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Abstract

We present CangjieToxi, a novel benchmark001
for detecting covert offensive language in Chi-002
nese social media. The dataset incorporates two003
real-world evasion strategies—character split-004
ting and radical substitution—which obfuscate005
toxic expressions by altering the visual or struc-006
tural properties of Chinese characters. These007
perturbations pose significant challenges for ex-008
isting detection systems. To address this, we009
propose a multi-stage prompting framework010
that decouples character anomaly detection, se-011
mantic restoration, and toxicity classification,012
thereby enhancing robustness under adversar-013
ial conditions. Experiments on state-of-the-art014
large language models demonstrate that our015
method significantly outperforms baselines in016
both accuracy and false positive control. Our017
work offers a new testbed and practical miti-018
gation strategy for building resilient toxicity019
detection systems. 1.020

Disclaimer: This paper describes violent and021

discriminatory content that may be disturbing to022

some readers.023

1 Introduction024

In China, while social media censorship is perva-025

sive, it is relatively less restrictive toward gender026

and LGBTQ+ topics compared to politically sen-027

sitive issues. These topics often resurface in "safe028

zones"—such as international events, public health029

discussions (e.g., AIDS), and the arts—where cen-030

sorship is more lenient (Yu, 2024). This regula-031

tory ambiguity allows marginalized discourse to032

persist, often expressed subtly through emojis, eu-033

phemisms, or references to foreign contexts (Gu034

and Heemsbergen, 2023). However, the same en-035

vironment has become a breeding ground for gen-036

dered and LGBTQ+ hate speech, which frequently037
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manifests in covert, lexicon-evading forms. Al- 038

though censorship may not fully silence feminist 039

or queer voices, it significantly shapes the digital 040

landscape in which offensive language evolves and 041

circulates. 042

To combat toxic speech, researchers have de- 043

veloped various NLP-based offensive language de- 044

tection systems, especially those built upon large 045

language models (LLMs). While effective in stan- 046

dard contexts, these systems consistently under- 047

perform against adversarially crafted language de- 048

signed to bypass automated filters. Typical eva- 049

sion strategies include homophonic substitution, 050

emoji camouflage, and radical-level character per- 051

turbation—techniques that obscure toxicity from 052

machines while preserving legibility for human 053

readers (Jiang et al., 2022). For instance, the vulgar 054

expression “操逼” can be obfuscated via character 055

decomposition into components like “扌辶” (Chen, 056

2012), or replaced by lookalike characters as in “澡 057

称冯福” (Husain and Uzuner, 2021). 058

The Chinese writing system is particularly vul- 059

nerable to such manipulations due to its character- 060

based structure and widespread reliance on lexicon- 061

driven moderation. These evasion tactics increas- 062

ingly render current moderation pipelines inef- 063

fective, allowing toxic discourse to proliferate 064

unchecked. This reality underscores the pressing 065

need for more robust, semantically aware detection 066

frameworks. 067

In response, we introduce the CangjieToxi 068

benchmark, which incorporates radical-level char- 069

acter decomposition and substitution perturbations 070

to systematically evaluate model robustness. Be- 071

yond benchmarking, we propose a novel multi- 072

stage prompting framework that explicitly ad- 073

dresses these perturbation challenges. Our ap- 074

proach separates the perception, restoration, and 075

toxicity classification processes using prompt- 076

driven LLM modules, thereby mitigating task leak- 077

age and improving both interpretability and detec- 078
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tion performance under adversarial conditions.079

Our contributions are summarized as follows:080

• We present CangjieToxi, a new dataset that081

simulates real-world evasion patterns by ap-082

plying character splitting and radical substitu-083

tion to offensive Chinese text.084

• We propose a multi-stage prompting-based085

mitigation method, which restores perturbed086

characters through contextual reasoning be-087

fore performing toxicity classification.088

• We conduct a thorough evaluation of state-089

of-the-art LLMs, demonstrating that our ap-090

proach significantly improves performance un-091

der both decomposition and substitution at-092

tacks.093

2 Related Work094

2.1 Chinese Toxic Content Detection and095

Dataset096

Chinese toxic content detection has evolved from097

lexicon-based methods to advanced machine learn-098

ing and large language models (LLMs). Early lexi-099

con approaches are limited in capturing emerging100

or cloaked toxic expressions (Deng et al., 2022).101

Supervised and adversarial learning offer improved102

performance but remain challenged by the dynamic103

nature of language and the subjectivity of toxicity104

(Liu et al., 2023). Recent efforts in domain adapta-105

tion (Ying et al., 2024) and cross-cultural transfer106

(Zhou et al., 2023) have enabled the adaptation of107

models trained on other languages to Chinese, with108

promising results.109

LLMs have demonstrated strong capabilities in110

context-aware detection. Guo et al. showed that111

prompt-based LLMs outperform traditional mod-112

els in identifying nuanced toxic language (Guo113

et al., 2023), while Kumarage et al. (Kumarage114

et al., 2024) and Nirmal et al. (Nirmal et al., 2024)115

highlighted their strengths in classification and in-116

terpretability.117

To support these efforts, various Chinese toxic118

content datasets have been developed. COLD119

categorizes toxicity across individual, group, and120

anti-bias dimensions, though with limited diversity121

(Deng et al., 2022). TOCP (Yang and Lin, 2020)122

and TOCAB (Chung and Lin, 2021) focus on pro-123

fanity and abuse on Taiwan’s PTT platform. SWSR124

targets sexism on Weibo, providing a lexicon of125

gender-related toxic terms (Jiang et al., 2022). Tox- 126

iCN (Lu et al., 2023), with multi-level toxicity 127

annotations, underpins ToxiCloakCN, which ad- 128

dresses cloaked expressions via homophones and 129

emoji transformations (Xiao et al., 2024). 130

Building on this foundation, our proposed 131

CangjieToxi dataset incorporates novel perturba- 132

tion strategies—such as radical-based decomposi- 133

tion and substitution—to challenge current mod- 134

els and enhance the detection of complex, cloaked 135

toxic expressions. 136

2.2 LLM-based Toxicity Detection 137

Large language models (LLMs) have become an 138

important direction in toxicity detection research 139

due to their strong generalization and contextual 140

understanding capabilities. Some applications of- 141

ten focused on generating or augmenting training 142

data (Kruschwitz and Schmidhuber, 2024; Meguel- 143

lati et al., 2025), other studies have increasingly 144

investigated their direct use as classifiers. How- 145

ever, zero-shot or prompt-based LLM classification 146

has shown inconsistent performance, particularly 147

in tasks requiring nuanced social context (Meguel- 148

lati et al., 2025). Moreover, LLMs may overfit to 149

prompt phrasing or fail to generalize to implicit 150

forms of toxicity. 151

Furthermore, several limitations of LLMs per- 152

sist. Some studies (Zhang et al., 2024; Zhao et al., 153

2024) identified critical limitations of LLMs in 154

detecting implicit hate speech, showing that they 155

often misclassify benign statements due to over- 156

sensitivity and exhibit unreliable confidence cali- 157

bration. These findings underscore the challenges 158

of directly applying LLMs to toxicity detection 159

and highlight the need for more robust strategies 160

to balance sensitivity and fairness in real-world 161

deployment. 162

2.3 Language Perturbation 163

Language perturbation techniques have been ex- 164

plored to examine vulnerabilities in NLP models, 165

especially in adversarial settings. Techniques like 166

emoji insertion (Kirk et al., 2022) and token re- 167

placement (Garg and Ramakrishnan, 2020) are 168

commonly used to test the robustness of models 169

against subtler forms of offensive content. In Chi- 170

nese, language perturbation faces additional chal- 171

lenges due to the language’s character-based struc- 172

ture, where meaning can shift dramatically with 173

slight modifications in characters or word order. 174

Previous work on Chinese offensive language de- 175
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Figure 1: Offensive Langurage Detection Flowchart and Examples

tection has addressed perturbations such as word176

perturbation and synonym usage (Su et al., 2022),177

while the introduction of ToxiCloakCN demon-178

strates the impact of homophonic substitutions and179

emoji transformations on model performance (Xiao180

et al., 2024).181

Our CangjieToxi dataset expands on these per-182

turbation techniques by incorporating radical split-183

ting and substitution of character components,184

adding a new layer of complexity to model testing185

and addressing emerging evasion tactics in Chinese186

offensive language detection.187

3 Dataset Construction188

In this section, we describe the process of con-189

structing the dataset used for offensive language190

detection, including data collection, preprocessing,191

offensive keyword extraction, and annotation, as192

well as the techniques used to introduce meaningful193

perturbations to the dataset for training purposes.194

The visualization of the comprehensive process is195

shown in 2.196

3.1 Data Source and Preprocessing197

We collect comments from Douyin, a major short198

video platform in China. Due to the site’s filtering199

system, posts containing offensive language are200

relatively rare. To address this, we focus our data201

collection on several sensitive topics, such as mar-202

riage, gender, fertility, LGBTQ issues, and race,203

which are frequently discussed online. We then204

compile a list of keywords for each topic and use205

them to gather 45484 comments that do not have206

replies. We exclude texts that are too short to con- 207

vey meaningful content, such as those consisting 208

only of auxiliary words or inflections. Additionally, 209

we remove irrelevant data, such as duplicate entries 210

and advertisements. Ultimately, 28080 comments 211

are retained. During the data cleaning process, we 212

removing unnecessary newlines and spaces. To 213

protect privacy, we anonymize the data by filtering 214

out usernames, links, emails and stickers. Since 215

emojis may contain valuable emotional cues, we 216

retain them for the purpose of offensive language 217

detection. 218

3.2 Offensive Keywords Extraction 219

In order to enrich our dataset with meaningful per- 220

turbations, we applied a multi-step approach for 221

offensive keyword extraction. First, we utilized 222

the BERTopic model for topic modeling on our 223

dataset, identifying offensive terms from the rep- 224

resentative words of each topic. Additionally, we 225

leveraged existing lexicons, such as the SexHate 226

Lexicon from the SWSR dataset and the gender 227

and LGBTQ+ lexicon from the ToxiCN dataset, 228

to filter relevant offensive keywords. After filter- 229

ing, we merged these external lexicons with the 230

offensive terms we defined ourselves, creating a 231

comprehensive keyword list, consisting of 300 of- 232

fensive keywords. This lexicon was then used to 233

screen the entire dataset for offensive content. 234

3.3 Human Annotation 235

For the annotation process, we conducted a man- 236

ual review of the filtered dataset. A total of four 237

3



Figure 2: Offensive Langurage Detection Flowchart

native Chinese annotators with social science back-238

grounds were involved, ensuring gender balance239

in the team. To assess the reliability of the annota-240

tions, we calculated the interannotator agreement241

using Fleiss’s Kappa, which yielded a value of242

0.829, indicating a high level of agreement among243

the annotators. This robust agreement suggests the244

reliability and consistency of the offensive labels245

applied to the dataset.246

3.4 Character-Level Perturbation247

To better simulate the process of character substi-248

tution and splitting used by people to evade cen-249

sorship on social media, our approach follows key250

principles grounded in visual recognition studies.251

Research has shown that substitutions or variations252

in character structure, as long as the distribution253

of information within the character remains con-254

sistent—such as maintaining the relative positions255

of phonetic and semantic radicals—do not signifi-256

cantly affect a reader’s ability to recognize meaning257

or pronunciation (Hsiao and Cheng, 2013). This258

aligns with findings that visual recognition advan-259

tages in the right visual field (RVF) persist when260

phonetic components appear on the right and se-261

mantic components on the left, a structure com-262

monly observed in Chinese characters (wen Hsiao,263

2011). Additionally, studies on radical combin-264

ability indicate that position-specific radical com-265

binability (SRC) is a stronger predictor of neural266

activation in character recognition than position-267

general radical combinability (GRC), suggesting268

that radical position matters more than sheer fre-269

quency (Liu et al., 2022). By preserving these po-270

sitional relationships—especially in left-right and271

up-down structures—our modifications ensure that272

the altered characters remain easily interpretable273

by human readers while disrupting automated de-274

tection systems.275

Our perturbation strategy differs for offensive276

and non-offensive text: 277

1. Perturbation of offensive Text: We only per- 278

turb words that appear in a predefined list 279

of specific offensive keywords. This selec- 280

tive perturbation ensures that modifications 281

are concentrated on words strongly associ- 282

ated with toxicity while avoiding unnecessary 283

changes to unrelated words. For example, in 284

the phrase “妈逼” (a profane expression), the 285

character “妈” will be perturbed, whereas in 286

“妈妈” (mother), no perturbation will occur. 287

2. Perturbation of Non-offensive Text: We per- 288

turb all individual characters that appear in 289

the keyword list, even if they are not part of 290

offensive words. While these perturbations 291

are unrelated to toxicity, this design prevents 292

the model from learning incorrect associations 293

during training—such as mistakenly linking 294

rare characters or structural variations with 295

toxicity. For instance, in the word “妈妈” 296

(mother), the character “妈” will be perturbed. 297

Our approach to character perturbation adheresit 298

to three main principles: 299

1. Character Structure: We selected characters 300

whose structure could be further split, avoid- 301

ing non-split characters such as “广” (which 302

cannot be split further). We primarily chose 303

left-right and top-bottom structured Chinese 304

characters, as they are the most frequently 305

used formations in written Chinese. 306

2. Position Consistency: For both substitution 307

and splitting, we ensured that the compo- 308

nents retained their relative positions within 309

the character. This structural stability mini- 310

mizes disruptions in visual recognition, allow- 311

ing readers to process the modified text with 312

minimal effort. 313
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3. Radical Frequency: We focused on structural314

components (radicals) frequently employed in315

character variations, ensuring that the substi-316

tutions remained consistent with real-world317

linguistic modifications and had minimal im-318

pact on readability.319

By following these principles, our character per-320

turbation strategy effectively mimics real-world tac-321

tics used by social media users to bypass censorship322

while preserving readability for human readers.323

3.4.1 Character Splitting324

In the Character Splitting step, we used the split-325

ting dictionary provided by the funnlp library2 to326

match characters in our offensive word list. The327

library offers multiple splitting methods for each328

character, and we selected the most optimal split-329

ting method based on our principles.330

The splitting rules were as follows:331

1. We only split characters into two components.332

If a character’s components exceeded two,333

they were placed in non-typical positions, neg-334

atively affecting recognition. For example, the335

character "搏" (bó) splits into ’手’ (hand) +336

’甫’ (fu) + ’寸’ (inch), but ’寸’ is expected337

to be at the bottom of “甫,” making the split338

unnatural.339

2. When multiple splitting methods were avail-340

able, we chose the method where the compo-341

nents’ positions most closely resembled those342

of the original character. For instance, the343

character "擦" (wipe) has three splitting meth-344

ods:345

• "擦" → "手" (hand) + "察" (inspect)346

• "擦" → "扌" (hand radical) + "察" (in-347

spect)348

• "擦" → "才" (only) + "察" (inspect)349

We chose the second method because "扌"350

(hand radical) is most frequently seen on the351

left side of a character, making it the most352

natural and recognizable modification.3353

3.4.2 Character Substitution354

In the Character Substitution step, we relied on the355

library of the Chinese Text Project (中国哲学书356

电子化计划) to substitute the radical of characters357

2https://github.com/fighting41love/funNLP
3https://lingua.mtsu.edu/chinese-computing/s

tatistics/index.html

from 101 offensive words, selected from a total of 358

300 offensive terms. These substitutions involved 359

modifying 427 Chinese characters using different 360

radicals.4 361

Since a single Chinese character can be substi- 362

tuted with multiple radicals, we followed the prin- 363

ciple of radical frequency to determine the most 364

suitable replacements. Specifically, we used the 365

Xiandai Hanyu Changyong Zibiao (List of Fre- 366

quently Used Characters in Modern Chinese) pro- 367

vided by the Ministry of Education 5. Based on the 368

individual character frequencies, we selected the 369

most frequent substitute character with the highest 370

frequency of occurrence as the replacement. For 371

example, the character "猥琐" (lewd) was substi- 372

tuted with "偎唢" following this approach, as these 373

substitutions closely align with commonly used 374

radicals in modern Chinese. 375

This method ensures that the substitutions reflect 376

both linguistic frequency and the intended meaning 377

while avoiding arbitrary or non-standard replace- 378

ments, helping to maintain the readability of the 379

altered text. 380

4 Experiments 381

To evaluate the effectiveness of existing models and 382

methods on our proposed benchmark, we employed 383

the following experimental setup and methodolo- 384

gies. This systematic approach ensures a compre- 385

hensive assessment of model performance and ro- 386

bustness in detecting offensive language under var- 387

ious perturbations. 388

4.1 Baseline 389

The evaluation of three state-of-the-art 390

models—DeepSeek-V3, GPT-4o, and Qwen- 391

Max—revealed notable trends in their performance 392

under character decomposition (拆字) and char- 393

acter substitution (换字) perturbations. On the 394

original data, Qwen-Max achieved the highest 395

accuracy (0.7868) and Macro F1 score (0.7858), 396

followed by DeepSeek-V3 and GPT-4o. After 397

applying character decomposition, all models expe- 398

rienced a performance decline, with DeepSeek-V3 399

dropping to an accuracy of 0.7165 and a Macro F1 400

score of 0.7150, GPT-4o dropping to an accuracy 401

of 0.6875 and a Macro F1 score of 0.6839, and 402

Qwen-Max dropping to an accuracy of 0.7281 and 403

a Macro F1 score of 0.7267. 404

4https://ctext.org/dictionary.pl?if=gb
5https://lingua.mtsu.edu/chinese-computing/s

tatistics/index.html
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For character substitution, Qwen-Max again led405

with an accuracy of 0.8132 and a Macro F1 score of406

0.8122, while DeepSeek-V3 and GPT-4o achieved407

accuracies of 0.7752 and 0.7818, respectively. The408

performance drop following character decomposi-409

tion highlights the increased difficulty posed by this410

perturbation type. Notably, Qwen-Max exhibited411

the smallest performance degradation, suggesting412

stronger robustness to adversarial transformations413

compared to the other models. These results un-414

derscore the challenges of character-level pertur-415

bations and the varying resilience of models in416

handling such modifications. Detailed model per-417

formance can be seen in Table 1.418

4.2 Experiment Settings419

To ensure standardized and reproducible outputs420

from large language models (LLMs) in our experi-421

ments, we utilized the dspy framework. This frame-422

work provides a structured approach to prompt en-423

gineering and output generation, enabling consis-424

tent evaluation across different models and settings.425

Prior research has demonstrated that using Chi-426

nese prompts yields marginally better performance427

in detecting offensive language in Chinese text428

compared to English prompts (Xiao et al., 2024).429

To align with these findings and maintain consis-430

tency, we adopted a uniform Chinese prompt across431

all experiments.432

For all experiments involving LLMs, we set433

the temperature to 0.1 to minimize randomness434

in model outputs and ensure deterministic behavior.435

All other hyperparameters were kept at their default436

values to maintain a fair and controlled evaluation437

environment.438

4.3 Evaluation Metric439

In the field of toxic detection, the F1 score is440

widely regarded as the most commonly used eval-441

uation metric, while precision is also one of the442

frequently employed standards in binary classifi-443

cation tasks. However, in previous toxic detec-444

tion research, scholars have primarily focused on445

whether detection models can effectively identify446

toxic content, paying less attention to cases where447

normal statements are misclassified as offensive448

or toxic. With the growing importance of align-449

ing large language models (LLMs) with human450

values, the introduction of LLMs into toxic de-451

tection tasks has made the issue of false positives452

more pronounced. To comprehensively evaluate453

the performance of different models in toxic de-454

tection, we not only utilize the F1 score but also 455

incorporate accuracy (Acc) and false positive rate 456

(FPR) as supplementary metrics. Among these, 457

accuracy measures the overall performance of the 458

model across all samples, while the false positive 459

rate specifically evaluates the model’s tendency to 460

produce false positive classifications. 461

4.4 Multi-Stage Mitigation of Radical-Level 462

Perturbations in Toxicity Detection 463

4.4.1 Restoring Split Characters for Toxicity 464

Detection 465

To address evasion via character-splitting—where 466

toxic characters are decomposed into component 467

radicals to bypass detection—we propose a multi- 468

stage restoration framework using large language 469

models (LLMs). This method recovers disrupted 470

semantic structures and improves toxicity classifi- 471

cation under adversarial perturbations. The proce- 472

dure involves: 473

Split Character Detection Given texts with 474

character-splitting pertubations, an LLM identi- 475

fies anomalous segments that may reflect character 476

splitting. This step localizes disrupted structures 477

indicative of adversarial intent. 478

Character Restoration Based on identified frag- 479

ments, the LLM reconstructs the most semantically 480

appropriate characters, guided by contextual cues. 481

No handcrafted rules or static lexicons are used, 482

enhancing generalizability. 483

Toxicity Classification The restored text is 484

passed to an LLM classifier to assess toxicity. If 485

restoration fails or is uncertain, the original input 486

is used. The model applies context-sensitive rea- 487

soning to determine toxicity. 488

4.4.2 Recovering Substituted Characters for 489

Robust Toxicity Detection 490

To mitigate radical substitution—where toxic char- 491

acters are replaced with visually similar but benign 492

variants—we adopt a complementary multi-step re- 493

covery pipeline grounded in the perturbation prin- 494

ciples introduced in Section 3.4.2. 495

Perturbation Detection An LLM identifies char- 496

acters whose form suggests radical-level substitu- 497

tion. These are flagged for possible restoration. 498

Candidate Retrieval Using a predefined substi- 499

tution lexicon constructed in Section 3.4.2, we 500

retrieve plausible original characters for each 501
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Model Data Size
GPT-4o Qwen-Max Deepseek-V3

Acc Marco F1 FPR Acc Macro F1 FPR Acc Macro F1 FPR

Original Data 28080 0.776 0.753 0.272 0.770 0.745 0.271 0.662 0.653 0.448

Before Split
13795

0.750 0.749 0.361 0.731 0.731 0.384 0.631 0.626 0.583

After Split 0.658 0.658 0.477 0.672 0.671 0.429 0.539 0.518 0.730

Multi-Stage Mitigation Method 0.727 0.724 0.323 0.729 0.722 0.275 0.650 0.650 0.502

Before Substitution
6057

0.745 0.744 0.356 0.717 0.711 0.326 0.618 0.618 0.541

After Substitution 0.693 0.688 0.364 0.714 0.707 0.328 0.617 0.616 0.549

Multi-Stage Mitigation Method 0.766 0.716 0.086 0.745 0.694 0.103 0.681 0.680 0.426

Table 1: Model Performance in Different Conditions

anomaly, ensuring candidates maintain structural502

and contextual plausibility.503

Contextual Replacement Selection The LLM504

selects the most contextually appropriate character505

from the candidate pool. Importantly, this step is506

conducted without access to the downstream toxic-507

ity objective, preserving neutrality in restoration.508

Toxicity Classification The reconstructed text is509

then classified for toxicity using the same prompt-510

ing framework. If recovery is inconclusive, the511

original (perturbed) text is used as fallback.512

4.4.3 Unified Analysis and Design Rationale513

Both mitigation pipelines follow a modular,514

prompt-driven architecture that decouples character515

recovery from toxicity classification. This design516

minimizes task leakage and ensures each compo-517

nent operates with a focused objective. By isolating518

restoration logic from toxicity prediction, we re-519

duce model bias, prevent adversarial overcompen-520

sation (e.g., avoiding sensitive terms), and main-521

tain the integrity of downstream evaluation. The522

shared structure across both pipelines enhances re-523

producibility and facilitates principled comparisons524

across perturbation types. The prompt we use can525

be found in the appendix. 2526

5 Results527

Table 1 summarizes the performance of three528

large language models—GPT-4o, Qwen-Max, and529

DeepSeek-V3—under both character splitting and530

substitution perturbation scenarios. We report Ac-531

curacy, Macro F1, and False Positive Rate (FPR)532

as primary evaluation metrics to assess model ro-533

bustness and reliability.534

5.1 Split Perturbation Results 535

In the “After Split” condition, all models experi- 536

ence a noticeable performance drop. This degrada- 537

tion is particularly evident in FPR, with DeepSeek- 538

V3 rising to 0.730 and GPT-4o reaching 0.477, 539

indicating that split-character evasion significantly 540

hinders toxicity recognition. 541

Our proposed multi-stage prompting method 542

demonstrates clear improvement across all mod- 543

els. For instance, Qwen-Max’s FPR decreases from 544

0.429 to 0.275, and its Macro F1 recovers to 0.722. 545

Similarly, GPT-4o sees a reduction in FPR from 546

0.477 to 0.323 while maintaining a stable accuracy. 547

5.2 Substitution Perturbation Results 548

In the substitution setting, performance degrada- 549

tion appears more subtle. The gap between “Be- 550

fore” and “After Substitution” is relatively small in 551

terms of Accuracy and F1, but FPR remains high 552

across all models (e.g., GPT-4o: 0.364, DeepSeek- 553

V3: 0.549). This indicates that while models may 554

tolerate minor visual substitutions in terms of clas- 555

sification, they still tend to misclassify benign text 556

as toxic. 557

Our substitution recovery method notably re- 558

duces FPR while improving or maintaining classi- 559

fication performance. For example, GPT-4o’s FPR 560

drops dramatically to 0.086 and its Accuracy rises 561

to 0.766. Qwen-Max also benefits, with FPR re- 562

duced to 0.103 and stable macro scores. DeepSeek- 563

V3 shows modest improvements, validating the 564

broad effectiveness of our approach across model 565

families. 566

Overall, the multi-stage prompting strategy con- 567

sistently improves robustness against both types 568

of perturbations. It restores contextual semantics, 569

reduces false positives, and enhances toxicity de- 570

tection under adversarial conditions. 571
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Stage Chinese Prompt English Prompt

Anomaly Detection 请你找出下面这段评论文本当中最为异常的一个
中文汉字：

Please identify the most anomalous Chinese charac-
ter in the following comment text:

Character Replacement 请判断文本中的异常汉字换成汉字备选中的哪一
个更为合适。请分析文本语义，选择最符合中文
社交媒体语境的替换方案。

Which substitute character is more appropriate for
the anomalous character in the context? Analyze the
semantics and select the one that best fits Chinese
social media context.

Split Character Restora-
tion

找出下面这段来自社交媒体的评论当中，可能有
错误的部分（词或汉字组件）。请从汉字组成的
角度，依据推断出的错误部分，纠正评论中的错
误，并给出纠正后的评论。

Identify the possibly erroneous segments (words or
components) in the following social media comment.
Then correct the error from a character composition
perspective and provide the revised comment.

Component Recomposi-
tion

请你把两个<>中间的汉字组件组合成一个新汉字
（请给出一个最佳替换汉字）

Please combine the two components inside <> to form
a complete Chinese character. Return the best substi-
tution.

Toxicity Detection 请你把以下原始文本中的{异常汉字（组件）}改
为{替换汉字}，然后分析评论是否是有毒
的(toxic)。下面是一条来自于社交媒体的评论，
在考虑到社交媒体语境的情况下，判断评论是否
是"有毒的(toxic)"。

Replace the {anomalous character/component} in
the original text with {replacement}, then determine
whether the comment is toxic. Considering the social
media context, classify the comment as either toxic or
non-toxic.

Table 2: Multi-stage prompt design for anomaly recovery and toxicity detection. Each stage corresponds to a
specific subtask in our mitigation pipeline.

6 Discussion572

6.1 Lexicon and False Positive573

The lexicon-based filtering approach exhibited574

a high false positive rate, where non-toxic con-575

tent was frequently misclassified as toxic. A pri-576

mary reason for this is the prevalence of com-577

ments criticizing socially undesirable behaviors578

(e.g., fraud, promiscuity), which, despite their579

harsh tone, do not constitute offensive language.580

This phenomenon poses a significant challenge for581

offensive language detection systems, as it blurs582

the line between legitimate criticism and actual583

toxicity.584

To mitigate this issue, future research should pri-585

oritize the development of more advanced semantic586

understanding and context-aware models. Incor-587

porating domain-specific knowledge and leverag-588

ing larger, more diverse datasets could help reduce589

false positives. Additionally, exploring hybrid ap-590

proaches that combine lexicon-based methods with591

machine learning models may offer a more robust592

solution for distinguishing between toxic content593

and socially critical discourse.594

6.2 Analysis of Results595

The performance of Deepseek in the substitution ex-596

periment demonstrates an intriguing phenomenon:597

after applying the Multi-Stage Mitigation Method,598

its performance metrics improved compared to599

before the substitution. This outcome can be at-600

tributed to the nature of the substitution dataset,601

which is enriched with comments containing vari-602

ous keywords. Some of these comments, although603

not inherently toxic, triggered false positives in 604

Deepseek’s predictions. Following the application 605

of the Multi-Stage Mitigation Method, the align- 606

ment of the language model with human prefer- 607

ences led to the rewriting of many originally toxic 608

comments into non-toxic ones. Consequently, this 609

method resulted in an overall improvement in the 610

F1 score. 611

6.3 Future Works 612

Addressing offensive language that evades censor- 613

ship mechanisms through techniques such as char- 614

acter splitting or using visually similar characters 615

may involve two potential approaches. One ap- 616

proach is to employ computer vision (CV) meth- 617

ods to identify and associate similar characters and 618

split characters. However, this method is costly 619

and complicated, as the flexible structure of Chi- 620

nese characters makes the problem more challeng- 621

ing. An alternative approach is to use "masking" 622

techniques, which obscure key offensive terms 623

while still allowing offensive language to be un- 624

derstood and recognized through contextual seman- 625

tic clues—essentially enabling the system to infer 626

meaning even when specific words are not explic- 627

itly stated (i.e., "although nothing was directly said, 628

the intent is still understood"). The dataset we 629

propose, which introduces perturbations only to 630

offensive terms, is adaptable to both of these strate- 631

gies. 632
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7 Limitations633

Despite the contributions made by CangjieToxi,634

there are several limitations in this study that should635

be acknowledged. First, while the dataset intro-636

duces novel perturbations such as character split-637

ting and character substitution, it remains limited638

to Chinese language contexts, and the effective-639

ness of these evasion techniques may vary in other640

languages with different writing systems or char-641

acter structures. Second, the perturbation methods642

used in this work, although effective in creating643

subtle forms of offensive language, are still con-644

strained by the manual construction of these trans-645

formations, and there may be additional, unfore-646

seen evasion tactics that were not covered. Third,647

the performance of state-of-the-art models on our648

dataset demonstrates clear limitations, but further649

research is needed to explore new model architec-650

tures and training methodologies that can better651

adapt to these types of perturbations. Finally, while652

we have focused on offensive language detection653

within social media contexts, the dataset’s appli-654

cability to other domains, such as formal text or655

legal documents, remains to be evaluated. Future656

work will aim to expand these methods, explore657

additional types of perturbations, and assess the ro-658

bustness of models across different languages and659

content domains.660
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