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Abstract— We present a scalable, bottom-up and intrinsically
diverse data collection scheme that can be used for high-level
reasoning with long and medium horizons and that has 2.2x
higher throughput compared to traditional narrow top-down
step-by-step collection. We collect realistic data by performing
any user requests within the entirety of 3 office buildings
and using multiple embodiments (robot, human, human with
grasping tool). With this data, we show that models trained
on all embodiments perform better than ones trained on the
robot data only, even when evaluated solely on robot episodes.
We explore the economics of collection costs and find that for
a fixed budget it is beneficial to take advantage of the cheaper
human collection along with robot collection. We release a large
and highly diverse (29,520 unique instructions) dataset dubbed
RoboVQA containing 829,502 (video, text) pairs for robotics-
focused visual question answering. We also demonstrate how
evaluating real robot experiments with an intervention mech-
anism enables performing tasks to completion, making it
deployable with human oversight even if imperfect while also
providing a single performance metric. We demonstrate a single
video-conditioned model named RoboVQA-VideoCoCa trained
on our dataset that is capable of performing a variety of
grounded high-level reasoning tasks in broad realistic settings
with a cognitive intervention rate 46% lower than the zero-
shot state of the art visual language model (VLM) baseline
and is able to guide real robots through long-horizon tasks.
The performance gap with zero-shot state-of-the-art models
indicates that a lot of grounded data remains to be collected
for real-world deployment, emphasizing the critical need for
scalable data collection approaches. Finally, we show that video
VLMs significantly outperform single-image VLMs with an
average error rate reduction of 19% across all VQA tasks.
Thanks to video conditioning and dataset diversity, the model
can be used as general video value functions (e.g. success and
affordance) in situations where actions needs to be recognized
rather than states, expanding capabilities and environment
understanding for robots. Data and videos are available at
anonymous-robovqa.github.io

I. INTRODUCTION

The field of textual high-level reasoning has seen ma-
jor breakthroughs recently with large language models
(LLMs) [1, 2], while progress has also been made in visual
language models (VLMs) [3], high-level reasoning that is
grounded in the real world remains a challenging task and
critical for robotics. Can the state-of-the-art VLMs trained
on available multimodal datasets perform grounded tasks
with high accuracy in the real-world? We aim to answer the
question by showing that new large scale data collection are
still needed to achieve lower error rates outside of lab envi-
ronments. A major difficulty for VLMs stems from the high-
dimensionality of the real world which, accordingly requiring
large amounts of multimodal data (video, language, actions)
for training. Hence a major contribution of our work is to

validate more efficient data collection approaches than the
traditional top-down step-by-step collection [4], by reducing
overheads such as resets and scene preparations and leverag-
ing the low costs of human embodiment collection. With a
crowd-sourced bottom-up approach where long-horizon tasks
are decided by real users the resulting medium-horizon steps
are naturally highly diverse, relevant and on-distribution for
users. Not only it is a more efficient way to collect medium-
horizon steps, we also get long-horizon coherent sequences
which can train models to perform planning tasks. With a
2.2x throughput increase compared to the traditional method,
it is preferable to collect data this way even if long-horizon
tasks are not needed. While we do collect robot actions
in this dataset, the focus of this paper is on high-level
reasoning tasks, we can hence train on embodiments which
do not come with motor commands and observe transfer of
knowledge between embodiments. We find in Sec. IX-C that
for a fixed collection budget, it is beneficial for high-level
reasoning to jointly with cheaper human embodiment even
when evaluating on the robot embodiment only.

Our contributions can be summarized as follows:
1) We demonstrate a scalable, bottom-up and intrinsically

diverse data collection scheme that can be used for high-
level reasoning with long and medium horizons and
that has 2.2x higher throughput compared to traditional
narrow top-down step-by-step collection and show ad-
ditional cheap human embodiment data improves per-
formance.

2) We release a large and diverse cross-embodiment
dataset of 829,502 (video, text) pairs for robotics-
focused visual question answering.

3) We demonstrate a single video-conditioned model
trained on the dataset that is capable of performing a
variety of tasks with higher accuracy than baselines and
is able to guide real robots through long-horizon tasks.

4) We establish a robotics VQA benchmark and long-
horizon planning benchmark with an intervention mech-
anism on real robots providing a single performance
metric and enabling performing tasks to completion,
making it deployable with human oversight even when
imperfect.

II. DATA

Collection & Dataset: In Fig. 1 we describe the collection
process, from user request to VQA tasks generation. We
collect episodes from any long-horizon tasks within the en-
tirety of 3 office buildings and with 3 embodiments (Fig. 3),
resulting in 238 hours of video (10 days), 5,246 long-horizon
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<random task>
Q: possible right now? A: no

<task n>
Q: satisfied? A: yes

Q: what action is possible right now?
A: <task n>

<task n>
Q: possible right now? A: yes

Q: what is likely to happen next? 
A: <task n>

<long-horizon> 
Q: immediate next step? A: <task n>

<task n>

discriminative 
affordance
(negative)

<task n+1><task n-1>

discriminative 
affordance

(positive)

generative 
affordance

success
(positive)

planning

planning
with context

planning
remaining steps

future prediction

past description

current goal is: <long-horizon>. 
steps so far: 1- <task 1> … n-1- <task n-1>
Q: immediate next step? A: <task n>
current goal is: <long-horizon>. 
steps so far: 1- <task 1> … n-1- <task n-1>
Q: remaining 5 step? A: 1- <task n> … <task n+4>

Q: what just happened?
A: <task n>

All medium-horizon tasks 
from training set

medium-horizon tasks:

<long-horizon>

“can you make me 
a coffee please?”

2- Data collection
(robot or
human embodiment)

1- Long-horizon user request

3- Hindsight labeling

4- Tasks Augmentation
(free)

<task n>
Q: satisfied? A: no

success
(negative)

Fig. 1: Data collection procedure: Given long-horizon user requests, a human operator teleoperates a robot to fulfill the task. Medium-
horizon tasks are then labeled in hindsight via crowd-sourcing, with temporal segmentation and task instruction for each segment. Finally,
from a sequence of labeled segments, we automatically generate 10 types of question/answer pairs.

episodes and 92,948 medium-horizon episodes. The average
long-horizon episode lasts 102 seconds, the medium-horizon
average is 14s. Because evaluation of freeform text answers
are performed by humans in our experiments, we keep the
validation and test sets small on purpose with approximately
1,000 VQA entries for each (coming from 50 episodes each).
While there can be overlap in scenes between training and
val/test, there is no overlap in episodes. For more statistics,
see Sec. IX-B.

Task diversity: To ensure that our dataset and benchmark
do not overfit to a specific environment, domain or task, we
collect examples over a wide range of tasks compared to
more traditional collections [5] where a fixed and small list
of tasks is decided in advance by researchers and engineers
in a top-down fashion. We opt for a bottom-up approach
where a large number of tasks are crowd-sourced by users
and tele-operators. This favors breadth and a better alignment
with a distribution of requests coming from real users.
This results in high tasks diversity (26,798 unique medium-
horizon instructions, 2,722 unique long-horizon instructions).

Throughput and costs: Much of the throughput gains
reported in Fig. 2 come from collecting medium-horizon
episodes in a continuous fashion without needing to reset
the scene or the robot. Note that the hindsight labeling
process can be parallelized via crowd-sourcing and does not
impact the throughput if performed in parallel, however it
remains a cost in the collection budget. The VQA tasks
however are generated for free by taking advantage of the
known sequence of past and future tasks and positioning the
questions in time with respect to different known semantic
points (e.g. before or after a medium-horizon task was

collection speedup:     x 2.2                x 6.9              x 13.8

Fig. 2: Throughput gains compared to the traditional top-down step-
by-step collection approach. The throughput of our long-horizon
collection is 2.2x higher for robot collection and 13.8x higher with
human bodies (compared to the robot used in our experiments).

performed).
Chain-of-Thought: Decomposing high-level goals into

the defined tasks allows for robots to manifest its thinking
process when carrying out long-horizon plans. Moreover,
these tasks are provided as natural language questions and
answers, and can be viewed as a series of Visual Question
Answering (VQA) steps. This formulation is similar to chain-
of-thought for language model prompting [6]. We also note
concurrent work [7] which demonstrates that mimicking
step-by-step human thought improves planning accuracy.

III. MODELS

A. RoboVQA-VideoCoCa

We train a new model called RoboVQA-VideoCoCa de-
rived from the VideoCoCa model [8], which is a video
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Fig. 3: Examples of 3 embodiments in the dataset: robot, human (single) arm, human using a grasping tool.
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Fig. 4: VQA Error rates: we evaluate all models on the test set using human raters. We observe that state-of-the-art methods do not
perform well in realistic settings in zero-shot, thus motivating the need for further scalable data collections. We also observe substantial
gains when using video (16 frames) vs image conditioning.

language model extending CoCa [9]. It uses an encoder-
decoder architecture combining contrastive pretraining (like
CLIP [10]) as well as generative pretraining (like SimVLM
[11]) between video and text modalities. Unless otherwise
stated, we use a VideoCoCa base model of 383M parame-
ters with the initial checkpoint trained on image-captioning
tasks as the original paper did, and fine-tune the model
on the RoboVQA video-text datasets. We choose a video-
conditioned model to explore the importance of video in
answering the visual questions in our dataset and find sub-
stantial benefits to video conditioning (see Fig. 17 and 16).

B. Baselines

To compare with our finetuned model, we consider the
following state-of-the-art baselines which have similar ca-
pabilities in visual question answering and planning for
robotics.

PaLM-E [3] is a visual language model built from pre-
trained ViT [12] and PaLM [2] LLM models, which projects
images into the token embedding space of the pretrained
LLM. In our experiments we test PaLM-E-562B zero-shot,
without training on RoboVQA dataset. While not finetuning
is not a head to head comparison of models, the point of
this comparison is establish how well state-of-the-art models
trained on prior datasets can perform in the real world, and
motivate further scalable data collection efforts to address
the remaining performance gap.

Planning Methods. We experiment with four baseline
planning methods: two of which use RoboVQA-VideoCoCa
and PaLM-E (zero-shot), as end-to-end planning models. As
two other baselines, we adapt the methods of SayCan [5]

and Grounded Decoding [13], which use a text-only LLM
(PaLM [2]) in either phrase-level or token-level decoding
guided by a visual affordance function (using RoboVQA-
VideoCoCa as a video value function for affordance).

IV. BENCHMARKS

A. VQA Benchmark

We first evaluate the model performance on individual
tasks, where each task consists of a video segment and a
question. The inference result is compared using exact match
against prior human evaluation results stored in a central
database as correct/incorrect for the video-question pair. The
inference results for which no match is found are then
collected for human raters to evaluate. During evaluation,
a human rater is presented with the exact video segment
and question as presented to the model. The rater is asked
to either mark the model-generated answer as correct or
incorrect, in which case the rater can propose a correct
answer. All answers are added to the database, with the
correctness of each answer marked accordingly.

We report the error rate for all models in Fig. 4 and find
that there remains a substantial gap in performance for zero-
shot state-of-the-art models compared to the finetuned model.
While this is not too surprising, it is a valid question to ask
when seeing good qualitative results by recent VLMs. Here
we quantitatively prove that further scalable data collection
efforts are required when deploying in the real world. In this
graph we also make the case for video conditioning over
image conditioning by presenting substantial gains with the
former.
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Cognitive Model Physical Model Multi-turn Long-Horizon Planning Intervention Rate

Evaluation #1: pre-recorded

44.0%

Evaluation #2: live real-world

47.67%

Evaluation #3: fully autonomous

Training Inference (policy) Total (per episode average)
Model procedure Size time # frames # tasks # steps domain bodies cognitive physical average

100 long-horizon multi-turn planning tasks on  videos (robot and human embodiments)

SayCan /
PaLM

Language
pretraining

only &
RoboVQA

Affordance
Model

540B

150h+
(30k

affordances)
1

Pre-recorded
video 100 854 Broad

Robot
&

Human

(50/50%)

98.8%

Grounded
Decoding /
PaLM

~10s
(8

affordances)
1 95.5%

PaLM-E

(Zero-Shot)
Finetuned on

SayCan/
Fractal

12B 1s 1 81.4%

RoboVQA-
VideoCoCa
(ours)

Finetuned on
RoboVQA 383M 1s 16

 10 long-horizon multi-turn planning tasks in a  setting, with human teleoperation as policy

PaLM-E

(Zero-Shot)
Finetuned on

SayCan/
Fractal

12B 1s 1
Live

human teleop. 10 ~60 Broad Robot

78.2%
± 7.6%

RoboVQA-
VideoCoCa
(ours)

Finetuned on
RoboVQA 383M 1s 16 ± 9.1%

1 long-horizon multi-turn planning tasks in a live real-world setting with a policy X for control ( )
RoboVQA-
VideoCoCa
(ours)

Finetuned on
RoboVQA 383M 1s 16 policy X 1 5 Narrow

/ Easy Robot 40.0% 0%
(easy tasks) 20.0%

100%
(teleop.)

99.4%

97.8%

90.7%

72.0%

100%
(teleop.)

92.8%

73.8%

Fig. 5: Planning benchmarks with Intervention: evaluation #1 evaluates 854 planning steps on long-horizon episodes from RoboVQA
dataset, evaluation #2 is performed live on a robot teleoperated by a human, while evaluation #3 is controlled end-to-end by our model
and a policy. Note that thanks to human intervention in the loop, all tasks are performed to completion even when the model makes
mistakes.

B. Planning Benchmark with Intervention

Intervention: In Fig. 5, we propose 3 different evaluations
of long-horizon planning. Each evaluation is measured by
intervention rate, which we further decompose into cognitive
for the high-level text domain and physical for the low-
level motor command domain. However all progress can be
measured with the single intervention rate which averages the
cognitive and physical rates. This distinction is useful when
physical actions are teleoperated (100% physical interven-
tion) to decouple high-level evaluations from low-level ones.
Because the RoboVQA dataset is very broad and diverse, we
need an evaluation procedure that can test that entire breadth.
Current low-level policies however tend to only perform in
very narrow domains, this decoupling thus allows us to test
the full breadth of tasks in evaluations #1 and #2. See Fig. 6
for an example of cognitive intervention in the chat window
between the user, the model and the intervention operator.

Offline Video Results: In evaluation #1, we run models on
100 long-horizon episodes (robot and human embodiments)
from the RoboVQA dataset which amounts to 854 planning
steps in total. Models are given the long-horizon instruction
and need to output medium-horizon plans, which are graded
by humans. Note that the SayCan and Grounded Decoding
baselines have slow inference time which makes them im-
practical to run in a live settings (hence not showing in other
evaluations). Similarly, the inference time of the PaLM-E
562B model is too slow for real time ( 30s), so we use a
smaller version here. Note that despite being is 30x smaller,
our model outperforms the state-of-the-art model by 46%.

Live Real-world Results: In evaluation #2, the high-level
models are given a long-horizon instruction and provide

medium-horizon plans in real time to a real robot teleop-
erated by a human. In evaluation #3, a policy is deployed
instead of a human teleoperator, but the domain is a lot
narrower given the limited abilities of the policy. See videos
of these evaluations at anonymous-robovqa.github.io. While
with evaluation #3 we can obtain a much lower intervention
rate thanks to the policy deployment, the domain is a lot
narrower and emphasizes the need for a decoupled evaluation
for high-level reasoning in broad domains.

V. ANALYSIS

A. Task Augmentation Matters

In Fig. 7 we trained models on different following set
of tasks: planning only, context-planning only, planning +
success + affordance, context-planning + success + affor-
dance, or all tasks. Note that when comparing planning vs.
all tasks, the model trained on planning only sees 38M
examples of planning task, while the one trained on all tasks
sees roughly 1/8 the number of samples for the planning
task. We find that the model trained on all tasks is often
better of comparable than the models dedicated to a subset
of tasks, with the exception of the success task. For example
training on all tasks leads to better planning (70.9% error)
compared to training on planning only (77.2% error). From
a collection cost perspective, it is interesting to note that
despite coming from the exact same set of instructions,
the free tasks augmentation yields better results at no extra
cost, hence task augmentation matters for performance and
collection scalability.
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Fig. 6: Example of grounded chat with cognitive intervention. Our model ”Brain” is tasked with the following task at the beginning
of the chat: ”take the bag and cap on the desk and hang them on the coat rack” in this case. The bottom of the chat shows the most
recent messages. The model is ran on an existing long-horizon video from the RoboVQA dataset and produces medium-horizon plans to
fulfill the long-horizon request. An operator is in the chatroom and validates each plan or provides a correction if incorrect. The user is
also able to ask questions at any point in time. Here we see that the operator intervened and the system reported a cognitive intervention
rate of 12.5% at this point of the episode.
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Fig. 7: Error rates for models trained with different sets of
tasks. Each model is trained and evaluated on the (robot + human)
dataset, but using different subsets of tasks. We find that training on
all tasks leads to better planning (70.9% error) compared to training
on planning only (77.2% error).

B. Tasks Transfer via Cross-Embodiment Data

In Fig. 14, we compare error rates on the test split using
RoboVQA-VideoCoCa trained on robot embodiment only,
human embodiment only, and their combination. The test
set contains only robot embodiment data. Despite cross-
embodiment, we find that errors are below 100% for all
tasks when training on human data only, indicating human
data by itself is useful to acquire a grounded understanding
of videos with robot embodiment. Furthermore, training on
both embodiments performs better than training on robot
data only, indicating that extra data with human embodiment
does not hurt performance when evaluating on the robot

embodiment. We use [5] as a baseline, which uses a small,
fixed list of 60 tasks and can only be evaluated on the
planning task. We also provide the affordance answers from
RoboVQA as affordance function to SayCan for planning.
Similarly, we evaluate on the joint human and robot test split
in Fig. 15. While it is not surprising that training on both
embodiments performs best on the robot+human test set, we
also shows it is the most general model as it performs better
in all situations. More analysis is available in Sec. IX-C.

C. Importance of Video modeling

We investigate performance gains from video by training
our model with (1, 2, 4, 8, 16) frames in 16 and find
substantial error reductions in Fig. 17 between 1 and 16
frames. As expected, modeling with more frames yields
better results, as it captures longer temporal dynamics for
more accurate visual grounding.

Fig. 8: RoboVQA-VideoCoCa used for video success detection.
In blue are the raw answers to the question ”put purple marker on
the table Q: satisfied? A:”, the confidence is shown in red and the
answer filted by confidence is shown in green.
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D. Video Value-Functions

We evaluate our model as a general grounded value-
function from video and observe that it can provide stable
binary detections as shown in Fig. 8. Moreover, when
filtering by the confidence of the yes/no tokens, we can
further improve the accuracy of the success detection. These
value functions can be used for closed-loop planning to
know when a step is performed. Additionally, thanks to the
dataset breadth and to video conditioning, the value functions
can give richer understanding than traditional image-based
success or affordance detectors.

VI. RELATED WORK

Vision-Language Models. Recently many methods [10, 14,
15, 9, 11, 16, 12] have been proposed that aim to train
vision-language models (VLMs) on large-scale image-text
pair datasets. We find the features learned by these methods
generalize to robotic datasets. In this work, we also fine-tune
a pre-trained vision language model called VideoCoCa [8]
on conversation data grounded in long-horizon videos. The
advantage of this VLM is that it is the encoder can consume
full videos which helps in fine-grained temporal reasoning
required to solve the tasks introduced in the RoboVQA
benchmark.
Video Captioning. Our task is closely related to the task of
video captioning [17, 18, 19, 20, 21] which is a well studied
problem in computer vision. In fact, we fine-tune a pre-
trained video-captioning model VideoCoCa on these long-
horizon videos. Different from the video captioning problem,
all the videos in our fine-tuning dataset are egocentric. Also,
we collect segment labels for a long-horizon task executed
by either a robot or human. Furthermore, we augment these
segments with a variety of question-answer pairs that add
more supervision to the model so that an agent can execute
long-horizon tasks.
Video Datasets with Text Annotations. Recently many
large-scale video datasets have been introduced [22, 23, 24,
25, 26, 27, 28, 29] that include videos of humans performing
tasks with text narrations or question-answer annotations.
Ego4D is the most similar dataset to the RoboVQA dataset
because Ego4D also has egocentric view of daily human
activities annotated with dense narrations. However, our
dataset differs in two key aspects. First, we collect human
and robot interactions in the same environment. Second,
our focus is on tasks that a robot is capable of doing.
We hope that by lowering the domain gap between the
human and robot videos we can achieve more transfer
from human videos (which are faster to collect) to robot
videos. [30] also explores scalable ways to collect language
data with unstructured play [31], however they rely on
an LLM requiring a prompt with a scene description that
matches the environment’s state and is limited to 25 medium-
horizon instructions. Like RoboVQA, TEACh[32] is another
dataset that also contains interactive dialogues required to
solve household tasks. However, TEACh consists of data
in simulated environments while our dataset is collected in

real kitchen and office environments with both humans and
robots.
Language Models for Planning. [33] used a large language
model (LLM) to produce plans for robotic tasks. This has
been followed up by many works that also use LLMs to
produce feasible next steps for a robot [5, 3, 34, 35, 36].
One advantage of using LLMs to plan is that the output of
these models can be used as input to language-conditioned
policies [37, 4, 38] that may have been trained independently.
Intervention Rate. Intervention Rate is a commonly used
evaluation metric [39, 40, 41] in robotics and self-driving
car literature for measuring the performance of policies. In
this work, we use it as a metric and as a mean to perform
all tasks to completion, a necessary condition for real-world
deployment.
Chain of Thought Prompting. [42, 43, 6] use the idea of
prompting a language model with the process or steps to
perform a reasoning task. The authors observe that prompting
allows the model to improve performance on symbolic
reasoning tasks like algebraic problems. Inspired by those
results, we also provide rationale or thought supervision to
the model by providing the sub-tasks as hindsight labels for
successfully achieving the long-horizon task.

VII. LIMITATIONS

Some long-horizon episodes may be too repetitive and
easy, thus we have filtered out episodes with more than 5
identical medium-horizon steps. Subsequently we observed
gains in generalization. Additionally we have not com-
pared the effectiveness of the proposed human-and-robot
dataset/benchmark with human-only dataset/benchmarks like
Ego4D [29], EpicKitchens [44] etc., which merit careful
study in our future work.

VIII. CONCLUSION

We have shown a long-horizon collection approach with
higher throughput and high diversity and breadth and re-
leased the resulting dataset for the benefit of the robotics
community. We have demonstrated on real robots a number
of capabilities learned with this dataset and established
planning benchmarks with intervention as a metric and as
a means for deployment.
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IX. APPENDIX

A. Random frames from training set

Fig. 9: Random frames from training set.

B. Dataset Statistics

As reported in Fig. 10, the entire dataset is a collection of
5246 long-horizon episodes (5046 for training and 100 for
validation). Each episode has 1 long-horizon instruction and
a varying number of medium horizon instructions that are
temporally segmented. There are 2638 unique long-horizon
instructions in the training set. Each unique long-horizon
instruction has an average of 2.01 episodes collected, median
is 1 and maximum is 90. See Fig. 11 for the number of
training episodes per long-horizon instruction. In Fig. 12 we
show the number of training episodes that have the same
long-horizon instruction as a test episode. We find that 46%
of the test episodes do not have a long-horizon match in
the training set. We show random frames from the training
set in Fig. 9 and random long and short horizon instructions
from the training set in IX-D. We also provide extensive
analysis of the language found in the training set in IX-E by
automatically breaking down short-horizon instructions by
categories (objects, actions, locations and attributes) using
an LLM. This analysis found 2862 objects (e.g. ”tissue
box”, ”purple color plate”), 680 skills or verbs (e.g. ”add
something into something” or ”go out of a room”), 3322
locations or spatial relations (e.g. ”in the green plate”, ”left

trash can”) and 901 attributes (e.g. shapes, color). Note
that these numbers are only indicative as some objects can
be redundantly described for example, see IX-E for more
details.

Entire dataset Training set Validation set

% of data

VQA tasks (8 types)
# (video, text) pairs 829,502 - 798,429 18,248

Long-horizon instructions
# instructions 5,246 - 5,046 100
# unique instructions 2,722 - 2,638 94
average length 163.4s (2m 7s) - 163.6s 161.0s

Medium-horizon instructions
# instructions 92,948 - 89,227 1,850
# unique instructions 26,798 - 25,880 885
average length 14.2s - 14.2s 13.5s

Episodes
# episodes 5,246 100.0% 5,046 100
# robot episodes 2,350 44.8% 2,274 41
# human episodes 2,896 55.2% 2,772 59

total duration 238.0 hours
(~10 days) - 229.3 hours

(~10 days) 4.5 hours

average # medium-horizon steps per
episode with low overlap (<.5) 9.5 - 9.5 10.0

Locations (# long-horizon episodes)
Building 1 3,190 60.8% 3,078 58
Building 2 1,507 28.7% 1,442 32
Building 3 485 9.2% 464 10
Unkown building 64 1.2% 62 0

Language analysis (approximate)
# unique objects 2862 - 2773 254
# unique verbs 680 - 671 115
# unique locations 3322 - 3199 220
# unique attributes 901 - 861 108

Robot data
# long-horizon instructions 2350 - 2274 41
# medium-horizon instructions 61153 - 58916 1140
# unique long-horizon instructions 1214 - 1181 37
# unique medium-horizon instructions 19448 - 18772 597
total duration 185.3 hours

Human data
# long-horizon instructions 2896 - 2772 59
# medium-horizon instructions 31795 - 30311 710
# unique long-horizon instructions 1551 - 1499 57
# unique medium-horizon instructions 8786 - 8499 300
total duration 52.7 hours

Fig. 10: Dataset statistics.

Fig. 11: Number of training episodes per unique instruction: the
maximum number of episodes for a unique long-horizon instruction
is 90, the average 2.01 and the median is 1. There are 3894 training
episodes which yield 1939 unique long-horizon instructions.
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Fig. 12: Number of training episodes that have the same long-
horizon instruction as a test episode. Test episodes were sampled
randomly and hence follow a similar distribution as observed in
Fig. 11. Among the 43 episodes in the test set, we find that 23
of them have at least one episode with the same long-horizon
instruction in the training set. For 20 of them (46% of the test
set), the long-horizon instruction is not present in the training set.

C. Comparing Embodiment Mixtures

Robot collection throughput will often be a factor of
the cost including time, money, tele-operator training and
availability, hardware maintenance etc., while humans are
already expert of their own embodiment, collecting data with
much less cost and cycle than robots. When factoring in all
of these parameters into a collection budget, we can see that
robot-to-human collection cost ratios and throughputs can
vary wildly depending on all of these parameters. It is hence
a critical question while scaling up data collection to know
which data mixture for a given budget leads to the lowest
error rates.

We explore this question in Fig. 13 by looking at the
data yields for a fixed collection budget of 500,000 VQA
conversations, and report the performance for different con-
figurations in Figure 13-b to analyze the trade-offs between
different mixtures. We find that even if the robot-human ratio
is 1.0 and only evaluating on the robot test set, the error
rate is comparable when training on the equal robot250k-
human250k mixture (62.4%) compared to the full 500k robot
dataset (62.7%), while also being significantly lower on the
human test set (53.9% vs 67.0%). Not only there is no
downside for the robot performance to mix human data, it
also makes the model more general and usable for other
applications that require human embodiment understanding.

Similarly we find that when the robot-human cost ratio
is 4.0, the performance of the mixed dataset (robot-62k +
human-250k) on the robot test set is similar to the robot-only
125k dataset (65.3% vs 63.5%) while also being significantly
lower on the human test set (51.1% vs 68.7%). We also
observe that the performance gains seem rather small when
training on 500k robot samples vs 125k, and that perfor-
mance on human data degrades slightly when increasing
robot data from 62k to 250k. We conclude that this analysis
validates the common intuition that human data collection is

an efficient way to scale up data collection for robots, despite
the embodiment differences.

D. Instructions Samples

We print 50 random instructions from the training set for
both long-horizon and short-horizon below to get a sense of
what the data looks like.

50 long-horizon instructions:
• please place all of the highlighters into the pen holder
• please clean up the spill and put cup back on mouse

pad
• Please flip the bowls and pickup the yellow, pink and

green candies from the floor and place them in bowls.
Then restock the chips into the bin.

• please grab a small bin from the cart, place it on the
table, put the red pens on the table in it, then put it back
on the supply cart

• empty the chips onto the counter
• Please flip the bowls and pickup the yellow, pink and

green candies from the floor and place them in bowls.
Then place the tongs into the bins.

• Please flip the bowls and pickup the yellow, pink and
green candies from the floor and place them in bowls.
Then pick up the tongs from floor and place in bins.

• please clean up the pistachios spill on desk
• I am feeling a little sick, can you please get me a covid

test in the cabinet at the end of the building, as well as
return it back onto my desk.

• put fruit on the bookshelf
• fill the bowl with apples
• prepare a cup of coffee with the espresso machine.
• place candies into middle bowl and blue chip bag in left

bowl
• place items from counter to bin
• I don’t want the water anymore. Can you pour the water

into the sink and then throw the cup away
• move items from table to cart
• can you take the wireless mouse box out of the filing

cabinet and put it on top of the table for me
• I am done using the room can you turn off all the lamps.
• Tidy up the mk table by straightening out the fruit

labels, lining up the utensil holders and straightening
the honey bottle platform

• there is rubbish on the table, please throw them away
into the correct places in the disposal bins on the floor
by the door

• i’m done writing in my notebook, please close it up and
return the pen to the pen holder

• please bring my green shopping bag from the coat rack
to the table

• separate the toys and microfiber cloths into different
baskets.

• please remove the chips from the bowl and place them
in the top draw.

• I am done drinking the coffee can you throw it in a
trash can and get me some laffy taffy from MK kitchen
to my desk.
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robot cost = 1x human cost

(a)

(b)

Reference budget for 
other mixtures on the right

robot cost = 2x human cost robot cost = 4x human cost

125k 62k + 250k500k 250k + 250k

robot cost = 8x human cost

Fig. 13: Possible embodiment mixtures for a fixed collection budget. This graph illustrates the possible trade-offs in total amounts of
VQA samples collected for a fixed collecting budget and depending on the collection cost ratios between robot and human embodiments.
In (a) we simulate different cost ratios by reducing the dataset size of the robot-embodiment dataset while keeping an equal budget for
each embodiment. We calibrate this graph with a reference fixed budget that can produce approximately 500,000 VQA conversations at
human collection cost. In (b) we report the error rates of each mixture (average error rate over all tasks). We find that mixing embodiments
is overall beneficial even when the collection costs are the same and even when evaluating on the robot embodiment data only.
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Fig. 14: Error rates on robot-only test set, comparing models trained on robot only, human only or both embodiments. We observed
that while it is not trained on robot data, the model trained on human data still performs with less than 100% error. We also find that the
cross-embodiment training is beneficial even when evaluated on robot data only.

• please put the sugar packets in the tray
• Can you refill my water cup and replace the cap and

straw?
• Restock the Numi tea boxes into the correct places
• put the chips in the bin.
• put all the snacks in the tray.
• move the mouse box from the Whitney conference room

to the dining booth
• Please place the cookie squares into the tray.

• please stock caddy for phone room
• pick the apple out of the jar and take it to phone room

2a3
• place only the green pears in the bowl
• Restock the ice packs and bandage rolls
• put all the screwdrivers in the cup
• please get the colored plastic cups from the top drawer

and put them on the countertop
• empty bin onto the table

11



Tasks

E
rr

or
 ra

te
 (e

va
lu

at
ed

 o
n 

hu
m

an
 a

nd
 ro

bo
t d

at
a)

0.0%

25.0%

50.0%

75.0%

100.0%

All ta
sks

Planning

Planning With Context

Remaining Steps

Success

Discrim
inative Affordance

Generative Affordance

Past Description

Future Prediction

Trained on robot data (625k) Trained on human data (250k) Trained on robot + human data (875k)
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Fig. 16: Error rates for video model trained with different number of frames. The model is trained on 875k samples (robot + human)
and evaluated on the (robot + human) test set. We find that 16 frames yields the best results.

• open locker 17. then bring bag of chips from desk 2p2a
to locker. close locker 17.

• throw away the cocunut water
• Put the red pens in the cup and bring them to a table

in the mk, then bring the large postit notes to the table
also

• make a virtal line of the plants and sort them by hight
• please pick up the trash on the table and throw it away

into the compost
• bring a usb c charger from the bookshelf to the desk in

the whitney room
• take out duck from plate on counter in a group
• put duck into the basket
• i’m finished with this hint water, please go recycle it in

the micro kitchen for me and then bring me back a bag
of lesser evil popcorn, cheese flavor

• Please flips the bowls then seperate the green, yellow

and pink candy. Then remove the tongs and the forks
from bins and place them on table.

• put the fruits in the basket
50 medium-horizon instructions:
• Touch the green bag
• go away from the table
• Grab the tissue
• place the banana into the small bowl
• drop the cups on the table
• place strawberry hint water bottle in the tray
• place green marker in the cup
• Drop the green candy packet in the container
• Place the black book on the table
• Pick the bag on the table
• Arrange the white packet in tray
• open the cap of jar
• place the yellow packet in glass
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• Put the tilted cup up right on the table
• Release the orange marker into the left holder
• Turn to the right
• drop yellow candy into the left bowl
• place the cup backward
• drop the blue pen on a table
• open the white box
• Put orange bowl in the box
• place tissue in the tray
• Put the banana on the white table
• move away from the rack
• place 2 pistachio in the vessel
• move away from the hanger
• Place the square symbol in the baby pink box
• Move your arm towards the right chair
• place the lead on the glass
• Put the paper bag in the black container
• put paper clip in the rectangular stand
• move to the orange packet
• throw the tissue paper in dustbin
• Place the red pen on the table
• move towards the apple
• Move away from the hint bottle
• Go to the right side chair
• Place the left indoor plant on the table
• draw R on board
• put sugar packets in the container
• Place the 2 red packets on the table
• move to the orange cable on the table
• Drop the white pebble in the transparent glass
• drop the black container in the box
• Draw a diagonal line from left
• place the black cart to the corner
• Put blue cup on the table
• drop the apple on the floor
• Place the red can in fridge
• pick the sanitizer

E. Dataset Language Statistics Analysis by LLM

We use an LLM to extract different attributes from each
short-horizon instruction from the training set and find:

• 1795 objects, e.g. ”tissue box”, ”purple color plate”.
• 494 actions, e.g. ”add something into something”, ”go

out of a room”.
• 2064 locations, e.g. ”in the green plate”, ”left trash can”.
• 462 attributes, e.g. shapes, color.
Note that no clustering is performed and these lists contain

redundant descriptions for each categories, the counts above
are not meant to represent unique instances. In subsequent
sections we display the full lists for each category above
along with their parent categories inferred by the LLM.
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