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ABSTRACT

Many processes in biology and drug discovery involve various 3D interactions
between molecules, such as protein and protein, protein and small molecule, etc.
Given that different molecules are usually represented in different granularity, ex-
isting methods usually encode each type of molecules independently with different
models, leaving it defective to learn the universal underlying interaction physics.
In this paper, we first propose to universally represent an arbitrary 3D complex
as a geometric graph of sets, shedding light on encoding all types of molecules
with one model. We then propose a Generalist Equivariant Transformer (GET)
to effectively capture both domain-specific hierarchies and domain-agnostic in-
teraction physics. To be specific, GET consists of a bilevel attention module, a
feed-forward module and a layer normalization module, where each module is
E(3) equivariant and specialized for handling sets of variable sizes. Notably, in
contrast to conventional pooling-based hierarchical models, our GET is able to
retain fine-grained information of all levels. Extensive experiments on the interac-
tions between proteins, small molecules and RNA/DNAs verify the effectiveness
and generalization capability of our proposed method across different domains.

1 INTRODUCTION

Molecular interactions Tomasi & Persico (1994), which describe attractive or repulsive forces be-
tween molecules and between non-bonded atoms, are crucial in the research of chemistry, biochem-
istry and biophysics, and come as foundation processes of various downstream applications, includ-
ing drug discovery, material design, etc (Sapoval et al., 2022; Tran et al., 2023; Vamathevan et al.,
2019). There are different types of molecular interactions, and this paper mainly focuses on the ones
that exist in bimolecular complexes, consisting of proteins, small molecules or RNA/DNAs. Specifi-
cally, to better capture their physical effects, we study molecular interactions via 3D geometry where
atom coordinates are always provided.

Modeling molecular interaction relies heavily on how to represent molecules appropriately. In recent
studies, Graph Neural Networks (GNNs) are applied for this purpose Gilmer et al. (2017); Jin et al.
(2018). This is motivated by the fact that graphs naturally represent molecules, by considering
atoms as nodes and inter-atom interactions or bonds as edges. When further encapsulating 3D atom
coordinates, geometric graphs Gasteiger et al. (2020b); Schütt et al. (2017); Stärk et al. (2022) are
used in place of conventional graph modeling that solely encodes topology. To process geometric
graphs, equivariant GNNs, a new kind of GNNs that meet E(3) equivariance regarding translation,
rotation and reflection are proposed, which exhibit promising performance in molecule interaction
tasks Kong et al. (2022b); Luo et al. (2022); Townshend et al. (2020); Zhang et al. (2022).

Despite the encouraging progress, there still lacks a desirable and unified form of cross-domain
molecular representation in molecular interaction. The molecules of different domains like small
molecules, proteins, and RNA/DNAs are usually represented in different granularity, which consist
of atoms, residues, and nucleobases, respectively. Existing approaches typically design domain-
specific representations and model each of the interacting instances independently (Somnath et al.,
2021; Wang et al., 2022), which are defective in learning the universal underlying interaction
physics. Therefore, designing unified cross-domain molecular representation is demanded, which,
however, is non-trivial. For one thing, directly applying unshared block-level graphs, whose nodes
correspond to domain-specific building blocks, leads to limited transferability of the model from
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Figure 1: Domain-specific representations and unified representations in molecular interaction.

one domain to another. For another, decomposing all molecules into atom-level graphs discards the
block specificity (e.g. which residue each atom belongs to) and overlook valuable heuristics for
representation learning. It is still an open problem in designing a universal representation and a
generalist model thereon to capture both the block-level specificity and atom-level shareability.

In this paper, we tackle this problem by modeling a complex involved in molecular interaction as
a geometric graph of sets. This representation follows a bilevel design: in the top level, a complex
is represented as a geometric graph of blocks; in the bottom level, each block contains a set of
atomic instances. It is nontrivial to process such bilevel geometric graphs, as the model should
handle blocks of variable sizes and ensure certain specific geometries. To this end, we propose
Generalist Equivariant Transformer (GET), which consists of the three modules: bilevel attention
module, feed-forward module and layer normalization module. To be specific, the bilevel attention
module updates the information of each atom by adopting both sparse block-level and dense atom-
level attentions. The feed-forward module is to inject the intra-block geometry to each atom, and
the layer normalization module is proposed to stabilize and accelerate the training. All the modules
are E(3)-equivariant regarding the 3D coordinates, permutation-invariant regarding all atoms within
each block, and work regardless of the varying block size. We compare our method with other
representation approaches in Figure 1.

Notably, our formulation of graph of sets is relevant to conventional pooling-based hierarchical
models based on graph of graphs (Jin et al., 2022). Nevertheless, these hierarchical architecture
are usually inefficient and will blot out the fine-grained information after certain pooling-based
aggregation, while our GET is able to retain both the atom-level and block-level information.

We conduct experiments on various molecular interactions between proteins, small molecules and
RNA/DNAs. The results exhibit the superiority of our GET on the proposed unified representa-
tion over traditional methods including domain-specific independent models, single-level unified
representations and hierarchical models. More excitingly, we identify strong potential of GET in
capturing and transferring universal knowledge across different domains, and enabling zero-shot
performance on RNA/DNA-ligand binding affinity prediction.

2 RELATED WORK

Molecular Interaction and Representation Various types of molecules across different do-
mains (Du et al., 2016; Elfiky, 2020; Jones & Thornton, 1996) can form interactions, the strength
of which are usually measured by the energy gap between the unbound and bound states of the
molecules (i.e. affinity) (Gilson et al., 1997). We primarily investigate interactions between two
proteins (Jones & Thornton, 1996) and between a protein and a small molecule (Du et al., 2016),
both of which are widely explored in the machine learning community (Kong et al., 2022a; Luo
et al., 2023; 2022; Somnath et al., 2021; Stärk et al., 2022; Wang et al., 2022). Furthermore, we
embark on a pioneering effort to involve RNA/DNAs, which is a challenging endeavor due to the
limited availability of such data. Small molecules are usually represented by graphs where nodes
are atoms (Atz et al., 2021; Hoogeboom et al., 2022; Xu et al., 2022; Zaidi et al., 2022), but there
are also explorations on subgraph-level decomposition of molecules by mining motifs (Geng et al.,
2023; Jin et al., 2018; Kong et al., 2022b). Proteins are built upon residues, which are predefined
sets of atoms (Richardson, 1981), and thus have mainly two categories of representations accord-
ing to the granularity of graph nodes: atom-level and residue-level. Atom-level representations, as
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Figure 2: Overview of the unified representation and the equivariant modules in our Generalist
Equivariant Transformer (GET). From left to right: The unified representation treats molecules as
geometric graphs of sets according to predefined building blocks; The bilevel attention module cap-
tures both sparse block-level and dense atom-level interactions via an equivariant attention mecha-
nism; The feed-forward network injects the block-level information into the intra-block atoms; The
layer normalization transforms the input distribution with trainable scales and offsets.

the name suggests, decompose proteins into single atoms (Townshend et al., 2020) and discard the
hierarchy of proteins. Residue-level representations either exert pooling on the atoms (Jin et al.,
2022), or directly use residue-specific features (Anand & Achim, 2022; Shi et al., 2022; Somnath
et al., 2021; Wang et al., 2022) which is limited to proteins. Similarly, RNA/DNAs also have atom-
level and nucleobase-level representations (Avsec et al., 2021; Watson & Crick, 1953). Despite the
differences in building blocks, the basic units (i.e. atoms) are shared across different molecular do-
mains, and so do the fundamental interaction physics. Therefore, it is valuable to construct a unified
representation for different molecular domains, which is explored in this paper.

Equivariant Network Equivariant networks integrate the symmetry of 3D world, namely E(3)-
equivariance, into the models, and thus are widely used in geometric learning (Han et al., 2022).
A line of methods rely on preprocessing 3D coordinates into invariant features, e.g. pairwise dis-
tances (Schütt et al., 2017; Choukroun & Wolf, 2021), angles (Gasteiger et al., 2020b;a; 2021; Liu
et al., 2021b), to achieve invariant outputs. More recent works also keep track of equivariant fea-
tures to achieve stronger expressivity (Joshi et al., 2023), either via scalarization (Schütt et al., 2021;
Thölke & De Fabritiis, 2022; Du et al., 2023) or irreducible representations (Thomas et al., 2018;
Batzner et al., 2022; Liao & Smidt, 2022; Batatia et al., 2022; Musaelian et al., 2023). Our work is
inspired by multi-channel equivariant graph neural networks (Huang et al., 2022; Kong et al., 2022b)
which assign each node with a coordinate matrix. However, they require a fixed number of channels
(i.e. constant number of rows in the coordinate matrix) and lack invariance w.r.t to the permutations
of the coordinates, which limits their application here as each building block is an unordered set of
atoms with variable size. Moreover, the node features are still limited to single vector form (Thölke
& De Fabritiis, 2022; Liao & Smidt, 2022), which is unable to accommodate all-atom representa-
tions in single blocks. In contrast, our proposed model is designed to handle geometric graphs of
sets where each node contains an unordered set of 3D instances with a different size, which fits
perfectly with the concept of building blocks in molecules.

3 METHOD

We start by illustrating the proposed unified representation for molecules in § 3.1. Then we introduce
GET in § 3.2. Each layer of GET consists of the three types of E(3)-equivariant modules: a bilevel
attention module, a feed-forward module, and a layer normalization after each previous module.
The overall concepts are depicted in Figure 2 and the detailed scheme is presented in Appendix B.

3.1 UNIFIED REPRESENTATION: GEOMETRIC GRAPHS OF SETS

Graphs come as a central tool for molecular representations, and different kind of graphs is applied
in different case. For instance, small molecules can be represented as single-level graphs, where
each node is an atom, while proteins (RNA/DNAs) correspond to two-level graphs, where each
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node is a residue (nucleobase) that consists of a variable number of atoms. To better characterize the
interaction between different molecules, below we propose a unified molecular representation.

Given a complex consisting of a set of atoms A, we first identify a set of blocks (i.e. subsets) from A
according to some predefined notions (e.g. residues for proteins). Then the complex is abstracted as
a geometric graph of sets G = (V, E), where V = {(Hi, X⃗i)|1 ≤ i ≤ B} includes all B blocks and
E = {(i, j, eij)|1 ≤ i, j ≤ B} includes all edges between blocks1, where eij ∈ Rde distinguishes
the type of the edge as intra-molecular or inter-molecular connection. In each block composed of
ni atoms, Hi ∈ Rni×dh denotes a set of atom feature vectors and X⃗i ∈ Rni×3 denotes a set of 3D
atom coordinates. To be specific, the p-th row of Hi, which is the feature vector of atom p, sums
up the trainable embeddings of atom types ai[p], block types bi, and atom position codes pi[p] (see
Appendix A), namely, Hi[p] = Embed(ai[p]) + Embed(bi) + Embed(pi[p]), 1 ≤ p ≤ ni. To
reduce the computational complexity, we construct E via k-nearest neighbors (k = 9) according to
the block distance which is defined as the minimum distance between inter-block atom pairs:

d(i, j) = min{∥X⃗i[p]− X⃗j [q]∥2 | 1 ≤ p ≤ ni, 1 ≤ q ≤ nj}. (1)

Overall, the block-level geometry derived from atomic interactions defines the connectivity of the
graph, while the atom-level instances compose the unordered matrix-form node features with vari-
able sizes. As we will observe in the next section, the above bilevel design allows our model to
capture sparse interactions for the top level and dense interactions for the bottom level, achieving a
desirable integration of different granularities. We will also demonstrate in the experiments that the
representation can be easily extended to arbitrary block definitions (e.g. subgraph-level decomposi-
tion of small molecules (Kong et al., 2022b; Geng et al., 2023)).

Connection to Single-Level Representations If we restrict the blocks to one-atom subsets only,
then we obtain the atom-level representation where each node is one atom, and correspondingly both
Hi and X⃗i are downgraded to row vectors as ni ≡ 1. If we retain the building blocks but replace Hi

and X⃗i with their centroids, then we obtain the block-level representation where the atoms in the
same block are pooled into one single instance. Both single-level representations assign a vector and
a 3D coordinate to each node, hence can be fed into most structural learning models (Gasteiger et al.,
2020b; Satorras et al., 2021; Schütt et al., 2017; Thölke & De Fabritiis, 2022). On the contrary, the
proposed bilevel representation requires the capability of processing E(3)-equivariant feature matri-
ces (Hi and X⃗i) with a variable number of rows, which cannot be directly processed by existing
models. Additionally, within each block, the rows of Hi and X⃗i are indeed elements in a set and
their update should be unaffected by the row order. Luckily, the above challenges are well handled
by our Generalist Equivariant Transformer proposed in the next section.

Comparison with Hierarchical Representations Previous studies (Jin et al., 2022) model proteins
in a hierarchical manner, where the atom-level features within each residue are first pooled as the
residue-level features that will be processed via the message passing over the graph of residues. In
contrast to these hierarchical methods, our bilevel representation retains the information of both the
atom-level and residue-level features simultaneously for attention-based message passing.

3.2 GENERALIST EQUIVARIANT TRANSFORMER

Upon the unified representation, we propose GET to model the structure of the input complex.
As mentioned above, one beneficial property of GET is that it can tackle blocks of variable size.
Besides, GET is sophisticatedly designed to ensure E(3)-equivariance and intra-block permutation
invariance to handle the symmetry. Specifically, each layer of GET first exploits an equivariant
bilevel attention module to capture both sparse interactions in block level and dense interactions in
atom level. Then an equivariant feed-forward module updates each atom with the geometry of its
block. Finally, a novel equivariant layer normalization is implemented on both the hidden states and
coordinates. We present a detailed scheme of GET in Appendix B for better understanding.

Equivariant Bilevel Attention Module Given two blocks i and j of ni and nj atoms, respectively,
we first obtain the query, the key, and the value matrices as follows:

Qi = HiWQ, Kj = HjWK , Vj = HjWV , (2)

1We have added self-loops to reflect self-interactions between the atoms in each block.
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where WQ,WK ,WV ∈ Rdh×dr are trainable parameters. We denote X⃗ij ∈ Rni×nj×3 and Dij ∈
Rni×nj as the relative coordinates and distances between any atom pair in block i and j, namely,
X⃗ij [p, q] = X⃗i[p]− X⃗j [q],Dij [p, q] = ∥X⃗ij [p, q]∥2.

The atom-level cross attention values from j to i are calculated by:

Rij [p, q] = ϕA(Qi[p],Kj [q],RBF(Dij [p, q]), eij), (3)
αij = Softmax(RijWA). (4)

Here, eij is the optional edge feature to distinguish between intra-molecule edges and inter-molecule
edges; ϕA is a 2-layer Multi-Layer Perceptron (MLP) with SiLU (Hendrycks & Gimpel, 2016)
activation; RBF (Gasteiger et al., 2020b) embeds the distance with radial basis functions (definition
in Appendix B); Rij ∈ Rni×nj×dr represents the relations between each atom pair in block i and
j, which are later mapped to scalars by WA ∈ Rdr×1 to obtain the atom-level cross attentions
αij ∈ Rni×nj between the two blocks through Softmax alone the columns of RijWA ∈ Rni×nj .

The block-level cross attention value from j to i is given by:

rij =
1

ninj

ni∑
p=1

nj∑
q=1

Rij [p, q], (5)

βij =
exp(rijWB)∑

j∈N (i) exp(rijWB)
, (6)

where WB ∈ Rdr×1, and N (i) denotes the neighborhood blocks of i. Basically, rij ∈ Rdr repre-
sents the global relation between i and j after aggregating all values in Rij , which is then mapped
to a scalar to obtain the block-level cross attentions βij through Softmax in the neighborhood of i.

With the atom-level and the block-level attentions at hand, we are ready to update both the hidden
states and coordinates for each atom p in block i:

mij,p = αij [p] · ϕv(Vj ∥ RBF(Dij [p])) (7)

m⃗ij,p = αij [p] · (X⃗ij [p]⊙ σv(Vj ∥ RBF(Dij [p]))) (8)

H ′
i[p] = Hi[p] +

∑
j∈N (i)

βijϕm(mij,p), (9)

X⃗ ′
i[p] = X⃗i[p] +

∑
j∈N (i)

βij(σm(mij,p) · m⃗ij,p), (10)

where, ∥ specifies the concatenation along the second dimension; ϕv ,ϕm, σv , and σm are all MLPs,
ϕv and σv are applied for each row of the input matrix independently; ⊙ computes the element-wise
multiplication. It is verified that the shape of the updated variables H ′

i and X⃗ ′
i keeps the same

irregardless of the value of the block size nj . In addition, since the attentions αij and βij are E(3)-
invariant, the update of X⃗ ′

i is E(3)-equivariant. It can also be observed that the update is independent
to the atom permutation of each block. We provide detailed proofs in Appendix C.

Equivariant Feed-Forward Network This module updates Hi and X⃗i for each atom individu-
ally. We denote each row of Hi as h, and X⃗i as x⃗. We first calculate the centroids of the block:

hc = centroid(Hi), x⃗c = centroid(X⃗i). (11)

Then we obtain the relative coordinate ∆x⃗ as well as the distance representation r between each
atom and the centroid:

∆x⃗ = x⃗− x⃗c, r = RBF(∥∆x⃗∥2), (12)

The centroids and the distance representation are then integrated into the updating process of h and
x⃗ to let each atom be aware of the geometric context of its block, where ϕh, σx are MLPs:

h′ = h+ ϕh(h,hc, r), (13)

x⃗′ = x⃗+∆x⃗σx(h,hc, r), (14)
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Equivariant Layer Normalization Layer normalization is known to stabilize and accelerate the
training of deep neural networks (Ba et al., 2016; Vaswani et al., 2017). The challenge here is that
we need to additionally consider E(3)-equivariance when normalizing the coordinates. To this end,
we first extract the centroid of the entire graph as E[X⃗], where X⃗ collects the coordinates of all atoms
in all blocks. Then we exert layer normalization on the hidden vectors and coordinates of individual
atoms as follows:

h′ =
h− E[h]√
Var[h]

· γ + β, (15)

x⃗′ =
x⃗− E[X⃗]√

Var[X⃗ − E[X⃗]]
· σ + E[X⃗], (16)

where γ,β, and σ are learnable parameters, and Var[X⃗] calculates the variation of all atom coordi-
nates with respect to the centroid. Therefore, the coordinates, after subtracting the centroid of all
atoms, are first normalized to standard Gaussian distribution and then scaled with σ before recover-
ing the centroid. In addition, to further reflect the rescaling of the coordinates into hidden features,
we inject the following update before applying the above layer normalization:

h = h+ ϕLN(RBF(σ/

√
Var[X⃗])), (17)

where ϕLN is an MLP. In contrast to existing literature which only implements layer normalization
on E(3)-invariant features (Thölke & De Fabritiis, 2022; Liao & Smidt, 2022) or node-wise veloci-
ties (Zaidi et al., 2022), ours works on both E(3)-invariant features and E(3)-equivariant coordinates.

Thanks to the E(3)-equivariance of each module, GET, which is the cascading of these modules in
each layer, also conforms to the symmetry of the 3D world. We provide the proof in Appendix C
and complexity analysis in Appendix D.

4 EXPERIMENTS

In this section, we aim to answer the following three questions via empirical experiments: (1) Does
modeling complexes with unified representation better captures the geometric interactions than treat-
ing each interacting entity independently with domain-specific representations (§ 4.1)? (2) Is the
proposed unified representation more expressive than vanilla single-level representations or pooling-
based hierarchical methods (§ 4.2)? (3) Can the proposed method generalize to different domains
by learning the universal underlying interaction physics (§ 4.3)?

We conduct experiments on prediction of binding between proteins, small molecules and nucleic
acids. Thus, we adopt three widely used metrics for quantitive evaluation (Townshend et al., 2020;
Liu et al., 2021a; Luo et al., 2023; Notin et al., 2022): RMSE is the Root Mean Square Error of the
predicted value; Pearson Correlation (Cohen et al., 2009) measures the linear correlation between
the predicted values and the target values; Spearman Correlation (Hauke & Kossowski, 2011)
measures the correlation between the rankings given by the predicted and the target values

4.1 COMPARISON TO DOMAIN-SPECIFIC REPRESENTATIONS

We evaluate our method on the prediction of binding affinity between proteins and small molecules
against state-of-the-art two-branch models with domain-specific representations from existing liter-
ature (Somnath et al., 2021; Wang et al., 2022). We follow Somnath et al. (2021); Wang et al. (2022)
to conduct experiments on the well-established PDBbind (Wang et al., 2004; Liu et al., 2015) and
split the dataset (4,709 biomolecular complexes) according to sequence identity of the protein with
30% as the threshold. Details of the experiments are provided in Appendix F.

Results Table 1 shows that our GET surpasses the baselines by a large margin. Compared to
the baselines which encode proteins and small molecules independently with delicately designed
domain-specific models, our unified representation enables unified geometric learning with only
one model, which better captures the interactive geometric information between the protein and the
small molecule. Notably, among models with one encoder (Jing et al., 2021; Townshend et al.,
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Table 1: The mean and the standard deviation of three runs on the PDBbind benchmark. The best
results are marked in bold and the second best are underlined. The results of baselines are borrowed
from Wang et al. (2022). Baselines encoding the complexes with one model are marked with ∗.

Model RMSE↓ Pearson↑ Spearman↑
DeepDTA (Öztürk et al., 2018) 1.866± 0.080 0.472± 0.022 0.471± 0.024
Bepler and Berger (Bepler & Berger, 2019) 1.985± 0.006 0.165± 0.006 0.152± 0.024
TAPE (Rao et al., 2019) 1.890± 0.035 0.338± 0.044 0.286± 0.124
ProtTrans (Elnaggar et al., 2022) 1.544± 0.015 0.438± 0.053 0.434± 0.058
MaSIF (Gainza et al., 2020) 1.484± 0.018 0.467± 0.020 0.455± 0.014
IEConv (Hermosilla et al., 2020) 1.554± 0.016 0.414± 0.053 0.428± 0.032
Holoprot-Full Surface (Somnath et al., 2021) 1.464± 0.006 0.509± 0.002 0.500± 0.005
Holoprot-Superpixel (Somnath et al., 2021) 1.491± 0.004 0.491± 0.014 0.482± 0.032
ProNet-Amino Acid (Wang et al., 2022) 1.455± 0.009 0.536± 0.012 0.526± 0.012
ProtNet-Backbone (Wang et al., 2022) 1.458± 0.003 0.546± 0.007 0.550± 0.008
ProtNet-All-Atom (Wang et al., 2022) 1.463± 0.001 0.551± 0.005 0.551± 0.008

GVP∗ (Jing et al., 2021) 1.594± 0.073 - -
Atom3D-3DCNN∗ (Townshend et al., 2020) 1.416± 0.021 0.550± 0.021 0.553± 0.009
Atom3D-ENN∗ (Townshend et al., 2020) 1.568± 0.012 0.389± 0.024 0.408± 0.021
Atom3D-GNN∗ (Townshend et al., 2020) 1.601± 0.048 0.545± 0.027 0.533± 0.033

GET∗ (ours) 1.364± 0.009 0.596± 0.006 0.573± 0.007

2020), our method also achieves significant improvement since our unified representation retains
domain-specific hierarchies instead of decomposing all types of molecules into atomic graphs.

4.2 COMPARISON TO VANILLA UNIFIED REPRESENTATIONS

Next, we compare the proposed unified representation with three vanilla unified representations: (1)
Block-level methods assign each building block to one node where the definition of building block
is domain-specific (e.g. each residue in the proteins is one node); (2) Atom-level methods treats all
kinds of molecules as graphs of atoms; (3) Hierarchical methods first implement message passing
on atom-level graphs, then obtain the block-level representations by pooling for further message
passing on the block-level graphs (Jin et al., 2022).

Baselines These vanilla unified representations are compatible with most geometric graph models
in existing literature, thus we adopt the following representative models as backbone for compari-
son. SchNet (Schütt et al., 2017), DimeNet++ (Gasteiger et al., 2020b;a), and GemNet (Gasteiger
et al., 2021) build invariant models based on invariant geometric features (i.e. distances and an-
gles). EGNN (Satorras et al., 2021), TorchMD-Net (ET) (Thölke & De Fabritiis, 2022), and LEFT-
Net (Du et al., 2023) keep track of equivariant features and are implemented directly on 3D coor-
dinates via scalarization (Han et al., 2022). MACE (Batatia et al., 2022) and Equiformer (Liao &
Smidt, 2022) leverage spherical harmonics and irreducible representations (Thomas et al., 2018) to
compose equivariant models.

Dataset To this end, we evaluate the models on prediction of protein-protein affinity and ligand-
binding affinity. For Protein-Protein Affinity (PPA), we adopt the Protein-Protein Affinity Bench-
mark Version 2 (Kastritis et al., 2011; Vreven et al., 2015) as the test set, which categorizes 176
diversified protein-protein complexes into three difficulty levels (i.e. Rigid, Medium, Flexible) ac-
cording to the conformation change of the proteins from the unbound to the bound state (Kastritis
et al., 2011). The Flexible split is the most challenging as the proteins undergo large conformation
change upon binding. As for training, we obtain 2,500 complexes with annotated binding affinity
(Ki or Kd) from PDBbind (Wang et al., 2004) and split the dataset according to sequence identity
on a threshold of 30%. For Ligand-Binding Affinity (LBA), we use the LBA dataset and its splits
in Atom3D benchmark (Townshend et al., 2020), where there are 3507, 466, and 490 complexes in
the training, the validation, and the test sets. Details are provided in Appendix F.

Results We report the mean and the standard deviation of the metrics across three runs for PPA and
LBA in Table 2. Details on different difficulty levels for PPA are included in Appendix I due to the
space limit. Inspiringly, it reads that our GET with the proposed unified representation achieves sig-
nificantly better performance compared with the baselines with either single-level representations or
hierarchical pooling, no matter the interacting partners are macro molecules (i.e. proteins) or small
molecules. This confirms the superiority of our method, which comes from a desirable integration
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Table 2: The mean and the standard deviation of three runs on PPA and LBA prediction. The best
results are marked in bold and the second best are underlined. Baselines that fail to process atomic
graphs due to high complexity are marked with OOM (out of memory).

Repr. Model PPA LBA
Pearson↑ Spearman↑ RMSE↓ Pearson↑ Spearman↑

Block

SchNet 0.439± 0.016 0.427± 0.012 1.406± 0.020 0.565± 0.006 0.549± 0.007
DimeNet++ 0.323± 0.025 0.317± 0.031 1.391± 0.020 0.576± 0.016 0.569± 0.016

EGNN 0.381± 0.021 0.382± 0.022 1.409± 0.015 0.566± 0.010 0.548± 0.012
ET 0.424± 0.021 0.415± 0.027 1.367± 0.037 0.599± 0.017 0.584± 0.025

GemNet 0.387± 0.023 0.393± 0.027 1.393± 0.036 0.569± 0.027 0.553± 0.026
MACE 0.470± 0.015 0.466± 0.011 1.385± 0.006 0.599± 0.010 0.580± 0.014

Equiformer 0.484± 0.007 0.496± 0.007 1.350± 0.019 0.604± 0.013 0.591± 0.012
LEFTNet 0.452± 0.013 0.452± 0.013 1.377± 0.013 0.588± 0.011 0.576± 0.010

Atom

SchNet 0.369± 0.007 0.404± 0.016 1.357± 0.017 0.598± 0.011 0.592± 0.015
DimeNet++ OOM OOM 1.439± 0.036 0.547± 0.015 0.536± 0.016

EGNN 0.302± 0.010 0.349± 0.009 1.358± 0.000 0.599± 0.002 0.587± 0.004
ET 0.401± 0.005 0.436± 0.004 1.381± 0.013 0.591± 0.007 0.583± 0.009

GemNet OOM OOM OOM OOM OOM
MACE 0.463± 0.052 0.449± 0.052 1.411± 0.029 0.579± 0.009 0.563± 0.012

Equiformer OOM OOM OOM OOM OOM
LEFTNet 0.448± 0.046 0.431± 0.046 1.343± 0.004 0.610± 0.004 0.598± 0.003

Hierarchical

SchNet 0.438± 0.017 0.424± 0.016 1.370± 0.028 0.590± 0.017 0.571± 0.028
DimeNet++ OOM OOM 1.388± 0.010 0.582± 0.009 0.574± 0.007

EGNN 0.386± 0.021 0.390± 0.016 1.380± 0.015 0.586± 0.004 0.568± 0.004
ET 0.401± 0.005 0.438± 0.029 1.383± 0.009 0.580± 0.008 0.564± 0.004

GemNet OOM OOM OOM OOM OOM
MACE 0.466± 0.020 0.470± 0.016 1.372± 0.021 0.612± 0.010 0.592± 0.010

Equiformer OOM OOM OOM OOM OOM
LEFTNet 0.445± 0.024 0.446± 0.029 1.366± 0.016 0.592± 0.014 0.580± 0.011

Unified GET (ours) 0.514± 0.011 0.533± 0.011 1.327± 0.005 0.620± 0.004 0.611± 0.003
GET-PS (ours) - - 1.309± 0.012 0.633± 0.008 0.642± 0.009

of different granularities. Further, to show the flexibility of the proposed unified representation,
as mentioned in § 3.1, we add GET-PS, which defines the blocks in small molecules as principal
subgraphs (Kong et al., 2022b) instead of atoms. GET-PS receives obvious gains over GET since
fragments in small molecules usually contribute to interactions as a whole (Hajduk & Greer, 2007).

4.3 GENERALIZATION ACROSS DIFFERENT DOMAINS

Finally, we explore whether our model is able to find universal underlying physics that can generalize
across different domains.

Data Augmentation from Different Domains We mix the dataset of protein-protein affinity and
protein-ligand affinity for training, and evaluate the models on the test set of the two domains,
respectively. We also benchmark ET, MACE, and LEFTNet, which exhibit competitive performance
and efficiency in § 4.2, under the same setting for comparison. We present the results in Figure 3,
and include detailed mean and standard deviation in Appendix J. The results demonstrate that our
method obtains benefits from the mixed training set on both PPA and LBA, while the baselines
receive negative impact in most cases. These phenomena well demonstrate the generalization ability
of the proposed GET equipped with the unified representation.

Block

ET

MACE

LEFTNet

Unified GET (ours)

Pearson Correlation Pearson CorrelationSpearman Correlation Spearman Correlation

PPA-All LBA

Atom

ET

MACE

LEFTNet

Hier.

ET

MACE

LEFTNet

Figure 3: Comparison of different models on the universal learning of molecular interaction affinity.

Zero-Shot Prediction of DNA/RNA-Ligand Affinity A more practical and meaningful, yet also
more challenging scenario is ligand (small molecule) binding on nucleic acids (RNA/DNA), the data
of which are scarce and expensive to obtain. We use the 149 data points available in PDBbind (Wang
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et al., 2004) as the zero-shot test set, and train a model on binding data from other domains in
PDBbind (i.e. protein-protein, protein-ligand and RNA/DNA-protein). The results in Table 3 show
that GET achieves amazing generalizability across different domains on molecular interaction.

Table 3: Zero-shot performance on DNA/RNA-ligand binding affinity prediction for three runs.
Repr. Model Pearson↑ Spearman↑

Block

ET 0.217± 0.059 0.185± 0.051
MACE 0.004± 0.045 0.045± 0.034

LEFTNet 0.279± 0.127 0.252± 0.082

Atom
ET 0.150± 0.034 0.198± 0.043

MACE −0.005± 0.079 0.027± 0.083
LEFTNet 0.271± 0.062 0.279± 0.062

Hierarchical
ET 0.348± 0.047 0.302± 0.028

MACE 0.002± 0.055 0.041± 0.030
LEFTNet 0.279± 0.122 0.259± 0.077

Unified GET 0.450± 0.054 0.362± 0.041

Both experiments confirm the potential of our model to discover universal underlying principles of
molecular interactions capable of generalizing across diverse domains.

5 ANALYSIS

We conduct ablation study by removing the following modules: the layer normalization (w/o LN);
the equivariant normalization on coordinates in the LN (w/o equivLN); the reflection of rescaling
information in hidden features in Eq. 17 (w/o EmbedScale); the equivariant feed-forward network
(w/o FFN); both LN and FFN (w/o LN & FFN). The results are presented in Table 4.

The ablations of the modules reveal following regularities: (1) Removing either the entire layer nor-
malization or only the equivariant normalization on coordinates introduces instability in training,
which not only leads to higher variance across different experiments, but also induces adverse im-
pacts in some tasks like PPA; (2) Not reflecting the rescaling information in the hidden features has
an adverse effect on the performance as the scale of the coordinates also carries essential information
for learning the interaction physics; (3) The removal of the equivariant feed-forword module incurs
detriment to the overall performance, indicating the necessity of the FFN to encourage intra-block
geometrical communications between atoms. We include analysis on attention in Appendix K.

Table 4: Ablation study of each module in our proposed Generalist Equivariant Transformer (GET),
where LN and FFN are abbreviations for LayerNorm and Feed-Forward Network, respectively. The
best results are marked in bold and the second best are underlined.

Repr. Model PPA-All LBA
Pearson↑ Spearman↑ Pearson↑ Spearman↑

Unified

GET-mix 0.519± 0.004 0.537± 0.003 0.622± 0.006 0.615± 0.008
GET 0.514± 0.011 0.533± 0.011 0.620± 0.004 0.611± 0.003
w/o LN 0.366± 0.024 0.426± 0.032 0.589± 0.007 0.593± 0.008
w/o equivLN 0.368± 0.025 0.426± 0.032 0.591± 0.008 0.597± 0.009
w/o EmbedScale 0.490± 0.027 0.507± 0.030 0.591± 0.002 0.586± 0.003
w/o FFN 0.494± 0.010 0.510± 0.010 0.593± 0.008 0.601± 0.012
w/o LN & FFN 0.360± 0.018 0.423± 0.024 0.589± 0.009 0.596± 0.008

6 CONCLUSION

In this paper, we explore the unified representation of molecules as geometric graphs of sets,
which enables all-atom representations while preserving the heuristic building blocks of different
molecules. To model the unified representaion, we propose a Generalist Equivariant Transformer
(GET) to accommodate matrix-form node features and coordinates with E(3)-equivariance and per-
mutation invariance. Each layer of GET consists of a bilevel attention module, a feed-forward
module, and an equivariant layer normalization after each of the previous two modules. Experi-
ments on molecular interactions demonstrate the superiority of learning unified representation with
our GET compared to single-level representations and existing baselines. Further explorations on
mixing molecular types reveal the ability of our method to learn generalizable molecular interaction
mechanisms, which could inspire future research on universal representation learning of molecules.
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REPRODUCIBILITY

Our codes are available at https://anonymous.4open.science/r/GET-anonymous/
with anonymized contents.
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A ATOM POSITION CODE

Certain types of molecules have conventional position codes to distinguish different status of the
atoms in the same block. For example, in the protein domain, where building blocks are residues,
each atom in a residue is assigned a position code (α, β, γ, δ, ε, ζ, η, ...) according to the number of
chemical bonds between it and the alpha carbon (i.e. Cα). As these position codes provide meaning-
ful heuristics of intra-block geometry, we also include them as a component of the embedding. For
other types of molecules without such position codes (e.g. small molecules), we assign a [BLANK]
type for positional embedding.

B SCHEME OF THE GENERALIST EQUIVARIANT TRANSFORMER

We depict the overall workflow and the details of the equivariant bilevel attention module in Figure 4.
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Figure 4: The scheme of a layer of Generalist Equivariant Transformer, where block i (Hi, X⃗i) is
updated by its neighbors ({Hj}, {X⃗j}, j ∈ Nb(i)). ×, +, and ⊕ denote multiplication, addition
and concatenation, respectively. (Left) The overall workflow of a layer and details of the block-level
attention. (Right) The details of the atom-level cross attention. GET is composed of N such layers.

RBF embeds distances into drbf-dimensional vectors through radial basis functions:

RBF(d)k = u(
d

c
) · exp(−|d− µk|

2γ
), 1 ≤ k ≤ drbf (18)

where µk is uniformly distributed in [0, c] (c = 7.0 in our paper), γ = c
drbf

, and u(d) is the polynomial
envelope function for cutting off large distances (Gasteiger et al., 2020b) (p = 5 in our paper):

u(x) = 1− (p+ 1)(p+ 2)

2
xp + p(p+ 2)xp+1 − p(p+ 1)

2
xp+2 (19)

C PROOF OF E(3)-EQUIVARIANCE AND INTRA-BLOCK PERMUTATION
INVARIANCE

Theorem C.1 (E(3)-Equivariance and Intra-Block Permutation Invariance). Denote the proposed
Equivariant Transformer as {H ′

i, X⃗
′
i} = GET({Hi, X⃗i}), then it conforms to E(3)-Equivariance

and Intra-Block Permutation Invariance. Namely, ∀g ∈ E(3),∀{πi ∈ Sni
|1 ≤ i ≤ B}, where

B is the number of blocks in the input and Sni includes all permutations on ni elements, we have
{πi ·H ′

i, πi · g · X⃗ ′
i} = GET({πi ·Hi, πi · g · X⃗i}).

The Generalist Equivariant Transformer (GET) is the cascading of the three types of modules:
bilevel attention, feed-forward network, and layer normalization. Further, the E(3)-equivariance
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and the intra-block permutation invariance are disentangled. Therefore, the proof of its E(3)-
equivariance and its invariance respect to the intra-block permutations can be decomposed into proof
of these two properties on each module, which we present below.

C.1 PROOF OF E(3)-EQUIVARIANCE

First we give the definition of E(3)-equivariance as follows:
Definition C.2 (E(3)-equivariance). A function ϕ : X → Y conforms E(3)-equivariance if ∀g ∈
E(3), the equation ρY(g)y = ϕ(ρX(g)x) holds true, where ρX and ρY instantiate g in X and Y,
respectively. A special case is E(3)-invariance where ρY constantly outputs identity transformation
(i.e. ρY(g) ≡ I).

Given g ∈ E(3) and x⃗ ∈ R3, we can instantiate g as g · x⃗ := Qx⃗ + t⃗, where Q ∈ R3×3 is
an orthogonal matrix and t⃗ ∈ R3 is a translation vector. Implementing g on a coordinate matrix
X⃗ ∈ Rn×3 means transforming each coordinate (i.e. each row) with g.

Then we prove the E(3)-equivariance of each module in GET as follows:

Lemma C.3. Denote the bilevel attention module as {H ′
i, X⃗

′
i} = Att({Hi, X⃗i}), then it is E(3)-

equivariant. Namely, ∀g ∈ E(3), we have {H ′
i, g · X⃗ ′

i} = Att({Hi, g · X⃗i}).

Proof. The key to the proof of Lemma C.3 is to prove that the propagation in Eq. 2-10 is E(3)-
invariant on Hi and E(3)-equivariant on X⃗i. Obviously, the correlation Rij between block i and
block j in Eq. 3 is E(3)-invariant because all the inputs, that is, the query, the key, and the distance
matrices, are not affected by the geometric transformation g. Therefore, we can immediately derive
that the atom-level cross attention αij in Eq. 4 is E(3)-invariant. Similarly, the block-level attention
βij in Eq. 6 is E(3)-invariant because it only operates on rij in Eq. 5 which aggregates αij and the
edge feature. Finally, we can derive the E(3)-invariance on H and the E(3)-equivariance on X⃗:

H
′
i[p] = Hi[p] +

∑
j∈N(i)

βijϕm(mij,p),

= Hi[p] +
∑

j∈N(i)

βijϕm(αij [p] · ϕv(Vj ∥ RBF(Dij [p]))),

g · X⃗′
i[p] = g ·

X⃗i[p] +
∑

j∈N(i)

βij (m⃗ij,p ⊙ σm(mij,p))


= g ·

X⃗i[p] +
∑

j∈N(i)

βij

(
αij [p] · (X⃗ij [p] ⊙ σv(Vj ∥ RBF(Dij [p]))) ⊙ σm(mij,p)

)
= Q

X⃗i[p] +
∑

j∈N(i)

βij

(
αij [p] · (X⃗ij [p] ⊙ σv(Vj ∥ RBF(Dij [p]))) ⊙ σm(mij,p)

) + t⃗

= (QX⃗i[p] + t⃗) +
∑

j∈N(i)

βij

αij [p] ·




Q(X⃗i[p] − X⃗j [1])

...
Q(X⃗i[p] − X⃗j [nj ])

 ⊙ σv(Vj ∥ RBF(Dij [p]))

 ⊙ σm(mij,p)


= (QX⃗i[p] + t⃗) +

∑
j∈N(i)

βij

αij [p] ·




QX⃗i[p] + t⃗ − (QX⃗j [1] + t⃗)

...
QX⃗i[p] + t⃗ − (QX⃗j [nj ] + t⃗)

 ⊙ σv(Vj ∥ RBF(Dij [p]))

 ⊙ σm(mij,p)


= g · X⃗i[p] +

∑
j∈N(i)

βij

αij [p] ·




g · X⃗i[p] − g · X⃗j [1]

...
g · X⃗i[p] − g · X⃗j [nj ]

 ⊙ σv(Vj ∥ RBF(Dij [p]))

 ⊙ σm(mij,p)

 ,

which concludes the proof of Lemma C.3.
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Lemma C.4. Denote the equivariant feed-forward network as as {H ′
i, X⃗

′
i} = EFFN({Hi, X⃗i}),

then it is E(3)-equivariant. Namely, ∀g ∈ E(3), we have {H ′
i, g · X⃗ ′

i} = EFFN({Hi, g · X⃗i}).

Proof. The proof of Lemma C.4 focuses on the single-atom updates in Eq. 11-14. First, it is easy to
obtain the E(3)-equivariance of the centroid in Eq. 11:

g · x⃗c = g · centroid(X⃗i) = centroid(g · X⃗i).

Then we have the following equation on the relative coordinate ∆x⃗ in Eq. 12:

Q∆x⃗ = (Qx⃗+ t⃗)− (Qx⃗c + t⃗) = g · x⃗− g · x⃗c.

We can immediately obtain the E(3)-invariance of r in Eq. 12:

r = RBF(∥Q∆x⃗∥2) = RBF(
√

(Q∆x⃗)⊤(Q∆x⃗)) = RBF(
√
∆x⃗⊤Q⊤Q∆x⃗) = RBF(∥∆x⃗∥2).

Finally we can derive the E(3)-invariance on h and the E(3)-equivariance on x⃗:

h′ = h+ ϕh(h,hc, r),

g · x⃗′ = g · (x⃗+∆x⃗ϕx(h,hc, r))

= Q(x⃗+∆x⃗ϕx(h,hc, r)) + t⃗

= Qx⃗+ t⃗+Q∆x⃗ϕx(h,hc, r)

= g · x⃗+ (g · x⃗− g · x⃗c)ϕx(h,hc, r)

= g · x⃗+ (g · x⃗− centroid(g · X⃗i))ϕx(h,hc, r),

which concludes the proof of Lemma C.4

Lemma C.5. Denote the equivariant layer normalization as as {H ′
i, X⃗

′
i} = ELN({Hi, X⃗i}), then

it is E(3)-equivariant. Namely, ∀g ∈ E(3), we have {H ′
i, g · X⃗ ′

i} = ELN({Hi, g · X⃗i}).

Proof. Since the layer normalization is implemented on the atom level, namely each row of the
coordinate matrix in a node, we again only need to concentrate on the single-atom normalization in
Eq. 15-16. The key points lie in the E(3)-equivariance of E[X⃗] and the E(3)-invariance of Var[X⃗ −
E[X⃗]]. The first one is obvious because E[X⃗] is the centroid of the coordinates of all atoms:

g · E[X⃗] = g · centroid(X⃗) = centroid(g · X⃗) = E[g · X⃗].

Suppose there are N atoms in total, then we can prove the E(3)-invariance of the variance as follows:

Var[X⃗ − E[X⃗]] =
∑N

i=1(xi − x̄)2 +
∑N

i=1(yi − ȳ)2 +
∑N

i=1(zi − z̄)2

3N

=

∑N
i=1[(xi − x̄)2 + (yi − ȳ)2 + (zi − z̄)2]

3N

=

∑N
i=1(x⃗i − E[X⃗])⊤(x⃗i − E[X⃗])

3N

=

∑N
i=1(x⃗i − E[X⃗])⊤Q⊤Q(x⃗i − E[X⃗])

3N

=

∑N
i=1(Qx⃗i −QE[X⃗])⊤(Qx⃗i −QE[X⃗])

3N

=

∑N
i=1(g · x⃗i − g · E[X⃗])⊤(g · x⃗i − g · E[X⃗])

3N

=

∑N
i=1(g · x⃗i − E[g · X⃗])⊤(g · x⃗i − E[g · X⃗])

3N

= Var[g · X⃗ − E[g · X⃗]].
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Therefore, we can finally derive the E(3)-invariance on h and the E(3)-equivariance on x⃗ in Eq. 15-
16:

h =
h− E[h]√
Var[h]

· γ + β,

g · x⃗ = g · ( x⃗− E[X⃗]√
Var[X⃗ − E[X⃗]]

· σ + E[X⃗]) =
Qx⃗−QE[X⃗]√
Var[X⃗ − E[X⃗]]

· σ +QE[X⃗] + t⃗

=
Qx⃗+ t⃗− (QE[X⃗] + t⃗)√

Var[X⃗ − E[X⃗]]
· σ + (QE[X⃗] + t⃗) =

g · x⃗− g · E[X⃗]√
Var[g · X⃗ − E[g · X⃗]]

· σ + g · E[X⃗]

=
g · x⃗− E[g · X⃗]√

Var[g · X⃗ − E[g · X⃗]]
· σ + E[g · X⃗],

which concludes the proof of Lemma C.5.

With Lemma C.3-C.5 at hand, it is obvious to deduce the E(3)-equivariance of the GET layer.

C.2 PROOF OF INTRA-BLOCK PERMUATION INVARIANCE

Obviously, the feed-forward network and the layer normalization are invariant to intra-block per-
mutations because they are implemented on single atoms and the only incorporated multi-atom
operation is averaging, which is invariant to the permutations. Therefore, the proof narrows down to
the intra-block permutation invariance of the bilevel attention module.

Lemma C.6. Denote the bilevel attention module as {H ′
i, X⃗

′
i} = Att({Hi, X⃗i}), then it conforms

to intra-block permutation invariance. Namely, ∀{πi ∈ Sni
|1 ≤ i ≤ B}, where B is the number of

blocks in the input and Sni
includes all permutations on ni elements, we have {πi ·H ′

i, πi · X⃗ ′
i} =

Att({πi ·Hi, πi · X⃗i}).

Proof. Denote the the permutation of block i as πi, then it can be instantiated as the multiplication
of a series of elementary row-switching matrices Pi = P

(mi)
i P

(mi−1)
i . . .P

(1)
i . For example, we

have πi · Hi = PiHi, πi · X⃗i = PiX⃗i. Here we first prove an elegant property of Pi, which we
will use in the later proof:

P⊤
i Pi = (P

(mi)
i P

(mi−1)
i . . .P

(1)
i )⊤(P

(mi)
i P

(mi−1)
i . . .P

(1)
i )

= P
(1)
i

⊤
. . .P

(mi−1)
i

⊤
P

(mi)
i

⊤
P

(mi)
i P

(mi−1)
i . . .P

(1)
i

= P
(1)
i

⊤
. . .P

(mi−1)
i

⊤
IP

(mi−1)
i . . .P

(1)
i

= . . .

= I

Given arbitrary permutations on each block, we have the permutated query, key, and value matrics:

PiQi = PiHiWQ = (πi ·Hi)WQ,

PiKi = PiHiWK = (πi ·Hi)WK ,

PiVi = PiHiWV = (πi ·Hi)WV .
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The distance matrix Dij is also permutated as PiDijP
⊤
j . Therefore, the atom-level attention αij

in Eq. 4 is also permutated as PiαijP
⊤
j , and the messages in Eq. 7-8 are permutated as:

Pimij = Pi

 αij [1] · ϕv(Vj∥RBF(Dij [1]))
...

αij [ni] · ϕv(Vj∥RBF(Dij [ni]))

 = Pi

 αij [1]P
⊤
j Pjϕv(Vj∥RBF(Dij [1]))

...
αij [ni]P

⊤
j Pjϕv(Vj∥RBF(Dij [ni]))



Pim⃗ij = Pi


αij [1] ·

(
X⃗ij [p]⊙ σv(Vj∥RBF(Dij [1])

)
...

αij [ni] ·
(
X⃗ij [p]⊙ σv(Vj∥RBF(Dij [ni])

)


= Pi


αij [1]P

⊤
j Pj

(
X⃗ij [p]⊙ σv(Vj∥RBF(Dij [1])

)
...

αij [ni]P
⊤
j Pj

(
X⃗ij [p]⊙ σv(Vj∥RBF(Dij [ni])

)
 ,

The block-level attention βij in Eq. 6 remains unchanged as the average of Rij in obtaining rij
eliminates the effect of permutations. Finally, we can derive the intra-block permutation invariance
as follows:

PiH
′
i = Pi

Hi +
∑

j∈N (i)

βijϕm(mij)

 = PiHi +
∑

j∈N (i)

βijϕm(Pimij),

PiX⃗
′
i = Pi

X⃗i +
∑

j∈N (i)

βijm⃗ij ⊙ σm(m⃗ij)

 = PiX⃗i +
∑

j∈N (i)

βij(Pim⃗ij)⊙ σm(Pim⃗ij)

which concludes Lemma C.6.

D COMPLEXITY ANALYSIS

To discuss the scalability of the model, we additionally provide the complexity analysis as follows.
The main complexity lies in the attention-based message passing module. Suppose block i and
block j have ni and nj atoms, respectively. Since the attention module implements bipartite cross
attention between block pairs, there are a total of ninj attention edges between block i and block
j. Therefore, the exact complexity should be O(

∑
i∈V

∑
j∈N (i) ninj), where V includes all nodes

and N (i) includes all neighbors of block i. Since we use K nearest neighbors to construct graphs
in block level, we have N (i) ≤ K. Denote the maximum number of atoms in a single block is C(in
natural proteins we have C = 14), we have ni ≤ C. Therefore, we have

∑
i∈V

∑
j∈N (i) ninj ≤∑

i∈V KC2 = KC2|V|, namely, the complexity should be bounded by O(KC2|V|), which is linear
to the number of blocks in the graph. A linear complexity means the algorithm should be easy to
scale to larger molecular systems.

Practically, the complexity can be further optimized by selecting only k nearest neighbors of each
atom in message passing between block i and block j. With this sparse attention, the complexity is
O(

∑
i∈V

∑
j∈N (i) kni) ≤ O(kKN), where N is the total number of atoms.

E LIGAND EFFICACY PREDICTION

We additionally provide the evaluation results on Ligand Efficacy Prediction (LEP). This task re-
quires identifying a given ligand as the ”activator” or the ”inactivator” of a functional protein.
Specifically, given the two complexes where the ligand interacts with the active and the inactive
conformation of the protein respectively, the models need to distinguish which one is more favor-
able. To this end, we first obtain the graph-level representations of the two complexes. Then we
concatenate the two representations to do a binary classification. We use two metrics for evaluation:
the area under the receiver operating characteristic (AUROC) and the area under precision-recall
curve (AUPRC).
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Dataset We follow the LEP dataset and its splits in the Atom3D benchmark (Townshend et al.,
2020), which includes 27 functional proteins and 527 ligands known as activator or inactivator to a
certain protein. The active and the inactive complexes are generated by Glide (Friesner et al., 2004).
The splits of the training, the validation, and the test sets are based on the functional proteins to
ensure generalizability.

Table 5: The mean and the standard deviation of three runs on ligand efficacy prediction. The best
results are marked in bold and the second best are underlined.

Repr. Model AUROC↑ AUPRC↑

Block

SchNet 0.732± 0.022 0.718± 0.031
DimeNet++ 0.669± 0.014 0.609± 0.036

EGNN 0.746± 0.017 0.755± 0.031
ET 0.744± 0.034 0.721± 0.052

Atom

SchNet 0.712± 0.026 0.639± 0.033
DimeNet++ 0.589± 0.049 0.503± 0.020

EGNN 0.711± 0.020 0.643± 0.041
ET 0.677± 0.004 0.636± 0.054

Hierarchical

SchNet 0.736± 0.020 0.731± 0.048
DimeNet++ 0.579± 0.118 0.517± 0.100

EGNN 0.724± 0.027 0.720± 0.056
ET 0.717± 0.033 0.724± 0.055

Unified GET (ours) 0.761± 0.012 0.751± 0.012

Results We present the mean and the standard deviation of the metrics across three runs in Table 5.
LEP requires distinguishing the active and inactive conformations of the receptor, thus it is essen-
tial to capture the block-level geometry of the protein in addition to the atom-level receptor-ligand
interactions. The unified representation excels at learning the bilevel geometry, therefore, naturally,
we observe obvious gains on the metrics of our method compared to the baselines.

F IMPLEMENTATION DETAILS

We conduct experiments on 1 GeForce RTX 2080 Ti GPU. Each model is trained with Adam opti-
mizer and exponential learning rate decay. To avoid unstable checkpoints from early training stages,
we select the latest checkpoint from the saved top-k checkpoints on the validation set for testing.
Since the number of blocks varies a lot in different samples, we set a upperbound of the number of
blocks to form a dynamic batch instead of using a static batch size. We use k = 9 for constructing
the k-nearest neighbor graph in § 3.1 and set the size of the RBF kernel (drbf) to 32. We give the
description of the hyperparameters in Table 6 and their values for each task in Table 7.

Table 6: Descriptions of the hyperparameters.
hyperparameter description

dh Hidden size
dr Radial size for the attention module
lr Learning rate

final lr Final learning rate
max epoch Maximum of epochs to train
save topk Number of top-k checkpoints to save
n layers Number of layers

max n vertex Upperbound of the number of nodes in a batch

F.1 PDBBIND BENCHMARK

We follow Somnath et al. (2021); Wang et al. (2022) to conduct experiments on the well-established
PDBbind (Wang et al., 2004; Liu et al., 2015) and use the split with sequence identity threshold of
30% which should barely have data leakage problem. A total of 4709 complexes are first filtered by
resolution and then splitted into 3507, 466, 490 for training, validation, and testing (Somnath et al.,
2021). We directly borrow the results of the baselines from Wang et al. (2022). For our model, we
set dh = 64, dr = 64, lr = 10−3,final lr = 10−4, and max n vertex = 1500.
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Table 7: Hyperparameters for our GET on each task.
hyperparameter PPA LBA LEP hyperparameter PPA LBA LEP

GET
dh 128 64 128 dr 16 32 64
lr 10−4 10−3 5× 10−4 final lr 10−4 10−6 10−4

max epoch 20 10 90 save topk 3 3 7
n layers 3 3 3 max n vertex 1500 2000 1500

GET-mix
dh 128 128 - dr 16 16 -
lr 5× 10−5 5× 10−5 - final lr 5× 10−5 10−6 -
max epoch 20 20 - save topk 3 3 -
n layers 3 3 - max n vertex 1500 1500 -

F.2 PROTEIN-PROTEIN AFFINITY

Here we illustrate the setup for protein-protein affinity prediction with more details.

We adopt the Protein-Protein Affinity Benchmark Version 2 (Kastritis et al., 2011; Vreven et al.,
2015) as the test set, which contains 176 diversified protein-protein complexes with annotated affin-
ity collected from existing literature. These complexes are further categorized into three difficulty
levels (i.e. Rigid, Medium, Flexible) according to the conformation change of the proteins from
the unbound to the bound state (Kastritis et al., 2011), among which the Flexible split is the most
challenging as the proteins undergo large conformation change upon binding.

As for training, we first filter out 2,500 complexes with annotated binding affinity (Ki or Kd) from
PDBbind (Wang et al., 2004). Then we use MMseqs2 (Steinegger & Söding, 2017) to cluster the se-
quences of these complexes together with the test set by dividing complexes with sequence identity
above 30% into the same cluster, where sequence identity is calculated based on the BLOSUM62
substitution matrix (Henikoff & Henikoff, 1992). The complexes that shares the same clusters with
the test set are dropped to prevent data leakage, after which we finally obtained 2,195 valid com-
plexes. We split these complexes into training set and validation set with a ratio of 9:1 with respect
to the number of clusters. Following previous literature (Ballester & Mitchell, 2010; Jiménez et al.,
2018; Ragoza et al., 2017), we predict the negative log-transformed value (pK) instead of direct
regression on the affinity.

G BASELINES

G.1 IMPLEMENTATION

In this section, we describe the implementation details of different baselines. All the baselines
are designed for structural learning on graphs whose nodes are represented as one feature vector
and one coordinate. Therefore, for block-level representation, we average the embeddings and the
coordinates of the atoms in each block before feeding the graph to the baselines. For atom-level
representation, each node is represented as the embedding and the coordinate of each atom. For
Hierarchical methods, we first implement message passing on atom-level graphs, then average the
embeddings and coordinates within each block before conducting block-level message passing (Jin
et al., 2022). For fair comparison, the number of layers in each model is set to 3, except MACE
and Equiformer, which are quite unstable in training with more than 2 layers. We present other
hyperparameters in Table 8.

For SchNet (Schütt et al., 2017) and DimeNet++ (Gasteiger et al., 2020b;a), we use the implemen-
tation in PyTorch Geometric (Fey & Lenssen, 2019). For EGNN (Satorras et al., 2021), ET (Thölke
& De Fabritiis, 2022), MACE (Batatia et al., 2022), and LEFTNet (Du et al., 2023), we directly
use the official open-source codes provided in their papers. For GemNet (Gasteiger et al., 2021) and
Equiformer (Liao & Smidt, 2022), we use the implementation in open-source projects, the Open
Catalyst Project (Chanussot* et al., 2021) and equiformer-pytorch2, respectively. For fair compari-
son with SchNet and ET, we project the edge feature into the same shape as the distance feature in
these models, and add the edge feature to the distance feature. It is also worth mentioning that due

2https://github.com/lucidrains/equiformer-pytorch/tree/main
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to the high complexity of angular features (DimeNet++, GemNet) and irreducible representations
(MACE, Equiformer), these models need 2 GeForce RTX 2080 Ti GPUs for training on atomic
graphs. Even so, some of them still fail to run the experiments due to the limitation of the GPU
memory (i.e. GemNet and Equiformer).

Table 8: Hyperparameters for each baseline on each task.
hyperparameter PPA LBA LEP hyperparameter PPA LBA LEP

SchNet
dh 128 64 64 max n vertex 1500 1500 1500
lr 10−3 5× 10−4 10−3 final lr 10−4 10−5 10−4

max epoch 20 60 65 save topk 3 5 5
SchNet-mix

dh 128 128 - max n vertex 1500 1500 -
lr 5× 10−5 5× 10−5 - final lr 5× 10−5 5× 10−5 -
max epoch 20 20 - save topk 3 3 -

DimeNet++
dh 128 64 64 max n vertex 1500 1500 1500
lr 10−3 5× 10−4 10−3 final lr 10−4 10−5 10−4

max epoch 20 60 65 save topk 3 5 5
EGNN

dh 128 64 64 max n vertex 1500 1500 1500
lr 10−3 5× 10−4 10−3 final lr 10−4 10−5 10−4

max epoch 20 60 65 save topk 3 5 5
ET

dh 128 64 64 max n vertex 1500 1500 1500
lr 10−3 5× 10−4 10−3 final lr 10−4 10−5 10−4

max epoch 20 20 65 save topk 3 3 5
ET-mix

dh 128 128 - max n vertex 1500 1500 -
lr 5× 10−5 5× 10−5 - final lr 5× 10−5 5× 10−5 -
max epoch 20 20 - save topk 3 3 -

GemNet
dh 128 64 - max n vertex 1000 2000 -
lr 10−4 10−3 - final lr 10−4 10−6 -
max epoch 20 10 - save topk 3 3 -

MACE
dh 128 64 - max n vertex 1500 1500 -
lr 10−4 10−3 - final lr 10−4 10−6 -
max epoch 20 20 - save topk 3 3 -

MACE-mix
dh 128 128 - max n vertex 1500 1500 -
lr 5× 10−5 5× 10−5 - final lr 5× 10−5 5× 10−5 -
max epoch 20 20 - save topk 3 3 -

Equiformer3

dh 32 32 - max n vertex 400 1000 -
lr 10−4 10−3 - final lr 10−4 10−6 -
max epoch 10 10 - save topk 3 3 -

LEFTNet
dh 128 64 - max n vertex 1000 2000 -
lr 10−4 10−3 - final lr 10−4 10−6 -
max epoch 20 10 - save topk 3 3 -

LEFTNet-mix
dh 128 128 - max n vertex 1000 1000 -
lr 10−4 10−4 - final lr 10−4 10−4 -
max epoch 20 20 - save topk 3 3 -

G.2 NUMBER OF PARAMETERS AND TRAINING EFFICIENCY

We further provide the number of parameters and training efficiency for the baselines as well as our
GET in Table 9.

When comparing GET to simpler yet weaker baselines (e.g., SchNet and EGNN), it is evident that
GET may have more parameters and a slower training speed. However, it is crucial to note that
GET exhibits competitive parameter and computation efficiency when compared with more complex
yet stronger baselines, such as Equiformer, MACE, and LEFTNet. It’s worth mentioning that a
significant portion of parameters in GET is attributed to the Feedforward Neural Network (FFN)
that projects latent features to higher dimensions in intermediate layers, aligning with the structure
of vanilla Transformers. Without this part, GET has the least parameters among all the models.

3Equiformer is quite unstable and extremely memory intensive with large widths and depths.
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Nevertheless, adding FFN should not harm the efficiency much as the time cost mainly comes from
message passing over edges, which is propotional to the number of edges, while time complexity of
FFN is propotional to the number of nodes whose value is much smaller than the number of edges.

Moreover, the throughput of GET is comparable to both atom-level and hierarchical counterparts.
This aligns with the design of the model, which considers both block-level and atom-level geom-
etry. We also present the complexity analysis in Appendix D to further elucidate the efficiency of
our approach, showing its linear complexity concerning the number of nodes in the graph. This
characteristic indicates favorable scalability to large graphs in practical settings.

Table 9: Number of paramters and training speed for baselines and our GET.
Repr. Model PPA LBA LEP

Parameter Sec. / Batch Parameter Sec. / Batch Parameter Sec. / Batch

Block

SchNet 0.25M 0.054 0.15M 0.040 0.14M 0.118
DimeNet++ 1.53M 0.233 0.40M 0.189 0.40M 0.263

EGNN 0.43M 0.054 0.12M 0.035 0.11M 0.130
ET 0.71M 0.072 0.20M 0.050 0.20M 0.133

GemNet 1.35M 0.225 0.69M 0.179 - -
MACE 12.9M 0.296 1.97M 0.285 - -

Equiformer 0.56M 1.846 0.56M 1.364 - -
LEFTNet 1.57M 0.088 0.43M 0.068 - -

Atom

SchNet 0.25M 0.109 0.15M 0.050 0.14M 0.123
DimeNet++ 1.56M OOM 0.40M 0.435 0.40M 0.357

EGNN 0.43M 0.145 0.12M 0.060 0.11M 0.139
ET 0.71M 0.217 0.20M 0.079 0.20M 0.145

GemNet 1.35M OOM 0.69M OOM - -
MACE 12.9M 1.259 1.97M 0.535 - -

Equiformer 0.56M OOM 0.56M OOM - -
LEFTNet 1.57M 0.472 0.43M 0.177 - -

Hierarchical

SchNet 0.37M 0.127 0.21M 0.081 0.20M 0.088
DimeNet++ 3.07M OOM 0.60M 0.622 0.60M 0.633

EGNN 0.61M 0.143 0.17M 0.077 0.17M 0.100
ET 1.00M 0.184 0.30M 0.104 0.29M 0.119

GemNet 2.64M OOM 1.37M OOM - -
MACE 25.7M 0.821 3.91M 0.426 - -

Equiformer 1.10M OOM 1.10M OOM - -
LEFTNet 3.10M 0.307 0.85M 0.129 - -

Unified GET (w/o FFN) 0.23M 0.291 0.09M 0.193 0.20M 0.155
GET 2.50M 0.339 0.69M 0.237 1.60M 0.192

H SENSITIVITY TO WIDTH AND DEPTH

Figure 5: Performance with respect to the dimensions of the hidden layers (left) and the number of
layers (right) on protein-protein affinity (PPA) and ligand-binding affinity (LBA).

We show the performance with respect to dimensions of the hidden layers and the number of layers
in Figure 5 on protein-protein affinity (PPA) and ligand-binding affinity (LBA). The performance is
not so sensitive to both width and depth on LBA, while it is relatively more sensitive to width on
PPA. Nevertheless, the common trend is that performance increases first and then decreases with
dimension getting larger or the network getting deeper, so it is still necessary to find the suitable size
of the model that the dataset can support.
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I DETAILED RESULTS OF PROTEIN-PROTEIN AFFINITY

We show the detailed mean and standard deviation of three runs on all test splits of protein-protein
affinity in Table 10.

Table 10: The mean and the standard deviation of three runs on protein-protein affinity prediction.
The best results are marked in bold and the second best are underlined. Baselines that fail to process
atomic graphs due to high complexity are marked with OOM (out of memory)

Repr. Model Rigid Medium Flexible All

Pearson↑

Block

SchNet 0.542± 0.012 0.504± 0.020 0.102± 0.019 0.439± 0.016

DimeNet++ 0.487± 0.087 0.367± 0.043 0.152± 0.078 0.323± 0.025

EGNN 0.437± 0.023 0.436± 0.028 0.094± 0.049 0.381± 0.021

ET 0.575± 0.041 0.470± 0.024 0.087± 0.024 0.424± 0.021

GemNet 0.480± 0.061 0.425± 0.051 0.086± 0.048 0.387± 0.023

MACE 0.621± 0.022 0.450± 0.027 0.307± 0.041 0.470± 0.015

Equiformer 0.630± 0.024 0.503± 0.015 0.298± 0.017 0.484± 0.007

LEFTNet 0.563± 0.035 0.497± 0.018 0.202± 0.016 0.452± 0.013

Atom

SchNet 0.592± 0.007 0.522± 0.010 −0.038± 0.016 0.369± 0.007

DimeNet++ OOM
EGNN 0.497± 0.027 0.452± 0.012 −0.054± 0.013 0.302± 0.010

ET 0.609± 0.023 0.486± 0.004 0.049± 0.009 0.401± 0.005

GemNet OOM
MACE 0.653± 0.066 0.499± 0.053 0.241± 0.061 0.463± 0.052

Equiformer OOM
LEFTNet 0.583± 0.080 0.510± 0.029 0.243± 0.091 0.448± 0.046

Hierarchical

SchNet 0.542± 0.028 0.507± 0.020 0.098± 0.011 0.438± 0.017

DimeNet++ OOM
EGNN 0.461± 0.018 0.440± 0.024 0.089± 0.051 0.386± 0.021

ET 0.572± 0.051 0.498± 0.025 0.101± 0.093 0.438± 0.026

GemNet OOM
MACE 0.616± 0.069 0.461± 0.050 0.275± 0.032 0.466± 0.020

Equiformer OOM
LEFTNet 0.533± 0.059 0.494± 0.026 0.165± 0.031 0.445± 0.024

Unified GET (ours) 0.670± 0.017 0.512± 0.010 0.381± 0.014 0.514± 0.011

Spearman↑

Block

SchNet 0.476± 0.015 0.520± 0.013 0.068± 0.009 0.427± 0.012

DimeNet++ 0.466± 0.088 0.368± 0.037 0.171± 0.054 0.317± 0.031

EGNN 0.364± 0.043 0.455± 0.026 0.080± 0.038 0.382± 0.022

ET 0.552± 0.039 0.482± 0.025 0.090± 0.062 0.415± 0.027

GemNet 0.420± 0.072 0.446± 0.059 0.066± 0.058 0.393± 0.027

MACE 0.596± 0.047 0.450± 0.014 0.306± 0.029 0.466± 0.011

Equiformer 0.560± 0.015 0.530± 0.017 0.251± 0.002 0.496± 0.007

LEFTNet 0.515± 0.039 0.492± 0.020 0.193± 0.023 0.452± 0.013

Atom

SchNet 0.546± 0.005 0.512± 0.007 0.028± 0.032 0.404± 0.016

DimeNet++ OOM
EGNN 0.450± 0.042 0.438± 0.021 0.027± 0.030 0.349± 0.009

ET 0.582± 0.025 0.487± 0.002 0.117± 0.008 0.436± 0.004

GemNet OOM
MACE 0.619± 0.037 0.487± 0.049 0.221± 0.064 0.449± 0.052

Equiformer OOM
LEFTNet 0.524± 0.074 0.508± 0.038 0.189± 0.066 0.431± 0.046

Hierarchical

SchNet 0.476± 0.017 0.523± 0.014 0.072± 0.021 0.424± 0.016

DimeNet++ OOM
EGNN 0.387± 0.023 0.461± 0.020 0.078± 0.043 0.390± 0.016

ET 0.547± 0.045 0.516± 0.019 0.100± 0.111 0.438± 0.029

GemNet OOM
MACE 0.580± 0.075 0.476± 0.048 0.282± 0.036 0.470± 0.016

Equiformer OOM
LEFTNet 0.476± 0.082 0.494± 0.037 0.151± 0.019 0.446± 0.029

Unified GET (ours) 0.622± 0.030 0.533± 0.014 0.363± 0.017 0.533± 0.011
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J DETAILED RESULTS OF UNIVERSAL LEARNING OF MOLECULAR
INTERACTION AFFINITY

We provide the mean and the standard deviation of three parallel experiments on the universal learn-
ing of molecular interaction affinity (§ 4.3) in Tables 11 and 12.

Table 11: The mean and the standard deviation of three runs on protein-protein affinity prediction.
Methods with the suffix ”-mix” are trained on the mixed dataset of protein-protein affinity and ligand
binding affinity. The best results are marked in bold and the second best are underlined.

Repr. Model Rigid Medium Flexible All

Pearson↑

Block

SchNet 0.542± 0.012 0.504± 0.020 0.102± 0.019 0.439± 0.016

SchNet-mix 0.553± 0.029 0.507± 0.011 0.093± 0.041 0.434± 0.011

ET 0.575± 0.041 0.470± 0.024 0.087± 0.024 0.424± 0.021

ET-mix 0.579± 0.028 0.502± 0.019 0.179± 0.044 0.457± 0.011

MACE 0.621± 0.022 0.450± 0.027 0.307± 0.041 0.470± 0.015

MACE-mix 0.572± 0.135 0.353± 0.040 0.170± 0.046 0.372± 0.042

LEFTNet 0.563± 0.035 0.497± 0.018 0.202± 0.016 0.452± 0.013

LEFTNet-mix 0.522± 0.042 0.544± 0.009 0.152± 0.058 0.450± 0.008

Atom

SchNet 0.592± 0.007 0.522± 0.010 −0.038± 0.016 0.369± 0.007

SchNet-mix 0.625± 0.017 0.520± 0.021 −0.012± 0.049 0.421± 0.019

ET 0.609± 0.023 0.486± 0.004 0.049± 0.009 0.401± 0.005

ET-mix 0.618± 0.048 0.444± 0.027 0.057± 0.125 0.382± 0.029

MACE 0.653± 0.066 0.499± 0.053 0.241± 0.061 0.463± 0.052

MACE-mix 0.579± 0.009 0.484± 0.056 0.197± 0.021 0.444± 0.024

LEFTNet 0.583± 0.080 0.510± 0.029 0.243± 0.091 0.448± 0.046

LEFTNet-mix 0.688± 0.021 0.532± 0.021 0.244± 0.061 0.476± 0.023

Hierarchical

SchNet 0.542± 0.028 0.507± 0.020 0.098± 0.011 0.438± 0.017

SchNet-mix 0.524± 0.031 0.515± 0.011 0.135± 0.077 0.429± 0.025

ET 0.572± 0.051 0.498± 0.025 0.101± 0.093 0.438± 0.026

ET-mix 0.494± 0.100 0.501± 0.007 0.130± 0.055 0.412± 0.035

MACE 0.616± 0.069 0.461± 0.050 0.275± 0.032 0.466± 0.020

MACE-mix 0.525± 0.122 0.336± 0.067 0.060± 0.114 0.324± 0.076

LEFTNet 0.533± 0.059 0.494± 0.026 0.165± 0.031 0.445± 0.024

LEFTNet-mix 0.594± 0.059 0.543± 0.016 0.166± 0.109 0.472± 0.020

Unified GET (ours) 0.670± 0.017 0.512± 0.010 0.381± 0.014 0.514± 0.011

GET-mix (ours) 0.697± 0.003 0.533± 0.004 0.389± 0.009 0.519± 0.004

Spearman↑

Block

SchNet 0.476± 0.015 0.520± 0.013 0.068± 0.009 0.427± 0.012

SchNet-mix 0.497± 0.044 0.527± 0.009 0.042± 0.031 0.426± 0.007

ET 0.552± 0.039 0.482± 0.025 0.090± 0.062 0.415± 0.027

ET-mix 0.550± 0.039 0.524± 0.019 0.188± 0.070 0.472± 0.019

MACE 0.596± 0.047 0.450± 0.014 0.306± 0.029 0.466± 0.011

MACE-mix 0.526± 0.129 0.366± 0.023 0.193± 0.030 0.370± 0.030

LEFTNet 0.515± 0.039 0.492± 0.020 0.193± 0.023 0.452± 0.013

LEFTNet-mix 0.505± 0.048 0.543± 0.028 0.147± 0.086 0.439± 0.014

Atom

SchNet 0.546± 0.005 0.512± 0.007 0.028± 0.032 0.404± 0.016

SchNet-mix 0.557± 0.042 0.516± 0.033 0.036± 0.010 0.428± 0.022

ET 0.582± 0.025 0.487± 0.002 0.117± 0.008 0.436± 0.004

ET-mix 0.608± 0.040 0.453± 0.037 0.058± 0.135 0.394± 0.027

MACE 0.619± 0.037 0.487± 0.049 0.221± 0.064 0.449± 0.052

MACE-mix 0.504± 0.047 0.483± 0.064 0.226± 0.046 0.449± 0.029

LEFTNet 0.524± 0.074 0.508± 0.038 0.189± 0.066 0.431± 0.046

LEFTNet-mix 0.634± 0.060 0.518± 0.026 0.216± 0.044 0.455± 0.020

Hierarchical

SchNet 0.476± 0.017 0.523± 0.014 0.072± 0.021 0.424± 0.016

SchNet-mix 0.487± 0.027 0.532± 0.007 0.096± 0.053 0.412± 0.024

ET 0.547± 0.045 0.516± 0.019 0.100± 0.111 0.438± 0.029

ET-mix 0.446± 0.116 0.499± 0.009 0.143± 0.090 0.408± 0.042

MACE 0.580± 0.075 0.476± 0.048 0.282± 0.036 0.470± 0.016

MACE-mix 0.484± 0.098 0.340± 0.061 0.086± 0.125 0.324± 0.076

LEFTNet 0.476± 0.082 0.494± 0.037 0.151± 0.019 0.446± 0.029

LEFTNet-mix 0.572± 0.072 0.553± 0.029 0.143± 0.124 0.473± 0.029

Unified GET (ours) 0.622± 0.030 0.533± 0.014 0.363± 0.017 0.533± 0.011

GET-mix (ours) 0.632± 0.025 0.555± 0.008 0.391± 0.007 0.537± 0.003
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Table 12: The mean and the standard deviation of three runs on ligand binding affinity prediction.
Methods with the suffix ”-mix” are trained on the mixed dataset of protein-protein affinity and ligand
binding affinity. The best results are marked in bold and the second best are underlined.

Repr. Model LBA
RMSE↓ Pearson↑ Spearman↑

Block

SchNet 1.406± 0.020 0.565± 0.006 0.549± 0.007

SchNet-mix 1.385± 0.016 0.573± 0.011 0.553± 0.012

ET 1.367± 0.037 0.599± 0.017 0.584± 0.025

ET-mix 1.423± 0.054 0.586± 0.012 0.567± 0.019

MACE 1.385± 0.006 0.599± 0.010 0.580± 0.014

MACE-mix 1.449± 0.050 0.590± 0.018 0.576± 0.010

LEFTNet 1.377± 0.013 0.588± 0.011 0.576± 0.010

LEFTNet-mix 1.433± 0.016 0.543± 0.005 0.532± 0.010

Atom

SchNet 1.357± 0.017 0.598± 0.011 0.592± 0.015

SchNet-mix 1.365± 0.010 0.589± 0.006 0.575± 0.009

ET 1.381± 0.013 0.591± 0.007 0.583± 0.009

ET-mix 1.448± 0.122 0.566± 0.061 0.564± 0.059

MACE 1.411± 0.029 0.579± 0.009 0.563± 0.012

MACE-mix 1.420± 0.037 0.580± 0.030 0.568± 0.026

LEFTNet 1.343± 0.004 0.610± 0.004 0.598± 0.003

LEFTNet-mix 1.436± 0.019 0.579± 0.014 0.561± 0.016

Hierarchical

SchNet 1.370± 0.028 0.590± 0.017 0.571± 0.028

SchNet-mix 1.403± 0.010 0.572± 0.004 0.554± 0.004

ET 1.383± 0.009 0.580± 0.008 0.564± 0.004

ET-mix 1.421± 0.032 0.569± 0.017 0.558± 0.017

MACE 1.372± 0.021 0.612± 0.010 0.592± 0.010

MACE-mix 1.432± 0.019 0.588± 0.011 0.572± 0.010

LEFTNet 1.366± 0.016 0.592± 0.014 0.580± 0.011

LEFTNet-mix 1.486± 0.081 0.556± 0.001 0.545± 0.005

Unified GET (ours) 1.327± 0.005 0.620± 0.004 0.611± 0.003

GET-mix (ours) 1.329± 0.008 0.622± 0.006 0.615± 0.008

K ATTENTION VISUALIZATION

We visualize the attention weights between blocks on the interface of protein-protein complexes and
compare them with the energy contributions calculated by Rosetta (Alford et al., 2017), which uses
physics-based force fields. It is observed that the hot spots of attention weights largely agree with
those predicted by Rosetta. We present three examples in Figure 6. The values are normalized by
the maximum value (vmax) and the minimum value (vmin) in each figure (i.e. v′ = v−vmin

vmax−vmin
)

Figure 6: Attention weights of GET (upper row) and energy contributions given by Rosetta (lower
row). PDB identities of the complexes are 1ahw, 1b6c, and 1gxd from left to right.
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L DISCUSSION

L.1 LIMITATIONS

First, current evaluations mainly focus on prediction tasks in molecular interactions. Generative
tasks are another major branch in learning molecular interactions (Luo et al., 2021; Liu et al., 2022;
Peng et al., 2022). Designing generative algorithms for the proposed unified representation is non-
trivial, and we leave this for future work. Further, it is also possible to generalize atom-level knowl-
edge in other scenarios apart from molecular interactions (e.g. tasks concerning bare molecules).
For instance, universal pretraining on different molecular domains, which needs careful design of
the unsupervised task, hence we also leave this for future work.

L.2 IMPLICATIONS IN PRACTICAL APPLICATIONS

Firstly, we believe that the introduction of a unified molecular representation marks a significant
stride in the field of geometric molecular representation learning. The challenge of data scarcity,
primarily stemming from the high costs associated with wetlab experiments, has long hindered
progress in this domain. Our approach posits that, despite the limited availability of data in spe-
cific molecular domains, the underlying interaction mechanisms are shared across diverse domains.
Consequently, we propose a unified model capable of accommodating data from different molecular
domains, presenting a promising solution to the challenge of data scarcity. The keypoint of this
strategy lies in the invention of unified molecular representations and corresponding models that
exhibit robust generalization across different molecular domains. Our work serves as a first step to-
wards this vision, demonstrating that our GET benefits from training on mixed data across different
domains and exhibits exceptional zero-shot ability even on entirely unseen domains.

Secondly, in practical applications such as affinity prediction, our model offers a valuable tool for
leveraging abundant data from other domains to enhance predictive performance in specific, often
cutting-edge, domains that suffer from data scarcity. We illustrate this feasibility through our zero-
shot experiments on RNA-ligand affinity prediction in Section 4.3. By demonstrating the adapt-
ability of our model to a new domain without the need for specific traning data, we showcase the
practical utility of our approach in scenarios where data is limited.
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