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Abstract

The customization of large language models001
(LLMs) for user-specified tasks gets important.002
However, maintaining all the customized LLMs003
on cloud servers incurs substantial memory and004
computational overheads, and uploading user005
data can also lead to privacy concerns. On-006
device LLMs can offer a promising solution007
by mitigating these issues.Yet, the performance008
of on-device LLMs is inherently constrained009
by the limitations of small-scaled models that010
edge devices can feasibly support. To overcome011
these restrictions, we first propose Crayon, a012
novel approach for on-device LLM customiza-013
tion. Crayon begins by constructing a pool of014
diverse base adapters, and then we instantly015
blend them into a customized adapter with-016
out extra training. In addition, we develop a017
device-server hybrid inference strategy, which018
deftly allocates more demanding queries or019
non-customized tasks to a larger, more capable020
LLM housed on a server. This ensures optimal021
performance without sacrificing the benefits022
of on-device customization. We carefully craft023
a novel benchmark from multiple question-024
answer datasets, and show the efficacy of our025
method in the LLM customization.026

1 Introduction027

Large language model (LLM) has achieved un-028

precedented success on diverse natural language029

processing tasks such as machine translation, ques-030

tion and answering, text summarization and styl-031

ization, etc. Now then, it is expected for LLM-032

powered artificial intelligence (AI) to understand033

and satisfy each user’s unique needs such as rec-034

ommender systems, personalized assistance, and035

personalized search. To this end, a pivotal corner-036

stone is customized LLM where the LLM is highly037

advanced to a user-requested task. Indeed, several038

web services related to LLM customization have039

been emerged such as GPTs (OpenAI, 2023) and040

PersonaAI (Character.AI, 2023; Meta, 2023).041

However, due to the significant scale of LLM, 042

keeping all the customized LLMs in the servers 043

imposes a tremendous burden. Also, the privacy 044

issues is inevitably raised by uploading the user’s 045

data which entail user-requested task. Then, the 046

focus is shifting towards on-device LLM. However, 047

as the limited computing power of edge devices, it 048

is impractical to address models as large as those 049

on the servers. Therefore, for on-device LLM cus- 050

tomization, it is crucial to maintain the performance 051

on user-defined tasks, while constraining the model 052

sizes. The practical method for the on-device LLM 053

customization, however, has been less explored. 054

Recently, several works are developed to further 055

lead out the ability of LLMs, and they may be ex- 056

ploited to cover the performance limit of LLMs 057

on smaller size (device-level). Brown et al. (2020) 058

introduced few-shot learning where a few exam- 059

ple query-answer prompts are given together with 060

users’ queries. Chain-of-thought (COT) (Wei et al., 061

2022) tried in-context learning by encouraging 062

LLM to generate evidences as well as final answers. 063

Also, for knowledge-intensive NLP tasks, retrieval 064

augmented generation (RAG) (Lewis et al., 2020) 065

made up query-relevant prompts by retrieving a 066

given database. These prompt-based approaches 067

have a intrinsic problem of increasing inference 068

cost as the prompts get long and complex, and 069

hence they are not suitable for edge devices. 070

Moreover, we can consider fine-tuning the on- 071

device LLM in order to internalize these prompt- 072

based knowledge for user-specific tasks to the 073

model. Freezing the pre-trained LLM, adapter- 074

based methods (Hu et al., 2021; Houlsby et al., 075

2019; Wang et al., 2022) have tried to facilitate 076

LLM fine-tuning, and the low-rank-based adapter 077

LoRA (Hu et al., 2021) have been most in the lime- 078

light. Despite on-device-scale LLM armed with the 079

adapters, fine-tuning is time-consuming process 080

and also needs a certain-level of training dataset. 081

However, computing power of edge devices is lim- 082
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Figure 1: Overall framework of the proposed method. For on-device LLM customization without on-device
training cost and privacy issue, we devise Crayon generating a suitable adapter instantly by utilizing an adapter pool
including preparation of an adapter pool and deploying a customized adapter. Further, we also develop device-server
hybrid inference to efficiently leverage a better generalized LLM in the server.

ited and collecting enough user-specific data is also083

impractical. Thus, we raise How about simply cus-084

tomizing LLM without on-device training?085

For this purpose, given a target customization086

task, we propose Crayon customizing the on-087

device LLM via a single customized adapter which088

is blended on-the-fly from a set of base adapters,089

called adapter pool. To cover a wide range of090

user requests, the base adapters are learned to091

contain different knowledge each other. As de-092

picted in Fig. 1, our approach requires no additional093

training cost in both of server and edge device094

when blending the customized adapter. In addition,095

we develop a device-server hybrid inference strat-096

egy to effectively leverage the better-generalized097

larger model of the server for handling unexpected098

queries (out-of-scope for the customized model).099

Our contributions are summarized as follows:100

• We propose the first practical approach for101

customization of on-device small-scale LLM.102

• We develop Crayon where the base adapters103

are learned satisfying their diversification, and104

then a customized adapter is generated in-105

stantly by blending the base adapters.106

• We also develop a device-server hybrid in-107

ference to fill the performance gap between108

customized and out-of-customized tasks.109

• We present an on-device LLM customization110

benchmark by tailoring the public question-111

answer datasets.112

• In the benchmark, we show the effectiveness113

and in-depth analyses of the proposed method.114

2 Problem Set-up 115

Defining & processing customized task. In the 116

context of few-shot learning (Brown et al., 2020), 117

an LLM is prompted by several query-answer pairs 118

to better understand testing queries. It has been 119

proven that these few-shot prompts are helpful 120

to increase the generalization capability even in 121

smaller LLMs. However, prompting increases the 122

inference cost of LLMs as well, which is not pre- 123

ferred to on-device use case. Rather than prompting 124

the few-shot examples Dc, we define it as a target 125

task specified to the user. From them, we immedi- 126

ately generate an adapter customized for the target 127

task on the server, and deploy it to the on-device 128

LLM. Note that, considering the privacy issue and 129

communication cost with the server, Dc itself is 130

never transmitted to the sever in our method. 131

Baseline LLM. For autoregressive, causal lan- 132

guage model, most of popular LLMs such as 133

GPT (Brown et al., 2020), LLaMA (Touvron 134

et al., 2023a), Mistral (Jiang et al., 2023), and Fal- 135

con (Penedo et al., 2023) have adopted the decoder- 136

only transformer (Vaswani et al., 2017) architec- 137

ture. Hence, in our work, we select the smallest 138

LLaMA (LLaMA-7B) as the baseline on-device 139

LLM, which is reasonable size for edge devices1. 140

Adapter for customized LLM. To reduce train- 141

ing cost, parameter efficient fine-tuning (PEFT) 142

injects small trainable adapters, and only updates 143

them for LLM fine-tuning. As a widely-used PEFT 144

approach, LoRA (Hu et al., 2021) approximates 145

the gradient of pre-trained weights into low-rank 146

1https://github.com/Bip-Rep/sherpa
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matrices, and use them as the LLM adapters. As147

such, we also employ LoRA as our LLM adapter.148

Note that the learning LoRA does not take place149

on edge devices in our method. Briefly explaining150

our approach, we only train a set of N base LoRAs151

{l✓n}Nn=1 (i.e., LoRA pool) given a training set Dtr152

on the server, and then they are combined and de-153

ployed for instant LLM customization to the target154

task (i.e., Dc) without additional training.155

Device-server hybrid inference. Although an on-156

device LLM is well-customized to a user-specified157

task, there is inevitable performance gap between158

the device-level and server-level LLMs. Especially,159

the on-device LLM suffers from more performance160

drop when the inputs are out of the target task.161

Hence, we devise a device-server hybrid inference162

strategy. When output of an on-device LLM is un-163

confident, the output is replaced from the server’s164

larger model. To reduce frequent use of the server165

LLM, we develop a method to determine the relia-166

bility of on-device LLM’s output inside the device.167

3 Methodology168

In this section, we introduce Crayon which con-169

sists of LoRA pool construction (Sec. 3.2) and cus-170

tomized LoRA generation (Sec. 3.3). Also, we de-171

velop device-server consistent inference (Sec. 3.4).172

3.1 Overall Framework of Crayon173

As illustrated in Fig. 1, given Dtr that consists of174

various tasks and a baseline LLM M�0 where175

�0 is the initial weight before customization, we176

jointly train N base LoRAs {l✓n}Nn=1 to have dif-177

ferent characteristics and knowledge, respectively,178

in the server. Here, ✓n is the weight of l✓n . We also179

simultaneously learn the base LoRA indicator cn180

which is allocated to l✓n . After training, N base Lo-181

RAs (i.e. LoRA pool) and the indicators are located182

in the server and device, respectively.183

Then, for a small-scaled customization dataset184

Dc, we first obtain the relationship between a LoRA185

pool and Dc by computing the similarities between186

the indicators and Dc on the device. This similar-187

ities are sent to the server, and then used to deter-188

mine the weights of the base LoRAs in blending189

the customized LoRA. This customized LoRA is190

finally deployed to the user’s device to customize191

the on-device baseline LLM to the target task. No-192

tice that we only upload the similarities of Dc to193

the indicators, but do not Dc itself. This is why our194

customization is privacy-friendly.195

Algorithm 1: Learning LoRA pool
Input: baseline LLM M�0 , base LoRAs {l✓n}Nn=1,

training set Dtr
1 # Extract intermediate embeddings
2 Qtr = {qx|M1

�0
(x), x 2 Dtr}

3 # Set the indicator of each base LoRA
4 {cn}Nn=1 = K-MEANS_Centroids(Qtr, N)
5 # Update the base LoRA weights
6 while not done do
7 Compute relationship {↵n(qx)}Nn=1 (Eq. 2)
8 Compute the combined LoRA weight ⇥x (Eq. 3)
9 Update {✓n}Nn=1 optimizing over ⇥x (Eq. 4)

10 end
Output: Weights of the base LoRAs ✓1, . . . , ✓N

3.2 Crayon: LoRA Pool Construction 196

To address a variety of target customization tasks, 197

it is important to diversify the base LoRAs’ knowl- 198

edge and characteristics. To this end, we introduce 199

an indicator for each base LoRA. In specific, for 200

8 x 2 Dtr, we first obtain the intermediate embed- 201

dings (empirically, the query embeddings of the 202

first self-attention layer) as 203

qx = M1
�0
(x) (1) 204

Then, we apply unsupervised k-means clustering 205

(k = N ) with qx since the text corpora in Dtr have 206

no specific task label. To suppress noise and focus 207

on significant features, we reduce the dimensional- 208

ity of the embeddings using PCA before the cluster- 209

ing (see Appendix C for more details). For brevity, 210

applying PCA is not explicitly notated. 211

N centroids cn’s resulting from k-means cluster- 212

ing are assigned to each base LoRA, dubbed base 213

LoRA indicators. In the aftermentioned section, the 214

base LoRAs are differently updated depending on 215

the similarity between each corresponding indica- 216

tor and embedding qx during training. 217

Learning base LoRAs. For a training input x in 218

Dtr, we extract its query feature qx as in the base 219

LoRA indicators. Then, we compute its relation- 220

ship with the base LoRA l✓n by using the corre- 221

sponding indicator cn: 222

↵n(qx) =
cos_sim(cn, qx) + 1

2
(2) 223

where cos_sim(·, ·) denotes the cosine similarity. 224

To obtain a LoRA l⇥ specified to x, the N base 225

LoRAs are combined by 226

⇥x = ↵1(qx)✓1+↵2(qx)✓2+···+↵N (qx)✓N (3) 227

Following (Hu et al., 2021), we only train the 228

base LoRAs while freezing the baseline LLM. As 229
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Algorithm 2: Generate customized LoRA
Input: Base LoRAs {l✓n}Nn=1, indicators {cn}Nn=1,

M�0 , a few customized data Dc
1 —————– On-device Processing —————–
2 # Get query embeddings from Dc

3 Qc = {qx,c|M1
�0

(x), x 2 Dc}
4 # Get user embedding
5 qc = 1

|Qc|
P|Qc|

k=1 qx,c, where qx,c 2 Qc

6 # Compute relationship between qc and {l✓n}Nn=1

7 ↵c
n = cos_sim(cn, qc), n = 1, . . . , N

8 ——————- Server Processing ——————-
9 # Generate customized LoRA

10 ✓̂ = ⌃N
i=1↵

c
iAiBi (Eq. 6)

Output: customized LoRA l✓̂

such, we update the baseline LLM’s weights �0230

into �0 +��(⇥x) optimizing over ⇥x:231

max
⇥

X

(x,y)2Dtr

|y|X

t=1

log(p�0+��(⇥x)(yt|x, y<t))

(4)232

where y is the label for x. The entire process is233

presented in algorithm 1.234

3.3 Crayon: Generation of Customized LoRA235

We explain step-by-step in algorithm 2. When a236

user provides a few examples Dc describing the237

customized task, we can generate the customized238

LoRA instantly from the LoRA pool. To do so,239

we first obtain an user embedding qc to represent240

the customized task by averaging the query embed-241

dings in Dc on the edge device:242

qc =
1

|Dc|
X

x2Dc

M1
�0
(x) (5)243

After then, following Eq. 2, we compute the com-244

bination ratios {↵c
i}Ni=1 based on the cosine similar-245

ities of qc with the base LoRAs indicators {cn}Nn=1.246

We upload {↵c
i}Ni=1 to the server instead of Dc to247

generate the customized LoRA, and thus Crayon248

can protect the users’ privacy. On the server side,249

since the base LoRA’s weight ✓i can be decom-250

posed by two low-rank trainable weights Ai and251

Bi, we instantly generate the customized LoRA l✓̂:252

✓̂ = ⌃N
i=1↵

c
iAiBi (6)253

At last, the customized LoRA generated from254

the LoRA pool is deployed to the edge device, and255

it customizes the on-device LLM. Accordingly, we256

can effectively and efficiently customize the on-257

device LLM without additional training in both258

server and edge device.259

The followings are multiple choice questions about high school mathematics.

Question

Answer 
candidates

How many numbers are in the list 25, 26, …, 100?
A. 75
B. 76
C. 22 
D. 23
Answer: B 

If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps?
A. 28
B. 21
C. 40
D. 30 
Answer:

Instruction

Examples 
of Q&A

few-shot prompt

our prompt

Figure 2: Example prompt input in our method. Dif-
ferent from few-shot prompt, this work does not utilize
instruction and examples of QA.

3.4 Device-Server Hybrid Inference 260

Although the on-device LLM is customized, it can- 261

not accommodate all kinds of input queries. For in- 262

stance, the user can raise queries outside the scope 263

of the customized task. Also, even for the queries 264

raised from the customized task, the customized on- 265

device LLM can suffer from its inherent limitation. 266

i.e. relatively small model size. To overcome these 267

difficulties, we intermittently turn to a larger LLM 268

(e.g., LLaMA-30B) which is placed on the server 269

due to high computational cost. This server LLM 270

is not customized, but can make better response 271

owing to its superb versatility. 272

Notice that when deciding if an input query x 273

is routed to the server, we cannot utilize the server 274

LLM M�s . Instead, we pre-compute a set of pro- 275

totypes S = {s = M�s(xc)|xc 2 Dc} where the 276

server LLM’s characteristics is represented. We 277

consider that S is deployed from the server to the 278

edge device, together with l✓̂. 279

Then, supposing that the desirable output of the 280

on-device LLM may be close to S, we compare the 281

on-device LLM’s output ox with S. In specific, we 282

compute the routing score rx in the edge device: 283

rx =
1

|S|⌃s2Scos_sim(ox, s). (7) 284

Finally, we route x to the server LLM when 285

rx < rth, or hold the on-device output otherwise. 286

The routing threshold rth is empirically determined. 287

288

4 Experiment 289

As there is no established benchmark for on-device 290

LLM customization, we present a novel benchmark 291

for this field in Sec. 4.1. Then, we show comprehen- 292

sive evaluation and analyses in Sec. 4.2& Sec. 4.3. 293

Further details on experimental set-up and base- 294

lines in Appendix A. 295
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Method On-device LLM Size STEM Humanities Social Sciences Other Average

LLaMA 7B 27.8 33.2 30.9 33.0 31.0
LLaMA (few-shot)† 7B 30.5 34.0 38.3 38.1 35.1
LLaMA 13B 35.0 43.5 45.9 42.6 41.1
LLaMA (few-shot)† 13B 35.8 45.0 53.8 53.3 46.9

Single LoRA 7B + 14M 33.2 44.6 43.4 44.6 40.7
Single LoRA (few-shot) 7B + 14M 29.7 33.1 33.1 39.2 33.5
LoraHub‡ 7B + 14M 35.1 47.3 46.2 44.1 42.4

Crayon 7B + 14M 36.1 50.0 49.8 46.0 44.6
Crayon + Hybrid(20%) 7B + 14M 38.6 53.6 57.6 48.6 47.6

Table 1: Acc (%) for MMLU tasks. † indicates the reported performance from original paper (Touvron et al.,
2023a) that utilize few-shot learning by following (Hendrycks et al., 2020). ‡ mostly follows (Huang et al., 2023),
but we modify the base model (FLAN-T5 �! LLaMA-7B) and upstream tasks (BBH �! {SIQA, MCQA, OBQA}).
For more details, see Appendix B.

4.1 On-device Customization Benchmark296

Datasets. QA (question-answer) datasets are297

widely used in evaluation of LLM. Hence, to verify298

the effectiveness of Crayon, we select three pub-299

lic multiple choice QA datasets for training the300

pool of base LoRAs; Social Interaction QA301

(SIQA) (Sap et al., 2019) that focuses on the rea-302

soning about people’s actions and their social im-303

plications, MedMCQA (MCQA) (Pal et al., 2022) that304

addresses real-world medical entrance exam ques-305

tions, and Openbook QA (OBQA) (Mihaylov et al.,306

2018) that contains open book exams for assessing307

human understanding of a subject. For validating308

task generalization, we utilize MMLU (Press et al.,309

2022) that contains 57 subjects across STEM, the310

humanities, the social sciences, and more.311

Customized task configuration. In customization312

datasets, it is expected to contain conversations313

for different users, where each conversation com-314

prising a series of user’s question and LLM’s re-315

sponse. However, there are no publicly available316

datasets. Despite several dialog datasets such as317

shareGPT (Tey, 2022) and ChatAlpaca (Bian et al.,318

2023), they lack user identities for the dialogue319

and then it is difficult to measure the customization320

results in these datasets. In contrast, the MMLU321

dataset including individual question-answer data322

provides annotated by the subject categories. We323

therefore consider each subject as the interest spec-324

ified to a user, i.e. a distinct customization task. In325

specific, we have 57 distinct users with their own326

customization tasks. From this, we can quantita-327

tively evaluate customization results in terms of328

accuracy (Acc). In this experiment, we set the size329

of customized dataset |Dc| as 10 for every user.330

4.2 Main Results 331

Crayon attains customization. We evaluate the 332

effectiveness of our method in comparison with 333

several baselines: LLaMA (Touvron et al., 2023a), 334

LoRA (Hu et al., 2021), LoraHub (Huang et al., 335

2023). For LLaMA, we compare the proposed 336

Crayon with the larger LLaMA-13B as well as 337

the LLaMA-7B. For fair comparison with our ap- 338

proach, we report both zero and few-shot results. 339

In zero-shot, the input is prompted as in our unified 340

template Fig. 2. In few-shot, task-specific few-shot 341

prompt including Dc is used following (Touvron 342

et al., 2023a). In single LoRA, we train LoRA on 343

top of the LLaMA-7B with Dtr, and it is used uni- 344

versally all the customized tasks. Similar to our 345

method, LoraHub combines pre-trained LoRAs to 346

create a new one suitable for a new task. However, 347

there are several limitations that assume specific 348

upstream tasks with the corresponding datasets to 349

individually pre-train all the LoRAs, and also re- 350

quires a time-consuming searching process to de- 351

termine the combination ratios of the pre-trained 352

LoRAs (More details in Tab. 3). 353

As shown in Tab. 1, Crayon outperforms all 354

the compared methods with only on-device LLM. 355

Once the base LoRAs are established in the server, 356

our method enables superior customization (40.7% 357

vs 44.6%) compared to Single LoRA with r = 4 358

at an identical inference cost in the edge device. 359

Interestingly, Crayon surpasses LoraHub (Huang 360

et al., 2023) by 2.2% in average, although the base 361

LoRAs are combined instantly. It is intuitive that 362

the variety of base LoRAs is beneficial for the gen- 363

eralization ability of LoRA pool. Hence, the outper- 364

forming performance of the proposed Crayon indi- 365

5



Customized Data (Dc)
STEM Humanities Social Science Others

Task Elementary Mathematics HS Physics Jurisprudence World Religion HS Geography Professional Psychology Anatomy Management

Elementary Mathematics 27.2 26.2 26.5 27.2 24.9 26.2 27.2 25.4
HS Physics 28.5 31.1 29.1 31.1 31.1 31.1 26.5 30.5
Jurisprudence 54.6 54.6 54.6 50.9 52.8 52.8 54.6 49.1
World Religion 69.0 70.2 70.2 70.2 69.0 67.8 69.0 69.0
HS Geography 58.1 56.1 57.1 59.1 60.1 55.6 59.1 59.1
Professional Psychology 40.8 41.2 41.5 40.5 38.2 41.8 41.7 36.6
Anatomy 46.7 49.6 49.6 47.4 44.4 43.7 49.6 42.2
Management 52.4 51.5 50.5 57.3 57.3 52.4 52.4 58.3

Table 2: Ablation study for importance of customization data. We randomly select two subjects in four categories
(i.e., STEM, humanities, social science, and others), and the customization performance (Acc) is consistently the
highest when the model is customized by using the corresponding dataset.

cates that our joint training of all the base LoRAs366

at once produces their diversity, more effectively.367

This experiment will be addressed in Sec. 4.3.368

Device-server hybrid inference. To assess the ef-369

ficacy of device-server hybrid inference, we em-370

ploy LLaMA-30B as the server LLM, which yields371

53.2% Acc on MMLU in average. Moreover, we372

set the routing threshold rth to satisfy 20% routing373

ratio, empirically. As shown in Tab. 1, with only374

20% routing to sever model, the proposed hybrid375

inference ‘Crayon + hybrid 20%’ obtains 47.6%376

Acc, which is even better than fully using the large377

13B model. Thus, our approach can boost the cus-378

tomized on-device LLM by efficiently intervening379

a more versatile server LLM.380

4.3 Further Analyses381

We extensively analyze the key components of the382

proposed method.383

Impact of customized data. To assess the efficacy384

of customized data Dc, we randomly select two385

different subjects (i.e., two customization datasets)386

from each category in MMLU, and summarize the387

results in Tab. 2. This demonstrates that customized388

LoRAs, when generated from their corresponding389

subjects, perform better on their matched subjects390

than when they are created from unrelated sub-391

jects. For instance, on the Management subject, the392

LoRA generated from Management data can obtain393

7.8% higher Acc than the LoRA generated from394

Jurisprudence data. We can see a similar trend in395

other subjects. Hence, in spite of a very small-scale396

customization data Dc, it can contain significant397

generalization cue for the target customization task.398

Then, unlike the compared methods, our Crayon399

can effectively leverage it for LLM customization.400

Diversity in LoRA pool. Fig. 3 plots that density401

distribution 2 of ↵ for each task contained in the402

2It represents the proportion of the data in each range.

(a) 0th LoRA
!

!
(c) 24th LoRA

!

!
(b) 11th LoRA

(d) 28th LoRA

SIQA MCQA OBQA

Figure 3: Distribution plot of ↵ for each training task
on four base LoRAs. In a, c, and d, the 0th, 24th and
28th base LoRAs have different preference on the SIQA,
MCQA, and OBQA tasks, respectively. In b, the 11th
base LoRA is trained on all the three tasks evenly.

training dataset, which shows the focus of the base 403

LoRAs on the training tasks. From 32 base LoRAs, 404

we select the four ones. We can identify that the 405

trained base LoRAs have different weights for each 406

task. 0th base LoRA (Fig. 3a), 24th base LoRA 407

(Fig. 3c), and 28th base LoRA (Fig. 3d) more spe- 408

cialized to SIQA, MCQA, OBQA, respectively. Un- 409

like above three base LoRAs, 11th base LoRA is 410

likely to evenly trained with all the tasks as shown 411

in Fig. 3b. Note that we do not provide any infor- 412

mation to specify or define the task (e.g. task name) 413

during training. However, Crayon produces a di- 414

versity of base LoRAs, enabling the LoRA pool to 415

accommodate a wide range of customization tasks. 416

Device-server hybrid inference. In deep models, 417

the confidence level is usually estimated by the 418

maximum softmax score, and hence it can be a 419

straightforward choice as decision rule for the hy- 420

brid inference. Hence, as in Fig. 4, we compare 421
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(a) (b)

Figure 4: Device-server hybrid inference varying
routing ratio. Acc (%) on (a) customized tasks and
(b) mix of customized & out-of-customized tasks.

the proposed routing strategy with the maximum422

softmax-based approach varying the routing ratio.423

We can see the proposed approach beats the maxi-424

mum softmax-based approach for all the three rout-425

ing ratios in Fig. 4a. Hence, our method can ef-426

fectively detect the failure cases of the customized427

on-device LLM under a routing ratio. To consider a428

more general setting, we also assess the capability429

to address the input queries outside the customized430

task. To this end, in Fig. 4b, the testing queries are431

configured from a non-customized subject as well432

as the customized one. In this setting, we can see433

a similar trend. Hence, the our routing effectively434

complements the customized on-device LLM, and435

completes the practical use of on-device LLM.436

Hyperparameter sensitivity. Fig. 5 examines437

Crayon changing the size of the customization438

dataset (|Dc|) and LoRA rank r. In Fig. 5a, when439

the number of base LoRAs N is set as 32 (de-440

fault setting), the proposed method is capable of441

customization, irrespective of |Dc|. This trend is442

mirrored when N is reduced to 16. Whereas, de-443

spite the same |Dc|, the performance gap between444

N = 16 and N = 32 is notable. Hence, the num-445

ber of base LoRAs highly impact the quality of446

customization. As the number of customized data447

will differ from user to user and N is usually pre-448

determined in practical use, our method can be449

effectively applied in a real world scenario.450

Further, we investigate the performance differ-451

ence as varying rank of LoRA in Fig. 5b. When452

r = 2, the performance gap is marginal. We infer453

that the LoRA pool with too small rank might not454

effectively represent different customization tasks.455

Nevertheless, it is still slightly better than the a sin-456

gle universal LoRA without any additional training457

cost. However, once r � 4, the performance gap be-458

tween them highly increases. Thus, for customiza-459

A
cc

 (%
)

! = 32
! = 16

Size of personal data

(a)

A
cc

 (%
)

LoRA rank (!)

(b)

Figure 5: Acc (%) according to (a) the size of the
customized dataset and (b) LoRA rank.

Training base LoRAs Determining ↵
Task-wise Joint Learning-based Cos. sim. Acc (%) Time (s)

X X 42.4 49.7
X X 44.5 51.0
X X 44.6 0.2

Table 3: Ablation analysis. Each component of Crayon
is changed to the matched one of LoraHub. (1st and 3rd
rows are LoraHub and complete Crayon, each.)

tion, the proposed task-wise base LoRA blending 460

is more beneficial than generalizing a single LoRA. 461

Component ablation study. In Crayon, customiza- 462

tion consists of two steps; i) constructing multiple 463

base LoRAs and ii) deploying customized LoRA 464

via blending the base LoRAs. First, we jointly 465

learn the base LoRAs with no task definitions from 466

the training datasets, which effectively diversifies 467

the base LoRAs. Second, we obtain the relation- 468

ship ↵ via simply mapping to the LoRA indicators. 469

LoraHub combines multiple task-specific LoRAs 470

trained on different upstream tasks, and exhaus- 471

tively search their relationship with a few exam- 472

ples Dc. To validate the efficacy of those compo- 473

nents, we change each component to the matched 474

LoraHub’s one. As shown in Tab. 3, the first row 475

where all the components are ablated corresponds 476

to LoraHub. In the second row of Tab. 3, we can 477

infer that our task-agnostic joint learning is more 478

beneficial to learn diverse base LoRAs, compared 479

to the LoraHub’s individual LoRA learning with 480

task-definition. Also, in the last row, rather than 481

the time-consuming searching of the relationship 482

↵, the proposed simple LoRA indicator mapping 483

is more proper to the jointly learned base LoRAs, 484

since the base LoRAs are well-aligned with the 485

LoRA indicators during the training. 486
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5 Related Works487

Task Generalization. In NLP, generalizing the lan-488

guage models to a wide range of unseen task has489

been important for its practical use. Addressing490

models with relatively small sizes (under 0.5B),491

several works have attempted to adapt them with492

few-shot examples into unseen tasks. However,493

CrossFit (Ye et al., 2021) has necessity of prompt-494

ing the task names as hard prefixes. ReCross (Lin495

et al., 2022) alleviated this constraint via exploit-496

ing the retrieved training data, and yet requires an497

additional cost to retrieve task-friendly data.498

Including a way more parameters, LLMs such499

as GPT (Brown et al., 2020), LLaMA (Touvron500

et al., 2023a,b), and Gemini (Team) has shown im-501

pressive results to a wide range of queries without502

specifically trained in the task of queries. However,503

their model sizes are too large for edge devices.504

LLaMA and Gemini also released their smaller505

versions under 10B training parameters which are506

feasible in edge devices, but their task generaliza-507

tion ability largely lags behind the larger models.508

To leverage these smaller LLMs, Mistral-7B (Jiang509

et al., 2023) applied sliding window attention and510

rolling buffer cache. Nevertheless, it cannot cover511

various tasks as much as the larger models. Re-512

cently, LoraHub (Huang et al., 2023) pre-trains513

LoRA adapters for multiple upstream tasks, and514

generate task-specific LoRA by mixing the pre-515

trained ones. However, it requires manipulating up-516

stream tasks, and time-consuming process to deter-517

mine mixing ratio of the pre-trained LoRAs. Con-518

trarily, our method constructs the LoRA adapters519

which has different knowledge and characteristic520

each other, with no task ques.521

Mixture of Experts (MOE). In MOE (Jacobs522

et al., 1991; Masoudnia and Ebrahimpour, 2014;523

Riquelme et al., 2021), each expert is controlled524

by a unique gating network, activated based on525

the distinct nature of the input data. Especially, in526

language domain, the MoE network identifies and527

engages the most suitable experts for every token.528

MoLoRA (Zadouri et al., 2023) and SiRA (Zhu529

et al., 2023) propose mixture of LoRA, and all the530

LoRAs and partial LoRAs (i.e., top-K) are partic-531

ipating in the gating for every token, respectively.532

Moreover, very recently, Mixtral 8x7B (Jiang et al.,533

2024) has been introduced and surpasses LLaMA-534

2 70B across all evaluated benchmarks. It employs535

eight specialized experts that focus on dense ma-536

trices within fully connected layers. During the537

processing of a token, a routing mechanism selects 538

two of these experts, and their resulting outputs are 539

then merged together. Since edge devices has lim- 540

ited storage to contain several LoRAs, token-wise 541

MoE methods are hard to be applicable in our setup. 542

Several MoE works such as Task-MoE (Kudugunta 543

et al., 2021) and Skill Selection (Ponti et al., 2023) 544

selects experts for every task, and can be adapted 545

to on-device customization. However, they still as- 546

sumed that the task id should be given with inputs 547

while both training and inference phases. 548

Speculative Decoding. To accelerate LLM de- 549

coding, speculative decoding (Chen et al., 2023; 550

Leviathan et al., 2023; Yang et al., 2023) exploits a 551

small (draft) model to predict what the larger target 552

model will produce, and then use the target model 553

just to check if the prediction is correct. When it 554

comes to device-server hybrid inference, the tar- 555

get and draft models corresponds to the server and 556

on-device ones, respectively, and it is problematic 557

that the draft model alone cannot verify the predic- 558

tion of its own. Namely, even though the on-device 559

LLM’s output is correct, it should be verified af- 560

ter communication with the server. Therefore, we 561

develop a device-server hybrid inference where 562

the on-device LLM’s reliability inside the device. 563

Further, in terms of accuracy, owing to the robust 564

customization via the proposed LoRA pool, our 565

customized on-device LLM do not need frequent 566

intervention of the server LLM. 567

6 Conclusions 568

We propose the method (Crayon and device-server 569

hybrid inference) for customizing on-device LLM 570

for the first time. In Crayon, we first joint train a 571

pool of base LoRAs, ensuring they possess distinct 572

knowledge and characteristics each other. Using 573

this base LoRA pool, we can instantly blend the 574

base LoRAs into a customized LoRA representing 575

a user-defined customization task, without need- 576

ing additional training or transferring user data to 577

the server. To encompass complex queries, we de- 578

velop the device-server hybrid system wherein the 579

reliability of the customized LLM is assessed to 580

identify when a server LLM with better general 581

ability is needed. We also present a new bench- 582

mark for quantitative evaluation of on-device LLM 583

customization, incorporating commonly-used QA 584

datasets. This benchmark can be a valuable tool for 585

future research in this field. In this benchmark, our 586

method shows superior performance. 587
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7 Limitations588

This work has demonstrated that through an adapter589

pool elaborately learned from a variety of datasets,590

it is possible to create customized adapters suitable591

for unseen target QA tasks. Our methodology is592

not limited to QA but is also anticipated to be ap-593

plicable across more NLP domains. Alongside this,594

we expect that increasing the number of adapters595

in the adapter pool together with the utilization of596

more large-scale datasets will lead to the creation597

of more diversified customized adapters for a wider598

scope of unseen tasks.599

8 Potential Risks600

As with any LLM, the customized on-device601

LLM’s outputs might inadvertently perpetuate bi-602

ases present in the training data, requiring care-603

ful oversight and potential intervention to ensure604

fairness and ethical use. Moreover, it is crucial to605

consider the battery life of the edge device of de-606

ploying additional computational resources, as the607

use of edge devices for intricate LLM tasks could608

result in increased energy consumption.609
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-Supplementary Material-

Crayon: Customized On-Device LLM via
Instant Adapter Blending and Edge-Server Hybrid Inference

A Details on Experiments782

A.1 Training setting783

We implemented the proposed and baseline meth-784

ods based on the Huggingface PEFT library (Man-785

grulkar et al., 2022). We set the rank r and scaling786

factor of a LoRA as 4, and the number of base787

LoRAs as 32. For training, we use the AdamW op-788

timizer with a learning rate 0.0001 which is cosine789

annealed. We also set the batch size as 128 and790

the maximum iteration as 800. For all the meth-791

ods, we unified the prompt template as shown in792

Fig. 2 where task cue is not prompted, which is793

proper to practical use. All the proposed and base-794

line methods are implemented with PyTorch 2.0.1795

and executed on a single NVIDIA A5000 GPU.796

A.2 Baselines797

Since on-device LLM customization is understud-798

ied, we carefully selected three baselines to validate799

the efficacy of Crayon.800

1. LLaMA (Touvron et al., 2023a,b) released801

publicly available models, and also reported802

the score on the MMLU dataset. However, the803

reported scores are obtained using the few-804

shot prompt as in the upper part of Fig. 2,805

where both the subject name (i.e., the task806

name) and examples of the subject are given.807

This few-shot prompt is not applicable to our808

on-device customization. For fairness, as well809

as the score from the literature, we also dis-810

close scores using zero-shot prompt of Fig. 2.811

2. Single LoRA follows the training recipe in812

the literature (Hu et al., 2021). Since the Sin-813

gle LoRA is trained using the entire training814

dataset Dtr, the same LoRA is used for all the815

customized tasks. Additionally, for a fair com-816

parison, we fine-tune the Single LoRA (named817

as "Single LoRA (few-shot)"), which is orig-818

inally trained on the training dataset, using819

a few number of examples from customized820

task Dc. We observed that this additional fine-821

tuning yields severe performance drop, and it822

can be attributed to the insufficient size of Dc823

for customizing the LoRA to the specific task.824

Base LoRA Number

|	#
	−
	#%
	|

w/ PCA w/o PCA

Figure 6: Difference of ↵ and mean of ↵ (i.e., ↵̄) from a
data point in training set for each base LoRA whether
when using PCA or not.

3. LoraHub (Huang et al., 2023) did not focus 825

on tailoring their work for on-device LLM 826

customization, but it can offer a proper base- 827

line for validating Crayon. It outlines how to 828

generate LoRAs specified to a new task by us- 829

ing a given few examples and LoRAs trained 830

for other upstream tasks. However, the down- 831

side is the lengthy process required to gener- 832

ate new LoRAs due to the reliance on few- 833

shot learning with the new task’s examples. 834

Moreover, due to necessities that all upstream 835

tasks should be clearly defined (i.e., a metic- 836

ulously refined dataset is needed), it cannot 837

be seamlessly integrated into on-device LLM 838

customization scenarios. 839

B Details of Tab. 1 840

Tab. 4 extends the results from Tab. 1 to show the 841

accuracy for each of the 57 subjects in the MMLU 842

dataset. This allows us to see which subjects fall un- 843

der each category (i.e., STEM, Humanities, Social 844

Science, and Other). Additionally, methodologies 845

with a higher average accuracy also tend to yield 846

higher accuracy across individual subjects. 847

C Effectiveness of PCA 848

Fig. 6 illustrates the deviation of the relationship ↵ 849

corresponding to the base LoRAs for one example 850

in the training set, both with and without the use of 851

PCA. The deviation of ↵ when using PCA is larger 852

100 times than when not using PCA, implying that 853

we can train the base LoRAs more diversely as 854

experts. In line with the one of the objectives of 855

our method, which is to train the base LoRAs with 856

different types of knowledge, we employ PCA to 857

our methodology when getting embeddings. 858
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LLaMA-7B LLaMA-13B Single LoRA LoRA-Hub Crayon
Crayon

zero-shot few-shot zero-shot few-shot zero-shot few-shot + Hybrid(20%)

Abstract Algebra STEM 28.0 29.0 29.0 34.0 32.0 29.0 32.0 30.0 34.0
Anatomy Other 32.6 37.0 40.7 45.9 48.9 41.5 52.6 49.6 50.4
Astronomy STEM 39.5 33.6 44.7 46.1 46.7 42.1 44.7 43.4 50.0
Business Ethics Other 31.0 40.0 39.0 45.0 33.0 44.0 40.0 36.0 43.0
Clinical Knowledge Other 34.7 35.1 44.5 45.7 46.4 41.5 43.8 46.0 49.2
College Biology STEM 30.6 37.5 41.7 45.1 41.7 31.2 46.5 47.9 49.7
College Chemistry STEM 23.0 32.0 38.0 30.0 31.0 35.0 34.0 33.0 31.0
College Computer Science STEM 28.0 29.0 36.0 39.0 28.0 16.0 28.0 40.0 39.0
College Mathematics STEM 30.0 33.0 33.0 32.0 24.0 24.0 30.0 27.0 25.0
College Medicine Other 30.1 30.6 38.7 42.8 38.7 29.5 34.7 39.9 41.8
College Physics STEM 17.6 26.5 19.6 18.6 22.5 20.6 24.5 23.5 22.0
Computer Security STEM 33.0 45.0 56.0 65.0 45.0 39.0 49.0 47.0 55.0
Conceptual Physics STEM 29.4 36.6 37.4 41.3 38.3 36.6 35.3 34.0 35.1
Econometrics Social Science 21.1 23.7 30.7 27.2 22.8 29.8 31.6 21.1 23.2
Electrical Engineering STEM 21.4 26.9 33.8 40.7 35.9 30.3 37.2 42.8 46.2
Elementary Mathematics STEM 24.3 24.3 27.8 24.9 26.5 25.7 25.7 27.2 28.8
Formal Logic Humanities 30.2 27.0 36.5 33.3 29.4 30.2 29.4 27.0 30.2
Global Facts Other 30.0 29.0 30.0 35.0 31.0 33.0 30.0 32.0 32.0
High School Biology STEM 34.8 34.5 42.9 52.6 49.7 34.8 45.8 51.3 55.9
High School Chemistry STEM 29.6 28.1 31.0 28.6 34.0 30.5 37.4 41.9 44.6
High School Computer Science STEM 28.0 31.0 42.0 48.0 31.0 25.0 39.0 41.0 42.0
High School European History Humanities 33.3 44.2 45.5 61.8 47.9 25.5 52.7 59.4 63.6
High School Geography Social Science 31.3 34.3 53.0 54.6 56.6 33.8 51.5 60.1 66.2
High School Government And Politics Social Science 28.5 44.6 62.2 66.3 53.9 36.3 56.5 63.2 67.2
High School Macroeconomics Social Science 27.2 35.4 38.2 44.4 37.4 30.3 36.9 41.5 43.9
High School Mathematics STEM 28.9 24.8 27.0 23.7 21.5 25.9 28.9 24.1 23.9
High School Microeconomics Social Science 25.6 31.9 35.7 47.5 34.9 31.5 37.4 42.4 45.0
High School Physics STEM 24.5 26.5 30.5 28.5 27.2 23.8 28.5 31.1 31.8
High School Psychology Social Science 28.3 47.3 52.3 60.9 53.8 36.1 58.5 62.4 65.7
High School Statistics STEM 22.7 35.2 30.6 30.1 32.9 25.5 33.8 29.2 34.3
High School US History Humanities 32.8 39.7 45.1 58.3 46.6 28.4 54.9 54.4 60.3
High School World History Humanities 28.7 40.9 31.6 66.2 51.9 28.7 59.1 59.9 64.8
Human Aging Other 30.5 40.8 34.1 54.7 41.7 42.2 46.2 42.2 47.5
Human Sexuality Social Science 30.5 36.6 40.5 58.8 44.3 29.0 50.4 51.9 58.8
International Law Humanities 42.1 51.2 52.9 62.8 57.0 42.1 58.7 55.4 62.8
Jurisprudence Humanities 33.3 38.9 50.0 51.9 46.3 37.0 46.3 54.6 56.7
Logical Fallacies Humanities 29.4 39.3 49.1 52.8 46.6 38.0 51.5 55.8 62.3
Machine Learning STEM 27.7 23.2 28.6 31.3 29.5 39.3 32.1 34.8 34.8
Management Other 39.8 35.0 44.7 66.0 56.3 38.8 51.5 58.3 61.5
Marketing Other 33.8 46.6 64.1 71.8 62.8 50.0 63.2 69.2 72.6
Medical Genetics Other 36.0 43.0 43.0 52.0 52.0 45.0 48.0 52.0 54.0
Miscellaneous Other 36.7 42.4 56.4 65.4 60.3 46.0 60.9 62.3 66.5
Moral Disputes Humanities 29.5 40.2 41.9 50.9 35.0 33.8 42.5 48.8 52.5
Moral Scenarios Humanities 22.7 24.3 24.6 30.1 24.0 23.9 24.7 24.0 23.5
Nutrition Other 36.6 37.6 46.7 51.6 45.8 38.9 41.8 50.0 52.2
Philosophy Humanities 36.0 39.9 45.3 54.0 48.9 35.4 46.6 51.8 57.2
Prehistory Humanities 39.2 36.1 44.1 51.5 51.9 34.6 50.0 52.8 55.8
Professional Accounting Other 24.8 25.9 37.6 35.8 29.8 28.7 32.3 34.4 34.0
Professional Law Humanities 28.1 30.2 34.9 38.0 33.4 27.5 33.9 35.9 36.6
Professional Medicine Other 30.5 44.5 46.7 50.4 39.0 32.4 37.1 33.8 36.4
Professional Psychology Social Science 28.3 35.1 41.0 47.7 37.6 32.5 39.5 41.8 46.7
Public Relations Social Science 35.5 40.9 43.6 60.9 42.7 39.1 48.2 43.6 48.2
Security Studies Social Science 29.8 31.8 42.9 53.9 31.4 25.7 31.4 38.8 41.5
Sociology Social Science 35.8 46.8 52.7 61.2 45.3 35.3 54.2 63.2 68.2
US Foreign Policy Social Science 49.0 46.0 58.0 80.0 60.0 38.0 58.0 68.0 74.0
Virology Other 34.3 30.1 29.5 43.4 38.0 37.3 34.9 38.6 41.5
World Religions Humanities 45.6 50.9 63.7 67.8 60.2 45.6 64.3 70.2 70.8

STEM 27.8 34.0 35.0 45.0 33.2 29.7 35.1 36.1 50.3
Humanities 33.1 30.5 43.5 35.8 44.5 33.1 47.3 50.0 50.0
Social Science 30.9 38.3 45.9 53.8 43.4 33.1 46.2 49.8 42.4
Other 33.0 38.1 42.6 53.3 44.6 39.2 44.1 46.0 46.1

Average 31.0 35.1 41.1 46.9 40.7 33.5 42.4 44.6 47.6

Table 4: Detailed results of Tab. 1 on MMLU.
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