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Abstract

Despite the success of text retrieval in many NLP tasks, code retrieval has received
comparatively less attention than text retrieval. Most retrieval systems are designed
for natural language queries and often fail to address the structural and semantic
complexities of retrieving code. Consequently, they struggle across diverse pro-
gramming languages and retrieval tasks, underscoring the need for specialized
models tailored to code retrieval. To address this gap, we introduce CODEXEM-
BED, a family of large-scale code embedding models ranging from 400M to 7B
parameters. Our novel training pipeline integrates multiple programming languages
and reformulates diverse code-related tasks within a unified retrieval framework,
enhancing model generalizability and performance. Our largest model (7B parame-
ters) sets a new state-of-the-art (SOTA) in code retrieval, ranking first on the ColR
Leaderboard. Beyond code retrieval, our models achieve competitive results on the
widely adopted BelR text retrieval benchmark, demonstrating cross-domain ver-
satility. Furthermore, our findings highlight that advancements in retrieval quality
directly improve end-to-end Retrieval-Augmented Generation (RAG) performance
for code-related tasks.

1 Introduction

Large Language Models (LLMs) have demonstrated exceptional performance across numerous
Natural Language Processing (NLP) tasks. However, they often struggle to produce faithful answers
and may lack up-to-date or domain-specific knowledge. To bridge this gap, retrieval-augmented
generation (RAG) Cai et al. (2022); Cheng et al. (2024); Nguyen et al. (2024) techniques have gained
prominence, integrating Information Retrieval (IR) systems with LLMs to enhance their access to
relevant external information. This synergy has drawn significant attention recently, leading to the
development of various retrieval models Wang et al. (2022); Chen et al. (2024) based on BERT Kenton
& Toutanova (2019) and other LLMs with sizes exceeding 1 billion parameters Wang et al. (2023);
Moreira et al. (2024); Meng et al. (2024). Despite these advancements, standard IR methods, while
effective in text-based retrieval, often fall short in specialized domains such as code retrieval Husain
et al. (2019); Li et al. (2024b).

Code retrieval accelerates software development and improves code quality by enabling quick
access to relevant snippets, explanations, and analyses. Unlike general text retrieval, it must handle
syntax, dependencies, and control flow. Integrated into tools like VS Code Del Sole (2021) and
GitHub Copilot Wermelinger (2023); Yetistiren et al. (2023), code retrieval also enhances Code-RAG
systems Parvez et al. (2021); Liu et al. (2020); Jimenez et al. (2024); Wang et al. (2024) by reducing
LLM hallucinations. However, traditional text retrieval models struggle with code-specific elements.
Existing models like CodeBERT Feng et al. (2020), CodeGPT Lu et al. (2021), and UniXcoder Guo
et al. (2022) are based on smaller BERT models Kenton & Toutanova (2019) leading to subpar
performance. Furthermore, a unified model capable of handling both text and code retrieval is
essential for seamless integration, enabling developers to retrieve documentation, explanations, and
relevant code within a single framework.

*Now at Google.
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In this work, we introduce CODEXEMBED!, a family of open-source embedding models tailored
for both code and text, available in sizes of 400 million, 2 billion, and 7 billion parameters. CODEX-
EMBED introduces a generalizable approach that converts diverse code-related tasks with various
programming languages into a unified contrastive training framework. Our approach handles 12
programming languages and five distinct code retrieval categories across eight different code tasks,
including code-to-text, text-to-code, code-to-code, text-to-text and hybrid text and code tasks. To
enable the model to retrieve both text and code effectively, we propose a novel multi-stage training
method. In the first stage, we train the model on text data using LoRA adaptation. In the second
stage, we continue training with both code and text data while tuning only the newly introduced
LoRA adapter. This approach preserves the text retrieval knowledge learned in the first stage while
enhancing code retrieval, ensuring the model retains strong performance across both domains. This
comprehensive setup enables CODEXEMBED to generalize effectively across various code domains.
Our contributions can be summarized as follows:

* We introduce a generalizable multi-stage training approach for code and text embedding,
unifying diverse code-related tasks within a retrieval framework. This leads to significant
improvements in retrieval performance across multiple programming languages and tasks.

* Our 7B model achieves state-of-the-art performance on the ColR benchmark, setting a
new standard for code retrieval. We furhter evaluate CODEXEMBED on RepoEval and
SWE-Bench-Lite, demonstrating that improved retrieval significantly enhances end-to-end
Retrieval-Augmented Generation (RAG) performance for code-related tasks.

* Beyond the 7B model, we develop smaller models (400M, 2B) that surpass prior SOTA in
code retrieval, while remaining competitive performance in text retrieval, highlighting their
versatility across both domains.

2 Method

We transform general code-related tasks into a unified retrieval framework by representing each
task as a structured retrieval pair (Q, D), where Q is the query and D is the positive document.
The retrieval process is formulated as a ranking problem, where the objective is to learn a function
f(Q, D) that assigns higher similarity scores to relevant pairs than that of irrelevant ones.

2.1 Unified Retrieval Framework

To train a unified retrieval model for both code and text, we transform all retrieval tasks into a query-
document matching problem, where a query Q retrieves a relevant document D from a candidate set
D. This formulation supports Text-to-Text, Text-to-Code, Code-to-Text, and Code-to-Code retrieval
within a single framework.

To better capture semantic relationships across entire input sequences, we incorporate bidirectional
attention into a causal LLM BehnamGhader et al. (2024), enhancing its ability to encode contextual
information for retrieval tasks. Each query Q and document D are encoded using this pre-trained
LLM, producing representations:

q=LLMgypp(Q), d=LLMgypp(D)
The similarity between query and document is measured using cosine similarity:
q-d

=_1 7 1
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D* — : :
arg max sim(q,d), sim(g,d)

2.2 Multi-Stage Training with LoRA

To progressively enhance retrieval capabilities, we adopt a multi-stage training approach, utilizing
distinct LoRA Hu et al. (2022) adapters at each stage. In each stage, the previously trained LoRA
weights are merged into the base model before initializing a new adapter, as shown in Figure 1. This
approach enables the model to iteratively adapt to different retrieval objectives without catastrophic
forgetting Magistri et al. (2024); Han et al. (2024)

'Model weights: https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R,
https://huggingface.co/Salesforce/SFR-Embedding—-Code-400M_R.
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Figure 1: The illustration depicts multi-stage training, showing the data used at each stage, the LoRA
adapters applied, and the continuous optimizer with its learning rate progression.

2.2.1 Stage 1: Supervised Contrastive Pretraining on Text Data

We initialize a LoRA adapter Af; and freeze the LLM 0 and train Af; on text-based retrieval tasks
using a contrastive learning objective:

N exp(sim(g;,d;"))

1
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where d;“ is a positive document, and d]-_ represents negative documents, and N denotes the batch size.

The model learns to align text queries with their corresponding text-based documents, establishing a
strong foundation for language-based retrieval.

2.2.2 Stage 2: Code-Enhanced Retrieval Training

After training, we merge the trained adapter A6 into the base LLM model:
6 < 60+ Ab; 3)

and initialize a new LoRA adapter A6, to learn retrieval for both code and text. This setup enables
the model to mitigate text-only biases while preserving most of its learned representations.

To ensure a smooth transition between training phases, we continue optimizing the second-stage
LoRA adapter Af, while retaining the gradient contributions from the first-stage adapter A6, which
remains fixed within the model. Specifically, we update A8, while preserving the learning rate r()
and the accumulated gradient from A6;:

A6, < Update(Afy, VL(61,6,), ) @)

where VL(6,6,) represents the gradient influenced by both adapters, but only A8 is actively
updated. This approach stabilizes optimization, preventing abrupt parameter shifts while allowing a
smooth adaptation to code retrieval. By preserving the previous learning rate and gradient continuity,
we mitigate convergence instability and facilitate efficient adaptation.

This multi-stage approach enables the model to iteratively improve retrieval performance while
preventing overfitting to any single modality. By leveraging LoRA adapters at different stages and
maintaining a smooth learning rate transition, we ensure efficient adaptation with minimal overhead,
resulting in more robust text and code retrieval.

2.3 Scaling Batch Size with GradCache

Larger batch sizes improve contrastive learning by incorporating more diverse negatives Chen
et al. (2022), but GPU memory limits expansion. To overcome this, we use GradCache Gao et al.
(2021), which reduces memory overhead, enabling larger effective batch sizes. Let Q/D denote
the full batch of queries and documents, partitioned into sub-batches (Q = {Ql, Oo,...,0 M}
D = {Dl, Ds,...,D M }) to fit memory constraints. Training follows three steps:

Graph-less Forward Pass Each sub-batch is encoded into embeddings g; and d; without computing
encoder gradients, reducing memory usage.

Gradient Computation and Caching For each query g; in sub-batch Qj, we compute and cache
gradients w.r.t. the representation function:
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Figure 2: The code training data of CODEXEMBED contains four parts: Text-to-Code, Code-to-Code,
Code-to-Text and Hybrid Code. Each Categories contains several types of code tasks.
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06 denotes the LoRA adapter in either stage 1 or 2. GradCache enables larger in-batch negatives,
improving contrastive learning efficiency while staying within GPU limits, essential for scaling text
and code retrieval.

2.4 Unified Retrieval Training Data

We organize retrieval tasks into distinct settings by converting various code-related tasks into a unified
retrieval format. In this format, the input is treated as query (Q), and the expected output or relevant
content is treated as document (D). This transformation allows the model to generalize across various
retrieval tasks in both text and code domains.

2.4.1 Text Retrieval Training Data

To improve retrieval across both code and text domains, we incorporate text-to-text retrieval tasks
from the BEIR datasets Thakur et al. (2021). This ensures model robustness in general document
retrieval while maintaining strong performance in code retrieval.

2.4.2 Code Retrieval Training Data

We unify multiple code generation and classification tasks into the (Q, D) format for code retrieval
training, as shown in Figure 2. Text-to-Code Retrieval involves retrieving relevant code snippets
given a natural language query. Tasks such as code contest generation Billah et al. (2024); Kadir et al.
(2024) take problem descriptions as Q and map them to the correct implementation as D. Similarly,
in Text-to-SQL Finegan-Dollak et al. (2018); Li et al. (2024a), a user query in natural language
serves as (Q, and the corresponding SQL query is treated as D. Code-to-Text Retrieval retrieves
human-readable descriptions for given code snippets. In code summarization Sontakke et al. (2022);
Sun et al. (2024), a code snippet serves as , and the corresponding documentation or summary is
D. Code-to-Code Retrieval represents retrieving functionally equivalent or semantically related
code snippets. In code translation Pan et al. (2024); Karanjai et al. (2024), the source code in one
language is Q, and its equivalent implementation in another language is D. Code completion Ding
et al. (2024); Phan et al. (2024); Liu et al. (2024) uses the incomplete code fragment as Q and the
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correct completion as D. Code clone detection Martinez-Gil (2024) retrieves functionally similar
code, treating the reference snippet as Q and the detected duplicate as D. Hybrid Code Retrieval
supports mixed queries containing both text and code. In code agent conversation Arteaga Garcia et al.
(2024); Jin et al. (2024), user prompts containing explanations or code snippets act as Q, while the
retrieved response (either code or text) serves as D. In code issue fixing Yang et al. (2024); Jimenez
et al. (2024), the hybrid query consists of an error message and buggy code as Q, while the corrected
version of the code is D.

By consolidating diverse retrieval tasks into a unified framework, we effectively streamline contrastive
model training, thereby facilitating seamless adaptation across a wide range of programming scenarios
while ensuring high retrieval accuracy.

3 Experiments

Evaluation Benchmarks We mainly use two benchmarks to evaluate code and text retrieval perfor-
mance. COIR Li et al. (2024b) is a comprehensive benchmark specifically designed for code retrieval
tasks. COIR covers a wide range of retrieval challenges, including 8 fine-grained retrieval subtasks,
spanning 14 major programming languages. The dataset is composed of 10 distinct datasets, with a
total corpus exceeding 2 million entries. BEIR Thakur et al. (2021) is a widely-adopted benchmark
designed for text retrieval tasks. BEIR encompasses a diverse set of retrieval challenges, covering 9
distinct tasks across various domains such as question answering, duplicate detection, fact-checking,
and more. It supports retrieval over a wide range of datasets and provides a standardized benchmark
for evaluating text retrieval models across different domains.

Implementation Details We conduct general training on our proposed code and text pair dataset using
three model sizes: 400M, 2B, and 7B. For the CodeXEmbed4ggn, we use the base model Alibaba-
NLP/gte-large-en-v1.5 (Li et al., 2023b), applying full model fine-tuning. For the CodeXEmbed;g,
we initialize our embedding model from the generation model google/gemma-2-2b-it Team et al.
(2024), using low-rank adaption(LoRA) Hu et al. (2022) with a rank of 8. For the CodeXEmbed;p, we
initialize our embedding model from the generation model mistralai/Mistral-7B-Instruct-v0.3, also
using LoRA with a rank of 8. Following prior work Meng et al. (2024), we apply: (i) last token pooling
for CodeXEmbed;g and CodeXEmbed7g, and (ii) beginning token pooling for CodeXEmbed,oom
to generate semantic vector representations Li et al. (2023b). Cosine similarity is used to compute
the similarity between query and corpus for ranking. The batch size is set to 1024 across all three
model sizes, with 7 hard negatives. The learning rate is set to 5¢ >, and the end learning rate to 5e~°,
with linear decay and a 50-step warmup. To improve training efficiency and reduce GPU memory
usage, we adopt gradient caching Gao et al. (2021). The more implementation details can be found in
Appendix A.3.

Baseline Models For code-domain-specific models, we included UniXcoder (Guo et al., 2022),
Voyage-Code-0022 and CodeSage-large-v2 (Zhang et al., 2024), all pre-trained on code data, serving
as strong baselines for comparison. For general retrieval models, we evaluated E5-Base (Wang et al.,
2022), GTE-Base (Li et al., 2023b), BGE-Base (Xiao et al., 2023), Contriever (Izacard et al., 2023),
E5-Mistral (Wang et al., 2023), BGE-M3 (Chen et al., 2024), NV-Embed-V2 Moreira et al. (2024),
SFR-V2 Meng* et al. (2024) and OpenAI-Ada-002°.

Evaluation Metrics In code retrieval, selecting the right metric is key for assessing both ranking
sensitivity and relevance. Following prior work Wang et al. (2013), Normalized Discounted Cumula-
tive Gain (NDCG) is preferred for its ability to account for both rank order and varying relevance.
Therefore, we use NDCG@ 10 to evaluate performance on ColR* and BEIR.

3.1 General Training Evaluation

In the General Training block of Table 1, we present the results of models trained exclusively on
our proposed general training data, without using any ColR in-domain data. When averaged over all
10 datasets in the ColR benchmark, CodeXEmbed;g model achieves the best results, exceeding the

2https ://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/
Jhttps://platform.openai.com/docs/guides/embeddings
4ColR Implementation https://github.com/CoIR-tean/coir
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Text-to-Code Code-to-Text Code-to-Code Hybrid Code
Model CodeTrans StackOverFlow CodeFeedBack  Avg
Apps CosQA  Text2SQL CSN CSN-CCR Contest  -DL QA ST MT

Baselines
E5-base (110M) 11.52 3259 52.31 67.99 56.87 6250  21.87 86.86 7452 4199  50.90
BGE-Base (110M) 4.05 32.76 45.59 69.60 45.56 3850  21.71 73.55 64.99 3142 4277
UniXcoder (123M) 1.36 25.14 50.45 60.20 58.36 41.82  31.03 44.67 36.02 2421 3733
BGE-M3 (567M) 737 2273 48.76 43.23 47.55 4786  31.16 51.04 4994 3346 3931
ES5-Mistral (7B) 21.33  31.27 65.98 54.25 65.27 8255 3324 91.54 7271  33.65 55.18
OpenAl-Ada-002 870  28.88 58.32 74.21 69.13 5334 26.04 72.40 47.12 1774 4559
Voyage-Code-002 2652 29.79 69.26 81.79 73.45 7277 27.28 67.68 6535 2874 5626
CodeSage-large-v2 5045 3273 59.78 94.26 78.09 8527 3329 79.41 7132 5716 64.18
General Training
CodeXEmbedsgom 48.57  34.05 58.96 72.53 80.15 75.67  34.85 89.51 78.87 4575  61.89
CodeXEmbed,p 7499  36.31 59.00 73.50 85.77 86.63  33.17 90.54 81.15 53.08 6741
CodeXEmbed7g 8522 3327 64.57 78.84 86.77 90.64  32.31 94.25 80.93 57.83 70.46
In-domain Training
CodeXEmbedaoom 4591  41.28 61.29 81.23 93.74 8272 40.81 9235 8336 61.51 6842
CodeXEmbed,p 76.86 4047 78.42 87.87 97.66 90.30  38.57 94.47 86.36  65.51  75.65
CodeXEmbedyg 85.38 4247 78.94 89.67 97.95 9445 4046 96.33 87.53 68.83 7820

Table 1: Performance of the CODEXEMBED model family across tasks, along with average scores.
CSN refers to CodeSearchNet. Baseline numbers are from the ColR Leaderboard.
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Figure 3: The performance comparison between General Training (GT) and In-domain Training (ID)
across three model sizes (400M, 2B, and 7B) on different ColR categories and the overall average.

SOTA code-domain specific model Voyage-Code-002 by over 20%?°, which shows our general code
and text training stage significantly improves model performance on code tasks.

As shown in Table 1, CodeXEmbed4gon and CodeXEmbed;p also provide a significant improvement
over Voyage-Code-002 and offer a great alternative to the 7B model with substantial practical
advantages on the latency and cost. Moreover, their success further validates the transferability and
generalizability of our proposed training recipe for code embedding models.

3.2 In-domain Training Evaluation

We further trained the model on the ColR in-domain dataset. As shown in the In-domain Training
block of Table 1, further training on in-domain data results in consistent performance improvements
across all model sizes. Specifically, CodeXEmbed,ogy improves by 6.5 points, CodeXEmbed,g
by 8.24 points, and CodeXEmbed;g by 7.74 points on average across all 10 datasets. In Figure 3,
the top of each bar represents the improvement from in-domain training. Among all categories, the
Code-to-Text category shows the largest improvement, even outperforming Voyage-Code-002. In
other categories, the model also achieves over a 5-point improvement.

3.3 Unified Text and Code Retrieval

To evaluate the text and code retrieval capabilities within a single embedding model, we also present
the BEIR text retrieval performance of CODEXEMBED across various sizes. As shown in Table 2, our
7B model achieves an average score of over 60 across 15 datasets, placing it among the top tier on
the MTEB leaderboard®. Compared to E5-Mistral-7B-Instruct (E5-Mistral) Jiang et al. (2023), which

SBaseline numbers are sourced from the ColR Leaderboard: https://archersama.github.io/
coir/.
®https://huggingface.co/spaces/mteb/leaderboard
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Dataset BM25 gte-large gte-Qwen2 ES5-Mistral CODEXEMBED CODEXEMBED CODEXEMBED

400M 1.5B 7B 400M 2B 7B
MS MARCO 22.8 42.93 43.36 43.06 42.77 41.26 42.05
TREC-Covid 65.6 77.49 85.38 87.03 77.47 84.58 79.04
NFCorpus 325 36.95 39.34 38.58 35.76 41.56 43.14
NQ 329 56.08 56.08 63.53 63.38 67.25 74.11
HotpotQA 60.3 68.18 64.00 75.72 74.93 74.39 79.33
FiQA 23.6 63.23 63.23 56.81 60.20 56.17 60.41
ArguAna 31.5 72.11 54.70 61.65 69.67 61.39 63.58
Touche-2020 36.7 22.55 27.89 26.27 20.18 26.10 25.80
CQADupStack  29.9 42.16 44.76 42.97 46.07 47.46 5145
Quora 78.9 89.67 89.64 89.61 89.05 89.27 89.51
DBPedia 31.3 46.30 48.69 48.89 46.68 47.33 49.27
Scidocs 15.8 26.35 24.98 16.32 25.05 23.36 25.25
Fever 75.3 93.81 91.57 87.84 93.86 89.03 91.94
Climate-Fever 21.3 48.36 4291 38.35 42.70 32.08 36.93
Scifact 66.5 82.43 78.44 76.42 87.37 84.79 89.10
Average 41.7 5791 58.29 56.87 58.34 57.73 60.06
Best on 1 5 1 1 1 0 6

Table 2: Comparison of performance across text retrieval BEIR datasets with different model size.

is trained on both text and synthetic data, initialized from the Mistral series, our model employs
single-stage training with both code and text data. Our model in a performance improvement of 3.19
points over E5-Mistral.

In the 400M models, CODEXEMBED achieves a 0.43 performance boost over GTE-large (Li et al.,
2023b), the model it is trained on. This highlights the advantage of our approach, showing the
potential to improve text retrieval by incorporating code data. Few 2B-sized language models are
available; we selected Gemma 2B Team et al. (2024) for its strong code retrieval performance. For
text retrieval, it performs comparably to gte-Qwen2 of similar size.

NV-Embed-V2 SFR-v2 CODEXEMBED
Dataset

7B 7B 7B
ColR 59.10 61.48 70.46
BEIR 62.65 60.18 60.06
AVG 60.88 60.83 65.26

Table 3: Comparison of code and text retrieval benchmarks between our model and the top models on
the MTEB leaderboard.

We present the performance of top text retrieval models from the MTEB leaderboard’ on both code
and text tasks, in Table 3. Compared to the top-ranked model, NV-Embed-V2 Moreira et al. (2024)8,
our model surpasses it by 4.38 points, with an average score across text and code datasets.

3.4 Impact of Multi-Stage Training

To evaluate the effectiveness of our multi-stage training approach, we conduct an ablation study on
four settings:

* Single-stage (Baseline): Trained in a single phase using a mixture of text and code retrieval
data with a single LoRA adapter.

* Two-stage (Same LoRA): The first stage is trained on text retrieval; the second stage
continues with mixed text and code retrieval, reusing the same LoRA adapter across both
stages.

* Two-stage (Different Optimizers): Uses different LoRA adapters for each stage, with
separate optimizers for each.

* Proposed Two-stage (Separate LoRA): Applies different LoRA adapters for each stage,
using a continuous optimizer throughout training.

"https://huggingface.co/spaces/mteb/leaderboard
8Top-performing open model as of 3/28/2025.
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Training Setup BEIR ColR
Single-stage (Baseline) 65.79  64.56
Two-stage (Same LoRA) 67.54 58.61
Two-stage (Diff. Optimizer) 66.95 66.06

Proposed Two-stage (Separate LoRA) 67.88 67.41

Table 4: Comparison of training methods on BEIR dev and ColR test sets NDCG @ 10).

Table 4 shows our Proposed Two-stage (Separate LoRA) achieves the best performance on BEIR
(67.88) and ColR (67.41), highlighting the importance of modular adaptation. The Single-stage
(Baseline) struggles on ColR, while Two-stage (Same LoRA) improves BEIR but drops on ColR.
Two-stage (Different Optimizers) balances performance but falls short of our approach.

3.5 Retrieval-Augmented Code Generation

In this section, we explore how different retrievers influence the final code completion and issue
resolution performance in repository-level tasks.

3.5.1 RepoEval

To address this, we utilize RepoEval (Zhang et al., 2023) for repository-level code completion. While
RepoEval consists of three splits (function, class, and module), we report results only on the function
split, as it is the only one that supports execution-based evaluation. We adopt Pass@1 as our evaluation
metric, which measures the accuracy of the top-1 generated code passing the provided test cases.

For code generation, we supply the top-5 retrieved code snippets as input to the GPT-3.5-turbo
generation model. All generator parameters and decoding hyperparameters are kept frozen throughout
the experiments. As shown in Table 5, all sizes of CODEXEMBED outperform the canonical setup.
While some files may not contain direct solutions, as in the canonical documents, they often include
valuable function definitions or usage examples that improve code generation outcomes. This suggests
that our embeddings effectively capture the repository structure and retrieve contexts that implicitly
support problem-solving.

Dataset None BM25 Voyage OpenAl OpenAl CODEXEMBED Gold
rerank 400M 2B 7B

gpt-3.5

RepoEval 23.9 30.8 43.2 48.0 49.6 525 663 638 39.1

SWE-Bench-Lite 0.7 1.0 0.7 0.3 0.0 0.7 20 3.0 2.7

gpt-4o

SWE-Bench-Lite 2.3 - - - 21.7 19.7 217 25.0 307

Table 5: Performance of repository-level code retrieval augmented generation using
gpt—-3.5-turbo-0125 and gpt-40-2024-08-06. CODEXEMBED variants denote models
of size 400M, 2B, and 7B.

3.5.2 SWE-Bench-Lite

In our experiments, we use SWE-bench-Lite, a curated subset of 300 problems from the original
SWE-bench benchmark. It focuses on resolving GitHub issues by requiring models to modify
multiple files to pass test cases, offering a manageable and reproducible dataset. SWE-bench-Lite
also includes a pre-configured Docker container, ensuring consistent evaluation across systems and
further standardizing the testing environment.

We evaluate our retrieval-augmented generation pipeline using GPT-3.5-turbo as the code generator,
with all generator parameters and decoding hyperparameters kept frozen. We also conduct parallel

9https://huggingface.co/datasets/princeton-nlp/SWE-bench_Lite
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Model Size Python Java Go PHP Javascript Ruby SQL AVG A-All
400M 5970  72.09 79.28 70.96 70.18 73.01 5887 69.16 -

All 2B 65.73  79.40 81.01 79.39 76.76 78.42 5823 74.14 -
7B 67.56 8136 85.76 81.89 78.37 83.11 65.74 77.68 -
400M 5543  49.57 4956 40.57 44.57 4457 4421 4693 —321%
Python 2B 60.86 7146 68.69 57.88 62.95 7221 56.09 6431 —13.3%
7B 67.02 7835 81.56 70.88 75.73 79.19 6256 7361 —52%
400M 54779 7837 7294 70.85 69.85 68.78 5031 6656 —3.8%
Java 2B 63.03 82.17 79.35 80.30 76.00 76.76  58.03 73.66 —0.6%
7B 66.24  84.25 83.72 80.18 79.82 82.82 6459 7737 —04%

Table 6: Python/Java indicates that only the Python and Java portions were used to train CODEXEM-
BED, while All indicates that all programming languages were used. A-All represents the difference
between the Python/Java AVG score and the All AVG score for the same model size.

experiments with GPT-40 and observe similar trends, confirming that the performance gains from
improved retrieval are consistent across model backends.

As shown in Table 5, our results show that incorporating improved retrieval methods significantly
enhances end-to-end performance of code retrieval-augmented generation, bringing it closer to using
gold content and boosting problem-solving efficiency and accuracy.

3.6 Impact of the Base Models

To understand the base model’s impact, we examine: (1) if training from a text retrieval model outper-
forms a generation model, and (2) if a code-specific generation model offers more advantages than a
general language model. We present the ablation study comparing an embedding model to a generation
LLM in Appendix A.2.1 and the study on code-specific vs. general LLMs in Appendix A.2.2.

3.7 Programming Language Transferability

We aim to explore the diversity of programming languages and their unique features. The details of
our code training dataset, including language coverage, are provided in Appendix A.1. Our dataset
comprises 12 programming languages, with Python representing the highest percentage of the data.
For testing, we selected Python and Java due to their distinct programming paradigms: Python is
known for its scripting capabilities and Java for its strong object-oriented design. This selection
allows us to evaluate our model’s performance across a range of programming styles, reflecting the
versatility and adaptability of the embedding model.

To better evaluate retrieval performance across languages, we organize the ColR test set into language-
specific experiments by grouping all subsets associated with the same programming language. No
additional resplitting is applied. For each language, we include all ColR test subsets labeled with that
language. The details are shown in Table 7.

Language | ColR Test Subsets Used

Python APPS - CoSQA - CodeSearchNet-Python - CodeSearchNet-CCR-Python - CodeTrans-DL
Java CodeSearchNet-Java - CodeSearchNet-CCR-Java

Go CodeSearchNet-Go - CodeSearchNet-CCR-Go

PHP CodeSearchNet-PHP - CodeSearchNet-CCR-PHP

JavaScript | CodeSearchNet-JavaScript - CodeSearchNet-CCR-JavaScript

Ruby CodeSearchNet-Ruby - CodeSearchNet-CCR-Ruby

SQL Synthetic-Text2SQL

Table 7: ColR test subsets used for each programming language.

As shown in Table 6, training with all 12 programming languages yields the best average performance
across 7 target languages, compared to training with a single language. However, training on Java-only
consistently achieves the highest performance for Java and delivers comparable results to using all
languages across all model sizes. For example, the Java-only 7B model scores 77.37, while the
all-languages model scores 77.68. When comparing models trained exclusively on Python or Java,
the Java-trained model consistently outperforms. This may be because modern language models are
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already heavily trained on Python during the generation phase, so relying solely on Python in the
retrieval phase may miss important nuances, resulting in suboptimal performance.

4 Related Work

4.1 Retrieval Models for Text and Code

Text retrieval models have significantly advanced by exploiting supervision from natural language in-
ference tasks and labeled query-document pairs, such as the MS-MARCO passage ranking dataset Ba-
jaj et al. (2016), to train effective text embeddings Izacard et al. (2021); Wang et al. (2022); Xiao
et al. (2024). Recently, researchers have leveraged large language models (LLMs) Jiang et al. (2023)
as the base for training retrieval models, resulting in state-of-the-art performance. Notable examples
include E5-Mistral Wang et al. (2023), SFR-Embedding Meng et al. (2024); Meng* et al. (2024),
and NV-Embedding Lee et al. (2024). While numerous models have been developed for text retrieval
tasks, few have focused specifically on code retrieval Zhang et al. (2024); Suresh et al. (2024). Among
the few are the Voyage code model Al (2024) and OpenAI’s embeddings Neelakantan et al. (2022);
And embedding for code issue localization Reddy et al. (2025) however, both are closed-source
models, limiting their accessibility and adaptability for the wider research community.

4.2 Code Retrieval Augmented Generation

Neural code generation has been an important task Lu et al. (2021), and increasingly strong code
language models have been developed Roziere et al. (2023); Nijkamp et al. (2023); Li et al. (2023a);
Guo et al. (2024); Team (2024) to solve various tasks Chen et al. (2021); Lai et al. (2023); Jimenez
et al. (2024). However, most LMs generate code solely from natural language problem descriptions
and the models’ parametric knowledge, without leveraging external programming resources or using
a retrieval-augmented generation approach. While prior work has focused on text-centric tasks
with general-domain corpora like Wikipedia Asai et al. (2024), some studies have used retrieved
programming context from repositories Ding et al. (2024); Yang et al. (2024) or documentation Zhou
et al. (2023). Code retrieval is crucial for enhancing code generation in RAG systems because it allows
models to access relevant external code resources, 1eading to more accurate and context-aware code
outputs. Our code retrieval model demonstrates significant improvements in code RAG performance,
underscoring the importance of effective code retrieval in code generation tasks.

5 Conclusion

In the underexplored field of code retrieval, we present CODEXEMBED, a family of code embedding
models ranging from 400M to 7B parameters. Our unified training pipeline integrates multiple
programming languages and reformulates diverse code-related tasks within a common retrieval
framework. CODEXEMBED ranks as the top model on the ColR benchmark and achieves perfor-
mance comparable to SOTA text retrieval models on BEIR. By enhancing retrieval capabilities, we
significantly improve end-to-end retrieval-augmented generation for code-related tasks. Bridging
the gap between text and code retrieval, we release our models to foster research and innovation in
developer tools and programming language understanding.
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Figure 4: The programming language distribution of code training data in the general training stage.

A Appendix

A.1 Dataset Details

Our training dataset contains a total of 3.36M training pairs, covering 12 different programming
languages. As shown in Figure 4, the distribution of programming languages is imbalanced, with the
majority of the data concentrated in a few popular languages. Python represents the largest portion
of the dataset at 27.1%, followed by Go with 25.2%, and JavaScript and PHP at 17.0% and 17.2%,
respectively. The remaining languages, including Java, SQL, Ruby, and others, account for smaller
proportions, with Rust, Kotlin, and C# making up the smallest shares of the dataset.

Text-to-Code Retrieval: Text2SQL: We follow Text2SQL works in Yu et al. (2018) and Zhong et al.
(2017), converting the text part into the queries to retrieval SQL as the documents, derived from
Wikipedia data. In contrast, the CoIR benchmark uses synthetic-text2sql, generated using weak and
strong LLMs. Code Contest: We extract the Code Contest tasks in the Khan et al. (2024), which
has 11 programming language like java, c, c# et al. While ColR benchmark use APPS, which is the
interview question only in python programming language.

Code-to-Text Retrieval: Code Summary: We follow Hu et al. (2018) and Liu et al. (2020), which
summarize code based on associated documentation, while ColR utilizes a CodeSearchNet variant
with code-comment pairs for the summary task. Code Clone Detection: We follow Svajlenko & Roy
(2015) and Lu et al. (2021) to convert the code as query and its clone code as the docs ; ColR has no
dataset for this task.

Code-to-Code Retrieval: Code Translation: We follows Khan et al. (2024) and Lu et al. (2021),
converting code in one language into queries and corresponding code in another language into
documents. ColR has no dataset for this task. Code Completion: We use the code completion tasks
from Khan et al. (2024) and Lu et al. (2021), while ColR uses a modified CodeSearchNet, splitting
code snippets into query-document pairs.

Hybrid Code Retrieval: Code Issue Fix: We follow Khan et al. (2024) and Lu et al. (2021) to involve
the code issue fix task; ColR has no dataset for this task. Code Agent Conversation: We process the
conversation data from Team et al., filtering answers based on favorite scores and excluding data used
in ColR.

A.2 Impact of the Base Models

We analyze the base model’s impact by comparing (1) text retrieval vs. generation models for training
and (2) a code-specific generation model offers advantages over a general language model.
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Dataset gte-Qwen2 Gemma-v2 SFR-v2 Mistral
Initial GT GT Initial GT GT
Size 1.5B 2B 7B 7B
ColR 6296  68.52 67.41 6128 69.72  70.40
BEIR 5829 59.12 57.73 60.18  60.62  60.06

Table 8: Comparison of base models: Retrieval vs. Generation Models. GT represents our general
training.

Code-Specific LLMs General-Domain LLMs

Dataset StarCoder-v2 DeepSeek-Coder Gemma-v2  Mistral
3B 6.7B 2B 7B

ColR 66.95 71.66 67.41 70.40

BEIR 49.06 50.22 57.73 60.06

Table 9: Comparison of base models: Code-specific vs. General-domain Generation Models.

A.2.1 Embedding Models v.s. LLMs

As shown in Table 8, the text retrieval model offers a stronger starting point, and additional training
with our approach enhances both its text and code retrieval capabilities. For instance, gte-Qwen2 10’s
ColR performance improves from 62.96 to 68.52, while its text performance increases from 58.29
to 59.12. In contrast, the text generation model requires more extensive fine-tuning to reach similar
performance. However, the advantage of text retrieval models can sometimes hinder code retrieval
performance, as seen with SFR-V2 Meng* et al. (2024) underperforming compared to Mistral in
specific tasks. This suggests that prior knowledge from text-focused models may not always transfer
well to code-specific scenarios. To pursue a more general training approach, we chose to train using a
generation model rather than a text retrieval model.

A.2.2 Code-Specific LLMs v.s. General LLMs

We evaluate whether to choose code-specific models Lozhkov et al. (2024); Guo et al. (2024) or
general LLMs Jiang et al. (2023); Team et al. (2024). As shown in Table 9, code-specific LLMs excel
in code tasks but underperform in text tasks, while general LLMs perform well in both. This suggests
that recent advancements in general LLMs have integrated code data into their training Team et al.
(2024), and this capability can be effectively transferred to code retrieval. This finding highlights the
versatility of general LLMs, making them viable for both text and code retrieval without the need for
specialized models.

A.3 Implementation Details

We summarize the base model detail in Table 10 and hyperparameters in Table 11. For the code
training data, we prepend a prompt to the query in the format: “Instruct: Given Code or Text, retrieve
relevant content. Query:”. We use

Model Name Model Size | Version Number Date of Release
gte-large-en-vl1l.5 400M vl.5 Approximately November 2023
gemma-2-2b-it 2B vl Approximately June 2024
Mistral-7B-Instruct-v0.3 7B v0.3 May 2024

Table 10: Model details including name, size, version, and release date.

Ohttps://www.aimodels. fyi/models/huggingFace/gte-qwen2-15b-instruct-alibaba-nlp
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CodeXEmbed4onm CodeXEmbed,g CodeXEmbed7g
base model gte-large-en-vl.5 gemma-2-2b-it Mistral-7B-Instruct-v0.3
max learning rate 5x107° 5x107° 5x107°
random seed 42 42 42
GradCache 4 16 32
tuning parameters Fully Model LoRA LoRA
Lora Rank - 8 8
warmup steps 100 50 50
batch size 1024 1024 1024
max length 512 512 512
weight decay 0.01 0.01 0.01
hard negatives 7 7 7
bidirectional attention v v v
text:code ratio 1:1 1:3 1:3
pooling bos eos eos

Table 11: Hyperparameters for contrastive code and text training
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