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ABSTRACT

The rapid expansion of sensor systems, such as traffic networks, climate moni-
toring, and energy scheduling, poses new challenges for spatial-temporal series
forecasting. While existing models have achieved strong performance under the
fixed-node assumption, they rely on node-dependent parameters and fail to adapt
when the network evolves, i.e., when old nodes are removed and new nodes with
limited history are added. This expanding-node forecasting scenario introduces
two critical challenges: (1) learning heterogeneous node representations without
coupling learnable parameters to node count, and (2) enabling effective adaptation
to new nodes with scarce observations. To tackle these challenges, we propose
SNIP (Structured Node Interaction Prompting), a model-agnostic framework that
constructs static spatial-temporal priors from historical observations and topol-
ogy, and dynamically refines them during model training. Specifically, SNIP gen-
erates structured priors from three perspectives: periodic patterns across nodes,
spatial-temporal interactions under time delays and graph structural information.
These priors are projected into model as node promptings and then dynamically
refined. For new nodes, SNIP initializes priors by similarity-weighted mixtures of
old nodes and updates them with limited history, enabling efficient few-shot adap-
tation. Extensive experiments on multiple datasets demonstrate that SNIP outper-
forms state-of-the-art baselines in expanding-node scenarios. Beyond accuracy,
SNIP provides plug-and-play generality and computational efficiency, bridging
the gap between fixed-node precision and expanding-node adaptability in spatial-
temporal forecasting.

1 INTRODUCTION

Spatial-temporal forecasting is crucial in cyber-physical systems such as traffic networks, climate
monitoring, and energy scheduling. Despite recent advances, most models still rely on the fixed-
node assumption: training and inference are performed on a static node set, with parameters explic-
itly tied to node count. However, real systems are rarely static. Nodes may be added (e.g., new road
sensors, weather stations) or removed (e.g., failures, replacements). This gives rise to the task of
expanding-node forecasting, where node sets evolve across periods, new nodes have scarce history,
and some old nodes disappear, rendering traditional models ineffective.

To address this challenge, three lines of solutions have emerged (Figure [I): (1) Node-independent
parameterization. Univariate time-series forecasting models forecast each node separately, which
is scalable but neglects cross-variable dependencies. Others remove node embeddings and rely
solely on sequence interactions (Liu et al.,|2024;[Ma et al.| 2025a), while attention-based prompting
(Hu et al.| [2024) alleviates this partially but remains constrained by short horizons. (2) Node-scaled
Prompting. Continual learning methods expand embeddings as new nodes appear (Chen & Liang,
2025)), but usually assume abundant expansion data, which is unrealistic under scarcity. They also
overlook node removal, causing wasted parameters and reduced flexibility. (3) Fixed expanded
parameterization. A recent work, STEV (Ma et al.,|2025b)), introduces the Expanding-variate Time
Series (EVTSF) forecasting task and mitigates imbalance with a flat scheme and shared subgraph.
Nonetheless, it still relies on predefined embeddings for all expanded nodes. As a result, further
network changes require costly retraining, limiting scalability.
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Figure 1: Examples of expanding-node spatial-temporal forecasting and different solutions. (a)
Sensor nodes may added, retired or replaced in the expansion stage. (b) Comparison of three existing
solution paradigms with our proposed SNIP framework.

In summary, while node-specific learnable parameters enhance forecasting accuracy (Shao et al.,
2022; Liu et al., 2023; |[Dong et al., [2024), they either lack flexibility for new nodes when fixed or
suffer from poor fitting under data scarcity when expanded, leading to a trade-off between accuracy
and scalability. As a result, this raises a fundamental question:

Can effective node identification features be computed directly from historical observations,
without relying on learnable node-dependent model parameters?

However, two critical challenges emerge: (Challenge 1) How to ensure that constructed features
sufficiently capture inter-node heterogeneity and correlation, preserving predictive accuracy com-
parable to learnable embeddings? (Challenge 2) How to refine these features dynamically to re-
main accurate under dynamic enviroments, especially when new nodes arrive with only scarce
observations?

To address these challenges, we propose SNIP (Structured Node Interaction Prompting), a model-
agnostic prompting framework guided by structured priors and refined dynamically. Specifically,
SNIP addresses the first challenge by computing priors from historical sequences through dimen-
sionality reduction, which inherently preserves heterogeneity and correlation. Using PCA-based
periodic features and Spectral embeddings of time-delayed interactions and graph topology, it ef-
fectively encodes node-specific heterogeneity without learnable embeddings. To tackle the second
challenge, SNIP incorporates a dynamic refinement module that continuously adapts static priors
through diffusion-based graph convolutions, thereby maintaining accuracy under dynamic evolving.
Moreover, for new nodes with scarce observations, SNIP introduces a similarity-weighted initializa-
tion scheme that transfers priors from old nodes, providing effective embeddings that enable rapid
few-shot adaptation. Through these two strategies, SNIP achieves parameter-node decoupling while
maintaining both predictive accuracy and adaptability in expanding-node forecasting. Our contribu-
tions can be summarized as follows:

* We identify the problem of expanding-node spatial-temporal forecasting, where sensor networks
evolve across periods, and highlight its core challenges of parameter-node coupling, data scarcity
for new nodes, and preserving node heterogeneity. We further approach this problem from the
perspective of structured node interactions.

* We propose SNIP (Structured Node Interaction Prompting), a framework that combines static
prior construction (periodic, topological and time-delayed node interaction features) with dynamic
refinement to build effective and flexible node promptings. In addition, we design a similarity-
weighted initialization scheme to endow new nodes with initial embeddings, enabling efficient
adaptation under few-shot conditions.

* A concrete instantiation of SNIP, termed SNIPformer, is further proposed. Extensive experiments
on four datasets demonstrate that SNIP outperforms state-of-the-art baselines. Moreover, it serves
as a plug-and-play module that enables classical spatial-temporal models to adapt flexibly and
effectively to expanding-node forecasting.
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2 RELATED WORK

Spatial-temporal forecasting (STF) is central to applications such as traffic, energy, and climate.
Early works combined recurrent or convolutional networks with graph modules to model temporal
and spatial dependencies. With the advent of Spatio-Temporal Graph Neural Networks (STGNNs)
and Transformers (L1 et al., 2018; |Wu et al., 2019; |Guo et al.| [2022)), research has focused on cap-
turing complex inter-node correlations via multi-view graphs or attention (Diao et al., 2024} Jiang
et al.| [2023). More recent advances explore adaptive embeddings (Shao et al., [2022; |Zheng et al.,
2025a) and hybrid neural modules (Sun et al.l 2024; Lee & Kol [2024) to balance efficiency and
accuracy.

Node Prompting in STF. A consistent trend in these developments is the introduction of node-
specific embeddings as additional identity information. By assigning learnable parameters to each
node, models can capture inter-node heterogeneity beyond raw time series, which has shown strong
forecasting performance (Liu et al.,|2023; |Dong et al.,2024). Such embeddings function as prompts
that guide spatio-temporal modules, and have become an implicit consensus for achieving state-
of-the-art accuracy. However, this design inherently ties model parameters to node count, limiting
scalability in evolving networks. Recent work has further explored attention-based prompting mech-
anisms, such as STGP (Hu et al.,2024) and EAC (Chen & Liang, [2025)), but these methods still rely
on directly fitting prompts from data, which is challenging and assumes the availability of sufficient
training samples.

STF under dynamic node expansion. In real-world systems, nodes may be added or removed over
time, violating the fixed-node assumption in classical STF. To address this, recent works explored
several directions. One approach decomposes data into univariate series or removes node-specific
embeddings, which improves scalability but ignores spatial dependencies. Others directly learn
from raw inputs or attention-based prompts (Liu et al.| |2024; Hu et al.l [2024), but accuracy drops
due to insufficient heterogeneity modeling. Continual learning methods (Wang et al., 2023} |Chen
& Liang} 2025) expand embedding sets through prompt-tuning, yet typically assume abundant new
data. OOD-generalization based methods (Wang et al.}[2024; Ma et al.||[2025a)) emphasize robustness
but lose accuracy when fine-tuning is feasible. A recent EVTSF paradigm, STEV (Ma et al.|[2025b),
mitigates imbalance via flattening and contrastive learning, but still relies on node-dependent param-
eters and costly retraining, limiting flexibility.

In contrast, our SNIP builds non-learnable priors and refines them dynamically, decoupling param-
eters from nodes while retaining node-specific effectiveness, and can be seamlessly integrated into
existing STF models.

3 PRELIMINARY

We consider a spatial-temporal network at time period 7, denoted as G, = (V,, &), where V., =
{v1, va, ..., v, } is the node set (e.g., road sensors, climate monitors), and £, denotes the edges (e.g.,
road links, physical connections). The adjacency matrix is A, € RN~*Nr N_ = |V,_|, representing
the spatial relationships among nodes. Each node records C features within a temporal window of
length L, forming a spatial-temporal series X, € RE*N-xC

Definition (Expanding-node Spatial-Temporal Series). We define two consecutive periods.
Period-1 (base stage) is 1 = [to — L1 + 1, to], with data D, = (G,,, X,), where |V, | = N,,.
L denotes the length of base stage, and ¢ is the final time slice of this stage. Period-2 (expansion
stage) is 7o = [to + 1,t0 + Lo], with data D, = (G,,, X,,), where |V,,| = N.,. Ls is the length
of expansion stage. During the transition from the base stage to the expansion stage, nodes may be
added or removed, which can be formalized as V., = (V, \ Vael) UVaews Vel € Vrys Vaew Ve, = 0.
Moreover, to enable timely forecasting on newly deployed nodes, the available data in the expansion
stage is typically very limited, i.e., Lo < L1, which leads the problem of data scarcity, particularly
for newly added nodes.

Problem (Expanding-node Spatial-Temporal Forecasting). The goal of expanding-node spatial-
temporal forecasting is to train a model f using data from both periods, such that f

Xi—1+41:4,Gr;0) — ?t+1:t+T” where X,_7,1; € RT*N-xC ig the input sequence of length
T, and Yy 1.7 € RT*N-xC ig the predicted sequence of length 7”. A key requirement is that
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Figure 2: Overall framework of our proposed SNIP.

the parameter set © be decoupled from network size, i.e., (1), since parameter scaling
with N limits adaptability to evolving networks. This enables the model to generalize across vary-
ing node sets. In practice, we evaluate forecasting on the expanded set V,, while the formulation
naturally extends to any node set with NV, > N, , ensuring applicability to future expansions.

4 METHODOLOGY

Figure[2illustrates the overall structure of the proposed SNIP framework. In this section, we present
the construction of structured static priors and their refinement during training and expansion. Then
we introduce SNIPformer, an instantiation built on an efficient spatial-temporal encoder.

4.1 STRUCTURED STATIC PRIORS (CHALLENGE 1)

In recent years, node-specific learnable embeddings have been widely used in spatio-temporal fore-
casting to provide discriminative identity information (Shao et al.,[2022; |Liu et al., 2023 Dong et al.,
2024; |(Chen & Liang] 2025)), achieving strong performance but conflicting with evolving node sets.
To address this, SNIP avoids node-dependent parameters and instead pre-computes node-specific
priors from historical data as prompting signals. We derive low-dimensional features that maxi-
mize inter-node variance to preserve heterogeneity. For clarity, we describe the single-feature case
(C' = 1), which naturally extends to multi-channel inputs by concatenation.

4.1.1 PERIODIC PRIORS

Motivation. Intuitively, a node’s long-term sequence itself serves as its unique identifier, but directly
using it is impractical due to dimensionality and noise. We instead apply dimensionality reduction to
extract informative components. Given the strong periodicity of spatial-temporal data (e.g., daily or
weekly cycles), we partition histories into repeated cycles, compress each into low-rank “snapshots,”
and average them to form a compact representation of node identity.

Periodic Priors. Given a historical period 7 with length L, let X = X..; € REXN denote the
historical sequence for N nodes. We specify a set of cycle lengths {p1,p2,...,p,} and partition
each node’s series into non-overlapping segments accordingly. For instance, when p; corresponds
to one day, the sequence is divided into consecutive daily fragments. Each segment is normalized
independently, and then projected into a low-dimensional representation using Principal Component
Analysis (PCA) (Abdi & Williams, [2010). For each cycle length p;, the node representations from
all complete segments are averaged to yield a compact descriptor Z(7) e RN *Fpea, Kpca represents
the value of a low dimensionality. Finally, we concatenate results across all n cycle lengths to obtain
the periodic priors:

Zyrq = Concat (2(1), A Z(")) € RNV X (nkpea) 1)

By the Eckart-Young-Mirsky theorem (Eckart & Young}|1936), PCA guarantees the optimal rank-%
approximation under the Frobenius norm, thereby preserving the maximum variance. In our context,
this ensures that the periodic priors retain the most discriminative directions of node dynamics,
effectively encoding node heterogeneity from a temporal perspective. Implementation details are
provided in Appendix
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4.1.2 TOPOLOGY PRIORS AND TIME-DELAYED INTERACTION PRIORS

Motivation. While periodic features separate node-specific temporal patterns, they overlook inter-
node correlations, another key factor in spatial-temporal forecasting (Wang et al., |2022)). Topology
priors, derived from graph adjacency, capture latent positional and structural relations. Meanwhile,
many spatial-temporal phenomena propagate with delays (e.g., traffic congestion spreading) (Long
et al.,|2024;/Zheng et al.,[2025a)), and such delayed or short-term correlations are inherently dynamic.
To capture these correlations, we construct two complementary priors: (1) topology features from
static adjacency, and (2) time-delayed interaction features from frequency-domain correlations under
short windows.

Topology Priors. We adopt spectral embedding (Belkin & Niyogi,|2003) to obtain low-dimensional
node representations. In the case of topology, given the adjacency matrix A € RV*Y  one can
construct the normalized Laplacian: L = I — D~ 3 AD™ 2, where D is the diagonal degree matrix
with D; ; = > j A; ;. Then, the topology embedding is formed by the eigenvectors corresponding
to the smallest ki, eigenvalues of L. This can be formulated as:

Ztopo = (b(Aa ktopo) = [uh U, ... 7ukmp0] € RNkapqv (2)

where uy,. .., ug,, are the leading eigenvectors of the normalized Laplacian. This embedding
captures the static positional structure of nodes in the network, where nearby or strongly connected
nodes are embedded closer together. Physically, they reflects both global communities and local
connectivity patterns.

Time-delayed Interaction Priors. Recent studies have shown that correlations between node se-
quences often emerge more strongly when temporal delays are considered, rather than assuming
synchronous dynamics (Long et al.,[2024}; Zheng et al.,[2025a)). To capture such effects, we estimate
cross power spectral density (CSD) between node pairs using Welch’s method with short sliding
windows (Welch, |1967). This formulation enables us to measure correlations across all possible
lags without pre-specifying a maximum delay in previous STF models. Consequently, we can ob-
tain the cross-correlation matrices under different time delays: R(d). From this, we extract (i) the
dominant delay A; ; = arg maxgs |R; ;(6)|, that maximizes correlation between nodes 4 and j, and
(ii) the corresponding correlation strength P; ; = max; |R; ;(0)|. These two matrices encode how
information propagates with delays and how strongly nodes interact. Similarly, we apply spectral
embedding to both matrices, and then concatenate results into Zg;:

Z,gi = Concat(®(A, kdetay), P(P, keorr)) € R X (Kaetay+hecorr) 3)

In summary, topological priors preserve static, position-driven relationships, while time-delayed
embeddings capture dynamic propagation and short-term coupling. In particular, spectral embed-
dings emphasize the principal eigenvectors, which correspond to directions of maximum structural
or interaction variance, this is analogous to PCA but under graph constraints. These priors reflect
how nodes interact and differ within the network, boosting promptings from the correlation angle.
Details of CSD method are provided in the Appendix [A.2]

4.2 DYNAMIC REFINEMENT AND ADAPTATION (CHALLENGE 2)

Motivation. The static priors in Section[.T.2|capture invariant properties but cannot reflect temporal
dynamics, such as evolving behaviors of existing nodes or the emergence of new nodes during ex-
pansion. To address this, we design a refinement-and-adaptation mechanism that treats above three
priors as reference points subject to dynamic correction. To formalize this intuition, we propose the
following hypothesis, which conceptualizes how an optimal node prompting should be decomposed
into stable and dynamic components.

Hypothesis 1 (Decomposition of Optimal Node Prompting). At any time t, there exists an optimal
()

prompting configuration z;,” for each node i, which maximizes predictive accuracy. This config-

® _ ® (0

uration can be decomposed as: z;,’ = q; +r;’, ;" = g(:cg.t),j € N;)), where q; represents

spatially intrinsic characteristics of node i (time-invariant reference), rgt) reflects spatial-temporal
interaction effects that vary over time, N(;) is the set of nodes that have a correlation relationship
with node 1, and g is a transformation function.
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If the proposed static prior in Section .T] approximates g;, the backbone STF model only needs to
fit rgt), which typically exhibits lower variance. Consequently, the hypothesis space is constrained,
yielding reduced sample complexity and improved generalization under limited data (Vapnikl 1999).

We will provide empirical ablations in Section[5.3|to support this assumption.

Dynamic refinement via MLP and diffusion graph convolution. We first project the concatenated
static priors into the model dimension d using a two-layer MLP: Z s = MLP([Zprd, Ziopo, Zyi)) €
RN ¥4 We refine priors by aggregating temporal variations through diffusion graph convolution (Li
et al., 2018; Wu et al.l 2019). Specifically, for each input time slice, we apply the diffusion con-
volution operation: H; .. = Diff GCN(X?:"}’:7 A), where X*™ € RT*N*d js the series embedding
and A is the adjacency matrix. To simulate potential changes in graph topology during the expan-
sion stage, we further apply edge dropout to A during training, enhancing robustness to evolving
structures. The final adaptive embedding is obtained by combining static refinement and dynamic
aggregation:

(mel)t,:,: = Ler + Ht,:,:, (4)

This embedding Z,,, not only incorporates static priors but also adapts to temporal variations, serv-
ing as the prompting within the forecasting model.

Prompting initialization in expansion stage. In the expansion stage, new nodes often lack suffi-
cient history to compute reliable priors. For these nodes, we adopt a similarity-based initialization.
Specifically, their priors can either be recomputed directly from the limited data available in the
expansion stage, or constructed by weighted mixing of the priors from a few most similar remain
nodes in the base stage. Similarity is measured using the cross-correlation matrix P introduced in
Section4.1.2] recomputed under the current stage. Formally, For a new node ¢, its similarity weight
with remain node j is calculated as s; ; = P; ;/ Zj Viman Pivi> Vi € Vaews ;U5 € Viemain, and its
prior of type § € {prd, topo, tdi} is obtained as (zq); = Zje/\fkm 54,5 (24), where N ;) denotes
the top-k most similar remain nodes. When expansion-stage data are too scarce,(zp); is directly
mixed from old nodes’ periodic priors. For remain nodes, the priors computed in the base stage are
reused without modification.

Moreover, most existing works rarely consider nodes that are removed during the expansion stage. In
our framework, discarded nodes do not require prior construction in the new period, and since model
parameters are decoupled from node identity, no redundant parameters are left unused. This design
avoids parameter waste and provides additional flexibility and convenience for evolving networks.

4.3 INTEGRATION WITH SPATIAL-TEMPORAL FORECASTING MODELS

Based on the static priors and dynamic refinement introduced above, SNIP can be seamlessly in-
tegrated into existing STF architectures by injecting the prompting into the input features before
spatial-temporal feature extraction. To establish a baseline for expanding-node forecasting, we in-
tegrate the SNIP framework with a recent efficient spatio-temporal encoder (Zheng et al., 2025b),
which provides a general mechanism for learning compact and expressive representations with com-
plexity linear in the number of nodes. The resulting model, SNIPformer, incorporates our prior-
guided prompting into the encoder’s input embedding and spatial-temporal extraction process, fol-
lowed by a lightweight regression head for prediction. The complete model structure is presented in

the Appendix [A.3]

5 EXPERIMENTS

In this section, we evaluate and analysis the effectiveness, generality, and flexibility of our proposed
SNIP framework under node expansion scenarios using four real-world datasets.

5.1 EXPERIMENT SETTING

Datasets and Evaluation Setting. We use the following spatial-temporal datasets across traffic and
energy domain for evaluation: EPeMS (Ma et al.| 2025b), PEMS04 (Song et al.| [2020), SeaL.oop
(Cui et al., 2019), and NREL-AL (Xu et al., 2025). For EPeMS, we follow the node expansion
setup introduced in STEV (Ma et al., 2025b). For the other datasets, we simulate node expansion
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by randomly partitioning the node set into remain, deleted, and newadd groups. The detailed imple-
mentation procedure is provided in the Appendix Table [T| summarizes the stage and node par-
titions. We use a 12-step history to predict the next 12 steps, correspond to 1 hour ahead prediction.

We compute prior features in the base stage using

full historical data and train models with sliding- Table 1: Dataset statistics and characteristics

. . f Stage Split Node Expansion
window samples. In the expansion stage, pri- Dataset 1 /7o I test (11 — 72)
ors are recomputed from short-term history and EPeMS 034/ 3d 224/ 22 396 > 447
priors transferred from the base stage, followed PEMS04 35d/6d+1d/17d 241 =5 290
by fine-tuning. Final evaluation is conducted in SeaLoop 18d/6d +1d/3d 255 — 303

NERL-AL  122d/6d + 1d/53.5d 103 — 130

the test stage. We report Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) in
the main tables, while Mean Absolute Percentage
Error (MAPE) and Mean Relative Error (MRE) are provided in the Appendix with consistent con-
clusions.

Table 2: Comparison of the expanding-node forecasting results of different methods and SNIP-
former.

EPeMS
Remain New

32770 3226 33.56
48.32 48.14 48.66

26.83 26.65 27.16
4140 4122 41.73

2525 25.17 2539
38.05 38.18 37.77

2373 23.11 24.93
35.81 3527 36.84

PEMS04 Seal.oop NREL-AL
All Remain New All Remain New | All Remain New

2897 2891 29.17 | 459 4.62 449 | 254 259 241
4455 4429 4542 | 799 8.02 792|391 4.00 3.63

24776 2474 2483 | 429 431 421|194 197 183
39.62 39.34 40.52 | 7.54 7.56 7.46 | 3.36 344 3.12

2321 2321 2324 | 402 404 393|182 185 172
36.54 3632 37.26 | 7.02 7.04 693 | 3.10 3.17 2.88

2299 2305 2279 | 394 397 384|179 183 1.69
36.70 36.57 37.16 | 6.82 6.86 6.68 | 3.16 3.24 292

Model ‘ Metric

MAE
RMSE

. MAE
iTransformer ‘ RMSE

DLinear

MAE
RMSE

MAE

DUETformer ‘
GWNET' ‘ RMSE

STID MAE | 2440 2431 2456 | 2249 2256 2225 |4.10 4.12 403|200 203 1.89
STAES +| MAE | 24.86 24.66 2527 | 22.95 23.03 22.67 | 415 4.17 4.09 | 191 195 1.81
Ormer’| RMSE | 38.34 38.26 38.50 | 36.75 36.63 37.14 | 7.38 7.39 737|329 337 3.05
STOP MAE | 24.45 24.47 2441 | 22.54 2256 2246 | 412 4.13 408 | 201 205 1.89
RMSE | 37.24 3741 36.89 | 3574 3552 3645|732 732 735|325 332 3.02

STKEC MAE | 29.99 29.78 30.40 | 25.64 25.84 24.87 | 500 5.01 498|233 234 228
RMSE | 4291 43.05 42.64 | 39.55 39.74 3873 | 8.14 8.13 8.16 | 3.62 3.66 3.51

EAC MAE | 28.74 2823 29.75 | 24.05 2427 2321 | 472 473 472216 217 214
RMSE | 40.33 39.80 41.35 | 36.51 36.79 3541 | 7.82 7.81 7.86 | 337 339 332

STEV MAE | 2290 2235 2397 | 20.55 2042 2101 | 392 395 384|157 158 1.53
RMSE | 3451 3395 35.60 | 3246 32.13 33.53 | 6.62 6.66 6.51 |2.88 293 273

SNIPformer | MAE | 22.05 21.39 23.35 | 19.20 19.22 19.10 | 3.46 3.47 342 | 1.62 1.65 155
(ours) RMSE | 3391 33.16 35.33 | 31.02 30.87 31.54 | 6.10 6.14 597 | 2.87 292 2.71

RMSE‘ 37.38 37.44 37.23 ‘ 3592 3577 3642 | 726 7.28 7.20 | 325 3.33 3.01

Baselines and Hyperparameter Settings. We compare SNIPformer (introduced in Section [4.3)
with four categories of existing solutions for expanding-node STF: 1) Models without node-specific
prompting: DLinear (Zeng et al., 2023), iTransformer (Liu et al.,[2024), DUETformer (Qiu et al.,
2025). 2) STF models without node-specific modules: GWNET' (Wu et al.| 2019), STID' (Shao
et al., 2022), STAEformer' (Liu et al.; 2023), STOP (Ma et al.| [2025a)), where t indicates removal
of learnable node embeddings. 3) Continual learning methods: STKEC (Wang et al., [2023), EAC
(Chen & Liang] [2025). 4) Fixed-node models after expansion: STEV (Ma et al.,2025b). For SNIP-
former, we set the PCA feature dimension to 24 (each for daily and weekly periods) and the spectral
embedding dimension to 8. The model dimension is 64 (32 for NREL-AL). Other implementation
details are provided in the Appendix. Average results are reported after repeating the experiments
no less than five times.

5.2 EFFECTIVENESS AND GENERALITY

Expanding-node forecasting results. Table [2] summarizes the results across all nodes, Remain
nodes, and New nodes, where the best results are highlighted in bold red and the second-best results
in underlined blue. SNIP achieves the best performance on the three traffic datasets, with rela-
tive averaged improvements up to 7.61% / 5.61% in MAE and RMSE over the strongest baselines.
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On NREL-AL, SNIP ranks second on MAE, slightly below STEV. We attribute this gap to domain-
specific characteristics, such as stronger trend strength (Qiu et al.l 2024)(in Table[5)) and more severe
distribution shifts, which are more effectively captured by the contrastive learning strategy in STEV.
Nevertheless, compared to node-agnostic models and continual learning approaches, SNIP consis-
tently delivers superior accuracy, confirming the effectiveness of structured priors in encoding node

heterogeneity under expansion scenarios.

Generality across architectures. To validate
SNIP’s model-agnostic design, we integrate it
into three representative backbones: iTrans-
former, GWNET, and STID. Table |§| reports
the results of (i) the original backbone, (ii)
backbone + AttP, an attention-based prompt-
ing module proposed in STGP 2024),
and (iii) backbone + SNIP. Across all cases,
AttP does not yield noticeable improvements,
whereas SNIP consistently and significantly en-
hances forecasting performance under dynamic
node changes. This confirms that prior-guided
prompting provides a more effective way to cap-
ture node heterogeneity and adapt to evolving
networks.

Table 3: Forecasting MAE of different back-
bones with and without prompting modules.

Model EPeMS NREL-AL
All Remain New All Remain New
iTransformer| 26.83 26.65 27.16 194 197 1.83
+ AttP 26.81 26.64 27.14 | 195 199 1.84
+ SNIP 24.67 24.14 2571 | 1.84 188 174
GWNETT | 2373 23.11 24.93 1.79 1.83 1.69
+ AttP 2375 23.13 2496 | 1.79 1.82 1.69
+ SNIP 2341 2279 24.62 | 1.77 181 1.66
STID' 2440 2431 2456 | 2.00 203 1.89
+ AttP 2435 2426 2453 | 2.01 205 190
+ SNIP 21.84 21.13 2323 | 1.86 189 177

More importantly, these results highlight SNIP’s generality: as a model-agnostic framework, it can
be seamlessly combined with diverse forecasting architectures, enabling them to remain effective in

expanding-node scenarios while preserving strong

accuracy. This suggests that prompting frame-

works and spatio-temporal feature extractors can evolve in parallel as complementary directions.

5.3 ABLATION STUDIES

w/o Static Priors
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Figure 3: Ablation Results. Left: Comparison of contribution of different components. Right:
Performance of using random features with high and low variance as static priors.

Component-wise analysis We first assess the con-
tribution of different components in SNIP by pro-
gressively removing them: (i) w/o Prompting, (ii)
w/o Static Priors, (iii) w/o Dynamic Refinement,
(iv) w/o Periodic Priors, and (v) w/o Inter-node
Priors (removing both topology and time-delayed
interaction priors). Figure [3] reports results on
PEMSO04 and Seal.oop, evaluated on remain nodes
and newadd nodes. The results yield several key
insights. Removing prompting causes a substantial
accuracy drop; relying solely on dynamic refine-
ment to learn full embeddings also performs poorly,
suggesting that directly fitting optimal embeddings
without helpful priors is highly challenging. In con-
trast, using only static priors without refinement un-
derscores the necessity of modeling temporal vari-
ations. Finally, eliminating periodic or inter-node

Heterogeneity Score

Distribution of Node-specific Prompting

_camale
+ SNIP

25
Training Epochs
Forecasting performance

075 100 ¢

40

Learnable r SNIP -+ SNIP

Figure 4: Contribution of SNIP to the STID
model on PEMS04 dataset. Right: Distribu-
tion of node-specific prompting after dimen-
sionality reduction via t-SNE.

priors consistently degrades performance, validating that the constructed priors effectively encode

node heterogeneity and structural dependencies.
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Empirical analysis of decomposition and heterogeneity We further validate Hypothesis |1| by re-
placing static priors with alternative designs: (a) random priors with high variance, (b) random priors
with low variance, and (c) no static priors. Figure[d] shows that under the decomposition framework
of Hypothesis[I] even randomly initialized features can achieve competitive results. Moreover, larger
initialization variance improves performance, underscoring the importance of heterogeneity.

To intuitively demonstrate the heterogeneity introduced by SNIP prompting, we visualize results on
the PEMS04 dataset under a fixed-node forecasting setup with STID in Figure[d] When the learnable
embeddings in STID are either replaced by SNIP or augmented with SNIP, both heterogeneity score
(Chen & Liang, 2025) and predictive performance improve. As shown in the t-SNE visualization
under a unified embedding space, the combination of learnable embeddings and SNIP yields a wider
spread and more distinct clusters, indicating that SNIP effectively enhances heterogeneity.

5.4 EFFICIENCY AND FLEXIBILITY

Computational efficiency is an important consideration for expanding-node forecasting. The addi-
tional cost of SNIP mainly comes from three preprocessing operations: multi-cycle PCA for periodic
features, cross-correlation estimation between node pairs, and spectral embedding of the resulting
matrices. Crucially, all of these steps are performed once in the base stage, and the priors are reused
throughout training and expansion. As shown in Table 4] the one-off preprocessing overhead is
minor compared with training time.

When comparing training and inference efficiency, SNIPformer shows clear advantages over the
strongest baseline, STEV. While STEV incurs heavy retraining whenever nodes are expanded, SNIP-
former requires only lightweight fine-tuning with precomputed priors. This results in substantial
reductions in both training time and memory consumption, while maintaining competitive accu-
racy. In addition, applying SNIP to classical backbones such as STAEformer introduces only min-
imal extra cost, yet enables these models to operate effectively in expansion scenarios where their
original designs fail. Overall, SNIP achieves high efficiency, flexibility, and scalability, offering a
model-agnostic prompting framework that can be seamlessly incorporated into existing or future
STF architectures.

Table 4: Training and inference efficiency comparison on EPeMS (batch size = 32).

STAEformer’

Metric STEV SNIPformer 1% ‘ STAEformer +SNIP 1%
Pre-computation | Augmentation  Static Priors Static Priors
Time Cost (min) 0.21 2.61 . B 2.61
Training (1, T2) (11 — T2) (1) (T1)
Time (s/epoch) 325.42 28.26 — 1.42 |91.3% 132.03 134.77 12.0%
Footprint (MB) 31430 1466 — 2358 192.5% 8130 8296 12.0%
Inference Time(s) 20.46 1.05 194.9% . 1.37 -
()  MAE| 2290 22.05 1379 | [nvalid 2375 T Feasibility

6 CONCLUSION

In this paper, we proposed SNIP, a model-agnostic prompting framework for expanding-node
spatial-temporal forecasting. It constructs structured static priors from heterogeneity and correla-
tion angles and performing learnable dynamic refinement. A similarity-weighted initialization fur-
ther enables few-shot adaptation for new nodes. SNIP allows existing spatio-temporal forecasting
models to be easily adapted to expanding-node scenarios. Experiments across multiple datasets and
backbones show that SNIP achieves strong accuracy, generality, and efficiency. Ablations show that
variance-preserving, correlation-aware priors and dynamic refinement are all indispensable. Future
work will study the optimal composition of prompting, extend SNIP to cross-domain settings, and
integrate it as a prompting layer in large spatial-temporal models.
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A APPENDIX: METHODOLOGY DETAILS

A.1 PERIODIC PRIORS CONSTRUCTION

Given a historical period 7 with a length of L. Let X € RZ*¥ denote the historical sequence of for
N nodes. We specify a set of cycle lengths {p1,p2, ..., pn}. For node ¢ and a given cycle length p;,
we partition its sequence X.; € R’ into non-overlapping cycle segments. For example, when p;
corresponds to one day, the sequence is divided into consecutive daily fragments, each treated as an
individual segment. Formally, the set of segments is defined as:

Sz(‘j) = Partition(X. ;, p,;) = {Xl[(m —Dp;j+1:mpj] |m=1,... ,Mj}, (5)
where M; = |L/p;] is the number of complete cycles. Each element of ng ) is a vector
in RPi. Before dimensionality reduction, each segment of node ¢ is normalized independently:
:E:(a:—ugj))/al(]), mESZ(»]),WhereuE]) Z(])
1’s segments under cycle length p;.

Each normalized segment X’,S{) is treated as an IV X p; data matrix, which is the full ”snapshot”
of all nodes in cycle j. We then apply Principal Component Analysis (PCA) to reduce these seg-
ments to their low-rank components and obtain compact representations. Specifically, PCA yields a

and o’/ are the mean and standard deviation of node

projection matrix U) € RPi **m: from the top kpea €igenvectors of the covariance matrix of X,(,{ ),
Then the segment-level low-dimensional representation is computed, and the M representations are
the averaged across segments:
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M;
7)) = Z J)U(J) e RV ¥k 4 [1,..,n]. (6)

m=1

Finally, the representations from all n cycle lengths are concatenated, yielding the periodic prior
feature matrix:

Zyg = Concat (Z(l), AN Z(")) € RNV*(nkpea) (7)

Figure [5illustrates this construction.

X,
° Py Aﬂ
|‘ P; 9| J -P CA é Average

e.g. 1day M; days

ﬁ RN Xkpca

Figure 5: An illustration for the periodic prior construction under a cycle length p;.

A.2 TIME-DELAYED INTERACTION PRIORS CONSTRUCTION

As a increasing trend investigated by recent studies(Long et al., 2024} [Zheng et al., |2025a), the
correlation between two node sequences is often more pronounced when a temporal delay is con-
sidered rather than assuming synchronous dynamics. To capture this, we quantify their association
through the cross power spectral density, which avoids the limitation of manually specifying a max-
imum delay as required in previous research. This formulation allows us to directly compute the
delay step that maximizes their correlation, along with the corresponding strength. Intuitively, these
two quantities characterize both the temporal span and the spatial extent of the interaction between
nodes.

Formally, let z;, ; € R” denote the historical sequences of nodes i and j. Each sequence is nor-
malized in the same manner as in periodic features. Their cross-spectral density (CSD) is estimated
using Welch’s method with a Hann window (Welch, |1967)) of length T°:

K
Qij(v Z nX®P ), 8)

k:

where K = |L/T| is the number of windows, Xi(k)(u) is the Fourier transform of the k-th win-
dowed segment of node ¢, v is the frequency variable, and * denotes complex conjugation. The
cross-correlation function is obtained by inverse FFT:

Rij(8) = FH(Qi; (), ©)

which is then shifted to align both positive and negative delays. We extract the most significant delay
and its corresponding correlation strength as

Aij = arg max |R2J(5)|, -l)ij = III?JX \le(§)| (10)
&

where A is the delay matrix recording absolute dominant lags, and P is the correlation matrix
recording absolute correlation strengths. Following the same procedure, we apply spectral embed-
ding to the delay and correlation matrices, and then concatenate them into Z,g;:

Zg = Concat(P(A, kgelay ), (P, keorr))- (11)
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Figure 6: The architecture of SNIPformer.

A.3 ARCHITECTURE OF SNIPFORMER

Figure [0 represents the entire architecture of SNIPformer. We use the data embedding module
and spatial-temporal extractor proposed by ST-ReP (Zheng et al.l [2025b)) as the main architecture.
Differently, we remove the learnable spatial embeddings in the original model and use our dynamic
refinement module and pre-computed static priors to build a new node embedding for input series.
Moreover, we use a linear head to transform the flattened spatial-temporal hidden features into
prediction.

B APPENDIX: EXPERIMENT DETAILS

B.1 DATASETS AND EVALUATION SETTING.
We use the following spatial-temporal datasets across traffic and energy domain for evaluation:

o EPeMS(Ma et al.l [2025b): an expansion-node dataset constructed in STEV (Ma et al.,
2025b) from District 7 of California, which assumes no deleted nodes.

* PEMSO04 (Song et al., [2020): traffic flow data collected from the Caltrans Performance
Measurement System in California.

* Seal.oop (Cui et al., 2019): Seattle traffic loop detector data, recording speed measure-
ments.

* NREL-AL (Xu et al., 2025): renewable energy data, recording solar power generation
from photovoltaic plants in Alabama in 2016.

The number of feature values for all dataset records is 1, i.e., C=1. Each dataset is divided into three
stages: a base stage, an expansion stage, and a test stage. Within the expansion stage, we further
split the last portion (e.g., 1 day) as the validation set, while the earlier portion (e.g., 6 days) is used
for expansion-stage training. For EPeMS, we strictly follow the experimental setup in Ma et al.
(2025b)) for consistency. For the other datasets, 80% of nodes are randomly selected as observed
nodes in the base stage, providing sufficient history (L;). The remaining 20% are treated as newadd
nodes, appearing only in the expansion stage with short history (Lo < L1). Additionally, 5% of
base nodes are randomly designated as deleted, while the rest remain as remain nodes. Table 5]
summarizes detail statistics of datasets.

Table 5: Dataset statistics and characteristics

Dataset Sample Rate Stage Split Node Expansion (11 — 72)  Trend Strength

EPeMS Smin 63d/3d/2d/22d 296 — 447 (296 -0 + 151) 0.12
PEMS04 Smin 35d/6d/1d/17d 241 — 290 (241 -17 + 66) 0.08
SeaLoop Smin 18d/6d/1d/3d 255 — 303 (255 -20 + 68) 0.11
NERL-AL Smin 122d/6d/1d/53.5d 103 — 130 (103 -7 + 34) 0.71
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B.2 BASELINE AND HYPER-PARAMETERS
We compare SNIPformer with four categories of existing solutions for expanding-node STF:

1. Models without node-specific prompting: DLinear (Zeng et al., 2023), iTransformer (Liu
et al., 2024), DUETformer (Qiu et al., 2025).

2. STF models without node-specific modules: GWNET' (Wu et al, [2019), STID' (Shao
et al., 2022), STAEformer' (Liu et al.l[2023), STOP (Ma et alL[2025a), where 1 indicates
removal of learnable node embeddings.

3. Continual learning methods: STKEC (Wang et al.,|2023), EAC (Chen & Liang}, |2025)).
4. Fixed-node models after expansion: STEV (Ma et al., 2025b)).

For SNIPformer, we set the PCA feature dimension to 24 (each for daily and weekly periods) and
the spectral embedding dimension to 8. This leads to kpca = 24, n = 2, kiopo = Kdelay = Kcor =
8. Collectively, the dimension of Zyc is 72. During the expansion stage, the periodic priors of
new nodes are constructed by mixing those of their three most similar remain nodes. Other priors
are recomputed directly from the available expansion-stage data, except for the NREL-AL dataset,
where the time-delayed interaction priors of new nodes are also obtained via mixing from old nodes.
These design choices are made in accordance with the degree of temporal distribution shift observed
in each dataset.

We use a 12-step history to predict the next 12 steps, correspond to 1 hour ahead prediction, which
denotes T' = T’ = 12. The model dimension is 64 (32 for NREL-AL). Average results are reported
after repeating the experiments no less than five times. Code and data source are provided in the
Supplementary Material. Our experiments is under the PyTorch framework on a Linux server with
one Intel(R) Xeon(R) Gold 5220 CPU and one 32GB NVIDIA Tesla V100-SXM2 GPU card.

For methods where embeddings increase with expansion (i.e., continual learning approaches) or rely
on fixed node-specific learnable parameters (e.g., STEV), the case of deleted nodes is not explicitly
considered. In our implementation on datasets with node removals, we carefully align the learnable
embeddings across stages. This means that the parameters corresponding to deleted nodes are also
discarded during the expansion stage, ensuring fair and consistent evaluation.

B.3 FULL RESULTS

Table [6] reports the full forecasting results. SNIPformer achieves consistently the best accuracy on
EPeMS, PEMS04, Seal.oop datasets and has a second-best performance on NREL-AL dataset.

C USE OfF LLMsS

In this work, we used large language models solely for polishing grammar and improving clar-
ity. All research ideas, methodologies, experiments, analyses, and conclusions were independently
conceived and conducted by the authors. The LLM was not used for generating research content,
experiments, results, or references.
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Table 6: Full comparison of the expanding-node forecasting results of different methods and SNIP-
former. MAPE values are scaled by 100 for presentation.
Model ‘ Metric ‘ EPeMS PEMS04 SeaLoop NREL-AL

All Remain New All Remain New All Remain New All Remain New

MAE | 3270 3226 33.56 | 2897 2891 29.17 | 459 4.62 449 254 259 241
MAPE | 14.15 15.00 1247 | 19.48 1935 19.90 | 14.17 14.33 13.61 | 110.29 110.64 109.29

DLinear | pMSE | 4832 48.14 48.66 | 4455 4420 4542 | 709 802 792 | 391 400 3.63
MRE | 0.10 0.10 0.10 | 0.13 0.3 013 | 008 009 008 | 021 021 021

MAE | 26.83 26.65 27.16 | 24.76 2474 24.83 | 429 431 421 | 194 197 1.83
iTransformer| MAPE | 1091 1139 9.96 | 1608 1602 1629 | 1271 1280 1240 | 100.71 101.10 99.60
RMSE | 41.40 4122 4173 | 39.62 39.34 4052 | 7.54 7.56 746 | 336 344 3.12

MRE | 008 009 008 | 011 011 0.11 | 008 008 008 | 022 022 022

MAE | 2525 25.17 2539 | 2321 2321 2324 | 402 404 393 | 1.82 185 172
DUETformer| MAPE | 1028 1078 931 | 1527 1523 1542 | 12.32 1243 11.96 | 9349 93.80 92.63
RMSE | 38.05 38.18 37.77 | 36.54 3632 37.26 | 7.02 7.04 693 | 3.10 3.17 2.88

MRE | 0.08 008 007 | 0.10 0.0 0.0 | 007 007 007 | 021 021 021

MAE | 23.73 23.11 2493 | 22.99 23.05 22.79 | 394 397 384 | 179 183 1.69

GWNET |MAPE| 947 970 898 | 1479 1477 1488 | 1186 1201 1137 | 9204 9347 88.02
RMSE | 3581 3527 36.84 | 36.70 3657 37.16 | 682 686 668 | 3.16 324 292

MRE | 0.07 007 007 | 010 0.0 010 | 007 007 007 | 023 023 023

MAE | 2440 2431 2456 | 2249 22.56 22.25 | 4.10 4.12 4.03 | 2.00 2.03 1.89

STIp | MAPE| 992 1043 892 | 14.67 1467 14.67 | 13.66 1377 1329 | 104.42 104.96 102,91
RMSE | 3738 37.44 3723 | 35.92 3577 3642 | 726 728 720 | 325 333 3.0l

MRE | 008 008 007 | 010 010 010 | 008 008 007 | 017 017 0.17

MAE | 24.86 24.66 2527 | 22.95 23.03 22.67 | 4.15 4.17 409 | 191 195 1.81

STAEformer| MAPE | 994 1038 9.07 | 1476 1471 1491 | 1308 13.15 12.83 | 8752 8775 86.86

RMSE | 38.34 38.26 38.50 | 36.75 36.63 37.14 | 738 739 737 329 337 3.05
MRE | 0.08 0.08 0.07 0.10  0.10 0.10 0.08 0.08 0.07 0.17 017 0.17

MAE | 2445 2447 2441 | 22.54 2256 2246 | 412 413 4.08 201 205 1.89
STOP MAPE | 10.00 10.57 8.89 | 14.81 14.78 1490 | 13.37 13.37 13.35 | 89.90 90.82 87.30
RMSE | 37.24 3741 36.89 | 3574 3552 3645 | 732 732 1735 325 332 3.02

MRE | 0.08 0.08 0.07 0.10  0.10 0.10 0.08 0.08 0.07 0.16 0.16 0.16
MAE | 29.99 29.78 30.40 | 25.64 2584 24.87 | 500 501 498 233 234 228

STKEC MAPE | 14.37 15.83 11.52 | 17.61 1739 1842 | 17.76 17.59 18.44 |121.15 121.70 119.56
RMSE | 4291 43.05 42.64 | 39.55 39.74 3873 | 8.14 813 8.16 362 366 351
MRE | 0.09 0.10 0.09 0.12  0.12  0.12 0.09 0.09 0.09 021 021 021
MAE | 28.74 2823 29.75 | 24.05 2427 2321 | 472 473 472 216 217 214

EAC MAPE | 12.24 1283 11.06 | 18.14 17.74 19.58 | 17.00 16.62 18.43 | 114.49 115.24 112.29
RMSE | 40.33 39.80 41.35 | 36.51 36.79 3541 | 782 7.81 7.86 337 339 332
MRE | 0.09 0.09 0.09 0.11  0.11  0.11 0.09 0.09 0.09 020 020 020
MAE | 2290 2235 2397 | 20.55 2042 2101 | 392 395 384 1.57 158 1.53

STEV MAPE | 945 981 875 | 1477 14.65 15.18 | 12.56 12.71 12.10 | 67.52 68.33 65.21
RMSE | 34.51 3395 35.60 | 3246 32.13 33.53 | 6.62 6.66 6.51 288 293 273
MRE | 0.07 0.07 0.07 0.09 0.09 0.09 0.07  0.07 .07 0.15 0.14 .15
MAE | 22.05 21.39 2335 | 19.20 19.22 19.10 | 3.46 3.

47 342 | 162 165 1.55
SNIPformer | MAPE | 8.95 920 846 | 12.68 12.64 12.81 | 10.50 10.62 10.10 | 88.75 90.38 84.13
(ours) |RMSE | 3391 33.16 3533 | 31.02 30.87 3154 | 610 614 597 | 2.87 292
MRE | 0.07 0.07 0.07 | 0.09 009 009 | 0.06 006 0.06 | 0.I5 0.15
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