Under review as a conference paper at ICLR 2026

TOWARDS EXPANDING-NODE SPATIAL-TEMPORAL
FORECASTING: A STRUCTURED NODE INTERACTION
PROMPTING PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid expansion of sensor systems, such as traffic networks, climate moni-
toring, and energy scheduling, poses new challenges for spatial-temporal series
forecasting. While existing models have achieved strong performance under the
fixed-node assumption, they rely on node-dependent parameters and fail to adapt
when the network evolves, i.e., when old nodes are removed and new nodes with
limited history are added. This expanding-node forecasting scenario introduces
two critical challenges: (1) learning heterogeneous node representations without
coupling learnable parameters to node count, and (2) enabling effective adaptation
to new nodes with scarce observations. To tackle these challenges, we propose
SNIP (Structured Node Interaction Prompting), a model-agnostic framework that
constructs static spatial-temporal priors from historical observations and topol-
ogy, and dynamically refines them during model training. Specifically, SNIP gen-
erates structured priors from three perspectives: periodic patterns across nodes,
spatial-temporal interactions under time delays and graph structural information.
These priors are projected into model as node promptings and then dynamically
refined. For new nodes, SNIP initializes priors by similarity-weighted mixtures of
old nodes and updates them with limited history, enabling efficient few-shot adap-
tation. Extensive experiments on multiple datasets demonstrate that SNIP outper-
forms state-of-the-art baselines in expanding-node scenarios. Beyond accuracy,
SNIP provides plug-and-play generality and computational efficiency, bridging
the gap between fixed-node precision and expanding-node adaptability in spatial-
temporal forecasting.

1 INTRODUCTION

Spatial-temporal forecasting is crucial in cyber-physical systems such as traffic networks, climate
monitoring, and energy scheduling. Despite recent advances, most models still rely on the fixed-
node assumption: training and inference are performed on a static node set, with parameters explic-
itly tied to node count. However, real systems are rarely static. Nodes may be added (e.g., new road
sensors, weather stations) or removed (e.g., failures, replacements). This gives rise to the task of
expanding-node forecasting, where node sets evolve across periods, new nodes have scarce history,
and some old nodes disappear, rendering traditional models ineffective.

To address this challenge, three lines of solutions have emerged (Figure [I): (1) Node-independent
parameterization. Univariate time-series forecasting models forecast each node separately, which
is scalable but neglects cross-variable dependencies. Others remove node embeddings and rely
solely on sequence interactions (Liu et al.,|2024;[Ma et al.| 2025a), while attention-based prompting
(Hu et al.| [2024) alleviates this partially but remains constrained by short horizons. (2) Node-scaled
Prompting. Continual learning methods expand embeddings as new nodes appear (Chen & Liang,
2025)), but usually assume abundant expansion data, which is unrealistic under scarcity. They also
overlook node removal, causing wasted parameters and reduced flexibility. (3) Fixed expanded
parameterization. A recent work, STEV (Ma et al.,|2025b)), introduces the Expanding-variate Time
Series (EVTSF) forecasting task and mitigates imbalance with a flat scheme and shared subgraph.
Nonetheless, it still relies on predefined embeddings for all expanded nodes. As a result, further
network changes require costly retraining, limiting scalability.
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Figure 1: Examples of expanding-node spatial-temporal forecasting and different solutions. (a)
Sensor nodes may added, retired or replaced in the expansion stage. (b) Comparison of three existing
solution paradigms with our proposed SNIP framework.

In summary, while node-specific learnable parameters enhance forecasting accuracy (Shao et al.,
2022; [Liu et al.| 2023 Dong et al.| [2024), they either lack flexibility for new nodes when fixed or
suffer from poor fitting under data scarcity when expanded, leading to a trade-off between accuracy
and scalability. As a result, this raises a fundamental question:

Can effective node identification features be computed directly from historical observations,
without relying on learnable node-dependent model parameters?

However, two critical challenges emerge: (Challenge 1) How to ensure that constructed features
sufficiently capture inter-node heterogeneity and correlation, preserving predictive accuracy com-
parable to learnable embeddings? (Challenge 2) How to refine these features dynamically to re-
main accurate under dynamic enviroments, especially when new nodes arrive with only scarce
observations?

To address these challenges, we propose SNIP (Structured Node Interaction Prompting), a model-
agnostic prompting framework guided by structured priors and refined dynamically. Specifically,
SNIP addresses the first challenge by computing priors from historical sequences through dimen-
sionality reduction, which inherently preserves heterogeneity and correlation. Using PCA-based
periodic features and Spectral embeddings of time-delayed interactions and graph topology, it ef-
fectively encodes node-specific heterogeneity without learnable embeddings. To tackle the second
challenge, SNIP incorporates a dynamic refinement module that continuously adapts static priors
through diffusion-based graph convolutions, thereby maintaining accuracy under dynamic evolving.
Moreover, for new nodes with scarce observations, SNIP introduces a similarity-weighted initializa-
tion scheme that transfers priors from old nodes, providing effective embeddings that enable rapid
few-shot adaptation. Through these two strategies, SNIP achieves parameter-node decoupling while
maintaining both predictive accuracy and adaptability in expanding-node forecasting. Our contribu-
tions can be summarized as follows:

* We identify the problem of expanding-node spatial-temporal forecasting, where sensor networks
evolve across periods, and highlight its core challenges of parameter-node coupling, data scarcity
for new nodes, and preserving node heterogeneity. We further approach this problem from the
perspective of structured node interactions.

* We propose SNIP (Structured Node Interaction Prompting), a framework that combines static
prior construction (periodic, topological and time-delayed node interaction features) with dynamic
refinement to build effective and flexible node promptings. In addition, we design a similarity-
weighted initialization scheme to endow new nodes with initial embeddings, enabling efficient
adaptation under few-shot conditions.

* A concrete instantiation of SNIP, termed SNIPformer, is further proposed. Extensive experiments
on four datasets demonstrate that SNIP outperforms state-of-the-art baselines. Moreover, it serves
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as a plug-and-play module that enables classical spatial-temporal models to adapt flexibly and
effectively to expanding-node forecasting.

2 RELATED WORK

Spatial-temporal forecasting (STF) is central to applications such as traffic, energy, and climate.
Early works combined recurrent or convolutional networks with graph modules to model temporal
and spatial dependencies. With the advent of Spatio-Temporal Graph Neural Networks (STGNNs)
and Transformers (L1 et al., 2018; |Wu et al., 2019; |Guo et al.| [2022)), research has focused on cap-
turing complex inter-node correlations via multi-view graphs or attention (Diao et al., 2024} Jiang
et al., 2023). More recent advances explore adaptive embeddings (Shao et al.| [2022; Zheng et al.,
2025a) and hybrid neural modules (Sun et al.| 2024; Lee & Kol [2024) to balance efficiency and
accuracy.

Node Prompting in STF. A consistent trend in these developments is the introduction of node-
specific embeddings as additional identity information. By assigning learnable parameters to each
node, models can capture inter-node heterogeneity beyond raw time series, which has shown strong
forecasting performance (Liu et al.,|2023; | Dong et al., 2024)). Such embeddings function as prompts
that guide spatio-temporal modules, and have become an implicit consensus for achieving state-
of-the-art accuracy. However, this design inherently ties model parameters to node count, limiting
scalability in evolving networks. Recent work has further explored attention-based prompting mech-
anisms, such as STGP (Hu et al.,2024) and EAC (Chen & Liang, [2025)), but these methods still rely
on directly fitting prompts from data, which is challenging and assumes the availability of sufficient
training samples.

STF under dynamic node expansion. In real-world systems, nodes may be added or removed over
time, violating the fixed-node assumption in classical STF. To address this, recent works explored
several directions. One approach decomposes data into univariate series or removes node-specific
embeddings, which improves scalability but ignores spatial dependencies. In addition, node-count-
agnostic models like literature (Altieri et al.| 2024} |Li et al., 2018}, [Zheng et al.,[2020) can also handle
changing node sets, but they mainly rely on short-window inputs and ignore node-specific inherent
heterogeneity. Others directly learn from raw inputs or attention-based prompts (Liu et al., 2024;
Hu et al., 2024), but accuracy drops due to insufficient heterogeneity modeling. Continual learning
methods (Wang et al., 2023} Chen & Liang} [2025) expand embedding sets through prompt-tuning,
yet typically assume abundant new data. OOD-generalization based methods (Wang et al.|[2024; Ma
et al.| [2025a) emphasize robustness but lose accuracy when fine-tuning is feasible. A recent EVTSF
paradigm, STEV (Ma et al.,|2025b), mitigates imbalance via flattening and contrastive learning, but
still relies on node-dependent parameters and costly retraining, limiting flexibility.

In contrast, our SNIP builds non-learnable priors and refines them dynamically, decoupling param-
eters from nodes while retaining node-specific effectiveness, and can be seamlessly integrated into
existing STF models.

3 PRELIMINARY

We consider a spatial-temporal network at time period 7, denoted as G, = (V;,&;), where V, =
{v1, va, ..., uN, } is the node set (e.g., road sensors, climate monitors), and £, denotes the edges (e.g.,
road links, physical connections). The adjacency matrix is A, € RN~*N+ N_ = |V,|, representing
the spatial relationships among nodes. Each node records C' features within a temporal window of
length L, forming a spatial-temporal series X, € RE*N7xC

Definition (Expanding-node Spatial-Temporal Series). We define two consecutive periods.
Period-1 (base stage) is 71 = [to — L1 + 1, to], with data D, = (G,, X;,), where |V, | = N;,.
L denotes the length of base stage, and ¢y is the final time slice of this stage. Period-2 (expansion
stage) is 7o = [to + 1,t0 + Lo|, with data D, = (G,,, X,,), where |V,,| = N,,. L is the length
of expansion stage. During the transition from the base stage to the expansion stage, nodes may be
added or removed, which can be formalized as V., = (Vr, \ Vael) UVnews Vel © Vrys View Ve, = 0.
Moreover, to enable timely forecasting on newly deployed nodes, the available data in the expansion
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Figure 2: Overall framework of our proposed SNIP.

stage is typically very limited, i.e., Ly < L;, which leads the problem of data scarcity, particularly
for newly added nodes.

Problem (Expanding-node Spatial-Temporal Forecasting). The goal of expanding-node spatial-
temporal forecasting is to train a model f using data from both periods, such that f
Xi—1+41:4,Gr;0) — ?t+1 4417, where X;_py1; € RT*N7xC g the input sequence of length
T, and ?t+1:t+T’ € RT'*N-xC g the predicted sequence of length 77. A key requirement is that
the parameter set © be decoupled from network size, i.e., |©] = O(1), since parameter scaling
with N limits adaptability to evolving networks. This enables the model to generalize across vary-
ing node sets. In practice, we evaluate forecasting on the expanded set V.,, while the formulation
naturally extends to any node set with NV, > N, , ensuring applicability to future expansions.

4 METHODOLOGY

Figure [2)illustrates the overall structure of the proposed SNIP framework. In this section, we present
the construction of structured static priors and their refinement during training and expansion. Then
we introduce SNIPformer, an instantiation built on an efficient spatial-temporal encoder.

4.1 STRUCTURED STATIC PRIORS (CHALLENGE 1)

In recent years, node-specific learnable embeddings have been widely used in spatio-temporal fore-
casting to provide discriminative identity information (Shao et al.,[2022; |Liu et al., 2023 Dong et al.,
2024; |Chen & Liang, [2025)), achieving strong performance but conflicting with evolving node sets.
To address this, SNIP avoids node-dependent parameters and instead pre-computes node-specific
priors from historical data as prompting signals. We derive low-dimensional features that maximize
inter-node variance to preserve heterogeneity.

4.1.1 PERIODIC PRIORS

Motivation. Intuitively, a node’s long-term sequence itself serves as its unique identifier, but directly
using it is impractical due to dimensionality and noise. We instead apply dimensionality reduction to
extract informative components. Given the strong periodicity of spatial-temporal data (e.g., daily or
weekly cycles), we partition histories into repeated cycles, compress each into low-rank “snapshots,”
and average them to form a compact representation of node identity.

Periodic Priors. Given a historical period 7 with length L, X € REXN*C denote the historical se-
quence for NV nodes. For clarity, we describe the single-feature case (C' = 1) below, which naturally
extends to multi-channel inputs by concatenation. We specify a set of cycle lengths {p1,p2, ..., pn}
and partition each node’s series into non-overlapping segments accordingly. For instance, when p;
corresponds to one day, the sequence is divided into consecutive daily fragments. Each segment is
normalized independently, and then projected into a low-dimensional representation using Principal
Component Analysis (PCA) (Abdi & Williams, 2010). For each cycle length p;, the node repre-
sentations from all complete segments are averaged to yield a compact descriptor Z7) € RN *kpea,
kpca represents the value of a low dimensionality. Finally, we concatenate results across all n cycle
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lengths to obtain the periodic priors:
Z g = Concat (Z(l), AN Z(")) € RNV*(nkpea) (1)

By the Eckart-Young-Mirsky theorem (Eckart & Young] |[1936), PCA guarantees the optimal rank-%
approximation under the Frobenius norm, thereby preserving the maximum variance. In our context,
this ensures that the periodic priors retain the most discriminative directions of node dynamics,
effectively encoding node heterogeneity from a temporal perspective. Implementation details are
provided in Appendix [A.T]

4.1.2 TOPOLOGY PRIORS AND TIME-DELAYED INTERACTION PRIORS

Motivation. While periodic features separate node-specific temporal patterns, they overlook inter-
node correlations, another key factor in spatial-temporal forecasting (Wang et al., |2022). Topology
priors, derived from graph adjacency, capture latent positional and structural relations. Meanwhile,
many spatial-temporal phenomena propagate with delays (e.g., traffic congestion spreading) (Long
et al.,[2024; Zheng et al.,|2025a)), and such delayed or short-term correlations are inherently dynamic.
To capture these correlations, we construct two complementary priors: (1) topology features from
static adjacency, and (2) time-delayed interaction features from frequency-domain correlations under
short windows.

Topology Priors. We adopt spectral embedding (Belkin & Niyogi, 2003) to obtain low-dimensional
node representations. In the case of topology, given the adjacency matrix A € RV*Y  one can
construct the normalized Laplacian: L = I — D~ 3 AD™ 2, where D is the diagonal degree matrix
with D; ; = > j A; ;. Then, the topology embedding is formed by the eigenvectors corresponding
to the smallest Kiqp, eigenvalues of L. This can be formulated as:

ZtOPO = (I)(Av ktOPO) = [ub Uz, ... 7ukl()pn] € RNkapO, )

where uy, ..., uy,, are the leading eigenvectors of the normalized Laplacian. This embedding
captures the static positional structure of nodes in the network, where nearby or strongly connected
nodes are embedded closer together. Physically, they reflects both global communities and local
connectivity patterns.

Time-delayed Interaction Priors. Recent studies have shown that correlations between node se-
quences often emerge more strongly when temporal delays are considered, rather than assuming
synchronous dynamics (Long et al., 2024} Zheng et al.,|2025a)). To capture such effects, we estimate
cross power spectral density (CSD) between node pairs using Welch’s method with short sliding
windows (Welch, |1967). This formulation enables us to measure correlations across all possible
lags without pre-specifying a maximum delay in previous STF models. Consequently, we can ob-
tain the cross-correlation matrices under different time delays: R(d). From this, we extract (i) the
dominant delay A; ; = arg maxs |R; ;()|, that maximizes correlation between nodes 4 and j, and
(ii) the corresponding correlation strength P; ; = maxs |R; j(6)|. These two matrices encode how
information propagates with delays and how strongly nodes interact. Similarly, we apply spectral
embedding to both matrices, and then concatenate results into Zg;:

Zi = Concat(D(A, kgetay); P(P, keorr)) € RV X (Ruetay+heors), 3)

In summary, topological priors preserve static, position-driven relationships, while time-delayed
embeddings capture dynamic propagation and short-term coupling. In particular, spectral embed-
dings emphasize the principal eigenvectors, which correspond to directions of maximum structural
or interaction variance, this is analogous to PCA but under graph constraints. These priors reflect
how nodes interact and differ within the network, boosting promptings from the correlation angle.
Details of CSD method are provided in the Appendix

4.2 DYNAMIC REFINEMENT AND ADAPTATION (CHALLENGE 2)

Motivation. The static priors in Section[d.T.2|capture invariant properties but cannot reflect temporal
dynamics, such as evolving behaviors of existing nodes or the emergence of new nodes during ex-
pansion. To address this, we design a refinement-and-adaptation mechanism that treats above three
priors as reference points subject to dynamic correction. To formalize this intuition, we propose the
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following hypothesis, which conceptualizes how an optimal node prompting should be decomposed
into stable and dynamic components.

Hypothesis 1 (Decomposition of Optimal Node Prompting). At any time t, there exists an optimal

prompting configuration z for each node i, which maximizes predictive accuracy. This config-

O _ g+ r® 50 —

uration can be decomposed as: z;, ( () ,J € N(Z)) where q; represents

spatially intrinsic characteristics of node i (time-invariant reference), ri reﬂects spatial-temporal
interaction effects that vary over time, N(;) is the set of nodes that have a correlation relationship
with node i, and g is a transformation function.

This decomposition allows g; to represent slowly varying identity, with 7“1@ capturing fast, context-
dependent deviations. In our study, long horizon priors built via multi cycle PCA and spectral

embeddings preserve between node variance and aim to capture inherent node properties in q;. The

(t)

refinement ;" then adapts these identities to current conditions during training. Through this, the

learnable model only needs to fit rl@. Consequently, the hypothesis space is constrained, yielding
reduced sample complexity and improved generalization under limited data 1999). We will
provide empirical ablations in Section[5.3]to support this assumption.

Dynamic refinement via MLP and diffusion graph convolution. We first project the concatenated
static priors into the model dimension d using a two-layer MLP: Z s = MLP([Zprd, Ziopo, Zi)) €
RN ¥4 We refine priors by aggregating temporal variations through diffusion graph convolution
et al 2018 [Wu et al} 2019). Specifically, for each input time slice, we apply the diffusion con-
Volutlon operation: H, ., = Di££GCN(X{™", A), where X™™ € RT*N*{ is the series embedding
and A is the ad]acency matrix. To simulate potential changes in graph topology during the expan-
sion stage, we further apply edge dropout to A during training, enhancing robustness to evolving
structures. The final adaptive embedding is obtained by combining static refinement and dynamic
aggregation:

(mel)t,:,: = Zref + Ht,:,:- (4)
This embedding Z,,, not only incorporates static priors but also adapts to temporal variations, serv-
ing as the prompting within the forecasting model. This adjustment block, an MLP and a diffusion
graph convolution, is trained jointly with the STF backbone in both base stage and expansion stage
and is executed at test stage to produce the final prompts used by the predictor.

Prompting initialization in expansion stage. In the expansion stage, new nodes often lack suffi-
cient history to compute reliable priors. For these nodes, we adopt a similarity-based initialization.
Their priors can either be recomputed directly from the limited data available in the expansion stage,
or constructed by weighted mixing of the priors from a few most similar remain nodes in the base
stage. Similarity is measured using the cross-correlation matrix P introduced in Section [#.1.2] re-
computed under the current stage. Formally, For a new node ¢, its similarity weight with remain node
Jj is calculated as s; ; = Pivj/zjevmmam P; j, i € Vaew,;Vj € Viemain- Let Pyr = {prd, topo, tdi}
denote the candidate prior types, and let P; C P, be the subset actually constructed for new node
i. For any prior type § € P; with feature matrix Zq € R4 the prior of node i is obtained by
mixing the priors of its top similar remain nodes: (zq); = Zje/\/km si,j (29), where N, (;) denotes
the top-k most similar remain nodes to ¢.

Not all prior types in Py require mixing. In practice, a simple similarity threshold determines
whether a new node recomputes its priors or mixes them from similar remain nodes. In our experi-
ments, periodic priors are mixed from old nodes due to insufficient cycle history, whereas topolog-
ical and time-delayed interaction priors are recomputed from short-term observations because they
reflect recent and rapidly varying spatial dependencies. Remain nodes simply reuse their base-stage
priors. Most prior works do not address nodes removed in the expansion stage. In our framework,
discarded nodes require no priors in the new period, and because model parameters are fully decou-
pled from node identity, no redundant parameters persist. This avoids parameter waste and enhances
flexibility for evolving network structures.

4.3 INTEGRATION WITH SPATIAL-TEMPORAL FORECASTING MODELS

Based on the static priors and dynamic refinement introduced above, SNIP can be seamlessly in-
tegrated into existing STF architectures by injecting the prompting into the input features before
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spatial-temporal feature extraction. To establish a baseline for expanding-node forecasting, we inte-
grate the SNIP framework with a recent efficient spatio-temporal encoder (Zheng et al., [2025b),
which provides a general mechanism for learning compact and expressive representations with
complexity linear in the number of nodes. The resulting model, SNIPformer, incorporates our
prior-guided prompting into the encoder’s input embedding and spatial-temporal extraction pro-
cess, followed by a lightweight regression head for prediction. Appendix [A-3]details the complete
model structure, the implementation of the prior, and the algorithms for base-stage pre-training and
expansion-stage fine-tuning.

5 EXPERIMENTS

In this section, we evaluate and analysis the effectiveness, generality, and flexibility of our proposed
SNIP framework under node expansion scenarios using four real-world datasets.

5.1 EXPERIMENT SETTING

Datasets and Evaluation Setting. We use the following spatial-temporal datasets across traf-
fic and energy domain for evaluation: EPeMS (Ma et all 2025b), PEMS04 (Song et al.,
2020), SeaLoop (Cui et all [2019), and NREL-AL (Xu et al., 2025). For EPeMS, we fol-
low the node expansion setup introduced in STEV (Ma et al., 2025b). For the other datasets,
we simulate node expansion by randomly partitioning the node set into remain, deleted, and
newadd groups. The detailed implementation procedure is provided in the Appendix [B.I] Ta-
ble [I] summarizes the stage and node partitions. We use a 12-step history to predict the
next 12 steps, correspond to 1 hour ahead prediction. Beyond single-stage expansion, we
also test SNIP in multi-stage expanding-node scenarios using the PEMS-Stream (Chen et al.
2021) and Air-Stream (Chen & Liang, 2025) datasets , where the node set evolves over sev-
eral consecutive expansion periods. Moreover, SNIP is evaluated in multi-horizon forecasting
(24/48/96-step) settings. Detailed results and analyses are provided in Appendix [B.3] and [B.6]

We compute prior features in the base stage using

full historical data and train models with sliding- Table 1. Dataset statistics and characteristics

. . f . Stage Split Node Expansion
window samples. In the expansion stage, pri- Dataset 1 /7o ] test (11 — 72)
ors are recomputed from short-term history and EPaMS 03d/ 3d+ 24, 224 296 > 447
priors transferred from the base stage, followed PEMS04 35d/6d+1d/17d 241 — 290
by fine-tuning. Final evaluation is conducted in SeaLoop 18d/6d+1d/3d 255 — 303

NREL-AL  122d/6d + 1d/53.5d 103 — 130

the test stage. We report Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) in
the main tables, while Mean Absolute Percentage
Error (MAPE) and Mean Relative Error (MRE) are provided in the Appendix @ with consistent
conclusions.

Baselines and Hyperparameter Settings. We compare SNIPformer (introduced in Section [4.3)
with four categories of existing solutions for expanding-node STF: 1) Models without node-specific
prompting: DLinear (Zeng et al.,[2023)), iTransformer (Liu et al., 2024), DUET (Qiu et al., [2025)).
2) STF models without node-specific modules: DCRNN (Li et al., [2018), GWNET" (Wu et al.,
2019), GMAN (Zheng et al., 12020), STID' (Shao et al., 2022), STAEformer' (Liu et al.| 2023),
TESTAM' (Lee & Kol[2024), STOP (Ma et al.|[2025a)), where T indicates removal of learnable node
embeddings. 3) Continual learning methods: STKEC (Wang et al.| [2023), EAC (Chen & Liang,
2025). 4) Fixed-node models after expansion: STEV (Ma et al., 2025b)). For SNIPformer, we set
the PCA feature dimension to 24 (each for daily and weekly periods) and the spectral embedding
dimension to 8. The model dimension is 64 (32 for NREL-AL). Other implementation details are
provided in the Appendix. Average results are reported after repeating the experiments no less than
five times.

5.2 EFFECTIVENESS AND GENERALITY

Expanding-node forecasting results. Table 2] summarizes the results across all nodes, Remain
nodes, and New nodes, where the best results are highlighted in bold red and the second-best results
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Table 2: Comparison of the expanding-node forecasting results of different methods and SNIP-
former.

EPeMS
Remain New

PEMS04 SealLoop NREL-AL

Model Metric
All Remain New All Remain New | All Remain New

DLinear | MAE | 3270 3226 33.56 | 2897 2891 29.17 | 459 462 449|254 259 24l
RMSE | 4832 48.14 48.66 | 4455 4429 4542 | 7.99 802 7.92 | 391 4.00 3.63
(Transformer | MAE | 26.83 26,65 27.16 | 2476 2474 2483 | 429 431 421|194 197 183
: RMSE | 4140 4122 41.73 | 39.62 3934 40.52 | 7.54 7.56 7.46 | 336 344 3.12
DUET | MAE | 2525 2517 2539 | 2321 2321 2324 [ 402 404 393|182 185 172
RMSE | 38.05 38.18 37.77 | 36.54 3632 3726 | 7.02 7.04 693 |3.10 3.17 2.88

GwNert | MAE | 2373 23.11 2493 | 2209 2305 2279 | 394 3.97 384|179 183 169
RMSE | 3581 3527 36.84 | 3670 3657 37.16 | 6.82 6.86 6.68 | 3.16 324 2.92

STID! MAE | 2440 2431 2456 | 2249 2256 2225 | 410 4.2 403 [ 2.00 2.03 1.89
RMSE | 3738 3744 3723 | 3592 3577 3642 | 726 728 720|325 333 3.0l

cormert | MAE | 24.86 24.66 2527 | 2295 23.03 22.67 | 415 417 409|191 195 18I
STAEformer' | R\SE | 3834 38.26 38.50 | 36.75 36.63 37.14 | 7.38 7.39 7.37 | 329 337 3.05
STOP MAE | 2445 2447 2441 | 2254 2256 2246 | 412 4.13 408 | 201 2.05 1.89
RMSE | 3724 3741 36.89 | 3574 3552 3645 | 732 7.32 7.35|325 332 3.2

STKEC | MAE | 2999 2978 3040 | 25.64 2584 2487 | 500 501 498|233 234 228
RMSE | 4291 43.05 42.64 | 3955 39.74 3873 | 8.14 8.13 8.16 | 3.62 3.66 3.5I

EAC MAE | 28.74 2823 29.75 | 24.05 2427 2321 | 472 473 472|216 217 2.14
RMSE | 4033 39.80 4135 | 3651 3679 3541 | 7.82 7.81 7.86 | 337 339 3.32

STEV MAE | 2290 2235 2397 | 2055 2042 21.01 | 3.92 3.95 3.84 | 157 1.58 1.53
RMSE | 3451 3395 35.60 | 3246 3213 3353 | 6.62 6.66 6.51 | 2.88 293 2.73
SNIPformer | MAE | 22.05 21.39 23.35 | 19.20 1922 19.10 | 3.46 347 342 | 162 1.65 155
(ours) | RMSE | 3391 33.16 3533 | 31.02 30.87 31.54 614 597|287 292 271

in underlined blue. SNIP achieves the best performance on the three traffic datasets, with relative
averaged improvements up to 7.61% / 5.61% in MAE and RMSE over the strongest baselines. On
NREL-AL, SNIP ranks second on MAE, slightly below STEV. We attribute this gap to domain-
specific characteristics, such as stronger trend strength 2024)(in Table [5) and more se-
vere distribution shifts, which are more effectively captured by the contrastive learning strategy in
STEV. Nevertheless, compared to node-agnostic models and continual learning approaches, SNIP
consistently delivers superior accuracy, confirming the effectiveness of structured priors in encoding
node heterogeneity under expansion scenarios. More results under the multi-stage expansion and
multi-horizon settings are provided in Appendix [B-3]and

Generality across architectures.  To vali- Taple 3: Forecasting MAE of different back-

date SNIP’s model-agnostic design, we inte- pones with and without prompting modules.
grate it into four categories of backbones: MLP

: Model EPeMS NREL-AL
based (DLinear, STID), graph based (DCRNN, All Remain New | All Remain New
GWNET!, GMAN), attention based (Trans-  Sancormer| 26.83 2665 27.16 | 194 197 183
former, DUET, STAEformerT), and a hybrid ar- + AttP 2681 26.64 27.14 | 195 199 1.84
chitecture TESTAMT, three experts for temporal +SNIP | 24.67 24.14 2571 | 184 188 174
modeling, static graph spatio-temporal modeling, GWNETT | 2373 23.11 2493 | 1.79 183 1.69

+ AttP 2375 23.13 2496 | 1.79 182 1.69

and dynamic graph spatio-temporal modeling). TN | 2341 2379 2462 | 177 181 166

Additionally, we employ an attention-based mod-

; STID! | 2440 2431 2456 | 2.00 2.03 1.89
ule from STGP (Hu et al} [2024) as a prompting +AUP | 2435 2426 2453 | 201 205 190

baseline, referring to it as AttP in this experiment. +SNIP | 21.84 21.13 2323 | 186 189 177
Table]reports the MAE results of (i) the original
backbone, (ii) backbone + AttP, and (iii) back-
bone + SNIP from three representative backbones. Full results are provided in Appendix [B.4](Ta-
ble@ and Table ﬂ;l'[) Across all cases, AttP does not yield noticeable improvements, whereas SNIP
consistently and significantly enhances forecasting performance under dynamic node changes. This
confirms that prior-guided prompting provides a more effective way to capture node heterogeneity
and adapt to evolving networks. More importantly, these results highlight SNIP’s generality: as a
model-agnostic framework, it can be seamlessly combined with diverse forecasting architectures,
enabling them to remain effective in expanding-node scenarios while preserving strong accuracy.
This suggests that prompting frameworks and spatio-temporal feature extractors can evolve in par-
allel as complementary directions.
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5.3 ABLATION AND HYPER-PARAMETER STUDIES

B w/o Prompting I w/o Static Priors I w/o Dynamic Refinement =q, + ,r.(t)
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Figure 3: Ablation Results. Left: Comparison of contribution of different components. Right:
Performance of using random features with high and low variance as static priors.

Component-wise analysis. We first assess the contribution of different components in SNIP by pro-
gressively removing them: (i) w/o Prompting, (ii) w/o Static Priors, (iii) w/o Dynamic Refinement,
(iv) w/o Periodic Priors, and (v) w/o Inter-node Priors (removing both topology and time-delayed
interaction priors). Figure [3] reports results on PEMS04 and Sealoop, evaluated on remain nodes
and newadd nodes. The results yield several key insights. Removing prompting causes a substan-
tial accuracy drop; relying solely on dynamic refinement to learn full embeddings also performs
poorly, suggesting that directly fitting optimal embeddings without helpful priors is highly challeng-
ing. In contrast, using only static priors without refinement underscores the necessity of modeling
temporal variations. Finally, eliminating periodic or inter-node priors consistently degrades perfor-
mance, validating that the constructed priors effectively encode node heterogeneity and structural
dependencies.

Empirical analysis of decomposition and hetero- Heterogenclty Seore Distribution of Node-specific Prompting
geneity. We further validate Hypothesis [T| by re- &' " ’ “' .‘;
placing static priors with alternative designs: (a) % SR TR

20 . J .
random priors with high variance, (b) random priors ¢ /L—T o il'.', 5?.?5;;, 2
with low variance, and (c) no static priors. Figure — U halands.

[] shows that under the decomposition framework e | ‘.;-:'.Eﬁ- :
of Hypothesis[T} even randomly initialized features ™ R TR L
can achieve competitive results. Moreover, larger ™" "Ny ':Z{o?..".: .
initialization variance improves performance, un- =™ \ :‘\.5:“ . Leamibe
derscoring the importance of heterogeneity. 03 “ N S

200 5 3
Learnable r SNIP -+ SNIP 0 0 20 0 20 4 0

To intuitively demonstrate the heterogeneity intro-
duced by SNIP prompting, we visualize results on
the PEMSO04 dataset under a fixed-node forecasting Figure 4: Contribution of SNIP to the STID
setup with STID in Figure f} When the learnable model on PEMS04 dataset. Right: Distribu-

embeddings in STID are either replaced l?y SNIP  40h of no de-specific prompting after dimen-
or augmented with SNIP, both heterogeneity score ., ality reduction via t-SNE

(Chen & Liang}, [2025)) and predictive performance
improve. As shown in the t-SNE visualization un-
der a unified embedding space, the combination of learnable embeddings and SNIP yields a wider
spread and more distinct clusters, indicating that SNIP effectively enhances heterogeneity.

Hyper-parameter study. We examine two groups of hyper-parameters that control prior construc-
tion: kpc, and the number of periodicities n for the periodic priors, and Kigpo, Kdelay, Kcorr together
with the Hann window size of Welch method for the interaction priors. Figure [5] reports RMSE
on PEMSO04, and full results are given in Appendix In Figure Eka), varying kpc, shows that
performance is stable across a wide range.We set kpc, = 24 to keep preprocessing cost low while
retaining prediction accuracy. In addition, using both daily and weekly periods (n = 2) consistently
outperforms using either alone, which matches the multi seasonal nature of traffic data. In Figure
7(b), increasing kiopo, Kdelay, Kcorr beyond small values brings negligible gains but higher training and
preprocessing cost. For the Hann window size, performance varies within a narrow band and sta-
bilizes as the window grows. We set it to 7" (12 in our task) in the main experiments as a balanced
choice that matches the forecasting horizon and preserves time localization.

Moreover, we further evaluate different ratios of new and retired nodes to demonstrate robustness
under diverse real deployment scenarios, with results reported in Appendix In addition, we
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visualize node distributions and forecasting performance under three expansion protocols (following
STEV and detailed in Appendix [B.1}), and present the corresponding results in Appendix

325 s 325
320 310 20 20
m 315 g .
@ sy 2 - a1 @ 315
Z 0 (= s g s —— Al 2 NN DT e e ———
0s —— Al Remain 5] —— Al 305 Al
Remain 30.0 New Remain : Remain
30.0 New 300 New 30.0 New
n=1 n=1 n=2
8 16 24 32 40 48 56 64 (day) (week)  (day + week) ¥ 16 2 32 40 4 %6 o 12 24 36 48
kpca n (period) ktopos Kdelay > Keorr Hann window size
(a) Hyper-parameters in Periodic Priors Construction (b) Hyper-parameters in Inter-node Priors Construction

Figure 5: Hyper-parameter study in PEMS04 dataset.

5.4 EFFICIENCY AND FLEXIBILITY

Computational efficiency is an important consideration for expanding-node forecasting. The addi-
tional cost of SNIP mainly comes from three preprocessing operations: multi-cycle PCA for periodic
features, cross-correlation estimation between node pairs, and spectral embedding of the resulting
matrices. Crucially, all of these steps are performed once in the base stage, and the priors are reused
throughout training and expansion. As shown in Table {] the one-off preprocessing overhead is
minor compared with training time.

When comparing training and inference efficiency, SNIPformer shows clear advantages over the
strongest baseline, STEV. While STEV incurs heavy retraining whenever nodes are expanded, SNIP-
former requires only lightweight fine-tuning with precomputed priors. This results in substantial
reductions in both training time and memory consumption, while maintaining competitive accu-
racy. In addition, applying SNIP to classical backbones such as STAEformer introduces only min-
imal extra cost, yet enables these models to operate effectively in expansion scenarios where their
original designs fail. Overall, SNIP achieves high efficiency, flexibility, and scalability, offering a
model-agnostic prompting framework that can be seamlessly incorporated into existing or future
STF architectures.

Table 4: Training and inference efficiency comparison on EPeMS (batch size = 32).

T
Metic| STEV ~ SNIPformer /% |STAEformer 5L AEformer %
+SNIP
Pre-computation | Augmentation  Static Priors Static Priors
Time Cost (min) 0.21 2.61 B - 2.61
Training (11, T2) (11 — T2) (1) (T1)
Time (s/epoch) 32542 28.26 — 142 |91.3% 132.03 134.77 12.0%
Footprint (MB) 31430 1466 — 2358 192.5% 8130 8296 12.0%
Inference Time(s) 20.46 1.05 194.9% . 1.37 -
()  MAE| 2290 22.05 1379 | nvalid 2375 T Feasibility

6 CONCLUSION

In this paper, we proposed SNIP, a model-agnostic prompting framework for expanding-node
spatial-temporal forecasting. It constructs structured static priors from heterogeneity and correla-
tion angles and performing learnable dynamic refinement. A similarity-weighted initialization fur-
ther enables few-shot adaptation for new nodes. SNIP allows existing spatio-temporal forecasting
models to be easily adapted to expanding-node scenarios. Experiments across multiple datasets and
backbones show that SNIP achieves strong accuracy, generality, and efficiency. Ablations show that
variance-preserving, correlation-aware priors and dynamic refinement are all indispensable. Future
work will study the optimal composition of prompting, extend SNIP to cross-domain settings, and
integrate it as a prompting layer in large spatial-temporal models.

10
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A APPENDIX: METHODOLOGY DETAILS

A.1 PERIODIC PRIORS CONSTRUCTION

Given a historical period 7 with a length of L. Let X € RE*¥ denote the historical sequence of for
N nodes. We specify a set of cycle lengths {p1, p2, . .., pn }. For node ¢ and a given cycle length p;,
we partition its sequence X ; € R’ into non-overlapping cycle segments. For example, when Dj
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corresponds to one day, the sequence is divided into consecutive daily fragments, each treated as an
individual segment. Formally, the set of segments is defined as:

S = Partition(X.;, p;) = {X:,i[(m —Dp;+1:mp] | m=1,... ,Mj}, 5)

where M; = |L/p;| is the number of complete cycles. Each element of ng ) is a vector
in RPi. Before dimensionality reduction, each segment of node ¢ is normalized independently:
z=(x— MEJ))/O'EJ), T e SE]), where ,uz( 7 and O'(j)
1’s segments under cycle length p;.

Each normalized segment Xy(ﬂ) is treated as an N x p; data matrix, which is the full “snapshot”
of all nodes in cycle j. We then apply Principal Component Analysis (PCA) to reduce these seg-
ments to their low-rank components and obtain compact representations. Specifically, PCA yields a
projection matrix U'/) € RPs**e= from the top kpea €igenvectors of the covariance matrix of X,(ﬁ).
Then the segment-level low-dimensional representation is computed, and the M representations are
the averaged across segments:

are the mean and standard deviation of node

M;
) 1 Lo .
ZU) = v E :Xﬁg)U(]) € RN*Fma 5 € [1,...,n)]. (6)

I m=1

Finally, the representations from all n cycle lengths are concatenated, yielding the periodic prior
feature matrix:

Zyyq = Concat (Z(l), AL Z(")) € RNV > (nkpea) (7)

Figure[6]illustrates this construction.

S | Partition w
kepj-f " W Average H

eg. 1day M; days

Rkapca

Figure 6: An illustration for the periodic prior construction under a cycle length p;.

A.2 TIME-DELAYED INTERACTION PRIORS CONSTRUCTION

As a increasing trend investigated by recent studies(Long et al.l 2024} |Zheng et al., [2025a), the
correlation between two node sequences is often more pronounced when a temporal delay is con-
sidered rather than assuming synchronous dynamics. To capture this, we quantify their association
through the cross power spectral density, which avoids the limitation of manually specifying a max-
imum delay as required in previous research. This formulation allows us to directly compute the
delay step that maximizes their correlation, along with the corresponding strength. Intuitively, these
two quantities characterize both the temporal span and the spatial extent of the interaction between
nodes.

Formally, let x;, x; € R’ denote the historical sequences of nodes i and j. Each sequence is nor-
malized in the same manner as in periodic features. Their cross-spectral density (CSD) is estimated
using Welch’s method with a Hann window (Welch, [1967) of length T

Qij(v ZX X ), )

where K = |L/T| is the number of windows, Xi( )(u) is the Fourier transform of the k-th win-
dowed segment of node ¢, v is the frequency variable, and * denotes complex conjugation. The
cross-correlation function is obtained by inverse FFT:

Ri;(0) = FH(Qi; (), ©)
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which is then shifted to align both positive and negative delays. We extract the most significant delay
and its corresponding correlation strength as

Aij = arg max |R2J((5)|7 -l:)ij = m?X ‘R”((SH (10)
4

where A is the delay matrix recording absolute dominant lags, and P is the correlation matrix
recording absolute correlation strengths. Following the same procedure, we apply spectral embed-
ding to the delay and correlation matrices, and then concatenate them into Z;:

Zg = Concat(®(A, kgelay ), (P, kecorr))- (11

A.3 ARCHITECTURE OF SNIPFORMER AND ALGORITHM OF PIPELINES

Figure [7] represents the entire architecture of SNIPformer. We use the data embedding module
and spatial-temporal extractor proposed by ST-ReP (Zheng et al.l |2025b)) as the main architecture.
Differently, we remove the learnable spatial embeddings in the original model and use our dynamic
refinement module and pre-computed static priors to build a new node embedding for input series.
Moreover, we use a linear head to transform the flattened spatial-temporal hidden features into
prediction.

To facilitate reproducibility and implementation, we provide detailed algorithmic descriptions of the
proposed SNIP framework, covering prior construction, base stage training, and expansion stage
adaptation. These procedures are summarized in Algorithm[I} Algorithm[2} Algorithm[3] and Algo-
rithum ] respectively.

Algorithm 1 OfflinePriorConstruction

Input: Xpi, € RV*EXC oraph matrix A € RV*N | config cfg
Output: Z,.4, Ziopo, Zidi

. Periodic prior via PCA

for j = 1tondo

Zéii) < SEGMENTPCA (Xhisl, Dj, k:pca) l>Zl§rjd) € RN*kpea 1, p; is the j-th cycle length
end for @ (n)
Zpa +concat(Z,,s -, Zpy)

Zprd c RN X (nkpea)

AN A

~

Topology prior via spectral embedding
8: Ziopo <~ SPECTRALEMBED(A, Figpo)

9: Time delayed interaction prior via spectral embedding

10: Initialize matrices A, P € RV >N with zeros

11: for each pair (i, j) do

12: Qij + WELCHCSD(Xpis[i, :], Xnist[4, :], Hann, cfg.nperseg, cfg.noverlap)
13: R;; + ifft(Q;;), real part, fftshift to centered lags

14: Ali, j] +— arg maxgs |R;;(0)]

15: P[Z7j] < maxs ‘R”((SN

16: end for

17: Zgi < concat(SPECTRALEMBED(A, kgelay ), SPECTRALEMBED (P, kcorr) )

18: return Zyq, Ziopo; Zui

15
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Figure 7: The architecture

YH»l:H»T’

of SNIPformer.

Algorithm 2 BaseStagePretrain

Input: base windows {(X;_r 1.4, Y%)}, priors Zya, Ziopo, Zuai> backbone fg, adjuster gy

Qutput: trained parameters 6*, ¢*

: Initialize 0, ¢

 Lgatic = Concat(zprda Ztopo» thi)

: for each mini batch B do

met — ggi)(Zstatim Xt—L+1:t)
Yirreqer < fe(Xt—T+1:t, met)
Lpred < LYyt Yigres1r)
Update 0, ¢ by minimizing Lpreq
: end for

1
2
3
4
5:
6
7
8
9: return 6* < 0, ¢* — ¢

> g includes MLP and GCN layers

Algorithm 3 ExpansionStageAdapt and Inference

Input: expansion data, graph matrix A,,, remain set Viem, new set Vyew,
cached priors Zprd, Ziopo, Zudi, trained params 6%, ¢*,
miXing ﬂagS (bprd7 btopm bdelay) S {07 1}3’ hyperparams kpcaa klopo; kdelaya

periodic set {p;}, top k, similarity function s(-, -)
Output: adapted params 01, ¢', updated priors Zgrd,
1: Update static priors at expansion stage

Al i T
2 Z s Ziopos Zyg; < EXPANSIONPRIORSUPDATE (e

Al

+
topo> Z tdi

xpansion data, A+, , Viem; Vaew,

Zprda Ztopo; thi, bprda btopoa bdelayv

DPjs, kpca, ktopo; kdelay; k,s

Concatenate priors and initialize parameters
T T T
Zstatic < concat [Zprd7 Zt]:)pm thi}

0f 0%, ¢f « ¢*

Expansion stage finetuing

for each mini batch B from expansion windows do
Zl gdﬁ(ZT X ryi:t)

Apml static? +
}/1-5 — fHT (Xt—L+1:ta met)

Update ¢' and 07 by loss Lyeq
end for

A A

11:

12:
13:
14:

15:
16:
17:

Inference
for ea)c(:h test Windo?zv do
mel < Gt (Zstalica Xt—L-i-l:t)
Output for (Xi—r41:4 Z}Iml)
end for
return 01, 4T,

7zt

ZT ZT tdi

prd 9 topo>

> in Algorithm 4]

16
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Algorithm 4 ExpansionPriorsUpdate

Input: expansion data, graph matrix A,,, remain set Viem, new set Vyew, cached priors
Zprd; Ztopo» this

mixing flags (bped; bropos baelay) € {0, 1}3, periodic set {p;}, dims Kpca, Kiopo, Kdelay»

top k, similarity function s(-, -)

Output: updated priors Zgrd, Zleo, Zg:ﬁ

1: Partition expansion data

2: Xem < gather(expansion data, Viem), Xnew <— gather(expansion data, Viey)

3: Similarity matrix and top-k weights

4: § € RMewlxVenl  SIMILARITYMATRIX (Xpew s Xrem, 5)

5: M < TOPKMASK(S, k) > row wise top k indicator
6: a < ROWNORMALIZE(S © M) > .oy =1where M;; =1

J

7. Periodic prior update

8: if bprg = O then

9: Zgrd < SEGMENTPCA (expansion data, {p; }, kpca)
10: else
11: Z;rd[vrem; :] — Zprd[Vrem, :]7 Zl;rrd[vneW; :] — o Zprd[Vremy :]
12: end if

13: Topology prior update
14: if byopo = O then

15:  Z}, < SPECTRALEMBED(A.,, kopo)
16: else

17: Ztt)po[vrema :] <~ Zlopo[vrem; 3],
180 Z o Vaews ] < @ Ziopo[Veem, !
19: end if

20: Time delayed interaction prior update
21: if bdelay = 0 then

22: AP BUILDDELAYCORRMATRIX (expansion data) > Welch CSD method
23: Z] « concat(SPECTRALEMBED(A, Kgelay ), SPECTRALEMBED (P, kgelay))

24: else

25: Z;[ji [Vrem; :] — Zldi[vrema :]» thi[vneW7 :} —a- thi[vrem7 :}

26: end if

27: return Zgrd, Z:[,po, Z;[ﬁ

B APPENDIX: EXPERIMENT DETAILS

B.1 DATASETS AND EVALUATION SETTING
We use the following spatial-temporal datasets across traffic and energy domain for evaluation:

* EPeMS(Ma et al.l 2025b): an expansion-node dataset constructed in STEV (Ma et al.,
2025b) from District 7 of California, which assumes no deleted nodes.

* PEMSO04 (Song et al., [2020): traffic flow data collected from the Caltrans Performance
Measurement System in California.

* SeaLoop (Cui et al. [2019): Seattle traffic loop detector data, recording speed measure-
ments.

* NREL-AL (Xu et al.| 2025): renewable energy data, recording solar power generation
from photovoltaic plants in Alabama in 2016.

The number of feature values for all dataset records is 1, i.e., C' = 1.

Stage and Node Division. Each dataset is divided into three stages: a base stage, an expansion
stage, and a test stage. Within the expansion stage, we further split the last portion (e.g., 1 day) as
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the validation set, while the earlier portion (e.g., 6 days) is used for expansion-stage training. For
EPeMS, we strictly follow the experimental setup in[Ma et al | for consistency. For the other
datasets, 80% of nodes are randomly selected as observed nodes in the base stage, providing suffi-
cient history (L;). The remaining 20% are treated as newadd nodes, appearing only in the expansion
stage with short history (Ly < L1). Additionally, 5% of base nodes are randomly designated as
deleted, while the rest remain as remain nodes. Table[5]summarizes detail statistics of datasets.

Although these real-world spatial-temporal datasets provide sensor locations or physical adjacency,
none of them include authoritative deployment or decommission timestamps, and, to the best of our
knowledge, there is currently no publicly available benchmark that reflects truly incremental sensor
deployments. This limitation has also been emphasized in STEV, which constructs expanding-node
settings through spatial or internal partitioning due to the absence of real EVTS logs.

Following this practice, for EPeMS we adopt the same area-expansion protocol in STEV
[2025b)), where new nodes correspond to sensors hypothetically deployed in newly covered regions.
For the remaining datasets, despite available spatial coordinates or topological links, installation and
retirement records are not provided. Therefore, we simulate the internal expansions in STEV, as-
signing a subset of nodes as remain, deleted, and newadd, and restricting the observation horizon of
new nodes to emulate short post-deployment histories. This protocol follows the commonly adopted
assumption that adding or removing sensors does not change the underlying physical process being
monitored, making such synthetic expansions a reasonable proxy for evolving networks.

Looking forward, we believe that constructing benchmarks with true deployment logs or continuous
sensor rollouts represents an important direction for the community. Such datasets would provide
more realistic evaluation settings and further facilitate research on expanding-node spatial-temporal
forecasting.

Table 5: Dataset statistics and characteristics

Dataset Sample Rate Stage Split Node Expansion (11 — 72)  Trend Strength

EPeMS Smin 63d/3d+2d/22d 296 — 447 (296 -0 + 151) 0.12
PEMS04 Smin 35d/6d+1d/17d 241 — 290 (241 -17 + 66) 0.08
SeaLoop Smin 18d/6d+1d/3d 255 — 303 (255 -20 + 68) 0.11
NREL-AL Smin 122d/6d + 1d / 53.5d 103 — 130 (103 -7 + 34) 0.71

We additionally adopt two streaming benchmarks, Air-Stream and PEMS-Stream, which are com-
monly used in continual spatio temporal forecasting, to assess the performance of SNIP under mul-
tiple expansion phases:

* Air-Stream (Chen & Liang|[2025)): an air quality index dataset introduced in the EAC (Chen
[2025) work, constructed from observations recorded at environmental monitoring
stations across China, and it models a growing sensor network without node deletions.

» PEMS-Stream (Chen et al) 2021): a traffic flow dataset from the Traffic-Stream (Chenl
2021)) work, built from District 3 in California, which assumes no deleted nodes.

Both datasets contain multiple node expansion stages and Air-Stream involves more than one thou-
sand sensors, which allows evaluation at larger spatial scales. Detailed statistics of these streaming
datasets are summarized in Table [6l

Table 6: Details of stream datasets with multi-stage node expansion

Average
Dataset Sample Rate  Stage Node Expansion ~ Growth Frames
Rate

. 1087 — 1154 8578 — 8619

Air-Stream I'hour YS9 1202 3% 8378 5 8490
655 — 715 — 786 8928 — 8928 — 8928

PEMS-Stream 5 min 7 — 822 — 834 4.92% — 8928 — 8928
— 850 — 871 — 8928 — 8928
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B.2 BASELINE AND HYPER-PARAMETERS

We compare SNIPformer with four categories of existing solutions for expanding-node STF:

1. Models without node-specific prompting: DLinear (Zeng et al.|[2023)), iTransformer
2024). DUET 2005)

2. STF models without node-specific modules: DCRNN (Li et al.l, 2018), GWNETT (Wu!

et al.,2019), GMAN (Zheng et al., 2020), STID' (Shao et al., 2022), STAEformer' (Liu

et al., [2023), TESTAM' (Lee & Ko, [2024), STOP (Ma et al., 2025a), where { indicates

removal of learnable node embeddings.

3. Continual learning methods: STKEC (Wang et al} [2023), EAC (Chen & Liang] [2025).
4. Fixed-node models after expansion: STEV (Ma et al., 2025b).

For SNIPformer, we set the PCA feature dimension to 24 (each for daily and weekly periods) and
the spectral embedding dimension to 8. This leads to kpca = 24, n = 2, kigpo = Kdelay = Keorr = 8.
Collectively, the dimension of Zgyic is 72. The hyper-parameters study is in Appendix [B:3] During
the expansion stage, the periodic priors of new nodes are constructed by mixing those of their three
most similar remain nodes. Other priors are recomputed directly from the available expansion-stage
data, except for the NREL-AL dataset, where the time-delayed interaction priors of new nodes are
also obtained via mixing from old nodes. These means P; = {prd} for EPeMS, PEMS04 and
SeaLoop datasets, while P; = {prd, tdi} for NREL-AL dataset. These design choices are made in
accordance with the degree of temporal distribution shift observed in each dataset.

We use a 12-step history to predict the next 12 steps, correspond to 1 hour ahead prediction, which
denotes T' = T" = 12. The model dimension is 64 (32 for NREL-AL). Average results are reported
after repeating the experiments no less than five times. Code and data source are provided in the
Supplementary Material. Our experiments is under the PyTorch framework on a Linux server with
one Intel(R) Xeon(R) Gold 5220 CPU and one 32GB NVIDIA Tesla V100-SXM2 GPU card.

For methods where embeddings increase with expansion (i.e., continual learning approaches) or rely
on fixed node-specific learnable parameters (e.g., STEV), the case of deleted nodes is not explicitly
considered. In our implementation on datasets with node removals, we carefully align the learnable
embeddings across stages. This means that the parameters corresponding to deleted nodes are also
discarded during the expansion stage, ensuring fair and consistent evaluation.

B.3 FULL RESULTS ON HYPER-PARAMETERS STUDY

We report a hyperparameter sensitivity study. The analysis is organized into two groups of design
choices that correspond to the construction of the periodic prior and the node interaction priors. For
each group, a grid search is carried out on PEMS04 and the MAE and RMSE curves are visualized
in the sensitivity plots, while all other settings are fixed to their default values.

First, the hyperparameters for the periodic prior are examined, namely the number of periodic PCA
components Ky, and the number of explicit periods 7. Results are in Figureﬂa). The parameter kpc,
controls the dimensionality of the periodic PCA subspace that summarizes day level and week level
seasonal patterns. The sensitivity plots show that both MAE and RMSE remain in a narrow band
when ky, varies over a wide range. There is a relatively flat region around kpe, € [16,40], where
accuracy is slightly better and the variance across runs is small, which indicates that the model does
not critically depend on a specific choice as long as enough variance is retained by the components.
To balance accuracy with preprocessing cost, kp, = 24 is used in the main experiments. For
the number of periods n, three settings are compared, one daily cycle, one weekly cycle, and the
combination of daily and weekly cycles. The plots confirm that using a single period loses useful
structure, while combining day and week consistently yields the lowest MAE and RMSE, in line
with the multi seasonal behavior observed in datasets.

Second, the hyperparameters for the node interaction priors are studied, namely the embedding
dimensions Kiopo, Kdelay» Kcorr and the Hann window size in the Welch estimator used for time delayed
interactions. Results are in Figure [§[b). The three interaction dimensions control the latent spaces
for the topology prior, the time delay prior, and the correlation prior. To keep these subspaces
balanced when concatenated, they are tied to a common value and swept jointly. The sensitivity
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Figure 8: Full results of the hyper-parameter study on PEMS04 dataset.

plots show only mild fluctuations of MAE and RMSE over the full range of embedding sizes. Very
small dimensions slightly hurt performance, while very large dimensions provide no visible gain
but increase both prior construction cost and refinement cost. A moderate setting with kip, =
kdetay = keorr = 8 achieves a good trade off and is adopted as the default. For the Hann window
size, the curves exhibit the expected bias variance behavior. Very short windows suffer from higher
variance and weaker frequency resolution, which slightly degrades accuracy. As the window size
increases, performance quickly enters a stable band and then saturates. We set the Hann window
size to T' = 12, which matches the forecasting horizon, providing a balanced compromise between
variance reduction and time localization.

Finally, robustness with respect to network evolution is evaluated by varying the proportion of newly
added nodes and the retirement rate of existing nodes. Figure[Qreports results for different new node
ratios and retirement ratios. We observe that MAE and RMSE only change within a narrow range
across all tested configurations. This indicates that the periodic prior and the interaction priors act as
effective regularizers when the composition of the node set shifts, and that the model can gracefully
handle a wide range of expansion profiles.

34 Al 3 Remain [ Newadd Al 3 Remain 3 Newadd

20% 30% 40% 50% 60% 70%
Proportion of Newly Added Nodes

80% 30% 40% 50% 60% 70% 80%

Proportion of Newly Added Nodes

34 Al 3 Remain [ Newadd Al 3 Remain 3 Newadd

15% 25% 35% 45%
Retirement Rate of Remaining Nodes

15% 25% 35% 45% 55%
Retirement Rate of Remaining Nodes

Figure 9: Full results under different node-division-ratio settings on PEMS04 dataset.
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B.4 FULL RESULTS ON EFFECTIVENESS AND GENERALITY

Table [9] reports the full forecasting results of the effectiveness study. SNIPformer achieves consis-
tently the best accuracy on EPeMS, PEMS04, SealLoop datasets and has a second-best performance
on NREL-AL dataset. Compared with the strongest baseline STEV, the gains of SNIP arise from
complementary representation and adaptation. STEV learns node specific parameters from short
prediction windows, so each sample covers only a limited temporal context and struggles to encode
persistent node heterogeneity. SNIP instead builds node identities as priors from the full historical
record using multi period PCA, yielding low dimensional, stable, and discriminative prompts that
preserve inter node differences while remaining independent of training window length. On top of
these priors, SNIP employs a lightweight refinement module that learns corrections conditioned on
the current short window and the diffusion context, which shifts the objective from fitting an all
purpose embedding to adjusting residuals under changing conditions. When nodes are long term
distinct but become temporarily similar due to events such as congestion, the priors anchor identity
and the refinement adapts to the current regime. This combination translates into stronger general-
ization for new nodes with scarce history and more stable accuracy for remain nodes across horizons,
aligning with the observed improvements over STEV.

Table [10] and Table [T1] report the full forecasting results of the generality study. Taken together,
these results indicate that, across MLP, graph, attention, and hybrid backbones, inserting SNIP con-
sistently improves performance on All, Remain, and New nodes, which supports the interpretation
of SNIP as a model agnostic prompting layer rather than a backbone specific trick. In comparison
with the attention based prompting strategy (AttP), SNIP leverages explicitly constructed priors and
flexible learned fine tuning to produce more informative node discriminative prompts and superior
predictive accuracy, while remaining a plug and play component for architectures whose key layers
are not hard tied to the cardinality of the node set.

B.5 EVALUATION ON MULTIPLE EXPANSION STAGES

In addition to the fixed four stage settings, we further evaluate scalability and adaptability on two
standard streaming benchmarks from EAC (Chen & Liang| [2025)) with larger and more dynamic
node sets. PEMS-Stream contains traffic data from 2011 to 2017, where the number of sensors
increases from 655 to 871 over multiple expansion phases, and Air-Stream contains air quality
measurements from 2016 to 2019 with more than one thousand sensors. Both benchmarks are
designed for continual phase wise evaluation. Following the EAC protocol, we conduct 12 step
ahead forecasting and report MAE and RMSE for SNIPformer, the lightweight backbone with SNIP
(STIDT+SNIP), and strong continual baselines EAC and STKEC, as summarized in Table [7| and
Table Across all phases on both datasets, SNIPformer and STIDT+SNIP consistently outperform
the continual baselines, which provides additional evidence that the proposed priors and prompt-
ing mechanism scale to longer and larger streams and remain effective under multiple successive
expansion phases.

Table 7: Forecasting performance on PEMS-Stream dataset.

Model Metric 2011 2012 2013 2014 2015 2016 2017
STKEC MAE 15.80 15.77 1586 16.77 16.27 15.64 17.16

RMSE 24.63 25.00 2596 27.60 2685 2791 28.17
EAC MAE 1451 1423 1437 1520 14.87 14.28 1591

RMSE 2222 2214 23.13 2431 2426 25.65 25.87

SNIPformer MAE 11.79 11.20 11.20 11.94 11.58 11.07 12.76
RMSE 18.02 17.73 18.47 19.24 19.37 21.51 21.55

STID'+SNIP MAE 1230 11.29 1123 11.59 11.51 10.86 12.62
RMSE 19.20 1834 18.18 19.40 19.58 21.23 21.18
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Table 8: Forecasting performance on Air-Stream dataset.

Model Metric 2016 2017 2018 2019
STKEC MAE 31.04 27.04 20.16 21.46

RMSE 4991 41.75 34.08 33.28
EAC MAE 3139 25.75 20.71 21.25

RMSE 49.99 3934 3420 32.94

SNIPformer MAE 25.55 23.38 20.56 19.19
RMSE 41.31 36.80 35.35 30.50

STID'+SNIP MAE  24.55 21.92 19.00 18.84
RMSE 40.19 35.17 32.47 30.26

B.6 EVALUATION ON MULTIPLE HORIZON SETTINGS

To further assess robustness under long range forecasting, we conduct multi horizon experiments
on EPeMS using a lightweight backbone, STID', with and without SNIP. Specifically, we consider
four multi horizon configurations, where the most recent 12, 24, 48, and 96 time steps are used to
predict the subsequent 12, 24, 48, and 96 time steps, respectively, and report MAE and RMSE for
All, Remain, and New nodes, as summarized in Figure @ Across all horizons and node groups,
inserting SNIP consistently improves performance, with relative gains that generally increase from
short to medium horizons and exhibit only a modest attenuation at 96 step forecasting. These results
indicate that SNIP remains effective under multi step forecasting and does not degrade at longer
horizons. This behavior is consistent with the design of the priors, where the periodic prior captures
stable long cycle statistics to provide node specific identity prompts, while the dynamic refinement
adjusts these prompts using short window time delayed interaction features, which helps mitigate
potential drift of purely structural priors as the prediction horizon grows.

RMSE (All) RMSE (Remain) RMSE (New)
451 ] I
gm ] ]
1
. | | STID
STID T +SNIP
12 24 48 9 12 24 48 9 12 24 48 96
Horizon Horizon Horizon
MAE (All) MAE (Remain) MAE (New)
404
m 351
§ 30
STID
25 1 1 STID T +SNIP
12 24 48 9% 12 24 48 9% 12 24 48 96
Horizon Horizon Horizon

Figure 10: Evaluation on multi-horizon prediction.

B.7 VISUALIZATION STUDY

Finally, we conduct a qualitative case study that links the geographic layout of node expansion to
predictive performance. Figure [IT] visualizes three representative scenarios: (a) area expansion on
the EPeMS dataset, where new sensors appear in previously uncovered regions of the network, (b)
spatial expansion on the EPeMS dataset, where the network is extended along existing corridors,
and (c) internal expansion on the Sealoop dataset, where additional sensors are inserted inside
an already monitored region. In each map, existing sensors and newly added sensors are marked
separately, which illustrates the different spatial patterns underlying the area, spatial, and internal
expansion regimes.
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Figure 11: Visualization of geographic distribution and performance comparison with three different
expansion scenarios. Red nodes denote the newly added nodes, dark-blue nodes indicate the remain
nodes, and white nodes represent the retirements of remain nodes.

For each scenario, panels (d) to (f) report radar plots that summarize MAE and RMSE on All, Re-
main, and New nodes for the strongest baseline STEV and SNIPformer under the same forecasting
setup. MAE related axes share a common scale, RMSE related axes share another, and smaller errors
correspond to larger radii on the radar plots. Across the three expansion patterns, SNIPformer typi-
cally encloses a larger polygon than STEV, which indicates lower aggregate errors, while the relative
gains on Remain and New nodes vary with the specific geographic expansion pattern. In some cases
the improvements are more pronounced for newly added sensors in previously uncovered regions,
whereas in others they are more balanced between Remain and New nodes. This suggests that the
proposed priors and prompting mechanism can adapt to different spatial expansion regimes without
introducing systematic degradation on either group of nodes. These gains hold under area, spatial,
and internal expansion show that SNIPformer is robust to different geographic expansion modes.

C USE OfF LLMS

In this work, we used large language models solely for polishing grammar and improving clar-
ity. All research ideas, methodologies, experiments, analyses, and conclusions were independently
conceived and conducted by the authors. The LLM was not used for generating research content,
experiments, results, or references.
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Table 9: Full comparison of the expanding-node forecasting results of different methods and SNIP-
former. MAPE values are scaled by 100 for presentation.
Model ‘ Metric ‘ EPeMS PEMS04 SeaLoop NREL-AL

All Remain New All Remain New All Remain New All Remain New

MAE | 3270 3226 33.56 | 2897 2891 29.17 | 459 4.62 449 254 259 241
MAPE | 14.15 15.00 1247 | 19.48 1935 19.90 | 14.17 14.33 13.61 | 110.29 110.64 109.29

DLinear | pMSE | 4832 48.14 48.66 | 4455 4420 4542 | 709 802 792 | 391 400 3.63
MRE | 0.10 0.10 0.10 | 0.13 0.3 013 | 008 009 008 | 021 021 021
MAE | 26.83 26.65 27.16 | 24.76 2474 24.83 | 429 431 421 | 194 197 1.83
iTransformer| MAPE | 1091 1139 9.96 | 1608 1602 1629 | 1271 1280 1240 | 100.71 101.10 99.60

RMSE | 41.40 4122 41.73 | 39.62 39.34 4052 | 754 756 7.46 336 344 312
MRE | 0.08 0.09 0.08 0.11  0.11  0.11 0.08 0.08 0.08 022 022 022

MAE | 2525 25.17 2539 | 2321 2321 2324 | 402 404 393 1.82 185 1.72
DUET MAPE | 1028 10.78 9.31 | 1527 1523 1542 | 12.32 1243 1196 | 93.49 93.80 92.63
RMSE | 38.05 38.18 37.77 | 36.54 3632 3726 | 7.02 7.04 693 310 317 288
MRE | 0.08 0.08 0.07 0.10 0.10 0.10 0.07 0.07 0.07 021 021 021

MAE | 23.73 23.11 2493 | 2299 23.05 2279 | 394 397 384 1.79 183 1.69
MAPE | 947 972 898 | 1479 1477 1488 | 11.86 12.01 11.37 | 92.04 93.47 88.02

GWNET | RMSE | 35.81 3527 3684 | 3670 3657 37.16 | 682 686 668 | 3.16 324 292
MRE | 007 007 007 | 0.10 010 010 | 007 007 007 | 023 023 023

MAE | 2440 2431 2456 | 2249 2256 2225 | 410 412 403 | 200 203 189

oo |MAPE| 992 1043 892 | 14.67 1467 14.67 | 1366 1377 1329 | 10442 104.96 10291
RMSE | 3738 3744 3723 | 35.92 3577 3642 | 726 728 720 | 335 333 301

MRE | 008 008 007 | 0.10 010 010 | 008 008 007 | 0.17 017 017

MAE | 24.86 2466 2527 | 2295 23.03 22.67 | 415 417 409 | 191 195 1381
STAEformer | MAPE | 994 1038 0.07 | 1476 1471 1491 | 13.08 13.15 12.83 | 8752 8775 8686

RMSE | 38.34 38.26 38.50 | 36.75 36.63 37.14 | 738 739 737 329 337 3.05
MRE | 0.08 0.08 0.07 0.10  0.10 0.10 0.08 0.08 0.07 0.17 017 0.17

MAE | 2445 2447 2441 | 22.54 2256 2246 | 412 413 4.08 201 205 1.89
STOP MAPE | 10.00 10.57 8.89 | 14.81 14.78 1490 | 13.37 13.37 13.35 | 89.90 90.82 87.30
RMSE | 37.24 3741 36.89 | 3574 3552 3645 | 732 732 1735 325 332 3.02

MRE | 0.08 0.08 0.07 0.10  0.10 0.10 0.08 0.08 0.07 0.16 0.16 0.16
MAE | 29.99 29.78 30.40 | 25.64 2584 24.87 | 500 501 498 233 234 228

STKEC MAPE | 14.37 15.83 11.52 | 17.61 1739 1842 | 17.76 17.59 18.44 |121.15 121.70 119.56
RMSE | 4291 43.05 42.64 | 39.55 39.74 3873 | 8.14 813 8.16 362 366 351
MRE | 0.09 0.10 0.09 0.12  0.12  0.12 0.09 0.09 0.09 021 021 021
MAE | 28.74 2823 29.75 | 24.05 2427 2321 | 472 473 472 216 217 214

EAC MAPE | 12.24 1283 11.06 | 18.14 17.74 19.58 | 17.00 16.62 18.43 | 114.49 115.24 112.29
RMSE | 40.33 39.80 41.35 | 36.51 36.79 3541 | 782 7.81 7.86 337 339 332
MRE | 0.09 0.09 0.09 0.11  0.11  0.11 0.09 0.09 0.09 020 020 020
MAE | 2290 2235 2397 | 20.55 2042 2101 | 392 395 384 1.57 158 1.53

STEV MAPE | 945 981 875 | 1477 14.65 15.18 | 12.56 12.71 12.10 | 67.52 68.33 65.21
RMSE | 34.51 3395 35.60 | 3246 32.13 33.53 | 6.62 6.66 6.51 288 293 273
MRE | 0.07 0.07 0.07 0.09 0.09 0.09 0.07  0.07 .07 0.15 0.14 .15
MAE | 22.05 21.39 2335 | 19.20 19.22 19.10 | 3.46 3.

47 342 | 162 165 1.55
SNIPformer | MAPE | 8.95 920 846 | 12.68 12.64 12.81 | 10.50 10.62 10.10 | 88.75 90.38 84.13
(ours) |RMSE | 3391 33.16 3533 | 31.02 30.87 3154 | 610 614 597 | 2.87 292
MRE | 0.07 0.07 0.07 | 0.09 009 009 | 0.06 006 0.06 | 0.I5 0.15
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Table 10: Full forecasting MAE results of different backbones with and without prompting modules.
’-> denotes the method is invalid on the expansion scenario.

EPeMS PEMS04 SeaLoop NREL-AL
Family Model All Remain New | All Remain New | All Remain New | All Remain New

DLinear 3270 3226 33.56 2897 2891 29.17 459 4.62 449|254 259 241
+AttP 3237 3191 33.25|28.58 28.52 28.79 458 4.61 448|250 255 237
MLP +SNIP 29.13 28.95 2947|2645 2635 26.78|4.52 4.55 443|219 223 2.08
based

STID' 2440 2431 2456|2249 2256 2225|410 4.12 403|200 203 1.89
+AttP 2435 2426 2453|2248 2255 2223|411 4.13 404|201 205 190
+SNIP 21.84 21.13 23.23|19.19 1921 19.10|3.74 3.74 3.75|186 189 177

DCRNN 25.09 2455 26.14|23.17 2321 23.04|408 4.11 401|193 196 1.83
+AttP 25.05 2445 2623|2283 2289 22.64|4.10 4.14 399|194 197 184
+SNIP 23.88 23.07 2547 (19.73 1971 19.79 | 382 3.84 3.75|189 193 178

Graph GWNT 23.73 2311 2493|2299 2305 2279|394 397 384|179 183 1.69
based +AttP 2375 23.13 2496 |23.01 23.07 2280|394 397 384|179 182 1.69
+SNIP 2341 22.79 24.62 (1993 20.11 19.31 380 3.83 3.71|177 181 1.66

GMAN 26.06 2575 26.68 | 21.77 22.07 20.78 | 420 424 4.08|291 296 278
+AttP 31.27 3092 3194|2190 22,10 21.23|420 424 409|268 274 251
+SNIP 2571 2542 26.28 |21.25 21.42 20.65|4.18 422 4.07 |2.53 256 2.43

iTransformer | 26.83 26.65 27.16 | 24.76 24.74 24.83 429 431 421|194 197 183
+AttP 26.81 26.64 27.14 24776 2474 2484|429 431 421|195 199 1.84
+SNIP 24.67 24.14 2571 |21.55 21.57 21.50|4.02 4.02 4.01 |1.84 188 174

Attention DUET 25.25 2517 2539|2321 2321 2324|402 404 393|182 185 172
based +AttP 25.18 25.10 25.32(23.08 23.08 23.08|4.02 404 393|182 186 1.72
+SNIP 23.16 22.56 24.34|20.05 19.92 20.48|3.60 3.58 3.67|174 177 1.66

STAEformer! | 24.86 24.66 25272295 23.03 22.67|4.15 417 4.09|195 199 184
+AttP 2480 24.62 25.15(2292 2300 22.64|4.19 421 412|193 196 181
+SNIP 2375 23.05 2513|2143 21.55 21.01|3.83 386 373|190 194 180

TESTAMT - - - - - - - - - - - -
+AUP 2951 2959 2936|2675 2674 2675|404 406 395|242 246 230
+SNIP  |26.22 2570 27.26|24.45 24.16 25.42|3.68 3.68 3.71|188 192 178
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Table 11: Full forecasting RMSE results of different backbones with and without prompting mod-
ules. ’-” denotes the method is invalid on the expansion scenario.

EPeMS PEMS04 SeaLoop NREL-AL
Family Model All Remain New | All Remain New | All Remain New | All Remain New

DLinear 48.32 48.14 48.66 | 44.55 4429 4542(7.99 8.02 792|391 400 3.63

+AttP 4749 4722 48.00 | 43.61 4332 4457794 796 7.87|3.88 397 3.60
MLP +SNIP 4330 4341 43.08 | 41.09 40.78 42.12(7.82 7.84 7.74 359 3.68 3.34
based

STIDF 37.38 37.44 3723|3592 3577 3642|726 728 720|325 333 3.01
+AttP 37.34 3739 3722|3594 3579 3643|728 729 722|327 336 3.03
+SNIP 33.73 3290 35.31|31.03 30.86 31.63|6.76 6.76 6.77 |3.07 3.13 2.88

DCRNN 37.45 37.04 38.23|36.75 36.60 37.26|7.13 7.15 7.06|3.40 348 3.15
+AttP 37.25 36.76 38.20 | 36.25 36.14 36.60 | 7.23 7.27 7.07 |3.41 349 3.16
+SNIP 35.70 34.86 37.31|31.53 31.34 32.17|6.78 6.81 6.66 |3.31 3.40 3.06

Graph GWNT 3581 3527 36.84 |36.70 36.57 37.16|6.82 6.86 6.68|3.16 324 292
based +AttP 3582 3526 36.88|36.73 36.59 37.19|6.80 683 6.68|3.16 324 292
+SNIP 3554 3497 36.63 | 32.13 3225 31.71|6.69 6.73 6.55|3.13 320 2.90

GMAN 38.87 38.76 39.08 | 3521 3546 34.36|7.64 7.69 749|427 436 4.01
+AttP 4546 4558 4522|3558 35.67 3527|7.64 7.69 747|409 419 3.78
+SNIP 38.52 3845 38.65|34.49 34.57 3420|7.58 7.62 7.41|391 399 3.67

iTransformer | 41.40 4122 41.73|39.62 39.34 40.52|7.54 756 746|336 344 312
+AttP 4138 4121 41.7139.62 3935 4053|754 757 746|336 345 3.11
+SNIP 38.14 37.68 39.02 |34.55 3442 3497|715 718 7.05|323 331 299

Attention DUET 38.05 38.18 37.77 |36.54 3632 37.26|7.02 7.04 693]|3.10 3.17 288
based +AttP 37.97 38.11 37.68 | 3635 36.15 37.02|7.03 7.05 6.94|3.09 3.17 286
+SNIP 35.00 34.33 36.28 | 31.72 31.40 32.79|6.17 6.12 633|298 3.05 2.77

STAEformer® | 38.34 3826 38.50(36.75 36.63 37.14|7.38 739 737|333 342 3.07
+AttP 38.19 38.15 3825|3672 36.60 37.11 |744 745 740|330 339 3.04
+SNIP 36.55 35.74 38.08 | 34.67 34.82 34.18|6.99 7.06 6.78 |3.21 329 297

TESTAMT - - - . . - _ _ _ _ _ _
+ALP 4174 41.87 4148|3883 3871 3922|708 7.11 699 |3.63 372 3.38
+SNIP 3825 37.54 39.61 |35.03 34.56 36.56|6.42 6.41 644|310 317 291
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