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Abstract

We present CangjieToxi, a novel benchmark
for detecting covert offensive language in Chi-
nese social media. The dataset incorporates two
real-world evasion strategies—character split-
ting and radical substitution—which obfuscate
toxic expressions by altering the visual or struc-
tural properties of Chinese characters. These
perturbations pose significant challenges for ex-
isting detection systems. To address this, we
propose a multi-stage prompting framework
that decouples character anomaly detection, se-
mantic restoration, and toxicity classification,
thereby enhancing robustness under adversar-
ial conditions. Experiments on state-of-the-art
large language models demonstrate that our
method significantly outperforms baselines in
both accuracy and false positive control. Our
work offers a new testbed and practical miti-
gation strategy for building resilient toxicity

detection systems. !

Disclaimer: This paper describes violent and

discriminatory content that may be disturbing to
some readers.

1 Introduction

In China, while social media censorship is perva-
sive, it is relatively less restrictive toward gender
and LGBTQ+ topics compared to politically sen-
sitive issues. These topics often resurface in "safe
zones"—such as international events, public health
discussions (e.g., AIDS), and the arts—where cen-
sorship is more lenient (Yu, 2024). This regula-
tory ambiguity allows marginalized discourse to
persist, often expressed subtly through emojis, eu-
phemisms, or references to foreign contexts (Gu
and Heemsbergen, 2023). However, the same en-
vironment has become a breeding ground for gen-
dered and LGBTQ+ hate speech, which frequently

1https: //anonymous.4open.science/r/CangjieTox
i-6D02

manifests in covert, lexicon-evading forms. Al-
though censorship may not fully silence feminist
or queer voices, it significantly shapes the digital
landscape in which offensive language evolves and
circulates.

To combat toxic speech, researchers have de-
veloped various NLP-based offensive language de-
tection systems, especially those built upon large
language models (LLMs). While effective in stan-
dard contexts, these systems consistently under-
perform against adversarially crafted language de-
signed to bypass automated filters. Typical eva-
sion strategies include homophonic substitution,
emoji camouflage, and radical-level character per-
turbation—techniques that obscure toxicity from
machines while preserving legibility for human
readers (Jiang et al., 2022). For instance, the vulgar
expression “#&E" can be obfuscated via character
decomposition into components like “ ¥ i_" (Chen,
2012), or replaced by lookalike characters as in “J3
FR{%FE” (Husain and Uzuner, 2021).

The Chinese writing system is particularly vul-
nerable to such manipulations due to its character-
based structure and widespread reliance on lexicon-
driven moderation. These evasion tactics increas-
ingly render current moderation pipelines inef-
fective, allowing toxic discourse to proliferate
unchecked. This reality underscores the pressing
need for more robust, semantically aware detection
frameworks.

In response, we introduce the CangjieToxi
benchmark, which incorporates radical-level char-
acter decomposition and substitution perturbations
to systematically evaluate model robustness. Be-
yond benchmarking, we propose a novel multi-
stage prompting framework that explicitly ad-
dresses these perturbation challenges. Our ap-
proach separates the perception, restoration, and
toxicity classification processes using prompt-
driven LLM modules, thereby mitigating task leak-
age and improving both interpretability and detec-
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tion performance under adversarial conditions.
Our contributions are summarized as follows:

* We present CangjieToxi, a new dataset that
simulates real-world evasion patterns by ap-
plying character splitting and radical substitu-
tion to offensive Chinese text.

* We propose a multi-stage prompting-based
mitigation method, which restores perturbed
characters through contextual reasoning be-
fore performing toxicity classification.

* We conduct a thorough evaluation of state-
of-the-art LLMs, demonstrating that our ap-
proach significantly improves performance un-
der both decomposition and substitution at-
tacks.

2 Related Work

2.1 Chinese Toxic Content Detection and
Dataset

Chinese toxic content detection has evolved from
lexicon-based methods to advanced machine learn-
ing and large language models (LLMs). Early lexi-
con approaches are limited in capturing emerging
or cloaked toxic expressions (Deng et al., 2022).
Supervised and adversarial learning offer improved
performance but remain challenged by the dynamic
nature of language and the subjectivity of toxicity
(Liu et al., 2023). Recent efforts in domain adapta-
tion (Ying et al., 2024) and cross-cultural transfer
(Zhou et al., 2023) have enabled the adaptation of
models trained on other languages to Chinese, with
promising results.

LLMs have demonstrated strong capabilities in
context-aware detection. Guo et al. showed that
prompt-based LLMs outperform traditional mod-
els in identifying nuanced toxic language (Guo
et al., 2023), while Kumarage et al. (Kumarage
et al., 2024) and Nirmal et al. (Nirmal et al., 2024)
highlighted their strengths in classification and in-
terpretability.

To support these efforts, various Chinese toxic
content datasets have been developed. COLD
categorizes toxicity across individual, group, and
anti-bias dimensions, though with limited diversity
(Deng et al., 2022). TOCP (Yang and Lin, 2020)
and TOCAB (Chung and Lin, 2021) focus on pro-
fanity and abuse on Taiwan’s PTT platform. SWSR
targets sexism on Weibo, providing a lexicon of

gender-related toxic terms (Jiang et al., 2022). Tox-
iCN (Lu et al., 2023), with multi-level toxicity
annotations, underpins ToxiCloakCN, which ad-
dresses cloaked expressions via homophones and
emoji transformations (Xiao et al., 2024).

Building on this foundation, our proposed
CangjieToxi dataset incorporates novel perturba-
tion strategies—such as radical-based decomposi-
tion and substitution—to challenge current mod-
els and enhance the detection of complex, cloaked
toxic expressions.

2.2 LLM-based Toxicity Detection

Large language models (LLMs) have become an
important direction in toxicity detection research
due to their strong generalization and contextual
understanding capabilities. Some applications of-
ten focused on generating or augmenting training
data (Kruschwitz and Schmidhuber, 2024; Meguel-
lati et al., 2025), other studies have increasingly
investigated their direct use as classifiers. How-
ever, zero-shot or prompt-based LLM classification
has shown inconsistent performance, particularly
in tasks requiring nuanced social context (Meguel-
lati et al., 2025). Moreover, LLMs may overfit to
prompt phrasing or fail to generalize to implicit
forms of toxicity.

Furthermore, several limitations of LL.Ms per-
sist. Some studies (Zhang et al., 2024; Zhao et al.,
2024) identified critical limitations of LLMs in
detecting implicit hate speech, showing that they
often misclassify benign statements due to over-
sensitivity and exhibit unreliable confidence cali-
bration. These findings underscore the challenges
of directly applying LLMs to toxicity detection
and highlight the need for more robust strategies
to balance sensitivity and fairness in real-world
deployment.

2.3 Language Perturbation

Language perturbation techniques have been ex-
plored to examine vulnerabilities in NLP models,
especially in adversarial settings. Techniques like
emoji insertion (Kirk et al., 2022) and token re-
placement (Garg and Ramakrishnan, 2020) are
commonly used to test the robustness of models
against subtler forms of offensive content. In Chi-
nese, language perturbation faces additional chal-
lenges due to the language’s character-based struc-
ture, where meaning can shift dramatically with
slight modifications in characters or word order.
Previous work on Chinese offensive language de-
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Figure 1: Offensive Langurage Detection Flowchart and Examples

tection has addressed perturbations such as word
perturbation and synonym usage (Su et al., 2022),
while the introduction of ToxiCloakCN demon-
strates the impact of homophonic substitutions and
emoji transformations on model performance (Xiao
etal., 2024).

Our CangjieToxi dataset expands on these per-
turbation techniques by incorporating radical split-
ting and substitution of character components,
adding a new layer of complexity to model testing
and addressing emerging evasion tactics in Chinese
offensive language detection.

3 Dataset Construction

In this section, we describe the process of con-
structing the dataset used for offensive language
detection, including data collection, preprocessing,
offensive keyword extraction, and annotation, as
well as the techniques used to introduce meaningful
perturbations to the dataset for training purposes.
The visualization of the comprehensive process is
shown in 2.

3.1 Data Source and Preprocessing

We collect comments from Douyin, a major short
video platform in China. Due to the site’s filtering
system, posts containing offensive language are
relatively rare. To address this, we focus our data
collection on several sensitive topics, such as mar-
riage, gender, fertility, LGBTQ issues, and race,
which are frequently discussed online. We then
compile a list of keywords for each topic and use
them to gather 45484 comments that do not have

replies. We exclude texts that are too short to con-
vey meaningful content, such as those consisting
only of auxiliary words or inflections. Additionally,
we remove irrelevant data, such as duplicate entries
and advertisements. Ultimately, 28080 comments
are retained. During the data cleaning process, we
removing unnecessary newlines and spaces. To
protect privacy, we anonymize the data by filtering
out usernames, links, emails and stickers. Since
emojis may contain valuable emotional cues, we
retain them for the purpose of offensive language
detection.

3.2 Offensive Keywords Extraction

In order to enrich our dataset with meaningful per-
turbations, we applied a multi-step approach for
offensive keyword extraction. First, we utilized
the BERTopic model for topic modeling on our
dataset, identifying offensive terms from the rep-
resentative words of each topic. Additionally, we
leveraged existing lexicons, such as the SexHate
Lexicon from the SWSR dataset and the gender
and LGBTQ+ lexicon from the ToxiCN dataset,
to filter relevant offensive keywords. After filter-
ing, we merged these external lexicons with the
offensive terms we defined ourselves, creating a
comprehensive keyword list, consisting of 300 of-
fensive keywords. This lexicon was then used to
screen the entire dataset for offensive content.

3.3 Human Annotation

For the annotation process, we conducted a man-
ual review of the filtered dataset. A total of four
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Figure 2: Offensive Langurage Detection Flowchart

native Chinese annotators with social science back-
grounds were involved, ensuring gender balance
in the team. To assess the reliability of the annota-
tions, we calculated the interannotator agreement
using Fleiss’s Kappa, which yielded a value of
0.829, indicating a high level of agreement among
the annotators. This robust agreement suggests the
reliability and consistency of the offensive labels
applied to the dataset.

3.4 Character-Level Perturbation

To better simulate the process of character substi-
tution and splitting used by people to evade cen-
sorship on social media, our approach follows key
principles grounded in visual recognition studies.
Research has shown that substitutions or variations
in character structure, as long as the distribution
of information within the character remains con-
sistent—such as maintaining the relative positions
of phonetic and semantic radicals—do not signifi-
cantly affect a reader’s ability to recognize meaning
or pronunciation (Hsiao and Cheng, 2013). This
aligns with findings that visual recognition advan-
tages in the right visual field (RVF) persist when
phonetic components appear on the right and se-
mantic components on the left, a structure com-
monly observed in Chinese characters (wen Hsiao,
2011). Additionally, studies on radical combin-
ability indicate that position-specific radical com-
binability (SRC) is a stronger predictor of neural
activation in character recognition than position-
general radical combinability (GRC), suggesting
that radical position matters more than sheer fre-
quency (Liu et al., 2022). By preserving these po-
sitional relationships—especially in left-right and
up-down structures—our modifications ensure that
the altered characters remain easily interpretable
by human readers while disrupting automated de-
tection systems.

Our perturbation strategy differs for offensive

and non-offensive text:

1. Perturbation of offensive Text: We only per-
turb words that appear in a predefined list
of specific offensive keywords. This selec-
tive perturbation ensures that modifications
are concentrated on words strongly associ-
ated with toxicity while avoiding unnecessary
changes to unrelated words. For example, in
the phrase “I%7&” (a profane expression), the
character “f%” will be perturbed, whereas in
“f4 19" (mother), no perturbation will occur.

2. Perturbation of Non-offensive Text: We per-
turb all individual characters that appear in
the keyword list, even if they are not part of
offensive words. While these perturbations
are unrelated to toxicity, this design prevents
the model from learning incorrect associations
during training—such as mistakenly linking
rare characters or structural variations with
toxicity. For instance, in the word “f%15”
(mother), the character “1%” will be perturbed.

Our approach to character perturbation adheresit
to three main principles:

1. Character Structure: We selected characters
whose structure could be further split, avoid-
ing non-split characters such as /> (which
cannot be split further). We primarily chose
left-right and top-bottom structured Chinese
characters, as they are the most frequently
used formations in written Chinese.

2. Position Consistency: For both substitution
and splitting, we ensured that the compo-
nents retained their relative positions within
the character. This structural stability mini-
mizes disruptions in visual recognition, allow-
ing readers to process the modified text with
minimal effort.



3. Radical Frequency: We focused on structural
components (radicals) frequently employed in
character variations, ensuring that the substi-
tutions remained consistent with real-world
linguistic modifications and had minimal im-
pact on readability.

By following these principles, our character per-
turbation strategy effectively mimics real-world tac-
tics used by social media users to bypass censorship
while preserving readability for human readers.

3.4.1 Character Splitting

In the Character Splitting step, we used the split-
ting dictionary provided by the funnlp library? to
match characters in our offensive word list. The
library offers multiple splitting methods for each
character, and we selected the most optimal split-
ting method based on our principles.

The splitting rules were as follows:

1. We only split characters into two components.
If a character’s components exceeded two,
they were placed in non-typical positions, neg-
atively affecting recognition. For example, the
character "f#" (b6) splits into > (hand) +
H’ (fu) + *~I” (inch), but *~f~ is expected
to be at the bottom of “Hj,” making the split
unnatural.

2. When multiple splitting methods were avail-
able, we chose the method where the compo-
nents’ positions most closely resembled those
of the original character. For instance, the
character "#2" (wipe) has three splitting meth-
ods:

o "#E" 5 "F" (hand) + "Z2" (inspect)

o "PE" — " F " (hand radical) + "&%" (in-
spect)

o "HE" 5 "7 (only) + "£" (inspect)

We chose the second method because " § "
(hand radical) is most frequently seen on the
left side of a character, making it the most
natural and recognizable modification.’

3.4.2 Character Substitution

In the Character Substitution step, we relied on the
library of the Chinese Text Project (W [E¥ 2
B, 71411 %) to substitute the radical of characters

Zhttps://github.com/fighting41love/funNLP
3https://lingua.mtsu.edu/chinese—computing/s
tatistics/index.html

from 101 offensive words, selected from a total of
300 offensive terms. These substitutions involved
modifying 427 Chinese characters using different
radicals.*

Since a single Chinese character can be substi-
tuted with multiple radicals, we followed the prin-
ciple of radical frequency to determine the most
suitable replacements. Specifically, we used the
Xiandai Hanyu Changyong Zibiao (List of Fre-
quently Used Characters in Modern Chinese) pro-
vided by the Ministry of Education . Based on the
individual character frequencies, we selected the
most frequent substitute character with the highest
frequency of occurrence as the replacement. For
example, the character "JRHi" (lewd) was substi-
tuted with "fRM{" following this approach, as these
substitutions closely align with commonly used
radicals in modern Chinese.

This method ensures that the substitutions reflect
both linguistic frequency and the intended meaning
while avoiding arbitrary or non-standard replace-
ments, helping to maintain the readability of the
altered text.

4 Experiments

To evaluate the effectiveness of existing models and
methods on our proposed benchmark, we employed
the following experimental setup and methodolo-
gies. This systematic approach ensures a compre-
hensive assessment of model performance and ro-
bustness in detecting offensive language under var-
ious perturbations.

4.1 Baseline

The evaluation of three state-of-the-art
models—DeepSeek-V3, GPT-40, and Qwen-
Max—revealed notable trends in their performance
under character decomposition (¥%5%) and char-
acter substitution (#5) perturbations. On the
original data, Qwen-Max achieved the highest
accuracy (0.7868) and Macro F1 score (0.7858),
followed by DeepSeek-V3 and GPT-40. After
applying character decomposition, all models expe-
rienced a performance decline, with DeepSeek-V3
dropping to an accuracy of 0.7165 and a Macro F1
score of 0.7150, GPT-40 dropping to an accuracy
of 0.6875 and a Macro F1 score of 0.6839, and
Qwen-Max dropping to an accuracy of 0.7281 and
a Macro F1 score of 0.7267.
*https://ctext.org/dictionary.pl?if=gb

5https://lingua.mtsu.edu/chinese—computing/s
tatistics/index.html
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For character substitution, Qwen-Max again led
with an accuracy of 0.8132 and a Macro F1 score of
0.8122, while DeepSeek-V3 and GPT-40 achieved
accuracies of 0.7752 and 0.7818, respectively. The
performance drop following character decomposi-
tion highlights the increased difficulty posed by this
perturbation type. Notably, Qwen-Max exhibited
the smallest performance degradation, suggesting
stronger robustness to adversarial transformations
compared to the other models. These results un-
derscore the challenges of character-level pertur-
bations and the varying resilience of models in
handling such modifications. Detailed model per-
formance can be seen in Table 1.

4.2 Experiment Settings

To ensure standardized and reproducible outputs
from large language models (LLMs) in our experi-
ments, we utilized the dspy framework. This frame-
work provides a structured approach to prompt en-
gineering and output generation, enabling consis-
tent evaluation across different models and settings.

Prior research has demonstrated that using Chi-
nese prompts yields marginally better performance
in detecting offensive language in Chinese text
compared to English prompts (Xiao et al., 2024).
To align with these findings and maintain consis-
tency, we adopted a uniform Chinese prompt across
all experiments.

For all experiments involving LLMs, we set
the temperature to 0.1 to minimize randomness
in model outputs and ensure deterministic behavior.
All other hyperparameters were kept at their default
values to maintain a fair and controlled evaluation
environment.

4.3 Evaluation Metric

In the field of toxic detection, the F1 score is
widely regarded as the most commonly used eval-
uation metric, while precision is also one of the
frequently employed standards in binary classifi-
cation tasks. However, in previous toxic detec-
tion research, scholars have primarily focused on
whether detection models can effectively identify
toxic content, paying less attention to cases where
normal statements are misclassified as offensive
or toxic. With the growing importance of align-
ing large language models (LLMs) with human
values, the introduction of LLMs into toxic de-
tection tasks has made the issue of false positives
more pronounced. To comprehensively evaluate
the performance of different models in toxic de-

tection, we not only utilize the F1 score but also
incorporate accuracy (Acc) and false positive rate
(FPR) as supplementary metrics. Among these,
accuracy measures the overall performance of the
model across all samples, while the false positive
rate specifically evaluates the model’s tendency to
produce false positive classifications.

4.4 Multi-Stage Mitigation of Radical-Level
Perturbations in Toxicity Detection

4.4.1 Restoring Split Characters for Toxicity
Detection

To address evasion via character-splitting—where
toxic characters are decomposed into component
radicals to bypass detection—we propose a multi-
stage restoration framework using large language
models (LLMs). This method recovers disrupted
semantic structures and improves toxicity classifi-
cation under adversarial perturbations. The proce-
dure involves:

Split Character Detection Given texts with
character-splitting pertubations, an LLM identi-
fies anomalous segments that may reflect character
splitting. This step localizes disrupted structures
indicative of adversarial intent.

Character Restoration Based on identified frag-
ments, the LLM reconstructs the most semantically
appropriate characters, guided by contextual cues.
No handcrafted rules or static lexicons are used,
enhancing generalizability.

Toxicity Classification The restored text is
passed to an LLM classifier to assess toxicity. If
restoration fails or is uncertain, the original input
is used. The model applies context-sensitive rea-
soning to determine toxicity.

4.4.2 Recovering Substituted Characters for
Robust Toxicity Detection

To mitigate radical substitution—where toxic char-
acters are replaced with visually similar but benign
variants—we adopt a complementary multi-step re-
covery pipeline grounded in the perturbation prin-
ciples introduced in Section 3.4.2.

Perturbation Detection An LLM identifies char-
acters whose form suggests radical-level substitu-
tion. These are flagged for possible restoration.

Candidate Retrieval Using a predefined substi-
tution lexicon constructed in Section 3.4.2, we
retrieve plausible original characters for each



Model Data Size ‘ GPT-40 Qwen-Max Deepseek-V3
| Acc MarcoFl FPR | Acc MacroFl FPR | Acc MacroFl FPR
Original Data 28080 | 0.776 0753 02720770 0745 0271 | 0.662  0.653  0.448
Before Split | 0750 0749 0361 | 0.731 0731  0.384 | 0.631  0.626  0.583
After Split 3795 10658 0658 0477|0672 0671 04290539 0518 0730
Multi-Stage Mitigation Method | 0727 0724 0323|0729 0722 0275]0.650 0650  0.502
Before Substitution | 0745 0744 0356 | 0717 0711 0326 | 0.618  0.618  0.541
After Substitution 0057 10693  0.688 03640714 0707 0328|0617 0616  0.549
Multi-Stage Mitigation Method | 0.766 0716 0.086 | 0.745 ~ 0.694  0.103 | 0.681  0.680  0.426

Table 1: Model Performance in Different Conditions

anomaly, ensuring candidates maintain structural
and contextual plausibility.

Contextual Replacement Selection The LLM
selects the most contextually appropriate character
from the candidate pool. Importantly, this step is
conducted without access to the downstream toxic-
ity objective, preserving neutrality in restoration.

Toxicity Classification The reconstructed text is
then classified for toxicity using the same prompt-
ing framework. If recovery is inconclusive, the
original (perturbed) text is used as fallback.

4.4.3 Unified Analysis and Design Rationale

Both mitigation pipelines follow a modular,
prompt-driven architecture that decouples character
recovery from toxicity classification. This design
minimizes task leakage and ensures each compo-
nent operates with a focused objective. By isolating
restoration logic from toxicity prediction, we re-
duce model bias, prevent adversarial overcompen-
sation (e.g., avoiding sensitive terms), and main-
tain the integrity of downstream evaluation. The
shared structure across both pipelines enhances re-
producibility and facilitates principled comparisons
across perturbation types. The prompt we use can
be found in the appendix. 2

5 Results

Table 1 summarizes the performance of three
large language models—GPT-40, Qwen-Max, and
DeepSeek-V3—under both character splitting and
substitution perturbation scenarios. We report Ac-
curacy, Macro F1, and False Positive Rate (FPR)
as primary evaluation metrics to assess model ro-
bustness and reliability.

5.1 Split Perturbation Results

In the “After Split” condition, all models experi-
ence a noticeable performance drop. This degrada-
tion is particularly evident in FPR, with DeepSeek-
V3 rising to 0.730 and GPT-40 reaching 0.477,
indicating that split-character evasion significantly
hinders toxicity recognition.

Our proposed multi-stage prompting method
demonstrates clear improvement across all mod-
els. For instance, Qwen-Max’s FPR decreases from
0.429 to 0.275, and its Macro F1 recovers to 0.722.
Similarly, GPT-40 sees a reduction in FPR from
0.477 to 0.323 while maintaining a stable accuracy.

5.2 Substitution Perturbation Results

In the substitution setting, performance degrada-
tion appears more subtle. The gap between “Be-
fore” and “After Substitution” is relatively small in
terms of Accuracy and F1, but FPR remains high
across all models (e.g., GPT-40: 0.364, DeepSeek-
V3: 0.549). This indicates that while models may
tolerate minor visual substitutions in terms of clas-
sification, they still tend to misclassify benign text
as toxic.

Our substitution recovery method notably re-
duces FPR while improving or maintaining classi-
fication performance. For example, GPT-40’s FPR
drops dramatically to 0.086 and its Accuracy rises
to 0.766. Qwen-Max also benefits, with FPR re-
duced to 0.103 and stable macro scores. DeepSeek-
V3 shows modest improvements, validating the
broad effectiveness of our approach across model
families.

Overall, the multi-stage prompting strategy con-
sistently improves robustness against both types
of perturbations. It restores contextual semantics,
reduces false positives, and enhances toxicity de-
tection under adversarial conditions.



Stage | Chinese Prompt

| English Prompt

Anomaly Detection
S

TR N X BRI SOA 2 i 7 H ) —1> | Please identify the most anomalous Chinese charac-

ter in the following comment text:

Character Replacement
NN GIE
HABEARIER AR TR -

TP SCAS R B S TP D e e —
TEOHTICATE L, SR

Which substitute character is more appropriate for
the anomalous character in the context? Analyze the
semantics and select the one that best fits Chinese
social media context.

Split Character Restora-
tion EERRAVER S (AIEG L)

B, HEHAIERRITL -

Foth N HIXBOR B B RRIIR S, ATRE
o EADFHA
FARE, RUEHENTH AOBRHRN S, S IEIR R VRS

Identify the possibly erroneous segments (words or
components) in the following social media comment.
Then correct the error from a character composition
perspective and provide the revised comment.

Component Recomposi-
tion (EA RN T)

TEIRIER <> A DU AR B R — DT

Please combine the two components inside <> to form
a complete Chinese character. Return the best substi-
tution.

Toxicity Detection

HOEHDF), WRIE TR

"E #M(toxic)" »

EIRIE LA BRI SRR (R HDCE () ek
EERERH
Hi(toxic) » T Z—5H B TAHACHARRIITIL,

TEE BB REROE T, AWHTeRER

Replace the {anomalous character/component} in
the original text with {replacement}, then determine
whether the comment is toxic. Considering the social
media context, classify the comment as either toxic or
non-toxic.

Table 2: Multi-stage prompt design for anomaly recovery and toxicity detection. Each stage corresponds to a

specific subtask in our mitigation pipeline.

6 Discussion

6.1 Lexicon and False Positive

The lexicon-based filtering approach exhibited
a high false positive rate, where non-toxic con-
tent was frequently misclassified as toxic. A pri-
mary reason for this is the prevalence of com-
ments criticizing socially undesirable behaviors
(e.g., fraud, promiscuity), which, despite their
harsh tone, do not constitute offensive language.
This phenomenon poses a significant challenge for
offensive language detection systems, as it blurs
the line between legitimate criticism and actual
toxicity.

To mitigate this issue, future research should pri-
oritize the development of more advanced semantic
understanding and context-aware models. Incor-
porating domain-specific knowledge and leverag-
ing larger, more diverse datasets could help reduce
false positives. Additionally, exploring hybrid ap-
proaches that combine lexicon-based methods with
machine learning models may offer a more robust
solution for distinguishing between toxic content
and socially critical discourse.

6.2 Analysis of Results

The performance of Deepseek in the substitution ex-
periment demonstrates an intriguing phenomenon:
after applying the Multi-Stage Mitigation Method,
its performance metrics improved compared to
before the substitution. This outcome can be at-
tributed to the nature of the substitution dataset,
which is enriched with comments containing vari-
ous keywords. Some of these comments, although

not inherently toxic, triggered false positives in
Deepseek’s predictions. Following the application
of the Multi-Stage Mitigation Method, the align-
ment of the language model with human prefer-
ences led to the rewriting of many originally toxic
comments into non-toxic ones. Consequently, this
method resulted in an overall improvement in the
F1 score.

6.3 Future Works

Addressing offensive language that evades censor-
ship mechanisms through techniques such as char-
acter splitting or using visually similar characters
may involve two potential approaches. One ap-
proach is to employ computer vision (CV) meth-
ods to identify and associate similar characters and
split characters. However, this method is costly
and complicated, as the flexible structure of Chi-
nese characters makes the problem more challeng-
ing. An alternative approach is to use "masking"
techniques, which obscure key offensive terms
while still allowing offensive language to be un-
derstood and recognized through contextual seman-
tic clues—essentially enabling the system to infer
meaning even when specific words are not explic-
itly stated (i.e., "although nothing was directly said,
the intent is still understood"). The dataset we
propose, which introduces perturbations only to
offensive terms, is adaptable to both of these strate-
gies.



7 Limitations

Despite the contributions made by CangjieToxi,
there are several limitations in this study that should
be acknowledged. First, while the dataset intro-
duces novel perturbations such as character split-
ting and character substitution, it remains limited
to Chinese language contexts, and the effective-
ness of these evasion techniques may vary in other
languages with different writing systems or char-
acter structures. Second, the perturbation methods
used in this work, although effective in creating
subtle forms of offensive language, are still con-
strained by the manual construction of these trans-
formations, and there may be additional, unfore-
seen evasion tactics that were not covered. Third,
the performance of state-of-the-art models on our
dataset demonstrates clear limitations, but further
research is needed to explore new model architec-
tures and training methodologies that can better
adapt to these types of perturbations. Finally, while
we have focused on offensive language detection
within social media contexts, the dataset’s appli-
cability to other domains, such as formal text or
legal documents, remains to be evaluated. Future
work will aim to expand these methods, explore
additional types of perturbations, and assess the ro-
bustness of models across different languages and
content domains.
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