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Fig. 1: Fast reinforcement learning via autonomous practicing. By pre-training the RL policy on diverse data (Stage 1), and deploying our
autonomous practicing framework for continuous online improvements (Stage 2) in large real-world environments, the robot can autonomously
navigate between sparse checkpoints (blue), recovering from collisions during practice (red) and improve its driving behavior to maximize
speed (yellow → magenta). FastRLAP can learn aggressive driving comparable to a human expert within 20 minutes of autonomous practice.
Note that the 3D scan is shown for visualization only, and is not available to our system.

Abstract—We present a system that enables an autonomous
small-scale RC car to drive aggressively from visual observations
using reinforcement learning (RL). Our system, FastRLAP (faster
lap), trains autonomously in the real world, without human
interventions, and without requiring any simulation or expert
demonstrations. Our system integrates a number of important
components to make this possible: we initialize the representa-
tions for the RL policy and value function from a large prior
dataset of other robots navigating in other environments (at
low speed), which provides a navigation-relevant representation.
From here, a sample-efficient online RL method uses a single
low-speed user-provided demonstration to determine the desired
driving course, extracts a set of navigational checkpoints, and au-
tonomously practices driving through these checkpoints, resetting
automatically on collision or failure. Perhaps surprisingly, we find
that with appropriate initialization and choice of algorithm, our
system can learn to drive over a variety of racing courses with less
than 20 minutes of online training. The resulting policies exhibit
emergent aggressive driving skills, such as timing braking and
acceleration around turns, and approach the performance of a
human driver using a similar first-person interface.

I. INTRODUCTION

High-speed vision-based navigation presents a range of
challenges: aside from the usual difficulties associated with
collision-free navigation, it requires controllers that can ac-
count for both the vehicle’s dynamics and the perceived
obstacles (Fig. 4). Learning-based methods offer a particularly
appealing way to approach such challenges, as they can
directly learn the relationship between perception and vehicle
dynamics and in principle capture high-performance driving

behaviors. One way that prior work has approached such
domains is via imitation learning, acquiring end-to-end skills
from expert demonstrations [1, 2]. However, if our aim is to
maximize performance, we might instead prefer to directly
adapt the navigational strategy to the vehicle autonomously.
By learning from autonomous experience in an environment,
reinforcement learning (RL) can enable this, analogously to
progress in other domains such as games and robotic manip-
ulation, where policies trained via RL have even exceeded
human-level performance [3–6].

But the autonomous setting presents major challenges for
RL: unlike other domains, it is impossible to reset the system
to a random state, and so the learning process is highly depen-
dent on the system’s ability to make continual progress without
getting stuck. Starting the training process from a randomly-
initialized policy and learning solely via trial-and-error would
likely result in catastrophic failure. Instead, the RL-based
system should train automatically, without supervision, not just
improving its policy performance but also smoothly recovering
from failures or collisions. The goal of this paper is to address
these challenges and understand how RL can be applied to
autonomously learn high-speed driving from vision.

To this end, we design a high-performance system for Fast
Reinforcement Learning via Autonomous Practicing. FastR-
LAP ( faster-lap), which uses an automatic goal curriculum
to guide a goal-conditioned RL policy to quickly adapt to the
target environment and improve its performance over multiple
laps, without requiring human interventions (see Fig. 1). We



then leverage data-efficient online RL, bootstrapped with just
a single low-speed demonstration of the track, to rapidly learn
a policy that can drive quickly and aggressively in the desired
environment. This stage takes under 20 minutes, accelerated by
pre-trained representations and enabled by a sample-efficient
online RL procedure that effectively uses them.

The primary contribution of this work is FastRLAP, a
system for autonomous learning of vision-based navigation
that leverages diverse prior data and improves by practicing
autonomously. We demonstrate our FastRLAP in challenging
environments on a custom 1/10th-scale RC car modified for
real-world online RL. FastRLAP can autonomously practice
and learn aggressive maneuvers using a novel autonomous
practicing framework, improving by up to 40% over the
demonstration lap and achieving performance close to a human
expert. Notably, the online training phase typically takes less
than 20 minutes (as little as 5 minutes!), depending on the
size of the environment. During this time, the robot learns
aggressive maneuvers, drifting, and maintaining a racing line,
without any expert demonstrations. The training requires no
human interventions and is fully autonomous. To the best
of our knowledge, FastRLAP is the first instantiation of a
vision-based mobile robotic system that uses model-free RL
to autonomously practice high-speed driving maneuvers and
improve online in the real world.

II. AUTONOMOUS PRACTICING WITH RL

Our system for learning high-speed driving, FastRLAP, aims
to enable autonomous practicing and sample-efficient end-to-
end RL in the real world. FastRLAP has three components: a
simple high-level finite state machine (FSM) for autonomous
practicing, a pre-trained representation of visual observations,
and a sample-efficient RL algorithm for online learning (see
Fig. 1). The FSM (shown in blue) serves the dual purpose of
selecting the next checkpoint for the online RL policy and au-
tomatically recovering from collisions, enabling autonomous
practicing in the real world. The online RL policy (shown
in orange) is trained online in the real world to reach goals
commanded by the FSM, and continually improves to learn
aggressive driving maneuvers. To provide for compute- and
sample-efficient training of the online RL policy, we bootstrap
it with an offline representation of navigation-specific visual
features trained from prior data (shown in purple). For details
of our system, see Appendix C.

A. Summary

Algorithm 1 summarizes the FastRLAP autonomous train-
ing framework. We use a diverse offline navigation dataset
D to pre-train a navigation-relevant representation of visual
observations using a goal-conditioned RL objective optimized
with IQL (L6). We freeze the encoder trained with this process
and and use it to encode visual observations for the actor and
critic for the online learning phase (see Fig. 1, orange). The
reward function for both the pre-training and online RL tasks
is described by Eqn. 1.

Algorithm 1: FastRLAP for Autonomous Practicing
Data: Prior navigation dataset D, slow demo lap Bslow

1 Keys: Pre-Training, Practicing, Online RL
2 while Encoder is not converged do
3 s, a, s′, idx← LoadData(D)
4 g ← LoadFutureData(D, idx + RandomOffset())
5 r ← ComputeReward(s, a, g)
6 TrainIQL((s, g), a, r, (s′, g))

7 while True do
8 On Robot
9 s←Observe()

10 if s near g then
11 g ← NextCheckpoint(g)

12 r ← ComputeReward(sprev, aprev, g)
13 SendToWorkstation(sprev, aprev, r, s, g)
14 a ∼ π(ϕ(simage), sproprio, g)
15 Actuate(a)
16 if Collision or Stuck then
17 Execute recovery policy

18 On Workstation
19 ReceiveFromRobot(B)
20 b ← Sample(B), bslow ← Sample(Bslow)
21 π,Q←TrainRLPD(π,Q, b, bslow)

During deployment in a previously unseen environment, the
practicing FSM (blue) serves the dual purpose of commanding
the next goal checkpoint to the low-level policy π (L11),
and automatic collision recovery if the robot is stuck or in
collision (L17). To enable fast training, the inference is split
between the robot and a remote workstation with low-latency
communication between them (see Sec. D for details).

The robot runs fast inference of the trained policy (L14)
at 10Hz, and sends batches of online experience to the
workstation (L13) to asynchronously update the actor and
critic networks using RLPD (L21) as quickly as possible. This
process enables FastRLAP to learn aggressive driving behavior
from as little as 10-20 minutes of online experience.

III. FASTER LAP TIMES WITH FASTRLAP

In this section we present an experimental evaluation of Fas-
tRLAP in a variety of real-world and simulated environments.
We consider several metrics to analyze the peak performance,
as well as cumulative metrics during practice. The time-to-
first-lap (T2F) represents the time taken to complete the first
lap, starting from scratch. We track the best lap time achieved
during training as well as the median time of last five laps
completed to capture the converged behavior. Additionally, we
list the median collisions in the last five laps to capture safety.
To contextualize our results, we provide timing for laps driven
in each environment by human drivers watching the robot from
a third-person view (“Human Expert”), as well as the duration
of the “slow demo” lap.
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T2F Lap Times (s) # Collisions

Env. (s) Best Median Demo Expert† Median

Real-A 114 32.7 39.0 54 25 0
Real-B 225 44.2 65.7 70 43 3
Real-C 117 10.9 11.7 17 7 0

Sim-D 925 104.1 107.0 286 112 0
Sim-E 174 18.0 18.1 36 19 0

TABLE I: Summary of experiments: FastRLAP can consistently
learn aggressive driving policies in environments of varying difficulty
levels, improving over the demo lap by over 40% and achieving lap
times within 5% of the expert. †Note that the expert has access to
privileged third-person observations.

Note that we used the same hyperparameters (i.e., network
architecture, learning rate, reward coefficients) for all experi-
ments discussed here, both in the real-world and simulation.
See the appendix for a full list of hyperparameter values
(Appendix G) and details about the simulation experiment
(Appendix F).

A. Real-World Deployment

We deploy FastRLAP in three previously unseen indoor
environments to demonstrate autonomous practicing in tightly
constrained spaces. Before the start of training, we manually
drive the robot around the course for a slow lap to define
the rough layout of the track. This lap is used in two ways:
(i) to generate a sequence of sparse checkpoints {ci}nc

i=1 for
the practicing FSM described in Sec. C1, and (ii) to provide
a slow-speed demonstration for off-policy online actor-critic
updates as described in Sec. C2. We describe the environments
below described below are visualized in Fig. 7 (top).
Real-A represents a large loop (70 meters in length)

through the interior of a carpeted building with glass walls
and many open corridors. The course is defined by a sequence
of nc = 4 checkpoints spaced roughly 15-20 meters apart.
Real-B is a significantly larger course (∼120 meters in

length) with multiple obstacles, defined by nc = 4. The
floor of this environment is a tiled and has very low friction,
frequently causing dynamical effects such as over-/under-steer
during cornering.
Real-C is a small but challenging indoor race course with

two tight “hairpin” turns, taken at nearly the maximum steering
angle and a tight “chicane” (a right-left sequence). Mastering
this environment requires the robot to discover fast “racing
lines” that minimize unnecessary steering, and carrying a high
speed through the turns. This course is designated by nc = 3
checkpoints. We extensively compare FastRLAP to alternative
baselines in this environment.

Table I and Fig. 7 summarize the performance of our sys-
tem in these environments. FastRLAP is able to consistently
improve over the low-speed demonstration lap in under 4 laps,
and nearly match human performance in Real-B in 30 min-
utes of real-world practice, without any human interventions.
As training progresses, the achieved lap times continue to
decrease, with the path taken by the robot becoming more
optimized as a secondary effect of optimizing speed Fig. 6.

Lap Times (s) # Collisions

T2F (s) Best Median Median

Real-World (Real-C)
State-Based 274 12.7 18.8 3
Offline RL [7] ∞ – – –
No Pre-Training 233 12.7 20.0 1
ImageNet Pre-Training
No Demo Lap 239 16.0 62.6 12
FastRLAP (Ours) 117 10.9 13.3 0

Human FPV – 11.1 14.4 2
Human Oracle† – 7.3 8.8 0

Simulation (Sim-E)
State-Based 222 18.9 26.2 0
No Demo Lap 665 19.6 22.2 0
No Pre-Training 375 17.8 18.4 1
No Pseudo-Resets 405 21.7 25.1 0
FastRLAP (Ours) 173 18.0 18.1 0

Human Oracle† – 18.6 18.9 0

TABLE II: Comparing to baselines in real-world and simulated
environments, FastRLAP achieves consistently lower time-to-first
lap (T2F), best and median lap times, and minimum collisions.
Notably, FastRLAP can outperform a system with access to privileged
state estimates, and a human driving from first-person view (FPV).
In both environments, FastRLAP achieves close-to-oracle† driving
performance, i.e., an expert human driving with privileged third-
person observations of the robot, shown in gray. Offline RL failed to
complete a single lap in Real-C, likely due to its inability to adapt
the learned policies on-the-fly in novel environments.

Emergent behaviors: We find that directly maximizing the
reward for reaching the next checkpoint as quickly as possible
(Eqn. 1) leads to emergent behaviors in our system, visualized
in Fig. 2. The system learns the concept of a “racing line”,
finding a smooth path through the lap and maximizing its
speed through tight corners and chicanes (a–b). This can be
seen in the speed profile through a tight corner in Fig. 2(a),
where the robot learns to carry its speed into the apex, then
brakes sharply to turn and accelerates out of the corner, to
minimize the driving duration. In Fig. 2(c) with a low-friction
surface, the policy learns to over-steer slightly when turning,
drifting into the corner to achieve fast rotation without braking
during the turn (c). Please see the supplemental material for
videos of our system practicing and driving aggressively.

B. Comparative Analysis

We compare the performance of FastRLAP against the base-
lines and ablations mentioned in two environments: Real-C
and Sim-E. we compare our approach to several baselines
and ablations, and demonstrate the importance of each of the
components of our method: pre-trained visual representations,
online RL starting from a slow demo lap, and autonomous re-
covery behaviors to handle the reset-free environment. Specif-
ically, we consider six baselines discussed in Appendix E.

In Real-C, our experiments (Tab. II) show that FastR-
LAP far outperforms the ablation without a demo lap in
both time-to-first lap (T2F) and best lap time, while also
encountering fewer collisions. Early in the training process,
the demonstration helps the system make progress around
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Speed

(b) Real-B

(a)
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(c) Real-B

(d) Sim-D

Fig. 2: Emergent behaviors with FastRLAP. (a, b) show the robot’s telemetry data in environments Sim-E and Real-B after 30 minutes
of autonomous practicing. We find that directly minimizing lap times with RL results in the emergent discovery of a “racing line”, braking
as late as possible to maintain speed in and out of tight corners (a, b) and drifting on slick surfaces (c). In a challenging outdoor environment
Sim-D, the robot infers that the bridge is faster than driving through mud via visual correlation, learning a fast driving policy (d). All the
above graphics are rendered using telemetry from our real-world (b, c) and simulated (a, d) experiments. The third-person views are provided
for visualization only, and are not available to our system. Please see supplemental material for videos of these emergent behaviors.

Fig. 3: Progression of running minimum lap times across different
baselines in Tab. II in Sim-E. FastRLAP achieves expert-level
performance in 20 minutes, learning efficiently from pixels as quickly
as an agent with privileged state information, while achieving better
overall performance by the end of training.

the course, enabling broad state coverage, which yields more
useful exploration early on and eventually leads to better
performance. The offline RL baseline completely failed to
produce a usable policy, as it is unable to adapt online to
new rich observations.

Several additional baselines were considered in the simu-
lated Sim-E environment, summarized in Tab. II. The same
trends hold, showing that the demo lap is very important to fast
learning and achieving a low T2F. Similarly, removing pseudo-
resets causes the system to get stuck for extended durations,
resulting in a very slow first lap (even with a demonstration!).
Fig. 3 shows the progression of the running minimum lap
times for each method.

Analyzing the role of pre-training with offline RL, we find
that FastRLAP initialized with a generic ImageNet encoder
completes its first lap relatively quickly, achieving a T2F com-
parable to FastRLAP. However, its asymptotic performance is
comparably poor: its best lap time across training in Real-C
is only slightly better than the slow-lap demonstration. This
suggests that while extracting general-purpose visual features
(e.g., edges and gradients) may be sufficient for low-speed
navigation, high-speed navigation requires consideration of
task-specific features, such as depth or obstacle detection, that
are better learned with task-specific pre-training.

Most surprisingly, learning directly from visual observations
outperformed the variation with access to privileged state
information in both simulated and real environments. This
suggests that the features learned by the pre-trained encoder
are more informative than simple localization estimates, be-

cause they generalize better: an obstacle looks the same
across different positions and environments, while the state-
based agent must learn a free-space representation of the
entire environment inside its critic function via trial and error,
bumping into each object before it can record its existence.

IV. DISCUSSION

We presented a system for learning high-speed driving
with reinforcement learning from rich observations, practicing
autonomously in the real world. Our approach uses repre-
sentations from prior data to initialize the policy, followed
by sample-efficient online RL paired with a checkpoint-based
navigation strategy to recover autonomously from collisions
and continue practicing. Although deep RL is often believed
to be inefficient and difficult to use in the real world, we
demonstrate that with appropriate pre-training and several
important design decisions, our system can actually learn
effective driving strategies in under 20 minutes of real-world
training. This result may seem quite surprising when viewed in
contrast to prior work that uses simulated data [8], or hundreds
of hours of training [9], and we believe it provides strong
validation that deep RL can indeed be a viable tool for learning
real-world policies even from raw images, when combined
with appropriate pre-training and implemented in the context
of an autonomous training framework.

A qualitative investigation of the policies learned by our
system also reveals interesting emergent behavior. Although
we bootstrap training with prior data (in other domains and
from other robots) and a single (slow) demonstration lap, the
learned policies exhibit skills like drifting and maintaining a
racing line which deviate significantly from the behaviors seen
in the prior data. Thus, the online RL process not only serves to
robustify previously seen behavior, as observed in prior work
incorporating offline data into real-world RL [10], but actually
acquires new emergent behaviors building on the foundation
established by the prior data. At the same time, our ablation
experiments establish the importance of task-relevant pre-train-
ing, supporting the notion that representations learned from
diverse robot navigation data serves as an effective foundation
for downstream skill learning in much the same way that
pre-training with self-supervised objectives enables efficient
acquisition of downstream tasks in vision and NLP [11, 12].
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P. Dürr, “Super-human performance in gran turismo sport
using deep reinforcement learning,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 4257–4264, 2021.

[36] T. Gervet, S. Chintala, D. Batra, J. Malik, and D. S.
Chaplot, “Navigating to objects in the real world,” ArXiv,
vol. abs/2212.00922, 2022. 7

[37] M. Chang, A. Gupta, and S. Gupta, “Semantic visual
navigation by watching youtube videos,” in Advances in
Neural Information Processing Systems, 2020. 7

[38] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda,
J. Allen, V. Lam, A. Bewley, and A. Shah, “Learning
to drive in a day,” CoRR, 2018. 7

[39] G. Kahn, P. Abbeel, and S. Levine, “Land: Learning
to navigate from disengagements,” IEEE Robotics and
Automation Letters, 2021. 7

[40] D. Shah, A. Sridhar, A. Bhorkar, N. Hirose, and
S. Levine, “GNM: A General Navigation Model to Drive
Any Robot,” in arXiV, 2022. 7

[41] W. Han, S. Levine, and P. Abbeel, “Learning compound
multi-step controllers under unknown dynamics,” in
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2015. 7

[42] C. Richter and N. Roy, “Safe visual navigation via deep
learning and novelty detection,” in Robotics: Science and
Systems, 2017.

[43] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine, “Leave
no Trace: Learning to Reset for Safe and Autonomous
Reinforcement Learning,” in Intl. Conf. on Learning
Representations (ICLR), 2018. 8

[44] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen,
A. Singh, V. Kumar, and S. Levine, “The Ingredients
of Real World Robotic Reinforcement Learning,” in Intl.
Conf. on Learning Representations (ICLR), 2020. 8

[45] K. Lu, A. Grover, P. Abbeel, and I. Mordatch, “Reset-
free lifelong learning with skill-space planning,” in Intl.
Conf. on Learning Representations (ICLR), 2021.

[46] A. Sharma, K. Xu, N. Sardana, A. Gupta, K. Hausman,
S. Levine, and C. Finn, “Autonomous reinforcement
learning: Formalism and benchmarking,” in Intl. Conf.
on Learning Representations (ICLR), 2022. 7

[47] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky,
K. Xu, T. Devlin, and S. Levine, “Reset-free reinforce-
ment learning via multi-task learning: Learning dexterous

manipulation behaviors without human intervention,” in
IEEE International Conference on Robotics and Automa-
tion (ICRA), 2021. 7

[48] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning
to walk in the real world with minimal human effort,” in
Conference on Robot Learning, 2020. 7

[49] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta,
G. Berseth, and S. Levine, “Fully autonomous real-
world reinforcement learning with applications to mobile
manipulation,” in Conf. on Robot Learning, 2022. 7

[50] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep
reinforcement learning without exploration,” in Interna-
tional Conference on Machine Learning, 2019. 8

[51] Anonymous, “Efficient online reinforcement learning
with offline data.” OpenReview, 2023. 8

[52] X. Chen, C. Wang, Z. Zhou, and K. Ross, “Randomized
Ensembled Double Q-Learning: Learning Fast Without a
Model,” Mar. 2021, arXiv:2101.05982 [cs]. 8

[53] D. Shah, B. Eysenbach, N. Rhinehart, and S. Levine,
“Rapid exploration for open-world navigation with latent
goal models,” 2021. 8

[54] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforce-
ment learning with implicit q-learning,” arxiv, 2021. 9

[55] “MIT RACECAR,” 2014. [Online]. Available: https:
//racecar.mit.edu 9

[56] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam,
“F1TENTH: An Open-source Evaluation Environment
for Continuous Control and Reinforcement Learning,”
in NeurIPS 2019 Competition and Demonstration Track,
2020. 9

[57] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang,
“JAX: composable transformations of Python+NumPy
programs,” 2018. [Online]. Available: http://github.com/
google/jax 9

[58] I. Kostrikov, D. Yarats, and R. Fergus, “Image Augmen-
tation Is All You Need: Regularizing Deep Reinforce-
ment Learning from Pixels,” Mar. 2021. 9

[59] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009. 9

[60] S. Parisi, A. Rajeswaran, S. Purushwalkam, and
A. Gupta, “The unsurprising effectiveness of pre-trained
vision models for control,” in International Conference
on Machine Learning, 2022. 9

[61] C. Robotics, “Clearpath additional simulation
worlds,” 2022. [Online]. Available: https://github.com/
clearpathrobotics/cpr gazebo 10

6

https://racecar.mit.edu
https://racecar.mit.edu
http://github.com/google/jax
http://github.com/google/jax
https://github.com/clearpathrobotics/cpr_gazebo
https://github.com/clearpathrobotics/cpr_gazebo


APPENDIX

A. Related Work

Leveraging prior data to bootstrap online learning has been
widely studied in the context of supervised learning [13],
representation learning [14], continual learning [15–19], and
RL [20]. Offline RL has proven particularly powerful due to
its ability to learn actionable representations directly from
existing large datasets, and some works have studied how
it can be combined with fine-tuning through online interac-
tion [21–24]. This has enabled a variety of robotic systems
that can leverage a combination of offline data and online
interaction to perform real-world tasks [10, 25, 26]. However,
most such experiments focus on robotic manipulation or other
scenarios that can evaluated in controlled workspaces. Instead,
FastRLAP aims to perform fully autonomous practicing in
unstructured environments, spanning over 120 meters. To
address such real-world domains, FastRLAP incorporates pre-
training data from a variety of environments and different
robots, and employs a combination of diverse but less relevant
demonstrations to enable effective bootstrapping. Additionally,
FastRLAP integrates RL with a high-level practicing pipeline
to enable greater autonomy during training.

Learning high-speed navigation has been approached in
various ways. Typically, these systems rely either on highly
accurate position information to define states [27–30], lo-
calize visual observations relative to a high-fidelity global
map [31, 32], or operate via behavior cloning against some
privileged expert which itself can access ground-truth state
and mapping [33]. This can be prohibitive in unstructured
environments, where (i) onboard state estimates can be highly
inaccurate due to poor localization via noisy odometry or
GPS measurements, and (ii) generating a high-fidelity map
can be difficult or impossible. In contrast, FastRLAP learns
aggressive driving behavior directly from vision, using only a
coarse sequence of checkpoints, and can improve its behavior
by self-practice without using privileged state information.

Prior successes in learning visual navigation for ground
and aerial robots often involves either learning from large-
scale simulated data [8, 34–36], passive data [37], human
interventions [38, 39] or leveraging real-world data from
other robots [40]. However, simulating off-road environments
can be extremely challenging due to complex relationships
between perception, vehicular dynamics, and terrain (Fig. 4),
human interventions are time-consuming and expensive, and
aggressive driving maneuvers tend to be closely adapted to
the specific environments, calling for learning directly from
on-task data. The closest prior work [7] uses offline RL for
off-road driving, but does not support mechanisms to practice
autonomously or adapt its behavior on-the-fly. We present the
first navigation system that combines offline pre-training with
fast, online RL training that can improve with experience and
adapt to individual real-world environments autonomously.

A number of prior papers have studied the problem of
autonomous real-world RL, often through the lens of safety
or reset-free training, where the need for human interventions

(a) (b) (c)

Fig. 4: High-speed visual navigation faces challenges due to sensing,
perception, and dynamics: (a) noisy odometry and localization errors
across multiple laps, (b) overexposure and motion blur in the visual
observations, and (c) over-/under-steer due to complex dynamics.

during training is minimized [41–46], and has been applied
to robotic manipulation [25, 47], quadruped locomotion [48],
and mobile manipulation [49]. We draw inspiration from these
ideas to build an aggressive navigation system that uses a finite
state machine to practice driving around a circuit. FastRLAP
scales to novel environments, driving around 100+ meter
courses, and can continually improve its performance.

B. Problem Formulation

The objective of our high-speed visual navigation task is
to drive through a race course, defined as a sequence of
position checkpoints {ci}, in the minimum possible time.
We frame this task as a Markov decision process (MDP)
M(S,A, p, r), where S denotes the state space comprising
of states s = (V, v, ω, α, g, aprev). Here, V ∈ R128×128×3×3 is
a stacked sequence of the last 3 RGB images; v, ω, α ∈ R3

denote the linear velocity, angular velocity, and linear accel-
eration; the goal g is provided as a relative vector to the next
checkpoint, written as a 2D unit vector and a distance; aprev
is the previous action. All measurements are specified relative
to the robot’s internal reference frame: the policy does not
require information in any fixed external frame of reference.
The action space A is specified by motor velocity targets
corresponding to throttle and steering actions. Note that we
do not allow the throttle command to be negative, the policy
can only drive the robot forwards. p denotes the unknown
transition dynamics, and r is a reward function corresponding
to reaching ci quickly (described in Sec. C2).

To make training in the real world practical and automated,
we formulate this problem in the context of autonomous
RL [46], where the robot is not provided with periodic resets
or interventions when it collides with an obstacle or gets stuck,
and needs to automatically recover on its own. The robot
must practice driving around the lap to fully master the task
and improve its performance over time without any human
interventions. We measure the robot’s performance along three
metrics: (i) time to complete the first lap, (ii) final and median
lap times over the course of training, and (iii) the mean number
of collisions per lap over the course of training.

C. Autonomous Practicing with RL

1) Autonomous Practicing and Goal Checkpoint Selection:
In the autonomous learning setting, the robot is expected to
learn in the environment without any episodic “resets” or
human interventions. In early stages of training, the RL policy
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may make mistakes that lead to irrecoverable states, such
as collisions. Without the help of a reset, the robot would
get stuck forever and the learning algorithm may become
degenerate due to collapse in the state distribution [44]. To
overcome this, we use a simple FSM that switches between
collision recovery and commanding a relevant goal checkpoint
to the RL agent.

This FSM serves a dual purpose. When the RL policy
reaches a goal checkpoint, as measured by a low-fidelity
localization estimate (e.g., from visual-inertial odometry or
GPS), the FSM commands a new goal corresponding to the
next checkpoint in the course sequence {ci}. This forces the
learner to practice reaching all of the checkpoint goals on
the race course sequentially. If the RL policy lands itself
into an irrecoverable state (e.g., experiences a collision or
becomes stuck, see Sec. D for implementation details), the
FSM commands an automatic recovery policy to rescue the
robot and provides a “pseudo-reset”. We use a very simple
scripted recovery policy to perturb the robot’s state, which
selects a random steering angle and drives backward for a short
distance. Although other approaches such as using exploratory
policies [44] or learning a recovery policy [43] have also been
studied, we found this very simple strategy to be sufficient
to allow the online RL procedure to learn directly in the real
world without human interventions.

2) Online RL Training: The objective of the low-level
policy π is to reach the goal checkpoints commanded by
the FSM in the minimum possible time without colliding or
getting stuck. Given the visual observations and a goal vector g⃗
from the FSM, π must parse the high-dimensional observations
to understand its contents and plan a high-speed trajectory
through it without colliding with obstacles or getting stuck. It
is important to note that the goal checkpoints ci are typically
beyond line-of-sight (e.g., Fig. 1, blue), up to 40 meters away,
and navigating between them requires the robot to learn a
representation of the environment layout, correlating visual
observations with possible racing lines that the robot could
take to maintain high speed.

We design a simple reward function r that prioritizes
maintaining maximum instantaneous velocity towards the next
goal checkpoint, while also avoiding irrecoverable states that
require the FSM to trigger the recovery policy, slowing down
the robot’s total lap time. We primarily define the reward as
speed-made-good: the component of the instantaneous velocity
in the direction facing the next checkpoint. We additionally
add a penalty for becoming stuck (defined as failing to move
despite commanding non-zero throttle) and colliding:

r(s, a) = v⃗ · g⃗

∥g⃗∥
− Cstuck1stuck − Ccollide1∥a∥>A∥a∥. (1)

Here, v⃗ and g⃗ are the observed velocity and relative goal
coordinates (included in the state observation s), a is lateral
acceleration, 1 is the indicator function to detect irrecoverable
states, and Cstuck, Ccollide, A > 0 are constants.

To maximize the above reward and continually improve
the robot’s lap times, the system must learn from interactions

with the environment in practice laps, using a batch of new
interactions to update its learned behavior using off-policy
RL [3, 50]. Such approaches benefit greatly by performing
multiple training steps for each environment step, known as
the update-to-data (UTD) ratio: a large UTD leads to efficient
learning, but often suffers from overfitting. To overcome this,
we train our policies with RLPD [51], a data-efficient off-
policy RL algorithm that trains an ensemble of critics to avoid
catastrophic overestimation [52] and can learn quickly using
a combination of online interactions and a small amount of
suboptimal, on-task data.

We obtain this on-task data by collecting a single slow
lap in the target environment, similar to how a racing driver
might perform a reconnaissance lap at low speed to familiarize
themselves with the course before attempting laps at high
speeds. While this data is very limited (under a minute in most
environments) and does not contain fast-driving behaviors,
prior work has shown that it can significantly accelerate online
learning by stabilizing the critic from collapsing in early stages
of training [51]. During the online training, we sample 50% of
each training batch from this low-speed data, interleaved with
50% of data collected online. We found this to be critical to
the efficiency of our system in our evaluations (Sec. F).

However, our system aims to learn effective high-speed
navigation skills in as little as 10-20 minutes. At such low
training times, the process is constrained not only by the
robot’s ability to collect data, but also by the computational
constraints of training the neural network, so improvements
in computationally efficiency actually translate directly into
faster learning with higher UTD ratios. Therefore we combine
the strengths of data-efficient online learning with a powerful
pre-trained representation of visual observations to enable
computation-efficient training.

3) Representation Learning with Offline RL: When train-
ing image-to-action policies, end-to-end RL allows gradients
from the control objective to optimize the encoder. This
results in a task-specific encoder that produces features that
are most relevant to the agent’s task, rather than general
features (e.g., features necessary for classification or video
prediction). Unfortunately, training directly on full images
is very computationally expensive and unacceptably reduces
the UTD ratio. Ideally, we would prefer to pre-train some
encoder to produce task-relevant features without requiring
new environment interactions, and then freeze the encoder
during online training.

We address this by training the encoder with offline RL
on an existing large-scale dataset with a similar (but not
identical) objective. In particular, we use RECON [53], a
large-scale navigation dataset collected by manually driving
a Clearpath Jackal UGV outdoors at low-speeds. This dataset
contains navigation trajectories from many environments and
an entirely different robot, which importantly does not include
aggressive high-speed driving. Thus, the role of pre-training
is not to teach the robot how to drive quickly and efficiently,
but only to extract a navigation-relevant representation to
simplify the online learning problem. The aggressive, high-
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Fig. 5: For fast training, we featurize the visual observations using
a pre-trained encoder onboard the robot (right) and run RL training
on these embeddings on a wirelessly connected workstation (left).

speed driving behaviors necessary to solve the desired task
must be learned through practice in the real world, building
on this pre-trained foundation.

We apply goal-conditioned offline RL by selecting a 1:1
mixture of random goals and goals from the robot’s future
trajectory in this dataset, and use Implicit Q-Learning [54] to
train a critic network (illustrated in Fig. 1, purple). We then
take the learned encoder, which now encodes features relevant
to the navigation task, and freeze it for training the aggressive
driving policy and critic (orange) as illustrated in Sec. C2.

D. System Design for Online Learning

We instantiate our autonomous practicing system on a
bespoke 1/10th-scale autonomous rally car for high-speed
navigation. While the base chassis was inspired by similar
platforms [55, 56], the task of autonomous practicing with
online learning adds a number of challenges that necessitate
hardware and networking modifications. We describe these
differences on top of a commercially available Traxxas Slash
4×4 Ultimate RC car (Fig. 5).
Sensing: Since our high-speed system operates directly on
visual observations, we use a forward-facing PCB camera with
a fisheye lens to obtain a low-latency stream of 128×128
RGB images with minimal motion blur. Since the RL policy
requires coarse relative position estimates to intermediate
checkpoints/subgoals, our system uses a low-fidelity state
estimator. However, relying on wheel speeds and onboard IMU
for local odometry is impractical due to wheel slippage. For
this, we use a RealSense T265 tracking camera to provide
local visual-inertial odometry estimates for the positions of the
robot and intermediate checkpoints. In indoor environments,
we orient the T265 to face upwards to minimize localization
issues faced when the car bumps into obstacles.
Compute: Following F1TENTH [56], we use an NVIDIA
Jetson Xavier NX for onboard compute. We process visual
observations onboard using a pre-trained encoder (Sec. C3),
and offload the RL training to a desktop workstation over a
WiFi network or LTE (see Fig. 5). This has the dual benefits
of low communication latency (since we only communicate
low-dimensional features, under 100kB/s) and fast training
(since only a subset of the layers need to be updated). To
achieve a high UTD, we implement our training algorithm in
JAX [57]. Using the just-in-time compiler to combine many
update steps into a single optimized XLA function, we are
able to increase our update rates to ∼800 actor updates per
second. When combined with the on-robot featurization, this

represents a ∼10x increase in throughput compared to training
without these optimizations.
Actuation: The Markov assumption requires that the transition
dynamics p only depend on the current state and action.
However, typical “sensorless” motors used in RC cars exhibit
cogging — a stochastic stuttering behavior that depends heav-
ily on unobservable variables such as rotor positions — thus
violating the assumption. This particularly manifests when
steering sharply or starting from a standstill, actions that the
RL agent must often make in exploration. We upgrade the
system to use “sensored” motors to provide closed-loop startup
sequencing without cogging. While the mechanical top speed
of our system is nearly 30m/s, we cap the operational speed
in indoor environments to 3.5m/s for safety.
Action continuity: The closed loop PID and servo actuators
tend to act as a low-pass filter on their targets, smoothing out
high-frequency changes. When sampling uncorrelated actions
from an output distribution, this will result in a low signal-
to-noise ratio between the commanded target actions and
measured velocity observations, making critic learning via
temporal difference learning difficult. To overcome this, we
enforce continuity in the policy’s outputs by constraining them
to be near the previous action by modifying the action space:
(i) instead of the standard tanh activation to limit the action
space in [−1, 1] (used by actor), we use a shifted tanh that
limits it to the range [aprev − δ, aprev + δ], i.e., near previous
action, bounded by δ > 0, and (ii) we append the previous
action to the observed state. Please see the supplemental
material for further details.
Detecting blocked states: Our autonomous practicing system
uses a recovery policy when the robot fails to make forward
progress (e.g., collision or stuck). We detect collisions via a
simple heuristic condition: at each timestep, we compare the
lateral acceleration of the robot to a threshold value; if that
threshold is violated, the robot is in collision and a penalty is
applied according to Eqn. 1. The “stuck” condition is detected
using local odometry: if the robot has not moved by at 0.5m
in the past three seconds, it is considered to be stuck and a
pseudo-reset is performed.

E. Baselines

Offline RL: Ablating the online learning aspect, this baseline
uses a policy trained purely offline, with access to 15 minutes
of expert data. Note that this is more on-task offline data than
is available to FastRLAP.
No Demo Lap: Ablating the online learning aspect, this
baseline deploys FastRLAP without sampling any data from
the low-speed demo lap Bslow (Alg. 1, L20).
No Pre-Training: Ablating offline pre-training, this baseline
uses networks initialized from scratch and trained online using
DrQ [58], a state-of-the-art pixel-based RL algorithm.
ImageNet Pre-Training: Ablating task-specific pre-training,
this baseline uses the same encoder structure, but trained
instead for image classification on ImageNet [59, 60] for
extracting visual features.
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Fig. 6: Sample trajectories of FastRLAP practicing in a real-world
indoor environment. Starting from a pre-trained representation, FastR-
LAP often collides into obstacles (green) and learns from it’s mistakes
to learn collision-free navigation (orange). By directly minimizing lap
times, FastRLAP discovers a smooth racing line (purple), matching
human driving performance. Note that the 3D scan is shown for
visualization only, and is not available to our system.

No Pseudo-Resets: Ablating the FSM, this baseline deploys
FastRLAP without the benefit of scripted pseudo-resets when
it is stuck, requiring the robot to learn recovery behavior.

State-Based: This variation replaces visual observations with
privileged state estimates in the form of an approximate 2D
pose (measured by onboard visual-inertial odometry).

F. Simulated Experiments

We also test our approach in two simulated environments —
a rally racing track, and a large, visually challenging off-road
environment — to evaluate FastRLAP in more diverse settings.
For these experiments we use a simulated Clearpath Jackal
robot with identical observation space to our robot. Unlike
our RC car-based platform, the Jackal uses a differential drive
rather than an Ackermann steering setup; due to this difference
the action space consists of linear and angular velocity targets
rather than linear velocity and steering.
Sim-D (Fig. 7-D), is a large, complex world derived from

Clearpath’s simulation environments [61]. In this environment
the robot must navigate around a large pool of mud, which
shows non-binary traversability — greatly limiting the robot’s
dynamics and maximum speed — and should be avoided when
possible. A bridge allows the robot to bypass the mud, but is
narrow and can be identified visually. Our method successfully
learns a high-performance policy in this environment, success-
fully correlating the mud’s appearance with a low rewards, and
selecting the optimal path after the first few laps of trial and
error (see Fig. 2), achieving super-human lap times in under 10
laps (see Tab. I). This environment is particularly challenging
since the mud can cause the robot to get irrecoverably stuck in
a slow-speed zone; all alternative baselines and ablations failed
to solve this task due to this reason. Sim-E is smaller-scale
dirt track with sharp turns and chicanes, much like Real-C,
making it a particularly interesting environment to study the
emergence of racing lines and agile maneuvers.

G. Hyperparameters

All our experiments use the same set of hyperparameters
and there is no environment-specific tuning used in the results
presented in the paper. See Tab. III for a list of hyperparam-
eters and Fig. 8 for a detailed network architecture.

Category Hyperparameter Value

Actor/Critic Actor learning rate 3e-4
Critic learning rate 3e-4
Temperature learning rate 3e-4
Actor network architecture 2x256
Critic network architecture 2x256
Initial target entropy -3
Entropy decay rate 1e-5
Critic ensemble size 10

MDP/System Discount factor 0.99
Time step 0.1s
Velocity target range (m/s) [0.5, 3.5]
Servo target range (rad) [−0.5, 0.5]
Ccollide (real only) 0.2s2/m
Cstuck -10
Squashing range δ 0.2

Encoder Layer count 4
Convolution size 3x3
Stride 2
Hidden channels 32

IQL Expectile 0.7
Value network structure same as critic

TABLE III: List of hyperparameters used throughout experiments

H. Additional Experimental Details

In addition to the metrics presented in the main paper, please
see Tab. IV for a list of additional metrics per experiment, and
Fig. 9 for lap time progression charts for each experiment.
FastRLAP outperforms baselines in all environments, as mea-
sured by any suitable metric — time-to-first lap, best lap time,
mean/median lap times, and minimum number of average and
best-case collisions.

I. Implementation Details

The overall system was implemented using ROS 1 Noetic
Ninjemys, with the inference and training code using JAX.
We transfered tensors between the components of our system
(new data from the robot to the workstation, and parameteres
from the workstation to the robot) using ROS messages.

J. System Details

As mentioned in the paper, we squash the output of the
actor dynamically to a range around the previous action aprev
to enforce continuity in output actions by constraining them
to be no more than some positive constant δ away from the
previous action in each dimension. We choose our activation
function so that the interval [aprev − δ, aprev + δ] is roughly
mapped to itself. More precisely, we ensure that our activation
faprev,δ(x) is accurate to first-order Taylor expansion around the
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Fig. 7: Examples of high-speed driving in diverse, previously unseen environments (top) by autonomous practicing. FastRLAP improves its
lap times (bottom, best-so-far shown) starting from a slow demo lap (green) and achieves close to expert lap times (red) in under 40 minutes.
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Fig. 8: Network architecture for the critic. Actor (and, for IQL, value)
architectures are identical, but with only one backbone rather than an
ensemble. Prorpioceptive information is concatenated with the action
and the goal and fed through a dense layer, concatenated with the
output of a convolutional encoder applied to a sequence of three
camera images, and fed through a 2-layer MLP.

previous action. This yields the following activation function
applied to the output of the actor:

faprev,δ(x) = tanh

(
(x− aprev)

δ

)
δ + aprev

Figure 10 shows a graphical depiction of this activation
function.

K. Simulation Environment

The Clearpath Jackal used for simulations differs from
the real environments primarily in its action space, which
(as a differential drive robot) allows turning in place. We
limit the linear velocity actions of the robot to [−1, 2] and
the angular velocity actions to [−1.0, 1.0]. Simulated position
measurement is provided in lieu of the RealSense tracker for
determining relative goal locations.

L. Supplemental Video

Please see the attached video for an overview of our online
practicing framework along with video clips of learned driving
behavior in the real-world environments presented in the main
paper.

M. Preliminary Code Release

Please see fastrlap_code.tar.gz for the training
and robot-side inference code as well as modified simulation
environments.
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Lap time (s) # collisions
Course name Method first best median median (5) best total mean median mean (5) median (5)
Real-A FastRLAP 114.31 32.74 49.51 38.99 0 82 2.48 2 2.00 0
Real-B FastRLAP 224.70 44.21 73.71 65.72 0 135 7.50 7 4.20 3
Real-C States 274.42 12.70 50.13 18.88 0 190 12.67 4 3.40 2
Real-C Ours 117.38 10.90 13.27 11.69 0 126 2.74 0 0.00 0
Real-C No slow lap 239.21 16.01 64.51 62.62 0 206 22.89 12 8.80 11
Real-C Human Oracle 54.40 7.21 10.08 8.79 0 7 1.00 0 0.00 0
Real-C ImageNet encoder 49.75 19.66 30.20 21.12 0 168 6.46 1 0.00 0
Real-C No pretraining 232.79 12.70 21.60 19.99 0 174 9.67 1 1.80 1
Sim-D FastRLAP 925.08 104.19 107.00 107.00 0 157 4.76 0 0.00 0
Sim-E Blind 222.17 18.89 21.70 19.50 0 127 1.18 0 1.20 0
Sim-E States 222.17 19.10 23.69 26.20 0 113 1.30 0 1.00 1
Sim-E FastRLAP 174.30 17.99 19.10 18.10 0 48 0.42 0 0.00 0
Sim-E No slow lap 665.04 19.70 23.33 22.20 0 90 0.95 0 0.00 0
Sim-E No pretraining 375.26 17.80 21.90 18.39 0 100 1.14 0 0.00 0
Sim-E No pseudo-resets 405.02 21.70 26.31 25.10 0 156 1.64 0 0.20 0

TABLE IV: Detailed statistics of all runs
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Fig. 9: Detailed laptime progression charts for all baselines
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