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ABSTRACT

The rapid expansion of sensor systems, such as traffic networks, climate moni-
toring, and energy scheduling, poses new challenges for spatial-temporal series
forecasting. While existing models have achieved strong performance under the
fixed-node assumption, they rely on node-dependent parameters and fail to adapt
when the network evolves, i.e., when old nodes are removed and new nodes with
limited history are added. This expanding-node forecasting scenario introduces
two critical challenges: (1) learning heterogeneous node representations without
coupling learnable parameters to node count, and (2) enabling effective adaptation
to new nodes with scarce observations. To tackle these challenges, we propose
SNIP (Structured Node Interaction Prompting), a model-agnostic framework that
constructs static spatial-temporal priors from historical observations and topol-
ogy, and dynamically refines them during model training. Specifically, SNIP gen-
erates structured priors from three perspectives: periodic patterns across nodes,
spatial-temporal interactions under time delays and graph structural information.
These priors are projected into model as node promptings and then dynamically
refined. For new nodes, SNIP initializes priors by similarity-weighted mixtures of
old nodes and updates them with limited history, enabling efficient few-shot adap-
tation. Extensive experiments on multiple datasets demonstrate that SNIP outper-
forms state-of-the-art baselines in expanding-node scenarios. Beyond accuracy,
SNIP provides plug-and-play generality and computational efficiency, bridging
the gap between fixed-node precision and expanding-node adaptability in spatial-
temporal forecasting.

1 INTRODUCTION

Spatial-temporal forecasting is crucial in cyber-physical systems such as traffic networks, climate
monitoring, and energy scheduling. Despite recent advances, most models still rely on the fixed-
node assumption: training and inference are performed on a static node set, with parameters explic-
itly tied to node count. However, real systems are rarely static. Nodes may be added (e.g., new road
sensors, weather stations) or removed (e.g., failures, replacements). This gives rise to the task of
expanding-node forecasting, where node sets evolve across periods, new nodes have scarce history,
and some old nodes disappear, rendering traditional models ineffective.

To address this challenge, three lines of solutions have emerged (Figure 1): (1) Node-independent
parameterization. Univariate time-series forecasting models forecast each node separately, which
is scalable but neglects cross-variable dependencies. Others remove node embeddings and rely
solely on sequence interactions (Liu et al., 2024; Ma et al., 2025a), while attention-based prompting
(Hu et al., 2024) alleviates this partially but remains constrained by short horizons. (2) Node-scaled
Prompting. Continual learning methods expand embeddings as new nodes appear (Chen & Liang,
2025), but usually assume abundant expansion data, which is unrealistic under scarcity. They also
overlook node removal, causing wasted parameters and reduced flexibility. (3) Fixed expanded
parameterization. A recent work, STEV (Ma et al., 2025b), introduces the Expanding-variate Time
Series (EVTSF) forecasting task and mitigates imbalance with a flat scheme and shared subgraph.
Nonetheless, it still relies on predefined embeddings for all expanded nodes. As a result, further
network changes require costly retraining, limiting scalability.
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Figure 1: Examples of expanding-node spatial-temporal forecasting and different solutions. (a)
Sensor nodes may added, retired or replaced in the expansion stage. (b) Comparison of three existing
solution paradigms with our proposed SNIP framework.

In summary, while node-specific learnable parameters enhance forecasting accuracy (Shao et al.,
2022; Liu et al., 2023; Dong et al., 2024), they either lack flexibility for new nodes when fixed or
suffer from poor fitting under data scarcity when expanded, leading to a trade-off between accuracy
and scalability. As a result, this raises a fundamental question:

Can effective node identification features be computed directly from historical observations,
without relying on learnable node-dependent model parameters?

However, two critical challenges emerge: (Challenge 1) How to ensure that constructed features
sufficiently capture inter-node heterogeneity and correlation, preserving predictive accuracy com-
parable to learnable embeddings? (Challenge 2) How to refine these features dynamically to re-
main accurate under dynamic enviroments, especially when new nodes arrive with only scarce
observations?

To address these challenges, we propose SNIP (Structured Node Interaction Prompting), a model-
agnostic prompting framework guided by structured priors and refined dynamically. Specifically,
SNIP addresses the first challenge by computing priors from historical sequences through dimen-
sionality reduction, which inherently preserves heterogeneity and correlation. Using PCA-based
periodic features and Spectral embeddings of time-delayed interactions and graph topology, it ef-
fectively encodes node-specific heterogeneity without learnable embeddings. To tackle the second
challenge, SNIP incorporates a dynamic refinement module that continuously adapts static priors
through diffusion-based graph convolutions, thereby maintaining accuracy under dynamic evolving.
Moreover, for new nodes with scarce observations, SNIP introduces a similarity-weighted initializa-
tion scheme that transfers priors from old nodes, providing effective embeddings that enable rapid
few-shot adaptation. Through these two strategies, SNIP achieves parameter-node decoupling while
maintaining both predictive accuracy and adaptability in expanding-node forecasting. Our contribu-
tions can be summarized as follows:

• We identify the problem of expanding-node spatial-temporal forecasting, where sensor networks
evolve across periods, and highlight its core challenges of parameter-node coupling, data scarcity
for new nodes, and preserving node heterogeneity. We further approach this problem from the
perspective of structured node interactions.

• We propose SNIP (Structured Node Interaction Prompting), a framework that combines static
prior construction (periodic, topological and time-delayed node interaction features) with dynamic
refinement to build effective and flexible node promptings. In addition, we design a similarity-
weighted initialization scheme to endow new nodes with initial embeddings, enabling efficient
adaptation under few-shot conditions.

• A concrete instantiation of SNIP, termed SNIPformer, is further proposed. Extensive experiments
on four datasets demonstrate that SNIP outperforms state-of-the-art baselines. Moreover, it serves
as a plug-and-play module that enables classical spatial-temporal models to adapt flexibly and
effectively to expanding-node forecasting.
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2 RELATED WORK

Spatial-temporal forecasting (STF) is central to applications such as traffic, energy, and climate.
Early works combined recurrent or convolutional networks with graph modules to model temporal
and spatial dependencies. With the advent of Spatio-Temporal Graph Neural Networks (STGNNs)
and Transformers (Li et al., 2018; Wu et al., 2019; Guo et al., 2022), research has focused on cap-
turing complex inter-node correlations via multi-view graphs or attention (Diao et al., 2024; Jiang
et al., 2023). More recent advances explore adaptive embeddings (Shao et al., 2022; Zheng et al.,
2025a) and hybrid neural modules (Sun et al., 2024; Lee & Ko, 2024) to balance efficiency and
accuracy.

Node Prompting in STF. A consistent trend in these developments is the introduction of node-
specific embeddings as additional identity information. By assigning learnable parameters to each
node, models can capture inter-node heterogeneity beyond raw time series, which has shown strong
forecasting performance (Liu et al., 2023; Dong et al., 2024). Such embeddings function as prompts
that guide spatio-temporal modules, and have become an implicit consensus for achieving state-
of-the-art accuracy. However, this design inherently ties model parameters to node count, limiting
scalability in evolving networks. Recent work has further explored attention-based prompting mech-
anisms, such as STGP (Hu et al., 2024) and EAC (Chen & Liang, 2025), but these methods still rely
on directly fitting prompts from data, which is challenging and assumes the availability of sufficient
training samples.

STF under dynamic node expansion. In real-world systems, nodes may be added or removed over
time, violating the fixed-node assumption in classical STF. To address this, recent works explored
several directions. One approach decomposes data into univariate series or removes node-specific
embeddings, which improves scalability but ignores spatial dependencies. Others directly learn
from raw inputs or attention-based prompts (Liu et al., 2024; Hu et al., 2024), but accuracy drops
due to insufficient heterogeneity modeling. Continual learning methods (Wang et al., 2023; Chen
& Liang, 2025) expand embedding sets through prompt-tuning, yet typically assume abundant new
data. OOD-generalization based methods (Wang et al., 2024; Ma et al., 2025a) emphasize robustness
but lose accuracy when fine-tuning is feasible. A recent EVTSF paradigm, STEV (Ma et al., 2025b),
mitigates imbalance via flattening and contrastive learning, but still relies on node-dependent param-
eters and costly retraining, limiting flexibility.

In contrast, our SNIP builds non-learnable priors and refines them dynamically, decoupling param-
eters from nodes while retaining node-specific effectiveness, and can be seamlessly integrated into
existing STF models.

3 PRELIMINARY

We consider a spatial-temporal network at time period τ , denoted as Gτ = (Vτ , Eτ ), where Vτ =
{v1, v2, ..., vNτ

} is the node set (e.g., road sensors, climate monitors), and Eτ denotes the edges (e.g.,
road links, physical connections). The adjacency matrix is Aτ ∈ RNτ×Nτ , Nτ = |Vτ |, representing
the spatial relationships among nodes. Each node records C features within a temporal window of
length L, forming a spatial-temporal series Xτ ∈ RL×Nτ×C .

Definition (Expanding-node Spatial-Temporal Series). We define two consecutive periods.
Period-1 (base stage) is τ1 = [t0 − L1 + 1, t0], with data Dτ1 = (Gτ1 ,Xτ1), where |Vτ1 | = Nτ1 .
L1 denotes the length of base stage, and t0 is the final time slice of this stage. Period-2 (expansion
stage) is τ2 = [t0 + 1, t0 + L2], with data Dτ2 = (Gτ2 ,Xτ2), where |Vτ2 | = Nτ2 . L2 is the length
of expansion stage. During the transition from the base stage to the expansion stage, nodes may be
added or removed, which can be formalized as Vτ2 = (Vτ1 \Vdel)∪Vnew,Vdel ⊆ Vτ1 , Vnew∩Vτ1 = ∅.
Moreover, to enable timely forecasting on newly deployed nodes, the available data in the expansion
stage is typically very limited, i.e., L2 ≪ L1, which leads the problem of data scarcity, particularly
for newly added nodes.

Problem (Expanding-node Spatial-Temporal Forecasting). The goal of expanding-node spatial-
temporal forecasting is to train a model f using data from both periods, such that f :

(Xt−T+1:t,Gτ ; Θ) 7→ Ŷt+1:t+T ′ , where Xt−T+1:t ∈ RT×Nτ×C is the input sequence of length
T , and Ŷt+1:t+T ′ ∈ RT ′×Nτ×C is the predicted sequence of length T ′. A key requirement is that
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Figure 2: Overall framework of our proposed SNIP.

the parameter set Θ be decoupled from network size, i.e., |Θ| = O(1), since parameter scaling
with N limits adaptability to evolving networks. This enables the model to generalize across vary-
ing node sets. In practice, we evaluate forecasting on the expanded set Vτ2 , while the formulation
naturally extends to any node set with Nτ ≥ Nτ1 , ensuring applicability to future expansions.

4 METHODOLOGY

Figure 2 illustrates the overall structure of the proposed SNIP framework. In this section, we present
the construction of structured static priors and their refinement during training and expansion. Then
we introduce SNIPformer, an instantiation built on an efficient spatial-temporal encoder.

4.1 STRUCTURED STATIC PRIORS (CHALLENGE 1)

In recent years, node-specific learnable embeddings have been widely used in spatio-temporal fore-
casting to provide discriminative identity information (Shao et al., 2022; Liu et al., 2023; Dong et al.,
2024; Chen & Liang, 2025), achieving strong performance but conflicting with evolving node sets.
To address this, SNIP avoids node-dependent parameters and instead pre-computes node-specific
priors from historical data as prompting signals. We derive low-dimensional features that maxi-
mize inter-node variance to preserve heterogeneity. For clarity, we describe the single-feature case
(C = 1), which naturally extends to multi-channel inputs by concatenation.

4.1.1 PERIODIC PRIORS

Motivation. Intuitively, a node’s long-term sequence itself serves as its unique identifier, but directly
using it is impractical due to dimensionality and noise. We instead apply dimensionality reduction to
extract informative components. Given the strong periodicity of spatial-temporal data (e.g., daily or
weekly cycles), we partition histories into repeated cycles, compress each into low-rank “snapshots,”
and average them to form a compact representation of node identity.

Periodic Priors. Given a historical period τ with length L, let X = X:,:,1 ∈ RL×N denote the
historical sequence for N nodes. We specify a set of cycle lengths {p1, p2, . . . , pn} and partition
each node’s series into non-overlapping segments accordingly. For instance, when pj corresponds
to one day, the sequence is divided into consecutive daily fragments. Each segment is normalized
independently, and then projected into a low-dimensional representation using Principal Component
Analysis (PCA) (Abdi & Williams, 2010). For each cycle length pj , the node representations from
all complete segments are averaged to yield a compact descriptor Z̄(j) ∈ RN×kpca , kpca represents
the value of a low dimensionality. Finally, we concatenate results across all n cycle lengths to obtain
the periodic priors:

Zprd = Concat
(
Z̄(1), Z̄(2), . . . , Z̄(n)

)
∈ RN×(n·kpca). (1)

By the Eckart-Young-Mirsky theorem (Eckart & Young, 1936), PCA guarantees the optimal rank-k
approximation under the Frobenius norm, thereby preserving the maximum variance. In our context,
this ensures that the periodic priors retain the most discriminative directions of node dynamics,
effectively encoding node heterogeneity from a temporal perspective. Implementation details are
provided in Appendix A.1.
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4.1.2 TOPOLOGY PRIORS AND TIME-DELAYED INTERACTION PRIORS

Motivation. While periodic features separate node-specific temporal patterns, they overlook inter-
node correlations, another key factor in spatial-temporal forecasting (Wang et al., 2022). Topology
priors, derived from graph adjacency, capture latent positional and structural relations. Meanwhile,
many spatial-temporal phenomena propagate with delays (e.g., traffic congestion spreading) (Long
et al., 2024; Zheng et al., 2025a), and such delayed or short-term correlations are inherently dynamic.
To capture these correlations, we construct two complementary priors: (1) topology features from
static adjacency, and (2) time-delayed interaction features from frequency-domain correlations under
short windows.

Topology Priors. We adopt spectral embedding (Belkin & Niyogi, 2003) to obtain low-dimensional
node representations. In the case of topology, given the adjacency matrix A ∈ RN×N , one can
construct the normalized Laplacian: L = I −D− 1

2AD− 1
2 , where D is the diagonal degree matrix

with Di,i =
∑

j Ai,j . Then, the topology embedding is formed by the eigenvectors corresponding
to the smallest ktopo eigenvalues of L. This can be formulated as:

Ztopo = Φ(A, ktopo) = [u1,u2, . . . ,uktopo ] ∈ RN×ktopo , (2)

where u1, . . . ,uktopo are the leading eigenvectors of the normalized Laplacian. This embedding
captures the static positional structure of nodes in the network, where nearby or strongly connected
nodes are embedded closer together. Physically, they reflects both global communities and local
connectivity patterns.

Time-delayed Interaction Priors. Recent studies have shown that correlations between node se-
quences often emerge more strongly when temporal delays are considered, rather than assuming
synchronous dynamics (Long et al., 2024; Zheng et al., 2025a). To capture such effects, we estimate
cross power spectral density (CSD) between node pairs using Welch’s method with short sliding
windows (Welch, 1967). This formulation enables us to measure correlations across all possible
lags without pre-specifying a maximum delay in previous STF models. Consequently, we can ob-
tain the cross-correlation matrices under different time delays: R(δ). From this, we extract (i) the
dominant delay ∆i,j = argmaxδ |Ri,j(δ)|, that maximizes correlation between nodes i and j, and
(ii) the corresponding correlation strength Pi,j = maxδ |Ri,j(δ)|. These two matrices encode how
information propagates with delays and how strongly nodes interact. Similarly, we apply spectral
embedding to both matrices, and then concatenate results into Ztdi:

Ztdi = Concat(Φ(∆, kdelay),Φ(P , kcorr)) ∈ RN×(kdelay+kcorr). (3)

In summary, topological priors preserve static, position-driven relationships, while time-delayed
embeddings capture dynamic propagation and short-term coupling. In particular, spectral embed-
dings emphasize the principal eigenvectors, which correspond to directions of maximum structural
or interaction variance, this is analogous to PCA but under graph constraints. These priors reflect
how nodes interact and differ within the network, boosting promptings from the correlation angle.
Details of CSD method are provided in the Appendix A.2.

4.2 DYNAMIC REFINEMENT AND ADAPTATION (CHALLENGE 2)

Motivation. The static priors in Section 4.1.2 capture invariant properties but cannot reflect temporal
dynamics, such as evolving behaviors of existing nodes or the emergence of new nodes during ex-
pansion. To address this, we design a refinement-and-adaptation mechanism that treats above three
priors as reference points subject to dynamic correction. To formalize this intuition, we propose the
following hypothesis, which conceptualizes how an optimal node prompting should be decomposed
into stable and dynamic components.

Hypothesis 1 (Decomposition of Optimal Node Prompting). At any time t, there exists an optimal
prompting configuration z

(t)
i⋆ for each node i, which maximizes predictive accuracy. This config-

uration can be decomposed as: z
(t)
i⋆ = qi + r

(t)
i , r

(t)
i = g(x

(t)
j , j ∈ N(i)), where qi represents

spatially intrinsic characteristics of node i (time-invariant reference), r(t)i reflects spatial-temporal
interaction effects that vary over time, N(i) is the set of nodes that have a correlation relationship
with node i, and g is a transformation function.

5
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If the proposed static prior in Section 4.1 approximates qi, the backbone STF model only needs to
fit r(t)i , which typically exhibits lower variance. Consequently, the hypothesis space is constrained,
yielding reduced sample complexity and improved generalization under limited data (Vapnik, 1999).
We will provide empirical ablations in Section 5.3 to support this assumption.

Dynamic refinement via MLP and diffusion graph convolution. We first project the concatenated
static priors into the model dimension d using a two-layer MLP: Zref = MLP([Zprd,Ztopo,Ztdi]) ∈
RN×d. We refine priors by aggregating temporal variations through diffusion graph convolution (Li
et al., 2018; Wu et al., 2019). Specifically, for each input time slice, we apply the diffusion con-
volution operation: Ht,:,: = DiffGCN(Xemb

t,:,:,A), where Xemb ∈ RT×N×d is the series embedding
and A is the adjacency matrix. To simulate potential changes in graph topology during the expan-
sion stage, we further apply edge dropout to A during training, enhancing robustness to evolving
structures. The final adaptive embedding is obtained by combining static refinement and dynamic
aggregation:

(Zpmt)t,:,: = Zref + Ht,:,:, (4)

This embedding Zpmt not only incorporates static priors but also adapts to temporal variations, serv-
ing as the prompting within the forecasting model.

Prompting initialization in expansion stage. In the expansion stage, new nodes often lack suffi-
cient history to compute reliable priors. For these nodes, we adopt a similarity-based initialization.
Specifically, their priors can either be recomputed directly from the limited data available in the
expansion stage, or constructed by weighted mixing of the priors from a few most similar remain
nodes in the base stage. Similarity is measured using the cross-correlation matrix P introduced in
Section 4.1.2, recomputed under the current stage. Formally, For a new node i, its similarity weight
with remain node j is calculated as si,j = Pi,j/

∑
j∈Vremain

Pi,j , vi ∈ Vnew, ; vj ∈ Vremain, and its
prior of type ¶ ∈ {prd, topo, tdi} is obtained as (z¶)i =

∑
j∈Nk(i)

si,j (z¶)j , where Nk(i) denotes
the top-k most similar remain nodes. When expansion-stage data are too scarce,(zprd)i is directly
mixed from old nodes’ periodic priors. For remain nodes, the priors computed in the base stage are
reused without modification.

Moreover, most existing works rarely consider nodes that are removed during the expansion stage. In
our framework, discarded nodes do not require prior construction in the new period, and since model
parameters are decoupled from node identity, no redundant parameters are left unused. This design
avoids parameter waste and provides additional flexibility and convenience for evolving networks.

4.3 INTEGRATION WITH SPATIAL-TEMPORAL FORECASTING MODELS

Based on the static priors and dynamic refinement introduced above, SNIP can be seamlessly in-
tegrated into existing STF architectures by injecting the prompting into the input features before
spatial-temporal feature extraction. To establish a baseline for expanding-node forecasting, we in-
tegrate the SNIP framework with a recent efficient spatio-temporal encoder (Zheng et al., 2025b),
which provides a general mechanism for learning compact and expressive representations with com-
plexity linear in the number of nodes. The resulting model, SNIPformer, incorporates our prior-
guided prompting into the encoder’s input embedding and spatial-temporal extraction process, fol-
lowed by a lightweight regression head for prediction. The complete model structure is presented in
the Appendix A.3.

5 EXPERIMENTS

In this section, we evaluate and analysis the effectiveness, generality, and flexibility of our proposed
SNIP framework under node expansion scenarios using four real-world datasets.

5.1 EXPERIMENT SETTING

Datasets and Evaluation Setting. We use the following spatial-temporal datasets across traffic and
energy domain for evaluation: EPeMS (Ma et al., 2025b), PEMS04 (Song et al., 2020), SeaLoop
(Cui et al., 2019), and NREL-AL (Xu et al., 2025). For EPeMS, we follow the node expansion
setup introduced in STEV (Ma et al., 2025b). For the other datasets, we simulate node expansion

6
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by randomly partitioning the node set into remain, deleted, and newadd groups. The detailed imple-
mentation procedure is provided in the Appendix B.1. Table 1 summarizes the stage and node par-
titions. We use a 12-step history to predict the next 12 steps, correspond to 1 hour ahead prediction.

Table 1: Dataset statistics and characteristics
Dataset Stage Split

τ1 / τ2 / test
Node Expansion

(τ1 → τ2)

EPeMS 63d / 3d + 2d / 22d 296 → 447
PEMS04 35d / 6d + 1d / 17d 241 → 290
SeaLoop 18d / 6d + 1d / 3d 255 → 303

NERL-AL 122d / 6d + 1d / 53.5d 103 → 130

We compute prior features in the base stage using
full historical data and train models with sliding-
window samples. In the expansion stage, pri-
ors are recomputed from short-term history and
priors transferred from the base stage, followed
by fine-tuning. Final evaluation is conducted in
the test stage. We report Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) in
the main tables, while Mean Absolute Percentage
Error (MAPE) and Mean Relative Error (MRE) are provided in the Appendix with consistent con-
clusions.

Table 2: Comparison of the expanding-node forecasting results of different methods and SNIP-
former.

Model Metric EPeMS PEMS04 SeaLoop NREL-AL
All Remain New All Remain New All Remain New All Remain New

DLinear MAE 32.70 32.26 33.56 28.97 28.91 29.17 4.59 4.62 4.49 2.54 2.59 2.41
RMSE 48.32 48.14 48.66 44.55 44.29 45.42 7.99 8.02 7.92 3.91 4.00 3.63

iTransformer MAE 26.83 26.65 27.16 24.76 24.74 24.83 4.29 4.31 4.21 1.94 1.97 1.83
RMSE 41.40 41.22 41.73 39.62 39.34 40.52 7.54 7.56 7.46 3.36 3.44 3.12

DUETformer MAE 25.25 25.17 25.39 23.21 23.21 23.24 4.02 4.04 3.93 1.82 1.85 1.72
RMSE 38.05 38.18 37.77 36.54 36.32 37.26 7.02 7.04 6.93 3.10 3.17 2.88

GWNET† MAE 23.73 23.11 24.93 22.99 23.05 22.79 3.94 3.97 3.84 1.79 1.83 1.69
RMSE 35.81 35.27 36.84 36.70 36.57 37.16 6.82 6.86 6.68 3.16 3.24 2.92

STID† MAE 24.40 24.31 24.56 22.49 22.56 22.25 4.10 4.12 4.03 2.00 2.03 1.89
RMSE 37.38 37.44 37.23 35.92 35.77 36.42 7.26 7.28 7.20 3.25 3.33 3.01

STAEformer†
MAE 24.86 24.66 25.27 22.95 23.03 22.67 4.15 4.17 4.09 1.91 1.95 1.81

RMSE 38.34 38.26 38.50 36.75 36.63 37.14 7.38 7.39 7.37 3.29 3.37 3.05

STOP MAE 24.45 24.47 24.41 22.54 22.56 22.46 4.12 4.13 4.08 2.01 2.05 1.89
RMSE 37.24 37.41 36.89 35.74 35.52 36.45 7.32 7.32 7.35 3.25 3.32 3.02

STKEC MAE 29.99 29.78 30.40 25.64 25.84 24.87 5.00 5.01 4.98 2.33 2.34 2.28
RMSE 42.91 43.05 42.64 39.55 39.74 38.73 8.14 8.13 8.16 3.62 3.66 3.51

EAC MAE 28.74 28.23 29.75 24.05 24.27 23.21 4.72 4.73 4.72 2.16 2.17 2.14
RMSE 40.33 39.80 41.35 36.51 36.79 35.41 7.82 7.81 7.86 3.37 3.39 3.32

STEV MAE 22.90 22.35 23.97 20.55 20.42 21.01 3.92 3.95 3.84 1.57 1.58 1.53
RMSE 34.51 33.95 35.60 32.46 32.13 33.53 6.62 6.66 6.51 2.88 2.93 2.73

SNIPformer
(ours)

MAE 22.05 21.39 23.35 19.20 19.22 19.10 3.46 3.47 3.42 1.62 1.65 1.55
RMSE 33.91 33.16 35.33 31.02 30.87 31.54 6.10 6.14 5.97 2.87 2.92 2.71

Baselines and Hyperparameter Settings. We compare SNIPformer (introduced in Section 4.3)
with four categories of existing solutions for expanding-node STF: 1) Models without node-specific
prompting: DLinear (Zeng et al., 2023), iTransformer (Liu et al., 2024), DUETformer (Qiu et al.,
2025). 2) STF models without node-specific modules: GWNET† (Wu et al., 2019), STID† (Shao
et al., 2022), STAEformer† (Liu et al., 2023), STOP (Ma et al., 2025a), where † indicates removal
of learnable node embeddings. 3) Continual learning methods: STKEC (Wang et al., 2023), EAC
(Chen & Liang, 2025). 4) Fixed-node models after expansion: STEV (Ma et al., 2025b). For SNIP-
former, we set the PCA feature dimension to 24 (each for daily and weekly periods) and the spectral
embedding dimension to 8. The model dimension is 64 (32 for NREL-AL). Other implementation
details are provided in the Appendix. Average results are reported after repeating the experiments
no less than five times.

5.2 EFFECTIVENESS AND GENERALITY

Expanding-node forecasting results. Table 2 summarizes the results across all nodes, Remain
nodes, and New nodes, where the best results are highlighted in bold red and the second-best results
in underlined blue. SNIP achieves the best performance on the three traffic datasets, with rela-
tive averaged improvements up to 7.61% / 5.61% in MAE and RMSE over the strongest baselines.
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On NREL-AL, SNIP ranks second on MAE, slightly below STEV. We attribute this gap to domain-
specific characteristics, such as stronger trend strength (Qiu et al., 2024)(in Table 5) and more severe
distribution shifts, which are more effectively captured by the contrastive learning strategy in STEV.
Nevertheless, compared to node-agnostic models and continual learning approaches, SNIP consis-
tently delivers superior accuracy, confirming the effectiveness of structured priors in encoding node
heterogeneity under expansion scenarios.

Table 3: Forecasting MAE of different back-
bones with and without prompting modules.

Model EPeMS NREL-AL
All Remain New All Remain New

iTransformer 26.83 26.65 27.16 1.94 1.97 1.83
+ AttP 26.81 26.64 27.14 1.95 1.99 1.84
+ SNIP 24.67 24.14 25.71 1.84 1.88 1.74

GWNET† 23.73 23.11 24.93 1.79 1.83 1.69
+ AttP 23.75 23.13 24.96 1.79 1.82 1.69
+ SNIP 23.41 22.79 24.62 1.77 1.81 1.66

STID† 24.40 24.31 24.56 2.00 2.03 1.89
+ AttP 24.35 24.26 24.53 2.01 2.05 1.90
+ SNIP 21.84 21.13 23.23 1.86 1.89 1.77

Generality across architectures. To validate
SNIP’s model-agnostic design, we integrate it
into three representative backbones: iTrans-
former, GWNET, and STID. Table 3 reports
the results of (i) the original backbone, (ii)
backbone + AttP, an attention-based prompt-
ing module proposed in STGP (Hu et al., 2024),
and (iii) backbone + SNIP. Across all cases,
AttP does not yield noticeable improvements,
whereas SNIP consistently and significantly en-
hances forecasting performance under dynamic
node changes. This confirms that prior-guided
prompting provides a more effective way to cap-
ture node heterogeneity and adapt to evolving
networks.

More importantly, these results highlight SNIP’s generality: as a model-agnostic framework, it can
be seamlessly combined with diverse forecasting architectures, enabling them to remain effective in
expanding-node scenarios while preserving strong accuracy. This suggests that prompting frame-
works and spatio-temporal feature extractors can evolve in parallel as complementary directions.

5.3 ABLATION STUDIES

w/o Prompting
w/o Periodic Priors

w/o Static Priors w/o Dynamic Refinement
SNIPformer

Random Features
w/o Inter-Node Priors

Higher VarianceLower Variance

Figure 3: Ablation Results. Left: Comparison of contribution of different components. Right:
Performance of using random features with high and low variance as static priors.

Distribution of Node-specific PromptingHeterogeneity Score

Learnable
r/ SNIP
+ SNIP

Figure 4: Contribution of SNIP to the STID
model on PEMS04 dataset. Right: Distribu-
tion of node-specific prompting after dimen-
sionality reduction via t-SNE.

Component-wise analysis We first assess the con-
tribution of different components in SNIP by pro-
gressively removing them: (i) w/o Prompting, (ii)
w/o Static Priors, (iii) w/o Dynamic Refinement,
(iv) w/o Periodic Priors, and (v) w/o Inter-node
Priors (removing both topology and time-delayed
interaction priors). Figure 3 reports results on
PEMS04 and SeaLoop, evaluated on remain nodes
and newadd nodes. The results yield several key
insights. Removing prompting causes a substantial
accuracy drop; relying solely on dynamic refine-
ment to learn full embeddings also performs poorly,
suggesting that directly fitting optimal embeddings
without helpful priors is highly challenging. In con-
trast, using only static priors without refinement un-
derscores the necessity of modeling temporal vari-
ations. Finally, eliminating periodic or inter-node
priors consistently degrades performance, validating that the constructed priors effectively encode
node heterogeneity and structural dependencies.
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Empirical analysis of decomposition and heterogeneity We further validate Hypothesis 1 by re-
placing static priors with alternative designs: (a) random priors with high variance, (b) random priors
with low variance, and (c) no static priors. Figure 4 shows that under the decomposition framework
of Hypothesis 1, even randomly initialized features can achieve competitive results. Moreover, larger
initialization variance improves performance, underscoring the importance of heterogeneity.

To intuitively demonstrate the heterogeneity introduced by SNIP prompting, we visualize results on
the PEMS04 dataset under a fixed-node forecasting setup with STID in Figure 4. When the learnable
embeddings in STID are either replaced by SNIP or augmented with SNIP, both heterogeneity score
(Chen & Liang, 2025) and predictive performance improve. As shown in the t-SNE visualization
under a unified embedding space, the combination of learnable embeddings and SNIP yields a wider
spread and more distinct clusters, indicating that SNIP effectively enhances heterogeneity.

5.4 EFFICIENCY AND FLEXIBILITY

Computational efficiency is an important consideration for expanding-node forecasting. The addi-
tional cost of SNIP mainly comes from three preprocessing operations: multi-cycle PCA for periodic
features, cross-correlation estimation between node pairs, and spectral embedding of the resulting
matrices. Crucially, all of these steps are performed once in the base stage, and the priors are reused
throughout training and expansion. As shown in Table 4, the one-off preprocessing overhead is
minor compared with training time.

When comparing training and inference efficiency, SNIPformer shows clear advantages over the
strongest baseline, STEV. While STEV incurs heavy retraining whenever nodes are expanded, SNIP-
former requires only lightweight fine-tuning with precomputed priors. This results in substantial
reductions in both training time and memory consumption, while maintaining competitive accu-
racy. In addition, applying SNIP to classical backbones such as STAEformer introduces only min-
imal extra cost, yet enables these models to operate effectively in expansion scenarios where their
original designs fail. Overall, SNIP achieves high efficiency, flexibility, and scalability, offering a
model-agnostic prompting framework that can be seamlessly incorporated into existing or future
STF architectures.

Table 4: Training and inference efficiency comparison on EPeMS (batch size = 32).

Metric STEV SNIPformer ⇕% STAEformer STAEformer†
+SNIP ⇕%

Pre-computation Augmentation Static Priors - - Static Priors -Time Cost (min) 0.21 2.61 2.61

Training (τ1, τ2) (τ1 → τ2) (τ1) (τ1)
Time (s/epoch) 325.42 28.26 → 1.42 ↓91.3% 132.03 134.77 ↑2.0%
Footprint (MB) 31430 1466 → 2358 ↓92.5% 8130 8296 ↑2.0%

Inference
(τ2)

Time(s)
MAE

20.46 1.05 ↓94.9% Invalid 1.37 ↑ Feasibility22.90 22.05 ↓3.7% 23.75

6 CONCLUSION

In this paper, we proposed SNIP, a model-agnostic prompting framework for expanding-node
spatial-temporal forecasting. It constructs structured static priors from heterogeneity and correla-
tion angles and performing learnable dynamic refinement. A similarity-weighted initialization fur-
ther enables few-shot adaptation for new nodes. SNIP allows existing spatio-temporal forecasting
models to be easily adapted to expanding-node scenarios. Experiments across multiple datasets and
backbones show that SNIP achieves strong accuracy, generality, and efficiency. Ablations show that
variance-preserving, correlation-aware priors and dynamic refinement are all indispensable. Future
work will study the optimal composition of prompting, extend SNIP to cross-domain settings, and
integrate it as a prompting layer in large spatial-temporal models.
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A APPENDIX: METHODOLOGY DETAILS

A.1 PERIODIC PRIORS CONSTRUCTION

Given a historical period τ with a length of L. Let X ∈ RL×N denote the historical sequence of for
N nodes. We specify a set of cycle lengths {p1, p2, . . . , pn}. For node i and a given cycle length pj ,
we partition its sequence X:,i ∈ RL into non-overlapping cycle segments. For example, when pj
corresponds to one day, the sequence is divided into consecutive daily fragments, each treated as an
individual segment. Formally, the set of segments is defined as:

S(j)i = Partition(X:,i, pj) =
{
X:,i[(m− 1)pj + 1 : mpj ]

∣∣∣ m = 1, . . . ,Mj

}
, (5)

where Mj = ⌊L/pj⌋ is the number of complete cycles. Each element of S(j)i is a vector
in Rpj . Before dimensionality reduction, each segment of node i is normalized independently:
x̃ = (x− µ

(j)
i )/σ

(j)
i , x ∈ S(j)i , where µ

(j)
i and σ

(j)
i are the mean and standard deviation of node

i’s segments under cycle length pj .

Each normalized segment X̃(j)
m is treated as an N × pj data matrix, which is the full ”snapshot”

of all nodes in cycle j. We then apply Principal Component Analysis (PCA) to reduce these seg-
ments to their low-rank components and obtain compact representations. Specifically, PCA yields a
projection matrix U (j) ∈ Rpj×kpca from the top kpca eigenvectors of the covariance matrix of X̃(j)

m .
Then the segment-level low-dimensional representation is computed, and the Mj representations are
the averaged across segments:
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Z̄(j) =
1

Mj

Mj∑
m=1

X̃(j)
m U (j) ∈ RN×kpca , j ∈ [1, ..., n]. (6)

Finally, the representations from all n cycle lengths are concatenated, yielding the periodic prior
feature matrix:

Zprd = Concat
(
Z̄(1), Z̄(2), . . . , Z̄(n)

)
∈ RN×(n·kpca). (7)

Figure 5 illustrates this construction.

...

...... ... ...
...

PCA

PCAPartition

e.g. 1 day days

Average

Figure 5: An illustration for the periodic prior construction under a cycle length pj .

A.2 TIME-DELAYED INTERACTION PRIORS CONSTRUCTION

As a increasing trend investigated by recent studies(Long et al., 2024; Zheng et al., 2025a), the
correlation between two node sequences is often more pronounced when a temporal delay is con-
sidered rather than assuming synchronous dynamics. To capture this, we quantify their association
through the cross power spectral density, which avoids the limitation of manually specifying a max-
imum delay as required in previous research. This formulation allows us to directly compute the
delay step that maximizes their correlation, along with the corresponding strength. Intuitively, these
two quantities characterize both the temporal span and the spatial extent of the interaction between
nodes.

Formally, let xi,xj ∈ RL denote the historical sequences of nodes i and j. Each sequence is nor-
malized in the same manner as in periodic features. Their cross-spectral density (CSD) is estimated
using Welch’s method with a Hann window (Welch, 1967) of length T :

Qij(ν) =
1

K

K∑
k=1

X
(k)
i (ν)X

(k)
j (ν)

∗
, (8)

where K = ⌊L/T ⌋ is the number of windows, X(k)
i (ν) is the Fourier transform of the k-th win-

dowed segment of node i, ν is the frequency variable, and ∗ denotes complex conjugation. The
cross-correlation function is obtained by inverse FFT:

Rij(δ) = F−1
(
Qij(ν)

)
, (9)

which is then shifted to align both positive and negative delays. We extract the most significant delay
and its corresponding correlation strength as

∆ij = argmax
δ

|Rij(δ)|, Pij = max
δ

|Rij(δ)|. (10)

where ∆ is the delay matrix recording absolute dominant lags, and P is the correlation matrix
recording absolute correlation strengths. Following the same procedure, we apply spectral embed-
ding to the delay and correlation matrices, and then concatenate them into Ztdi:

Ztdi = Concat(Φ(∆, kdelay),Φ(P , kcorr)). (11)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

X

Z Y

ST-EncoderEmbedding Module
Input

Prompting Module

MLPT

Linear

MLPT

Time Embedding

Proxy Embedding
Linear Spatial Attention

GCN

MLPd

MLPd

TCNT

Figure 6: The architecture of SNIPformer.

A.3 ARCHITECTURE OF SNIPFORMER

Figure 6 represents the entire architecture of SNIPformer. We use the data embedding module
and spatial-temporal extractor proposed by ST-ReP (Zheng et al., 2025b) as the main architecture.
Differently, we remove the learnable spatial embeddings in the original model and use our dynamic
refinement module and pre-computed static priors to build a new node embedding for input series.
Moreover, we use a linear head to transform the flattened spatial-temporal hidden features into
prediction.

B APPENDIX: EXPERIMENT DETAILS

B.1 DATASETS AND EVALUATION SETTING.

We use the following spatial-temporal datasets across traffic and energy domain for evaluation:

• EPeMS(Ma et al., 2025b): an expansion-node dataset constructed in STEV (Ma et al.,
2025b) from District 7 of California, which assumes no deleted nodes.

• PEMS04 (Song et al., 2020): traffic flow data collected from the Caltrans Performance
Measurement System in California.

• SeaLoop (Cui et al., 2019): Seattle traffic loop detector data, recording speed measure-
ments.

• NREL-AL (Xu et al., 2025): renewable energy data, recording solar power generation
from photovoltaic plants in Alabama in 2016.

The number of feature values for all dataset records is 1, i.e., C=1. Each dataset is divided into three
stages: a base stage, an expansion stage, and a test stage. Within the expansion stage, we further
split the last portion (e.g., 1 day) as the validation set, while the earlier portion (e.g., 6 days) is used
for expansion-stage training. For EPeMS, we strictly follow the experimental setup in Ma et al.
(2025b) for consistency. For the other datasets, 80% of nodes are randomly selected as observed
nodes in the base stage, providing sufficient history (L1). The remaining 20% are treated as newadd
nodes, appearing only in the expansion stage with short history (L2 ≪ L1). Additionally, 5% of
base nodes are randomly designated as deleted, while the rest remain as remain nodes. Table 5
summarizes detail statistics of datasets.

Table 5: Dataset statistics and characteristics
Dataset Sample Rate Stage Split Node Expansion (τ1 → τ2) Trend Strength

EPeMS 5min 63d / 3d / 2d / 22d 296 → 447 (296 -0 + 151) 0.12
PEMS04 5min 35d / 6d / 1d / 17d 241 → 290 (241 -17 + 66) 0.08
SeaLoop 5min 18d / 6d / 1d / 3d 255 → 303 (255 -20 + 68) 0.11

NERL-AL 5min 122d / 6d / 1d / 53.5d 103 → 130 (103 -7 + 34) 0.71
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B.2 BASELINE AND HYPER-PARAMETERS

We compare SNIPformer with four categories of existing solutions for expanding-node STF:

1. Models without node-specific prompting: DLinear (Zeng et al., 2023), iTransformer (Liu
et al., 2024), DUETformer (Qiu et al., 2025).

2. STF models without node-specific modules: GWNET† (Wu et al., 2019), STID† (Shao
et al., 2022), STAEformer† (Liu et al., 2023), STOP (Ma et al., 2025a), where † indicates
removal of learnable node embeddings.

3. Continual learning methods: STKEC (Wang et al., 2023), EAC (Chen & Liang, 2025).
4. Fixed-node models after expansion: STEV (Ma et al., 2025b).

For SNIPformer, we set the PCA feature dimension to 24 (each for daily and weekly periods) and
the spectral embedding dimension to 8. This leads to kpca = 24, n = 2, ktopo = kdelay = kcorr =
8. Collectively, the dimension of Zstatic is 72. During the expansion stage, the periodic priors of
new nodes are constructed by mixing those of their three most similar remain nodes. Other priors
are recomputed directly from the available expansion-stage data, except for the NREL-AL dataset,
where the time-delayed interaction priors of new nodes are also obtained via mixing from old nodes.
These design choices are made in accordance with the degree of temporal distribution shift observed
in each dataset.

We use a 12-step history to predict the next 12 steps, correspond to 1 hour ahead prediction, which
denotes T = T ′ = 12. The model dimension is 64 (32 for NREL-AL). Average results are reported
after repeating the experiments no less than five times. Code and data source are provided in the
Supplementary Material. Our experiments is under the PyTorch framework on a Linux server with
one Intel(R) Xeon(R) Gold 5220 CPU and one 32GB NVIDIA Tesla V100-SXM2 GPU card.

For methods where embeddings increase with expansion (i.e., continual learning approaches) or rely
on fixed node-specific learnable parameters (e.g., STEV), the case of deleted nodes is not explicitly
considered. In our implementation on datasets with node removals, we carefully align the learnable
embeddings across stages. This means that the parameters corresponding to deleted nodes are also
discarded during the expansion stage, ensuring fair and consistent evaluation.

B.3 FULL RESULTS

Table 6 reports the full forecasting results. SNIPformer achieves consistently the best accuracy on
EPeMS, PEMS04, SeaLoop datasets and has a second-best performance on NREL-AL dataset.

C USE OF LLMS

In this work, we used large language models solely for polishing grammar and improving clar-
ity. All research ideas, methodologies, experiments, analyses, and conclusions were independently
conceived and conducted by the authors. The LLM was not used for generating research content,
experiments, results, or references.
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Table 6: Full comparison of the expanding-node forecasting results of different methods and SNIP-
former. MAPE values are scaled by 100 for presentation.

Model Metric EPeMS PEMS04 SeaLoop NREL-AL
All Remain New All Remain New All Remain New All Remain New

DLinear
MAE 32.70 32.26 33.56 28.97 28.91 29.17 4.59 4.62 4.49 2.54 2.59 2.41

MAPE 14.15 15.00 12.47 19.48 19.35 19.90 14.17 14.33 13.61 110.29 110.64 109.29
RMSE 48.32 48.14 48.66 44.55 44.29 45.42 7.99 8.02 7.92 3.91 4.00 3.63
MRE 0.10 0.10 0.10 0.13 0.13 0.13 0.08 0.09 0.08 0.21 0.21 0.21

iTransformer
MAE 26.83 26.65 27.16 24.76 24.74 24.83 4.29 4.31 4.21 1.94 1.97 1.83

MAPE 10.91 11.39 9.96 16.08 16.02 16.29 12.71 12.80 12.40 100.71 101.10 99.60
RMSE 41.40 41.22 41.73 39.62 39.34 40.52 7.54 7.56 7.46 3.36 3.44 3.12
MRE 0.08 0.09 0.08 0.11 0.11 0.11 0.08 0.08 0.08 0.22 0.22 0.22

DUETformer
MAE 25.25 25.17 25.39 23.21 23.21 23.24 4.02 4.04 3.93 1.82 1.85 1.72

MAPE 10.28 10.78 9.31 15.27 15.23 15.42 12.32 12.43 11.96 93.49 93.80 92.63
RMSE 38.05 38.18 37.77 36.54 36.32 37.26 7.02 7.04 6.93 3.10 3.17 2.88
MRE 0.08 0.08 0.07 0.10 0.10 0.10 0.07 0.07 0.07 0.21 0.21 0.21

GWNET
MAE 23.73 23.11 24.93 22.99 23.05 22.79 3.94 3.97 3.84 1.79 1.83 1.69

MAPE 9.47 9.72 8.98 14.79 14.77 14.88 11.86 12.01 11.37 92.04 93.47 88.02
RMSE 35.81 35.27 36.84 36.70 36.57 37.16 6.82 6.86 6.68 3.16 3.24 2.92
MRE 0.07 0.07 0.07 0.10 0.10 0.10 0.07 0.07 0.07 0.23 0.23 0.23

STID
MAE 24.40 24.31 24.56 22.49 22.56 22.25 4.10 4.12 4.03 2.00 2.03 1.89

MAPE 9.92 10.43 8.92 14.67 14.67 14.67 13.66 13.77 13.29 104.42 104.96 102.91
RMSE 37.38 37.44 37.23 35.92 35.77 36.42 7.26 7.28 7.20 3.25 3.33 3.01
MRE 0.08 0.08 0.07 0.10 0.10 0.10 0.08 0.08 0.07 0.17 0.17 0.17

STAEformer
MAE 24.86 24.66 25.27 22.95 23.03 22.67 4.15 4.17 4.09 1.91 1.95 1.81

MAPE 9.94 10.38 9.07 14.76 14.71 14.91 13.08 13.15 12.83 87.52 87.75 86.86
RMSE 38.34 38.26 38.50 36.75 36.63 37.14 7.38 7.39 7.37 3.29 3.37 3.05
MRE 0.08 0.08 0.07 0.10 0.10 0.10 0.08 0.08 0.07 0.17 0.17 0.17

STOP
MAE 24.45 24.47 24.41 22.54 22.56 22.46 4.12 4.13 4.08 2.01 2.05 1.89

MAPE 10.00 10.57 8.89 14.81 14.78 14.90 13.37 13.37 13.35 89.90 90.82 87.30
RMSE 37.24 37.41 36.89 35.74 35.52 36.45 7.32 7.32 7.35 3.25 3.32 3.02
MRE 0.08 0.08 0.07 0.10 0.10 0.10 0.08 0.08 0.07 0.16 0.16 0.16

STKEC
MAE 29.99 29.78 30.40 25.64 25.84 24.87 5.00 5.01 4.98 2.33 2.34 2.28

MAPE 14.37 15.83 11.52 17.61 17.39 18.42 17.76 17.59 18.44 121.15 121.70 119.56
RMSE 42.91 43.05 42.64 39.55 39.74 38.73 8.14 8.13 8.16 3.62 3.66 3.51
MRE 0.09 0.10 0.09 0.12 0.12 0.12 0.09 0.09 0.09 0.21 0.21 0.21

EAC
MAE 28.74 28.23 29.75 24.05 24.27 23.21 4.72 4.73 4.72 2.16 2.17 2.14

MAPE 12.24 12.83 11.06 18.14 17.74 19.58 17.00 16.62 18.43 114.49 115.24 112.29
RMSE 40.33 39.80 41.35 36.51 36.79 35.41 7.82 7.81 7.86 3.37 3.39 3.32
MRE 0.09 0.09 0.09 0.11 0.11 0.11 0.09 0.09 0.09 0.20 0.20 0.20

STEV
MAE 22.90 22.35 23.97 20.55 20.42 21.01 3.92 3.95 3.84 1.57 1.58 1.53

MAPE 9.45 9.81 8.75 14.77 14.65 15.18 12.56 12.71 12.10 67.52 68.33 65.21
RMSE 34.51 33.95 35.60 32.46 32.13 33.53 6.62 6.66 6.51 2.88 2.93 2.73
MRE 0.07 0.07 0.07 0.09 0.09 0.09 0.07 0.07 0.07 0.15 0.14 0.15

SNIPformer
(ours)

MAE 22.05 21.39 23.35 19.20 19.22 19.10 3.46 3.47 3.42 1.62 1.65 1.55
MAPE 8.95 9.20 8.46 12.68 12.64 12.81 10.50 10.62 10.10 88.75 90.38 84.13
RMSE 33.91 33.16 35.33 31.02 30.87 31.54 6.10 6.14 5.97 2.87 2.92 2.71
MRE 0.07 0.07 0.07 0.09 0.09 0.09 0.06 0.06 0.06 0.15 0.15 0.15
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