m︸ ︷︷ ︸
distribution matching term

+ Lns︸︷︷︸
prediction matching term

(22)

where F = {x→ x, y → y, x→ y, y → x} is the set of all flows, and {g, a, i, ...} is the set of all
available modalities. For more details, please refer to Appendix B.

4 EXPERIMENTS

4.1 SETTINGS

We used the multi-modal EEA benchmarks (DBP15K (Sun et al., 2017), FB15K-DB15K and
FB15K-YAGO15K (Chen et al., 2020)) as datasets, excluding surface information (i.e., the textual
label information) to prevent data leakage (Sun et al., 2020b; Chen et al., 2022b). The baselines
MUGNN (Cao et al., 2019), AliNet (Sun et al., 2020a) and decentRL (Guo et al., 2020) are methods
tailored to relational graphs, while EVA (Liu et al., 2021), MSNEA (Chen et al., 2022a) and
MCLEA (Lin et al., 2022) are state-of-the-art multi-modal EEA methods. We chose MCLEA (Lin
et al., 2022) as the EEA model of GEEA and NeoEA (Guo et al., 2022b) in the main experiments.
The results of using other models (e.g., EVA and MSNEA) can be found in Appendix C. The neural
layers and input/hidden/output dimensions were kept identical for fair comparison.

4.2 ENTITY ALIGNMENT RESULTS

The entity alignment results on DBP15K are shown in Tables 1. The multi-modal methods signifi-
cantly outperformed the single-modal methods, demonstrating the strength of leveraging different
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Table 3: Entity synthesis results on five datasets. PRE (×10−2), RE (×10−2) denote the reconstruc-
tion errors for prior concrete features and output embeddings, respectively.

Models DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN FB15K-DB15K FB15K-YAGO15K

PRE↓ RE↓ FID↓ PRE↓ RE↓ FID↓ PRE↓ RE↓ FID↓ PRE↓ RE↓ FID↓ PRE↓ RE↓ FID↓
MCLEA + decoder 8.104 4.218 N/A 7.640 5.441 N/A 10.578 5.985 N/A 18.504 inf N/A 20.997 inf N/A
VAE + decoder 0.737 0.206 1.821 0.542 0.329 2.184 0.856 0.689 3.083 10.564 11.354 10.495 9.645 9.982 16.180
Sub-VAEs + decoder 0.701 0.246 1.920 0.531 0.291 2.483 0.514 0.663 2.694 3.557 15.589 4.340 2.424 5.576 5.503

GEEA 0.438 0.184 0.935 0.385 0.195 1.871 0.451 0.121 2.422 3.141 6.151 3.089 1.730 2.039 3.903
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Figure 4: Entity alignment results on FBDB15K, w.r.t. ratios of training alignment.
resources. Remarkably, our GEEA achieved new state-of-the-art performance on all three datasets
across all metrics. The superior performance empirically verified the correlations between the gener-
ative objectives and EEA objective. In Table 2, we compared the performance of the multi-modal
methods on FB15K-DB15K and FB15K-YAGO15K, where GEEA remained the best-performing
method. Nevertheless, we observe that GEEA had more parameters compared with others, as it used
VAEs and decoders to decode the embeddings back to concrete features. To probe the effectiveness
of GEEA, we reduced the number of neurons to construct a GEEASMALL and it still outperformed
others with a significant margin.

In Figure 3, we plotted the MRR results w.r.t. training epochs on FBDB15K, where MCLEA and
GEEA learned much faster than the methods with fewer parameters (i.e., EVA and MSNEA). In
Figure 4, we further compared the performance of these two best-performing methods under different
ratios of training alignment. We can observe that our GEEA achieved consistent better performance
than MCLEA across various settings and metrics. The performance gap was more significantly when
there were fewer training entity alignments (≤ 30%). For instance, GEEA surpassed the second-best
method by 36.1% in Hits@1 when only 10% aligned entity pairs were used for training.

In summary, the primary weakness of GEEA is its higher parameter count compared to existing
methods. However, we demonstrated that a compact version of GEEA still outperformed the baselines
in Table 2. This suggests that its potential weakness is manageable. Additionally, GEEA excelled in
utilizing training data, achieving greater performance gains with less available training data.

4.3 ENTITY SYNTHESIS RESULTS

We conducted entity synthesis experiments by modifying the EEA benchmarks. We randomly
selected 30% of the source entities in the testing alignment set as dangling entities, and removed the
information of their counterpart entities during training. The goal was to reconstruct the information of
their counterpart entities. We evaluated the performance using several metrics: the prior reconstruction
error (PRE) for concrete features, the reconstruction error (RE) for the sub-embeddings, and Frechet
inception distance (FID) for unconditional synthesis (Heusel et al., 2017). FID is a popular metric for
evaluating generative models by measuring the feature distance between real and generated samples.

We implemented several baselines for comparison and present the results in Table 3: MCLEA with the
decoders performed worst and it could not generate new entities unconditionally. Using Sub-VAEs to
process different modalities performed better than using one VAE to process all modalities. However,
the VAEs in Sub-VAEs could not support each other, and sometimes they failed to reconstruct the
embeddings (e.g., the RE results on FB15K-DB15K). By contrast, our GEEA consistently and
significantly outperformed these baselines. We also noticed that the results on FB15K-DB15K and
FB15K-YAGO15K were worse than those on DBP15K. This could be due to the larger heterogeneity
between two KGs compared to the heterogeneity between two languages of the same KG.

We present some generated samples of GEEA conditioned on the source dangling entities in Table 4.
GEEA not only generated samples with the exact information that existed in the target KG, but also
completed the target entities with highly reliable predictions. For example, the entity Star Wars (film)
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Table 4: Entity synthesis samples from the FB15K-DB15K dataset. The boldfaced denotes the
exactly matched entry, while the underlined denotes the potentially true entry.

Source Target GEEA Output

Entity Image Image Neighborhood Attribute Image Neighborhood Attribute

Star Wars
(film)

20th Century Fox,
George Lucas,
John Williams

runtime,
gross,
budget

20th Century Fox, George Lucas,
Star Wars: Episode II, Willow (film),

Aliens (film), Star Wars: The Clone War

initial release date,
runtime, budget, gross,

imdbId, numberOfEpisodes

George
Harrison

(musician)

The Beatles, Guitar,
Rock music,

Klaus Voormann,
Jeff Lynne, Pop music

birthDate, deathDate,
activeYearsStartYear,
activeYearsEndYear,

imdbId

The Beatles,
The Band, Ringo Starr,

Klaus Voormann,
Jeff Lynne, Rock music

deathYear, birthYear,
deathDate, birthDate,
activeYearsStartYear,
activeYearsEndYear,

imdbId, height, networth

Table 5: Ablation study results on DBP15KZH-EN.

Prediction Distribution Prior Post Entity Alignment Entity Synthesis
Match Match Reconstruction Reconstruction Hits@1↑ Hits@10↑ MRR↑ PRE↓ RE↓ FID↓
√ √ √ √

.761 .946 .827 0.438 0.184 0.935√ √ √

.045 .186 .095 0.717 0.306 2.149√ √ √

.702 .932 .783 0.551 0.193 1.821√ √ √

.746 .930 .813 inf 0.267 1.148√ √ √

.750 .942 .819 0.701 0.246 1.920

in target KG only had three basic attributes in the target KG, but GEEA predicted that it may also
have the attributes like imdbid and initial release data.

4.4 ABLATION STUDY

We conducted ablation studies to verify the effectiveness of each module in GEEA. In Table 5, we can
observe that the best results were achieved by the complete GEEA, and removing any module resulted
in a performance loss. Interestingly, GEEA still worked even if we did not employ an EEA loss (the
2nd row) in the entity alignment experiment. It captured alignment information without the explicit
optimization of the entity alignment objective through contrastive loss, which is an indispensable
module in previous EEA methods. This observation further validates the effectiveness of GEEA.

5 RELATED WORKS

Embedding-based Entity Alignment Most pioneer works focus on modeling the relational graph
information. They can be divided into triplet-based (Sun et al., 2017; Pei et al., 2019a) and GNN-
based (Wang et al., 2018; Guo et al., 2020). Recent methods explore multi-modal KG embedding
for EEA (Zhang et al., 2019; Chen et al., 2022b; Lin et al., 2022). Although GEEA is designed
for multi-modal EEA, it differs by focusing on objective optimization rather than specific models.
GAN-based methods (Pei et al., 2019a; Guo et al., 2022b) are closely related to GEEA but distinct,
as GEEA prioritizes the reconstruction process, while the existing methods focus on processing
relational graph information for EEA.

Variational Autoencoder We draw the inspiration from various excellent works, e.g., VAEs, flow-
based models, GANs, and diffusion models that have achieved state-of-the-art performance in many
fields (Heusel et al., 2017; Kong et al., 2020; Mittal et al., 2021; Nichol & Dhariwal, 2021; Ho et al.,
2020; Rombach et al., 2022). Furthermore, recent studies (Hoogeboom et al., 2022; Li et al., 2022)
find that these generative models can be used in controllable text generation. To the best of our
knowledge, GEEA is the first method capable of generating new entities with concrete features. The
design of M-VAE, prior and post reconstruction also differs from existing generative models and may
offer insights for other domains.

6 CONCLUSION

This paper presents a theoretical analysis of how generative models can enhance EEA learning
and introduces GEEA to address the limitations of existing GAN-based methods. Experiments
demonstrate that GEEA achieves state-of-the-art performance in entity alignment and entity synthesis
tasks. Future work will focus on designing new multi-modal encoders to enhance generative ability.
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A PROOFS OF THINGS

A.1 THE COMPLETE PROOF OF PROPOSITION 1

Proof. Let x ∼ X , y ∼ Y be two entities sampled from the entity sets X , Y , respectively. The main
target of EEA is to learn a predictor that estimates the conditional probability pθ(x|y) (and reversely
pθ(y|x)), where θ represents the parameter set. For simplicity, we assume that the reverse function
pθ(y|x) shares the same parameter set with pθ(x|y).
Now, suppose that one wants to learn a generative model for generating entity embeddings:

log p(x) = log p(x)

∫
pθ(y|x)dy (23)

=

∫
pθ(y|x) log p(x)dy (24)

= Epθ(y|x)[log p(x)] (25)

= Epθ(y|x)
[
log

p(x,y)

p(y|x)

]
(26)

= Epθ(y|x)
[
log

p(x,y)pθ(y|x)
p(y|x)pθ(y|x)

]
(27)

= Epθ(y|x)
[
log

p(x,y)

pθ(y|x)

]
+ Epθ(y|x)

[
log

pθ(y|x)
p(y|x)

]
(28)

= Epθ(y|x)
[
log

p(x,y)

pθ(y|x)

]
+DKL(pθ(y|x) ∥ p(y|x)), (29)

where the left-hand side of Equation (7) is the evidence lower bound (ELBO) (Kingma & Welling,
2013), and the right-hand side is the KL divergence (Kullback & Leibler, 1951) between our
parameterized distribution pθ(y|x) (i.e., the predictor) and the true distribution p(y|x).
The recent GAN-based methods (Pei et al., 2019a;b; Guo et al., 2022b) propose to leverage the entities
out of training set for unsupervised learning. Their common idea is to make the entity embeddings
from different KGs indiscriminative to a discriminator, and the underlying aligned entities shall be
encoded in the same way and have similar embeddings. To formally prove this idea, we dissect the
ELBO in Equation (7) as follows:

Epθ(y|x)
[
log

p(x,y)

pθ(y|x)

]
= Epθ(y|x)

[
log

pθ(x|y)p(y)
pθ(y|x)

]
(30)

= Epθ(y|x)
[
log pθ(x|y)

]
+ Epθ(y|x)

[
log

p(y)

pθ(y|x)

]
(31)

= Epθ(y|x)
[
log pθ(x|y)

]
−DKL(pθ(y|x) ∥ p(y)) (32)

Therefore, we have:

log p(x) = Epθ(y|x)
[
log pθ(x|y)

]
︸ ︷︷ ︸

reconstruction term

−DKL(pθ(y|x) ∥ p(y))︸ ︷︷ ︸
distribution matching term

+DKL(pθ(y|x) ∥ p(y|x))︸ ︷︷ ︸
prediction matching term

(33)

The first term aims to reconstruct the original embedding x based on y generated from x, which
has not been studied by the existing discriminative EEA methods (Guo et al., 2020; Liu et al., 2021;
Lin et al., 2022). The second term imposes the distribution y conditioned on x to match the prior
distribution of y, which has been investigated by the GAN-based EEA methods (Pei et al., 2019a;b;
Guo et al., 2022b). The third term is the main objective of EEA (i.e., Equation (8) with the target
p(y|x) being only partially observed).

Note that, p(x) is irrelevant to our parameter set θ and thus can be regarded as a constant during
optimization. Therefore, maximizing the ELBO (i.e., maximizing the first term and minimizing the
second term) will result in minimizing the third term, concluding the proof.

12



Published as a conference paper at ICLR 2024

A.2 PROOF OF PROPOSITION 2

Proof. We first have a look on the right hand:

DKL(p(zx→x), p(z
∗)) +DKL(p(zy→y), p(z

∗)) (34)

Ideally, all the variables zx→x, zy→y , and z∗ follow the Gaussian distributions with µx→x, µy→y , µ∗

and σx→x, σy→y , σ∗ as mean and variance, respectively.

Luckily, we can use the following equation to calculate the KL divergence between two Gaussian
distributions conveniently:

DKL(p(z1), p(z2)) = log
σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
, (35)

and rewrite Equation(34) as:

DKL(p(zx→x), p(z
∗)) +DKL(p(zy→y), p(z

∗)) (36)

=(log
σ∗

σx→x
+
σ2
x→x + (µx→x − µ∗)2

2(σ∗)2
− 1

2
) + (log

σ∗

σy→y
+
σ2
y→y + (µy→y − µ∗)2

2(σ∗)2
− 1

2
) (37)

=(log
σ∗

σx→x
+ log

σ∗

σy→y
) + (

σ2
x→x + (µx→x − µ∗)2

2(σ∗)2
+
σ2
y→y + (µy→y − µ∗)2

2(σ∗)2
)− 1 (38)

=(log
σ∗

σx→x
+ log

σ∗

σy→y
) +

σ2
x→x + (µx→x − µ∗)2 + σ2

y→y + (µy→y − µ∗)2

2(σ∗)2
− 1 (39)

Take z∗ ∼ N (µ∗ = 0, σ∗ = I) into the above equation, we will have:

DKL(p(zx→x), p(z
∗)) +DKL(p(zy→y), p(z

∗)) (40)

=− log σx→xσy→y +
1

2
(σ2
x→x + σ2

y→y + µ2
x→x + µ2

y→y)− 1 (41)

Similarly, the left hand can be expanded as:

DKL(p(zx→x), p(zy→y)) = log
σy→y

σx→x
+
σ2
x→x + (µx→x − µy→y)

2

2σ2
y→y

− 1

2
, (42)

Thus, the difference between the left hand and the right hand can be computed:

DKL(p(zx→x), p(z
∗)) +DKL(p(zy→y), p(z

∗))−DKL(p(zx→x), p(zy→y)) (43)

=− log σx→xσy→y +
1

2
(σ2
x→x + σ2

y→y + µ2
x→x + µ2

y→y)− 1 (44)

− (log
σy→y

σx→x
+
σ2
x→x + (µx→x − µy→y)

2

2σ2
y→y

− 1

2
) (45)

=(− log σx→xσy→y − log
σy→y

σx→x
) (46)

+ (
1

2
(σ2
x→x + σ2

y→y + µ2
x→x + µ2

y→y)−
σ2
x→x + (µx→x − µy→y)

2

2σ2
y→y

) + (−1 + 1

2
) (47)

=− 2 log σy→y −
1

2
(48)

+
σ2
x→xσ

2
y→y + σ4

y→y + µ2
x→xσ

2
y→y + µ2

y→yσ
2
y→y − σ2

x→x − µ2
x→x − µ2

y→y + 2µx→xµy→y

2σ2
y→y

(49)

=− 2 log σy→y −
1

2
(50)

+
(σ2
y→y − 1)σ2

x→x + (µ2
x→x + µ2

y→y)(σ
2
y→y − 1) + σ4

y→y + 2µx→xµy→y

2σ2
y→y

(51)

=− 2 log σy→y −
1

2
+

(µ2
x→x + µ2

y→y + σ2
x→x)(σ

2
y→y − 1) + σ4

y→y + 2µx→xµy→y

2σ2
y→y

(52)
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As we optimize zy→y → z∗, i.e., minimize DKL(p(zy→y), p(z
∗)), we will have:

log σy→y → 0, σ2
y→y − 1→ 0, µx→xµy→y → 0, σ4

y→y → 1, (53)

and consequently:

DKL(p(zx→x), p(z
∗)) +DKL(p(zy→y), p(z

∗))−DKL(p(zx→x), p(zy→y))→ 0, (54)

Similarly, as we optimize zx→x → z∗, i.e., minimize DKL(p(zx→x), p(z
∗)), we will have:

DKL(p(zx→x), p(z
∗)) +DKL(p(zy→y), p(z

∗))−DKL(p(zy→y), p(zx→x))→ 0 (55)

Therefore, jointly minimizing DKL(p(zx→x), p(z
∗)) and DKL(p(zy→y), p(z

∗)) will subsequently
minimizing DKL(p(zx→x), p(zy→y)) and DKL(p(zy→y), p(zx→x)), and finally aligning the distri-
butions between x and y, concluding the proof.

B IMPLEMENTATION DETAILS

B.1 DECODING EMBEDDINGS BACK TO CONCRETE FEATURES

All decoders used to decode the reconstructed embeddings to the concrete features comprise several
hidden layers and an output layer. Specifically, each hidden layer has a linear layer with layer
norm and ReLU/Tanh activations. The output layer is different for different modalities. For the
relational graph and attribute information, their concrete features are organized in the form of multi-
classification labels. For example, the relational graph information gi for an entity xi is represented
by:

gi = (0, ..., 1, ...1, ..., 0)T , |gi| = |X |, (56)

where gi has |X | elements with 1 indicating the connection and 0 otherwise. Therefore, the output
layer transforms the hidden output to the concrete feature prediction with a matrix Wo ∈ RH×|X|,
where H is the output dimension of the final hidden layer.

The image concrete features are actually the pretrained embeddings rather than pixel data, as we use
the existing EEA models for embedding entities. Therefore, we replaced the binary cross-entropy
loss with a MSE loss to train GEEA to recover this pretrained embedding.

B.2 IMPLEMENTING A GEEA

We implement GEEA with PyTorch and run the main experiments on a RTX 4090. We illustrate
the training procedure of GEEA as outlined in Algorithm 1. We first initialize all trainable variables
and the get the mini-batch data of supervised flows x→ y, y → x and unsupervised flows x→ x,
y → y, respectively.

For the supervised flows, we iterate the batched data and calculate the prediction matching loss which
is also used in most existing works. Then, we calculate the distribution matching, prior reconstruction
and post reconstruction losses and sum them for later joint optimization.

For the unsupervised flows, we first process the raw feature withM and VAE to obtain the embeddings
and reconstructed embeddings. Then we estimate the distribution matching loss with the embedding
sets as input (Equation (16)), after which we calculate the prior and post reconstruction loss for each
x and each y.

Finally, we sum all the losses produced with all flows, and minimize them until the performance on
the valid dataset does not improve.

The overall hyper-parameter settings in the main experiments are presented in Table 6.

C ADDITIONAL EXPERIMENTS

C.1 DATASETS

We present the statistics of entity alignment and entity synthesis datasets in Table 7. To construct an
entity synthesis dataset, we first sample 30% of entity alignments from the testing set of the original
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Algorithm 1 Generative Embedding-based Entity Alignment

1: Input: The entity sets X , Y , the multi-modal information G, A, I ..., the EEA modelM, and
M-VAE VAE;

2: Randomly initialize all parameters;
3: repeat
4: Bsup ← {(x, y)|(x, y) ∼ S}; // get a batch of supervised training data
5: Bunsup ← {(x, y)|x ∼ X , y ∼ Y}; // get a batch of unsupervised training data
6: for (x, y) ∈ Bsup do
7: x,y←M(x),M(y); // obtain embeddings and sub-embeddings
8: yx→y,xy→x ← VAE(x),VAE(y); // obtain the reconstructed mutual embeddings
9: Calculate the prediction matching loss following Equation (8);

10: Calculate the prior reconstruction loss following Equation (19);
11: Calculate the post reconstruction loss following Equation (20);
12: end for
13: {xx→x,yy→y|(x, y) ∈ Bunsup} ← {VAE(M(x)),VAE(M(y))|(x, y) ∈ Bunsup}; // obtain the

reconstructed self embeddings
14: Calculate the distribution matching loss following Equation (16);
15: Calculate the prior reconstruction loss following Equation (19);
16: Calculate the post reconstruction loss following Equation (20);
17: Jointly minimize all losses;
18: until the performance does not improve.

Table 6: Hyper-parameter settings in the main experiments. PM,DM, PrioR, PostR denote prediction
matching, distribution matching, prior reconstruction, and post reconstruction, respectively.

Datasets # epoch batch-size # VAE layers learning
rate optimizer dropout

rate
unsupervised

batch-size

flow
weights

(xx,yy,xy,yx)

loss
weights

(PM,DM, PrioR, PostR)

hidden
sizes

latent
size

decoder
hidden
sizes

DBP15KZH-EN 200 2,500 2 0.001 Adam 0.5 2,800 [1.,1.,5.,5.] [1., 0.5,1.,1.] [300,300] 300 [300,1000]
DBP15KJA-EN 200 2,500 2 0.001 Adam 0.5 2,800 [1.,1.,5.,5.] [1., 0.5,1.,1.] [300,300] 300 [300,1000]
DBP15KFR-EN 200 2,500 2 0.001 Adam 0.5 2,800 [1.,1.,5.,5.] [1., 0.5,1.,1.] [300,300] 300 [300,1000]
FB15K-DB15K 300 3,500 3 0.0005 Adam 0.5 2,500 [1.,1.,5.,5.] [1., 0.5,1.,1.] [300,300,300] 300 [300,300,1000]
FB15K-YAGO15K 300 3,500 3 0.0005 Adam 0.5 2,500 [1.,1.,5.,5.] [1., 0.5,1.,1.] [300,300,300] 300 [300,300,1000]

Table 7: Statistics of the datasets.

Datasets Entity Alignment Entity Synthesis # Entities # Relations # Attributes # Images
# Test Alignments # Known Test Alignments # Unknown Test Alignments

DBP15KZH-EN
10,500 7,350 3,150 19,388 1,701 8,111 15,912
10,500 7,350 3,150 19,572 1,323 7,173 14,125

DBP15KJA-EN
10,500 7,350 3,150 19,814 1,299 5,882 12,739
10,500 7,350 3,150 19,780 1,153 6,066 13,741

DBP15KFR-EN
10,500 7,350 3,150 19,661 903 4,547 14,174
10,500 7,350 3,150 19,993 1,208 6,422 13,858

FB15K-DB15K 10,276 7,193 3,083 14,951 1,345 116 13,444
10,500 7,350 3,150 12,842 279 225 12,837

FB15K-YAGO15K 8,959 6,272 2,687 14,951 1,345 116 13,444
10,500 7,350 3,150 15,404 32 7 11,194

entity alignment dataset. Then, we view the source entities in sampled entities pairs as the dangling
entities, and make their target entities unseen during training. To this end, we remove all types of
information referred to these target entities from the training set.

C.2 SINGLE-MODAL GEEA

We first remove the image encoder from multi-modal EEA models. The results are shown in Table 11.
Notably, our GEEA without the image encoder still achieves state-of-the-art performance on several
metrics, such as Hits@10.

Then, we conducted new experiments on the OpenEA 100K (Sun et al., 2020b). Although OpenEA
100K does not have a multi-modal version, it is still interesting to explore the performance of
GEEA with single-modal EEA models on it, similar to NeoEA (Guo et al., 2022b). We conducted
experiments following the NeoEA and present the results in Table 12. It is clear that our method can
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Table 8: Entity alignment results of GEEA with different EEA models on DBP15K datasets.

Models DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN

Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑ MRR↑
EVA (Liu et al., 2021) .680 .910 .762 .673 .908 .757 .683 .923 .767
GEEA w/ EVA .715 .922 .794 .707 .925 .791 .727 .940 .817

MSNEA (Chen et al., 2022a) .601 .830 .684 .535 .775 .617 .543 .801 .630
GEEA w/ MSNEA .643 .872 .732 .559 .821 .671 .586 .853 .672

MCLEA (Lin et al., 2022) .715 .923 .788 .715 .909 .785 .711 .909 .782
GEEA w/ MCLEA .761 .946 .827 .755 .953 .827 .776 .962 .844

Table 9: More entity synthesis samples from different dataset. The first two rows are from FB15K-
YAGO15K; the middle two rows are from DBP15KZH-EN; the last two rows are from DBP15KFR-EN.

Source Target GEEA Output

Entity Image Image Neighborhood Attribute Image Neighborhood Attribute

James
Cameron
(director)

United States, New Zealand,
Kathryn Bigelow, Avatar (2009 film),

The Terminator
wasBornOnDate

Kathryn Bigelow,
United States, The Terminator,
Jonathan Frakes, James Cameron

wasBornOnDate,
diedOnDate,
diedOnDate

Northwest
Territories
(Canada)

Canada,
English language,
French language

wasCreatedOnDate,
hasLatitude,

hasLongitude

English language,
Yukon, Nunavut,

French language,
Canada, Prince Edward Island

wasCreatedOnDate,
hasLatitude, hasLongitude,

wasDestroyedOnDate

苏州市
(Suzhou)

Lake Tai, Suzhou dialect,
Jiangsu, Han Xue (actress), Wu Chinese

populationTotal, mapCaption,
location, longd

latd, populationUrban

Lake Tai, Suzhou dialect, Jiangsu,
Han Xue (actress), Wu Chinese,

Huzhou, Hangzhou, Jiangyin

mapCaption, populationTotal, location,
longd, latd, populationUrban,

populationDensityKm, areaTotalKm, postalCode

周杰伦
(Jay Chou)

Fantasy (Jay Chou album), Jay (album),
The Era (album), Capricorn (Jay Chou album),

Rock music, Pop music

name, birthDate,
occupation, yearsactive

birthPlace, awards

The Era (album), Capricorn (Jay Chou album),
Jay (album), Fantasy (Jay Chou album), Pop music,

Ye Hui Mei, Perfection (EP),
Sony Music Entertainment

name, occupation, birthDate,
yearsactive, birthPlace, awards,

pinyinchinesename, spouse, children

Forel (Lavaux) Puidoux, Essertes,
Servion, Savigny, Switzerland

name, population,
canton, population

postalCode, languages

Servion, Puidoux, Essertes,
Savigny, Switzerland, Montpreveyres,

Corcelles-le-Jorat, Pully, Ropraz

name, canton, population,
languages, légende, latitude,

longitude, blason, gentilé

Nintendo 3DS
Nintendo, Kirby (series),

Nintendo DS, Super Smash Bros.,
Yo-Kai Watch, Need for Speed

name, title,
caption, logo

Nintendo, Kirby (series), Nintendo DS,
Super Smash Bros., Yo-Kai Watch,

Shigeru Miyamoto, Game Boy, Nintendo 64

name, title caption,
date, type, trad,

width, année, période

Table 10: Some false samples from FB15K-YAGO15K.

Source Target GEEA Output

Entity Image Image Neighborhood Attribute Image Neighborhood Attribute

The
Matrix
(film)

Carrie-Anne Moss,
Keanu Reeves,

Laurence Fishburne
Hugo Weaving

wasCreatedOnDate
District 9, What Lies Beneath, Avatar (2009 film),

Ibad Muhamadu, The Fugitive (1993 film),
Denny Landzaat, Michael Lamey, Dries Boussatta

wasBornOnDate,
wasCreatedOnDate,

diedOnDate

The
Terminator

(film)

United States,
Michael Biehn,
James Cameron

Arnold Schwarzenegger

wasCreatedOnDate
United States, Nicaraguan Revolution,
Ibad Muhamadu, José Rodrigues Neto,

Anaconda (film)

wasCreatedOnDate,
diedOnDate, wasCreatedOnDate,

wasDestroyedOnDate,

significantly enhance the performance of SEA (Pei et al., 2019a), which can be attributed to the more
stringent objectives analyzed in Section 2.

C.3 GEEA ON DANGLING ENTITY DETECTION

The methods for detecting dangling entities (Sun et al., 2021) can be categorized into three groups:
(1) Nearest Neighbor Classifier (NNC), which trains a classifier to determine whether a source entity
lacks a counterpart entity in the target KG; (2) Margin-based Ranking (MR), which learns a margin
value λ. If the embedding distance between a source entity and its nearest neighbor in the target KG
exceeds λ, this source entity is considered a dangling entity; (3) Background Ranking (BR), which
regards the dangling entities as background and randomly pushes them away from aligned entities.

All three types of dangling detection methods heavily rely on the quality of entity embeddings.
Therefore, if the proposed GEEA learns better embeddings for entity alignment, it is expected to
contribute to the detection of dangling entities. To verify this idea, we conducted experiments on new
datasets, following [1]. We used the same parameter settings and employed MTransE (Chen et al.,
2017) as the backbone model. The results are presented in Table 13. Clearly, incorporating GEEA
led to significant performance improvements in dangling entity detection across all three datasets.
The performance gains were particularly notable in terms of precision and F1 metrics.

C.4 GEEA WITH DIFFERENT EEA MODELS

We also investigated the performance of GEEA with different EEA models. As shown in Table 8,
GEEA significantly improved all the baseline models on all metrics and datasets. Remarkably, the
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Table 11: Detailed entity alignment results on DBP15K datasets, without surface information and
iterative strategy.

Models DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN

Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑ MRR↑
EVA (Liu et al., 2021) .680 .910 .762 .673 .908 .757 .683 .923 .767
MSNEA (Chen et al., 2022a) .601 .830 .684 .535 .775 .617 .543 .801 .630

MCLEA (Lin et al., 2022) .715 .923 .788 .715 .909 .785 .711 .909 .782
MCLEA w/o image .658 .915 .726 .662 .904 .740 .662 .902 .747

GEEA .761 .946 .827 .755 .953 .827 .776 .962 .844
GEEA w/o image .709 .929 .782 .708 .935 .784 .717 .946 .796

Table 12: Single-modal entity alignment results on OpenEA 100K datasets.

Models EN-FR EN-DE DBPedia-WikiData DBPedia-Yago

Hits@1↑ MRR↑ Hits@1↑ MRR↑ Hits@1↑ MRR↑ Hits@1↑ MRR↑
SEA (Pei et al., 2019a) .225 .314 .341 .421 .291 .378 .490 .578
NeoEA (SEA) (Guo et al., 2022b) .254 .345 .364 .446 .325 .416 .569 .651
GEEA (SEA) .269 .355 .377 .459 .349 .436 .597 .685

performance of EVA with GEEA on some datasets like DBP15KFR-EN were even better than that of
the original MCLEA.

C.5 RESULTS WITH DIFFERENT ALIGNMENT RATIOS ON ALL DATASETS

We present the results with different alignment ratios on all datasets in Figure 5, which demonstrate
the same conclusion as in Figure 4.

C.6 MORE ENTITY SYNTHESIS SAMPLES

We illustrate more entity synthesis samples in Table 9 and some false samples in Table 10. The main
reason for less accurate synthesis results is the lack of information. For example, in the FB15K-
YAGO15K datasets, the YAGO KG has only 7 different attributes. Also, as some entities do not have
image features, the EEA models are configured to initialize the pretrained image embeddings with
random vectors. To mitigate this problem, we plan to design new benchmarks and new EEA models
to directly process and generate the raw data in future work.
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Table 13: Dangling entity detection results on DBP2.0.

Models DBP 2.0ZH-EN DBP 2.0JA-EN DBP 2.0FR-EN

Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑
NNC (Sun et al., 2021) .604 .485 .538 .622 .491 .549 .459 .447 .453
GEEA (NNC) .617 .509 .558 .637 .460 .534 .479 .449 .464

MR (Sun et al., 2021) .781 .702 .740 .799 .708 .751 .482 .575 .524
GEEA (MR) .793 .709 .749 .812 .714 .760 .508 .594 .548

BR (Sun et al., 2021) .811 .728 .767 .816 .733 .772 .539 .686 .604
GEEA (BR) .821 .724 .769 .833 .735 .781 .549 .694 .613
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Figure 5: Entity alignment results on all datasets, w.r.t. ratios of training alignment.
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