
LogicTree: Improving Complex Reasoning of LLMs
via Instantiated Multi-step Synthetic Logical Data

Zehao Wang1∗, Lin Yang2, Jie Wang1†, Kehan Wang1, Hanzhu Chen1, Bin Wang2

Jianye Hao2,3, Defu Lian1, Bin Li1, Enhong Chen1

1MoE Key Laboratory of Brain Science and Education, Psychological and Cognition,
University of Science and Technology of China

2Noah’s Ark Lab, Huawei Technologies, 3 Tianjin University

Abstract

Despite their remarkable performance on various tasks, Large Language Models
(LLMs) still struggle with logical reasoning, particularly in complex and multi-
step reasoning processes. Among various efforts to enhance LLMs’ reasoning
capabilities, synthesizing large-scale, high-quality logical reasoning datasets has
emerged as a promising direction. However, existing methods often rely on pre-
defined templates for logical reasoning data generation, limiting their adaptability
to real-world scenarios. To address the limitation, we propose LogicTree, a novel
framework for efficiently synthesizing multi-step logical reasoning dataset that
excels in both complexity and instantiation. By iteratively searching for applicable
logic rules based on structural pattern matching to perform backward deduction,
LogicTree constructs multi-step logic trees that capture complex reasoning pat-
terns. Furthermore, we employ a two-stage LLM-based approach to instantiate
various real-world scenarios for each logic tree, generating consistent real-world
reasoning processes that carry contextual significance. This helps LLMs develop
generalizable logical reasoning abilities across diverse scenarios rather than merely
memorizing templates. Experiments on multiple benchmarks demonstrate that
our approach achieves an average improvement of 9.4% in accuracy for LLMs on
complex logical reasoning tasks.

1 Introduction

Logical reasoning is a crucial capability for large language models (LLMs) [15, 24, 14], providing
substantial support for complex tasks such as coding, mathematics, and other higher-order cogni-
tive abilities [30, 28, 45]. Recent advancements in the reasoning capabilities of LLMs have been
impressive[46], with one of the key progress attributed to the availability of high-quality reasoning
data[18, 9, 50, 6]. Despite these strides, LLMs still encounter challenges in complex multi-step
logical reasoning tasks[4, 31, 42], underscoring a significant scarcity of high-quality multi-step
logical reasoning datasets.

Early logical reasoning datasets are primarily constructed through manual data collection and annota-
tion [19, 55, 13]. While these datasets are often diverse and intricate, their creation is labor-intensive
and time-consuming for further training. In recent years, several studies have explored data synthesis
approaches to generate logical reasoning data [37]. Some studies have employed a set of atomic
logic rules to evaluate and enhance the formal reasoning abilities of LLMs[41, 33]. Similarly, other
research has synthetically created multi-step logical reasoning datasets by leveraging natural language
templates[30, 29, 7, 2]. Furthermore, there is an increasing interest in generating reasoning processes

∗This word was done when Zehao Wang interned at Huawei. Email: zh-wang@mail.ustc.edu.cn
†Corresponding author. Email:jiewangx@ustc.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

for existing complex logical reasoning questions[21, 39]. However, existing data synthesis methods
typically exhibit the following limitations: (1) insufficient complexity, as they typically generate
simplistic reasoning patterns with limited types of reasoning rules and shallow reasoning steps; and
(2) inadequate real-world scenario instantiation, often resulting from the combination of entities
that lack contextual or conceptual relevance, which has been shown to weaken the robustness and
generalization capabilities of LLMs in reasoning tasks[51, 47]. Real-world scenario instantiation
refers to the process of grounding synthetic reasoning data in concrete and context-rich real-world
scenarios that incorporate semantically relevant entities or events, capable of reflecting the complexity
and diversity of real-world reasoning tasks.

To address these challenges, we propose LogicTree, a novel framework for efficiently synthesizing
multi-step logical reasoning dataset, offering significant advantages in terms of complexity and
instantiation. Our method leverages first-order logic rules to generate complex multi-step logical
reasoning trees, which are then instantiated using LLMs to produce natural language reasoning
questions with real-world scenarios and reasoning processes that carry contextual significance. The
logic trees generated by LogicTree exhibit complex reasoning patterns (as presented in Tables 10
and 11), facilitating the improvement of advanced reasoning abilities in LLMs for tackling complex
tasks (Sec.4.3). Moreover, contextually diverse instantiated reasoning data help LLMs develop
generalizable logical reasoning skills, rather than simply memorizing implicit relationships between
facts[24, 51, 40].

Figure 1 presents an overview of LogicTree, illustrating the data synthesis process in detail. Firstly,
we construct symbolic logical reasoning trees via a backward deduction procedure, where leaf nodes
are iteratively expanded by applying formal logic rules identified through structural pattern matching
of formulas. In this way, we generate multi-step logical reasoning trees that incorporate diverse and
complex reasoning patterns, encompassing both propositional logic and first-order logic. Secondly,
we introduce a two-stage LLM-based approach to instantiate logical reasoning trees: (1) assigning
contextually relevant entities or events to the logical symbols in the leaf nodes to construct realistic
reasoning scenarios; and (2) sequentially translating all intermediate nodes in the logical tree to
generate step-by-step natural language reasoning processes. By controlling the thematic domains
of the content generated by LLMs, we instantiate each logical reasoning tree with multiple diverse
scenarios, thereby enhancing the overall diversity and contextual richness of the dataset (see Figures
4 and 3). Finally, we apply post-processing to the synthesized data to verify the logical consistency of
the instantiated content and construct logical reasoning instances, each consisting of a set of premises,
a conclusion–answer pair, and the corresponding reasoning process. Experiments conducted across a
wide range of LLMs demonstrate that the instantiated complex logical reasoning data synthesized
by LogicTree effectively enhances the models’ reasoning capabilities. Furthermore, our analytical
experiments (Table 3) indicate that diverse instantiation scenarios are beneficial for improving the
generalization of reasoning abilities.

The main contributions of this work include:

• We introduce LogicTree, a novel framework for synthesizing multi-step logical reasoning
datasets by generating complex logic trees with first-order logic rules and instantiating them
into realistic reasoning scenarios, enabling LLMs to develop advanced and generalizable
logical reasoning abilities (Sec.3).

• We present a two-stage LLM-based instantiation technique that injects realistic statements
into the symbolic reasoning trees, generating coherent and contextually grounded natural
language reasoning processes (Sec.3).

• Experimental results demonstrate that the synthesized dataset significantly enhance the
logical reasoning performance of LLMs across several challenging benchmarks, leading to
an average accuracy improvement of up to 9.4% (Sec.4).

2 Preliminary

Logical reasoning is a cognitive process that involves deriving valid conclusions from given premises
based on formal logic rules [15, 27, 5]. It is a cornerstone of fields like artificial intelligence,
mathematics, and philosophy, enabling systematic decision-making and problem-solving[24, 34].
The main formal logic systems include propositional logic and first-order logic(FOL). Propositional

2

Logical Tree Generation

root node inode leaf node

2. Syllogism

4. Instantiation

1. Modus
Ponens

Leaf Node List

Instantiation via LLM

Diversity
randomly select scenarios
topics （num=3）
• Public Health
• Economics

Instantiated Realistic Reasoning Scenarios

Natural Language Reasoning Processes

Inode Sequence based on depth

Step1: (𝑷 → 𝑻), (𝑻 → 𝑸) ⊢ (𝑷 → 𝑸)
Step2: ∀𝐱 (¬𝐑(𝐱)) ⊢ ¬𝑹(𝒂)
Step3: (¬𝑹(𝒂) ⋁ 𝑷), (¬𝑹(𝒂)) ⊢ 𝑷
Step4: 𝑷, (𝑷 → 𝑸) ⊢ 𝑷

∀𝒙 (¬𝑹(𝒙))

¬𝑹(𝒂)

𝑷 → 𝑻

𝑻 → 𝑸

𝑷 → 𝑸
𝑷 ⋁ (𝑹(𝒂))

𝑷

𝑸

∀𝒙 (¬𝑹(𝒙))
𝑷 → 𝑻
𝑻 → 𝑸

𝑷 ⋁ (𝑹(𝒂))

"P": "The government initiated a nationwide vaccination campaign.",

"Q": "The spread of the disease was effectively contained.",
“R(x)”: “Region x has achieved full vaccination coverage.",

"T": "Vaccination rates across regions increased significantly."

Step 1: From rule (∀x ¬R(x)), we deduce that no region has achieved
full vaccination coverage. Therefore, City Z has not achieved full
vaccination coverage (~R(a)).
Step 2: Using rule (P → T) and rule (T → Q), we deduce that if the
government initiated a nationwide vaccination campaign (P), then
the spread of the disease was effectively contained (Q).
Step 3: From rule (P ⋁ R(a)) and step1 (~R(a)), we deduce that the
government initiated a nationwide vaccination campaign (P).
Step 4:From step2 (P → Q) and step3 (P), we deduce that the spread
of the disease was effectively contained (Q).

Premises:
"rule1": "No region has achieved full vaccination coverage." "rule2": "If the
government initiated a nationwide vaccination campaign, then vaccination rates across

regions increased significantly." "rule3": ...,"rule4": ...,

conclusions:
• "The spread of the disease was effectively contained."
• "Country a is making great efforts to develop the new energy vehicle industry."
• " City Z has achieved full vaccination coverage."

True

UncertainFalse

Step
①

Step
②

Logical Rules

Syllogism

Modus Ponens

Instantiation...

...

Search for
Applicable Rules Backward

Deduction

Synthetic Example Post-processing

Figure 1: An overview of LogicTree, which comprises three key modules: (1) Logical reasoning
tree generation via iterative backward deduction based on structural pattern matching; (2) Reasoning
scenario instantiation using a two-stage LLM-based approach; (3) Synthetic reasoning example
post-processing.

logic focuses on propositions or statements that are either true or false, employing logical operators
such as ∧ (and), ∨ (or), ¬ (not), and → (implies) to connect these statements. In contrast, FOL
extends propositional logic by handling more complex statements involving variables, quantifiers
(e.g., ∀ for "for all" and ∃ for "there exists"), and predicates.

In a formal logic system, a logical expression composed of the aforementioned symbols is referred
to as a formula (e.g., A → B, ∀xP (x)). If an expression contains no logical operators, it is
called an atomic formula. By representing premises or statements as formulas, logical rules can
be systematically applied to derive new conclusions. For instance, Universal Instantiation and
Hypothetical Syllogism are two well-known inference rules:

UI: ∀x(p(x)) ⊢ p(a) (1)

HS:
(
(p→ q) ∧ (q → r)

)
⊢ (p→ r) (2)

Here, ⊢ denotes "derives", meaning that the formulas preceding it serve as premises, while the
formula following it represents the conclusion. The Hypothetical Syllogism (HS) rule states that if "p
implies q" and "q implies r", then we can conclude that "p implies r". For additional logical rules
and further details, please refer to Appendix C.

3 Method

In this section, we introduce the design and implementation of LogicTree, a novel framework for
synthesizing instantiated complex logical reasoning datasets. Figure 1 overviews the workflow of
our approach, which consists of three main modules: logical reasoning tree generation, reasoning
scenario instantiation and synthetic reasoning example post-processing. First, based on structural
pattern matching, we construct symbolic logical reasoning trees through a backward deduction
process(Sec. 3.1). Next, we leverage LLMs to instantiate the logical reasoning trees with real-world
scenarios(Sec.3.2). Finally, we verify the logical consistency of the instantiated content and generate
synthetic logical reasoning instances(Sec.3.3).

3

3.1 Logical Reasoning Tree Generation

Logical Reasoning Tree Each node in a logical reasoning tree (logic tree) corresponds to a logical
expression (formula) that can be derived from its child nodes based on logic rules. The role of each
node varies depending on its position within the tree: leaf nodes represent premises, the root node
denotes the final conclusion, and intermediate nodes (inodes) encapsulate individual reasoning steps.

In order to construct logical reasoning tree,we designed a backward deduction method based on
structural pattern matching of formulas, which starts from a given formula and searches for applicable
logic rules to derive the premises that support it. When determining whether a logic rule can be
applied to a formula, this method does not require the formula to be identical to the conclusion of
the logic rule; instead, it only compares whether the structural patterns of their are matched. In this
way, we generate multi-step logical reasoning trees that incorporate diverse and complex reasoning
patterns, encompassing both propositional logic and first-order logic. We provide additional detailed
information in the Appendix C.2, including the types of logical rules involved and the complexity of
the logical trees (e.g., depth, breadth, and the number of rules).

Algorithm 1 Logical Reasoning Tree Generation Process
1: Input: Root conclusion formula Q, number of iterations N , rules listR = {r1, r2, . . . , rm}
2: T = init_logictree(Q)
3: k = 1
4: while k ≤ N do
5: L = random_select_leaf_node(T)
6: A = ∅ #appliable rules list
7: for r ∈ R do
8: if is_appliable_rule(L.AST, r.conclusion.AST) then
9: A ← A∪ {r}

10: end if
11: end for
12: appliable_rule = random_choice(A)
13: L.childs = backward_deduction(L, appliable_rule)
14: k = k + 1
15: end while
16: Output: Final logical reasoning tree T

Structural Pattern Matching of Formulas Logical formulas can be represented as Abstract
Syntax Trees (ASTs). In this AST representation, the root node typically corresponds to the logical
operator with the highest precedence. The operands of this operator are then represented by the
subtrees branching from the root. This decomposition process is applied recursively to the subtrees,
continuing until the tree’s nodes represent only atomic formulas, which form the leaves of the tree.
The structure of a formula is considered to match the structural pattern of another if their AST’s
respective operator skeletons are isomorphic. This means their ASTs have the same upper-level
structure. For example, consider the formulas (A ∨ B) → (¬C) and F → G. Although the two
formulas are not identical, they have the same outermost logical operator, namely→. Since F → G
are the conclusions of Rule (2), we can apply this rule to (A ∨B)→ (¬C) for backward deduction,
resulting in the premises (A ∨B)→ G and G→ (¬C). Therefore, if the conclusion formula of a
rule matches the structural pattern of the target formula, the rule can be applied to the target formula.
Refer to Appendix C.1 and Figure 5 for more details.

Multi-step Backward Deduction Generation As shown in Algorithm 1, our logical reasoning
tree generation follows a backward deduction process, iteratively searching for applicable formal
logical rules based on structural pattern matching to decompose existing formula nodes into new
ones. Initially, the logical tree consists of a single root node, which is a randomly generated formula.
Then, the process iterates as follows until the desired number of iterations is reached: Randomly
select a leaf node in the tree, apply relevant rules to perform backward deduction, and derive the
necessary premises, which are added as child nodes to the selected formula. The number of iterations
and the search strategy can control the structure of the final logical reasoning tree, specifically its
depth and width. Examples of logical reasoning trees can be found in the Appendix E.

4

3.2 Reasoning Scenario Instantiation via LLMs

Previous works[30, 29, 3] have employed template based approach to translate the symbolic formulas
into natural language statements. However, these methods fail to capture the contextual semantics
of logical relationships between formulas, often generating statements with limited real-world
applicability.

Thus, we aim to instantiate logical reasoning trees with realistic reasoning scenarios, which involves
translating symbolic logical expressions into concrete statements that carry contextual significance.
Given the advanced text generation capabilities of modern LLMs (e.g., GPT-4 [1]), an intuitive
approach is to leverage LLMs for instantiation. However, due to the inherent limitations of LLMs in
handling complex logical reasoning, directly prompting them to generate realistic logical reasoning
problems from symbolic logic trees may introduce errors. To mitigate this issue, we design the
following two-state prompting strategy to guide LLMs in instantiating the logical reasoning tree. The
details of prompts are provided in Appendix D.

(1) Logical tree instantiation: We extract all the formulas that are leaf nodes in the logical
reasoning tree and input them into LLMs to instantiate a real-world reasoning scenario.
During this process, LLMs assign real-world statements to atomic formulas while ensuring
consistency with their predefined logical relationships. Once all leaf nodes are translated
into natural language, a coherent and contextually grounded logical reasoning scenario is
formed.

(2) Reasoning process translation: We obtain a complete, step-by-step symbolic reasoning
chain by sorting the internal nodes of the logical tree in descending order of depth. At each
step, an inode is derived from its child nodes according to the corresponding logical rules.
We then leverage LLMs to translate the symbolic reasoning steps into a natural language
reasoning process within the previously instantiated scenario.

In this process, the LLM is guided by a correct and rigorous symbolic reasoning skeleton to
generate a step-by-step, instantiated natural language reasoning process. This approach signifi-
cantly reduces generation errors, as the LLM is not required to perform the reasoning autonomously;
it only needs to understand the logical relationships and perform symbolic translatio, which is well
within the capabilities of LLMs[32, 36]. Furthermore, by controlling the themes of the reasoning
scenarios used by the LLM, we can ensure diversity in the synthesized data (Figure 4). This
approach enables the generation of coherent, step-by-step logical reasoning processes in natural
language that incorporate a wide range of realistic scenarios.

3.3 Synthetic Reasoning Example Post-processing

We conduct a systematic verification of the logical consistency of the instantiated content to filter
out erroneous data. Specifically, this involves prompting the LLM to output the instantiated natural
language statements paired with their corresponding logical expressions, typically in the format
"statement [expression]". We then perform an exact string comparison between the logical expression
provided by the LLM and the original source logical expression to identify any inconsistencies. The
entire natural language reasoning process is validated once all statements are confirmed to be logically
consistent with their symbolic expressions, as the overall correctness is inherently guaranteed by the
logic tree. This rigorous verification process enables us to filter out the data identified as erroneous,
thereby significantly improving the overall data quality.

Then, we utilize the verified instantiated content to construct logical reasoning data instances. A
logical reasoning instance is composed of a set of premises, a conclusion-answer pair, and the
corresponding reasoning process. In particular, the natural language statements of the leaf nodes
are combined to form the premises. Then we can construct conclusions with different types of
answers (’True’, ’False’ or ’Uncertain’) based on the logical tree. For answer label "True", we use
the statement of root node as the conclusion. For answer label "False", we use the negated statement
of the root node as the conclusion. For answer label “Uncertain”, we introduce some irrelevant
statements as distractors. Examples of synthetic logical reasoning data can be found in Appendix E.

5

4 Experiments

To evaluate the effectiveness of our LogicTree, we design a suite of experiments that not only
demonstrate its significant impact on enhancing LLMs’ reasoning abilities, but also provide in-depth
analytical insights. Specifically, we divide the experiments into three parts:

• To comprehensively assess the enhancements of our approach in improving the logical
reasoning abilities of LLMs, we conduct evaluations across multiple benchmarks and
compare it against several other synthetic logical datasets (Sec.4.2).

• To further evaluate the model’s multi-step logical reasoning ability, we assess LogicTree
and baselines on Multi-LogiEval, which categorizes questions by reasoning steps from one
to five (Sec.4.3).

• To analyze the key factors contributing to LogicTree’s effectiveness, we conduct ablation
studies on three core components: (1) instantiating real-world reasoning scenarios, (2)
incorporating natural language reasoning processes under instantiated scenarios, and (3)
ensuring diversity in instantiated scenarios (Sec.4.5).

• To further evaluate the generalization enhancement of model reasoning capabilities by
LogicTree, we conduct additional experiments across a diverse range of task types, covering
domains such as logic, math, code, NLI, and others (Sec.4.4).

• To assess the generalizability of our synthetic data, we extended our evaluation to include
models from different families and scales, specifically Qwen2.5-1.5B/3B and the Deepseek-
R1-Distill series (Appendix.B.3).

4.1 Experimental Setup

We briefly explain the experimental settings. Refer to Appendix B for more details.

Syntheised Training Dataset. We generated 5,000 symbolic logic trees with depths from 2 to 15,
and instantiated each into 3 semantically diverse scenarios, yielding 15,000 reasoning problems.
After applying an automatic filtering process that discarded 8.73% of noisy or invalid samples, the
final dataset for LLM training contains 13.8k high-quality, multi-step reasoning instances.

Evaluation Benchmarks. To evaluate the effectiveness of our proposed LogicTree, we consider a
diverse set of reasoning tasks and datasets that require rigorous logical reasoning: (a) LogicBench[33]:
a novel task designed to comprehensively evaluate the model’s performance on each inference rule. (b)
LogiQA2.0[19]: A collection of challenging real-world logical reasoning problems from civil service
entrance exams. (c) Three BIG-Bench Hard (BBH)[38] tasks of varying difficulty levels: logical
deduction with three, five, and seven objects. (d) FOLIO[13]: An expert-written, logically complex
dataset for first-order logic reasoning. (e) Two AGIEval[55] tasks focused on logical reasoning:
LAST-AR and LAST-LR. (f) Multi-LogiEval[35]: A comprehensive dataset incorporating varying
reasoning depths for logical complexity.

Baselines. To demonstrate the superiority of our method, we evaluated the following baselines.
(i) Vanilla: standalone LLMs without additional training. Vanilla LLMs represent the original
capabilities of LLMs. (ii) PARARULE[2]: it generates deductive processes by repeatedly applying
deduction rules to a given set of facts and transforms these processes into sentences based on
natural language templates. (iii) LogicAsker[41]: a framework to evaluate the ability of LLMs to
handle individual atomic logical reasoning rules and generate targeted samples for improvement.
(iv) FLD×2[29]: it introduces systematic design principles for logical data synthesis and randomly
combines various rules to construct multi-step reasoning datasets.

Models and Training Settings. To rigorously validate the effectiveness of LogicTree, we conduct
extensive experiments using a diverse set of prominent open-source models spanning various families
and scales. We utilize models from the Llama-3.1, Mistral-v0.3, Qwen2.5, and Deepseek-R1-Distill
families, with parameter scales ranging from 1.5B to 70B. We employ two distinct fine-tuning
strategies: full fine-tuning is applied to smaller-scale models (under 8B), while the larger 70B model
utilizes LoRA fine-tuning.

6

Table 1: Main results on five types of reasoning tasks. △ means the margin between Vanilla and
training by LogicTree. "Avg" means the average accuracy across five benchmarks for each methods.
We bold the best results for each LLM backbone and underline the second-best results.

Model LogicBench LogiQA2.0 FOLIO BBH-Logic AGIEval Avg.
LR AR

Llama-3.1-8B

vanilla 80.0±0.4 42.4±0.2 50.8±0.4 39.3±0.3 48.4±0.3 20.7±0.1 46.9

+ PARARULE 84.4±0.3 53.3±0.2 50.3±0.3 42.4±0.1 52.9±0.2 21.7±0.2 50.8
+ LogicAsker 85.0±0.3 54.7±0.2 54.6±0.2 43.7±0.1 51.2±0.2 23.1±0.1 52.0
+ FLD×2 83.6±0.2 53.3±0.2 54.5±0.3 39.5±0.2 51.8±0.3 21.3±0.1 50.7

+ LogicTree 90.6±0.2 53.5±0.1 57.6±0.2 53.2±0.2 56.1±0.1 26.5±0.2 56.3

∆ +10.6 +11.1 +6.8 +13.9 +7.7 +5.8 +9.4
(Relative Gain) (+13.3%) (+26.2%) (+13.4%) (+35.4%) (+15.9%) (+28.0%) (+20.0%)

Qwen-2.5-7B

vanilla 83.1±0.3 63.8±0.4 54.3±0.4 72.8±0.3 65.3±0.3 23.9±0.2 60.5

+ PARARULE 82.9±0.3 65.1±0.1 55.3±0.2 72.8±0.4 68.3±0.2 24.5±0.1 61.5
+ LogicAsker 84.3±0.3 64.9±0.1 58.7±0.2 72.8±0.2 66.7±0.2 24.5±0.1 62.0
+ FLD×2 83.4±0.1 65.1±0.3 59.6±0.3 73.6±0.2 67.3±0.1 26.1±0.2 62.5

+ LogicTree 89.2±0.1 64.9±0.1 63.8±0.1 74.3±0.3 69.3±0.1 28.7±0.2 65.0

∆ +6.1 +1.1 +9.5 +1.5 +4.0 +4.8 +4.5
(Relative Gain) (+7.3%) (+1.7%) (+17.5%) (+2.1%) (+6.1%) (+20.1%) (+7.4%)

Mistral-7B-v0.3

vanilla 77.5±0.4 49.7±0.3 51.2±0.2 45.5±0.3 49.9±0.3 20.4±0.1 49.0

+ PARARULE 78.8±0.2 51.2±0.3 50.3±0.3 47.2±0.2 50.4±0.2 22.6±0.2 50.1
+ LogicAsker 78.8±0.3 50.6±0.2 56.7±0.1 46.8±0.1 50.2±0.2 23.1±0.1 51.0
+ FLD×2 78.0±0.2 50.6±0.2 54.5±0.3 48.1±0.2 50.4±0.3 22.2±0.1 50.6

+ LogicTree 81.9±0.2 52.3±0.1 52.5±0.2 48.7±0.2 51.4±0.1 25.7±0.2 52.1

∆ +4.4 +2.6 +1.3 +3.2 +1.5 +5.3 +3.1
(Relative Gain) (+5.7%) (+5.2%) (+2.5%) (+7.0%) (+3.0%) (+26.0%) (+6.3%)

Llama-3.1-70B

vanilla 91.3±0.2 67.1±0.2 59.6±0.4 75.3±0.2 82.2±0.1 28.3±0.1 67.3

+ PARARULE 92.5±0.3 68.2±0.2 61.1±0.3 75.6±0.1 82.4±0.2 26.1±0.2 67.7
+ LogicAsker 93.1±0.3 69.9±0.2 63.4±0.2 75.2±0.1 82.8±0.2 30.8±0.1 69.2
+ FLD×2 93.7±0.2 69.9±0.1 63.1±0.2 74.8±0.3 83.1±0.3 26.1±0.1 68.5

+ LogicTree 94.4±0.2 70.3±0.1 65.2±0.2 76.0±0.0 83.7±0.2 31.3±0.1 70.2

∆ +3.1 +3.2 +5.6 +0.7 +1.5 +3.0 +2.9
(Relative Gain) (+3.4%) (+4.8%) (+9.4%) (+0.9%) (+1.8%) (+10.6%) (+4.3%)

4.2 Main Results

To validate the significant improvement in logical reasoning abilities enabled by our synthesized
data, we evaluate LogicTree on multiple downstream logical reasoning tasks. As highlighted in
Table 1, LogicTree shows consistent and substantial performance improvements across all backbone
models and most benchmarks against the baselines, demonstrating the effectiveness of instantiating
complex logical reasoning trees. Specifically, LogicTree surpasses vanilla models on all benchmarks,
achieving significant margins. On LogicBench and AGIEval-LR, it improves LLama-3.1-8B by
10.6% and 7.7%, respectively. Even on AGIEval-AR, a particularly challenging benchmark for
LLMs, our approach still achieves a 6% improvement. Meanwhile, our method achieves average
improvements of 9.4%, 3.1%, and 2.9% on Llama-3.1-8B, Mistral-7B-v0.3, and Llama-3.1-70B,
respectively, underscoring its robustness across different model architectures and scales. Additional
experimental results on more models can be found in Table 5 and 6.

7

d1 d2 d3 d4 d5
Reasoning Depth

40

50

60

70

80

90

Ac
cu

ra
cy

Results of Llama-3.1-8B-Instruct on Multi-LogiEval

Vinalla
PARARULE
LogicAsker
FLD*2
LogicTree

d1 d2 d3 d4 d5
Reasoning Depth

30

40

50

60

70

80

Ac
cu

ra
cy

Results of Qwen2.5-7B-Instruct on Multi-LogiEval

Vinalla
PARARULE
LogicAsker
FLD*2
LogicTree

d1 d2 d3 d4 d5
Reasoning Depth

30

40

50

60

70

80

90

Ac
cu

ra
cy

Results of Mistral-7B-Instruct-v0.3 on Multi-LogiEval

Vinalla
PARARULE
LogicAsker
FLD*2
LogicTree

Figure 2: Experiment results for different methods on Multi-LogiEval, which is specifically designed
to evaluate the model’s multi-step logical reasoning abilities. The horizontal axis represents the
number of reasoning steps required to answer the question, ranging from d1 to d5. The bold red line
at the top represents our method, demonstrating superior performance improvements, especially as
the number of reasoning steps increases.
Table 2: Experiment results using Llama3.1-8B across a broader range of task types, covering
domains such as logic, math, code, NLI, and others.

Model Proofwriter Mathqa GPQA Humaneval Commencenseqa MNLI Avg.

Llama-3.1-8B

vanilla 57.3 42.1 30.8 68.4 73.9 68.1 56.8

+ PARARULE 64.3 42.8 31.9 67.2 73.7 70.5 58.4
+ LogicAsker 69.8 43.2 30.1 68.6 74.5 73.3 59.9
+ FLD×2 74.1 43.8 31.1 72.3 74.1 75.3 61.8

+ LogicTree 76.9 47.3 32.8 74.6 75.9 76.8 64.1

It is worth noting that LogicTree demonstrates superior performance in all baselines, especially
in multi-step complex reasoning tasks. While LogicAsker generates a large volume of atomic
instruction data that provides some improvement in basic logical reasoning, it remains inferior to
our approach. Furthermore, the datasets synthesized by these baselines yield only marginal gains on
more challenging reasoning tasks, such as BBH-Logic and AGIEval-AR. In contrast, our method
achieves performance gains of up to 13.9%, further demonstrating that complex reasoning patterns
and instantiated reasoning processes play a crucial role in enhancing the model’s reasoning
capabilities.

4.3 Results of Multi-step Reasoning

To further evaluate the model’s multi-step logical reasoning ability, we assess LogicTree and baselines
on Multi-LogiEval, which categorizes questions by reasoning steps from one to five. As shown in
Figure 2, LogicTree consistently outperforms all baselines across all categories of test data, with
particularly strong improvements at higher reasoning depths (d3, d4, d5). These results indicate
that LogicTree effectively enhances LLMs’ ability to tackle complex multi-step reasoning tasks.
In contrast, other methods exhibit a sharp decline in performance as reasoning depth increases,
highlighting their limitations in scaling to more complex reasoning scenarios. Their struggle to
maintain accuracy on multi-step reasoning tasks suggests that training with simple reasoning data
alone is insufficient for significantly improving the model’s ability to handle complex reasoning.
LogicTree’s superior performance on multi-step reasoning tasks underscores the potential benefits of
its approach in improving reasoning abilities on multi-step tasks, making it a valuable tool for complex
logical reasoning scenarios. Results related to the 70B model can be found in the Appendix B.4.

4.4 Results on Generalization Experiments Across Multiple Domains

To verify the generalization of LogicTree in enhancing model reasoning capabilities, we conducted
additional experiments using an 8B model across a broader range of task types, covering domains
such as logic, math, code, NLI, and others. As shown in the table, LogicTree enhances the model’s
reasoning abilities across multiple domains. The improvement is smaller in tasks requiring extensive

8

Table 3: Ablation results on four types of reasoning tasks, use Llama-3.1-8B as the backbone models.
"Avg" means the average accuracy across four benchmarks for each methods. We bold the best results
for each benchmark.

Model LogicBench LogiQA2.0 BBH AGIEval Avg.LR AR

Llama-3.1-8B

vanilla 80.0 42.4 39.3 48.4 20.7 46.2

+ LogicTree(num=3) 90.6 53.5 53.2 56.1 26.5 55.9

w/o inst_scenario 86.3 53.5 46.7 54.5 22.6 52.7
w/o inst_reasoning 88.3 52.9 50.1 53.9 24.4 53.9

w/o inst_diversity
num=1 83.1 51.2 49.6 54.1 23.9 52.4
num=2 88.1 52.9 50.8 52.9 26.1 54.2
num=4 92.6 52.7 53.2 56.1 25.7 55.2
num=5 94.5 50.3 50.8 51.2 23.7 54.1

knowledge recall, such as commonsense and science, since LogicTree primarily strengthens gen-
eralization rather than knowledge retention, which is largely dependent on pretraining. However,
in reasoning-intensive domains like logic, math, and code, the model exhibits significant gains,
demonstrating that LogicTree effectively improves reasoning capabilities through diverse instantiated
reasoning processes.

4.5 Ablation Study

In this section, we conduct ablation experiments to assess the contributions of key design components
in LogicTree : (1) instantiating real-world reasoning scenarios (Analysis 1), (2) incorporating
natural language reasoning processes under instantiated scenarios (Analysis 2), and (3) ensuring
diversity in instantiated scenarios (Analysis 3). Specifically, "w/o inst_scenario" refers to training
on symbolic logical expressions without instantiating the logical reasoning tree into real-world
scenarios; "w/o inst_reasoning" denotes instantiating real-world scenarios while retaining a fully
symbolic representation of the reasoning process; and "inst_diversity" means omitting control over
the diversity of instantiated scenarios. In particular, we evaluate performance by instantiating one and
two reasoning scenarios and processes per logical tree (whereas LogicTree employs three). As shown
in Table3, removing any of these components results in a notable performance decline, highlighting
their importance in enhancing logical reasoning capabilities.

Analysis 1: Instantiating reasoning scenarios enables the model to learn the ability to apply
logical reasoning in specific tasks, rather than simply memorizing language templates or the
potential relationships between facts. As shown in Table 3, while symbolic rules enhance reasoning,
the improvement without instantiation is significantly less than with LogicTree. This underscores
instantiation’s importance: it teaches applying logic in complex tasks, not just memorizing rules.

Analysis 2: The reasoning processes in natural language based on instantiated scenarios
can further enhance the model’s reasoning performance in challenging tasks. As Table 3
demonstrates, instantiating symbolic logical problems into real-world scenarios improved the model’s
reasoning and accuracy compared to purely symbolic questions, supporting Analysis 1’s findings.
However, its performance remained inferior to LogicTree. This underscores that natural language
reasoning based on instantiated scenarios is crucial for boosting logical ability in complex tasks.
On hard problems like AGIEval-AR, this instantiation method yielded only modest gains 1.8%,
highlighting the growing value of natural language reasoning on instantiated scenarios for intricate
challenges.

Analysis 3: Diverse reasoning scenarios able LLMs to develop more generalizable and trans-
ferable logical reasoning abilities. We instantiate different numbers of reasoning scenarios for the
same logical reasoning tree, ranging from 1 to 5. When num=1, the model’s performance on some

9

benchmarks is even worse than when no instantiation is used ("w/o instantiation"). This suggests that
using only a single reasoning scenario may cause the model to overfit to the relationships between
the facts within that scenario, rather than learning genuine reasoning abilities. However, as num
increases, the model’s performance continues to improve and converges around 3 or 4. Therefore,
incorporating more diverse reasoning scenarios proves beneficial for enabling the model to acquire
genuinely generalized logical reasoning skills.

5 Related Works

5.1 Synthetic Logic Corpus for Training

With the increasing adoption of synthetic datasets [18, 9, 50], there has been a growing focus on
generating high-quality logical reasoning datasets to enhance the reasoning capabilities of LLMs[53].
Early works[7, 39, 3] generated deductive processes by repeatedly applying deduction rules to
a given set of facts and transformed these processes into natural language sentences using fixed
templates. FLD*2 [30, 29] introduced systematic design principles for logical data synthesis and
randomly combined various rules to construct multi-step reasoning datasets. (author?) [41] proposed
a framework to evaluate the ability of LLMs to handle individual atomic reasoning rules and generate
targeted samples for improvement. LogicPro [16] further advanced this line of research by using
LLMs to convert algorithmic problems into logical reasoning tasks. However, These methods still
have limitations in the complexity of logical trees, producing rules or facts with limited real-world
applicability and simplistic language. Our research further extends the generation of logical reasoning
trees, encompassing various complex reasoning patterns in first-order logic. Additionally, we use
LLMs to instantiate these trees into realistic reasoning scenarios and generate reasoing process in
natural language.

5.2 Evaluation of Logic Reasoning

Accurately evaluating the reasoning abilities of LLMs is both essential and challenging. Many studies
have focused on assessing this fundamental capability of LLMs[38, 20]. For instance, LogiQA[19]
and AR-LAST[55] evaluated models’ logical reasoning abilities in real-world scenarios by collecting
human examination questions. LogicBench [33] demonstrated that existing LLMs struggle to handle
complex logical contexts, even when involving only a single reasoning pattern. (author?) [41]
introduced LogicAsker, which utilizes a set of atomic reasoning skills to assess the ability of LLMs
to learn logical rules. FOLIO[13] and Multi-LogiEval[35] further assessed the multi-step logical
reasoning capabilities of LLMs. These studies [8, 4] highlight the significant challenges faced by
LLMs in logical reasoning tasks, underscoring the critical need for high-quality training datasets to
improve their reasoning performance.

6 Conclusion

In this paper, we propose LogicTree, a novel framework for synthesizing instantiated, complex logical
reasoning datasets. Our method leverages first-order logic rules to generate complex multi-step logical
reasoning trees, which are then instantiated using LLMs to produce natural language reasoning data
with realistic scenarios. The resulting synthetic datasets feature intricate reasoning patterns, promoting
the development of advanced reasoning abilities in LLMs to address complex tasks. Furthermore, by
incorporating instantiated reasoning processes, our method enables LLMs to acquire generalizable
reasoning skills, rather than simply memorizing implicit relationships between facts. Extensive
experiments across multiple complex logical reasoning benchmarks demonstrate the effectiveness of
LogicTree, with an average accuracy improvement of 9.4%. LogicTree consistently outperforms all
baselines, particularly in multi-step complex reasoning tasks. Further analysis indicates that both
instantiated reasoning processes and the diversity of instantiated scenarios contribute to enhancing
the model’s generalizable logical reasoning abilities.

10

Acknowledgments

The authors would like to thank all the anonymous reviewers for their insightful comments and
valuable suggestions. This work was supported by the National Key R&D Program of China under
contract 2022ZD0119801, and the National Nature Science Foundations of China grants U23A20388,
62021001 and 624B1011.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[2] Qiming Bao, Alex Yuxuan Peng, Tim Hartill, Neset Tan, Zhenyun Deng, Michael Witbrock, and Jiamou
Liu. Multi-step deductive reasoning over natural language: An empirical study on out-of-distribution
generalisation. arXiv preprint arXiv:2207.14000, 2022.

[3] Qiming Bao, Alex Yuxuan Peng, Tim Hartill, Neset Tan, Zhenyun Deng, Michael Witbrock, and Jiamou
Liu. Multi-step deductive reasoning over natural language: An empirical study on out-of-distribution
generalisation. arXiv preprint arXiv:2207.14000, 2022.

[4] Leonardo Bertolazzi, Albert Gatt, and Raffaella Bernardi. A systematic analysis of large language models
as soft reasoners: The case of syllogistic inferences. arXiv preprint arXiv:2406.11341, 2024.

[5] Hugo Bronkhorst, Gerrit Roorda, Cor J. M. Suhre, and Martin J. Goedhart. Logical reasoning in formal and
everyday reasoning tasks. International Journal of Science and Mathematics Education, 18:1673–1694,
2020.

[6] Hanzhu Chen, Xu Shen, Jie Wang, Zehao Wang, Qitan Lv, Junjie He, Rong Wu, Feng Wu, and Jieping
Ye. Knowledge graph finetuning enhances knowledge manipulation in large language models. In The
Thirteenth International Conference on Learning Representations, 2025.

[7] Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over language. In
Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial
Intelligence, pages 3882–3890, 2021.

[8] John Dougrez-Lewis, Mahmud Elahi Akhter, Yulan He, and Maria Liakata. Assessing the reasoning
abilities of chatgpt in the context of claim verification. arXiv preprint arXiv:2402.10735, 2024.

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[10] Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179, 2023.

[11] Zijie Geng, Jie Wang, Ziqi Liu, Feng Ju, Yiming Li, Xing Li, Mingxuan Yuan, Jianye Hao, Defu Lian,
Enhong Chen, and Feng Wu. Accurate KV cache eviction via anchor direction projection for efficient
LLM inference. In The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025.

[12] Runquan Gui, Zhihai Wang, Jie Wang, Chi Ma, Huiling Zhen, Mingxuan Yuan, Jianye HAO, Defu Lian,
Enhong Chen, and Feng Wu. Hypertree planning: Enhancing llm reasoning via hierarchical thinking. In
Forty-second International Conference on Machine Learning, 2025.

[13] Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with first-order logic.
arXiv preprint arXiv:2209.00840, 2022.

[14] Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu, and Changshui Zhang. A closer look at the
self-verification abilities of large language models in logical reasoning. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pages 900–925, 2024.

[15] Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. arXiv
preprint arXiv:2212.10403, 2022.

11

[16] Jin Jiang, Yuchen Yan, Yang Liu, Yonggang Jin, Shuai Peng, Mengdi Zhang, Xunliang Cai, Yixin Cao,
Liangcai Gao, and Zhi Tang. Logicpro: Improving complex logical reasoning via program-guided learning.
arXiv preprint arXiv:2409.12929, 2024.

[17] Xize Liang, Lin Yang, Jie Wang, Yiyang Lu, Runyu Wu, Hanzhu Chen, and Jianye Hao. Boosting
multi-domain fine-tuning of large language models through evolving interactions between samples. In
Forty-second International Conference on Machine Learning, 2025.

[18] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437,
2024.

[19] Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan Duan, Ming Zhou, and Yue Zhang. Logiqa
2.0—an improved dataset for logical reasoning in natural language understanding. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 2023.

[20] Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang. Evaluating the logical
reasoning ability of chatgpt and gpt-4. arXiv preprint arXiv:2304.03439, 2023.

[21] Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli Zhang, Qiji Zhou, and Yue Zhang. Logicot: Logical
chain-of-thought instruction-tuning. arXiv preprint arXiv:2305.12147, 2023.

[22] Haoyang Liu, Jie Wang, Wanbo Zhang, Zijie Geng, Yufei Kuang, Xijun Li, Bin Li, Yongdong Zhang, and
Feng Wu. MILP-studio: MILP instance generation via block structure decomposition. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[23] Tongxuan Liu, Wenjiang Xu, Weizhe Huang, Yuting Zeng, Jiaxing Wang, Xingyu Wang, Hailong Yang,
and Jing Li. Logic-of-thought: Injecting logic into contexts for full reasoning in large language models.
arXiv preprint arXiv:2409.17539, 2024.

[24] Man Luo, Shrinidhi Kumbhar, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee, Somak Aditya, Chitta
Baral, et al. Towards logiglue: A brief survey and a benchmark for analyzing logical reasoning capabilities
of language models. arXiv preprint arXiv:2310.00836, 2023.

[25] Qitan Lv, Jie Wang, Hanzhu Chen, Bin Li, Yongdong Zhang, and Feng Wu. Coarse-to-fine highlighting:
Reducing knowledge hallucination in large language models. In International Conference on Machine
Learning, pages 33594–33623. PMLR, 2024.

[26] Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. Faithful chain-of-thought reasoning. In The 13th International Joint Conference on
Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics (IJCNLP-AACL 2023), 2023.

[27] Bill MacCartney and Christopher D Manning. Natural logic for textual inference. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pages 193–200, 2007.

[28] Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
Gsm-symbolic: Understanding the limitations of mathematical reasoning in large language models. arXiv
preprint arXiv:2410.05229, 2024.

[29] Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, and Yasuhiro Sogawa. Enhancing reasoning
capabilities of llms via principled synthetic logic corpus. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

[30] Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, and Yasuhiro Sogawa. Learning deductive reasoning
from synthetic corpus based on formal logic. In International Conference on Machine Learning, pages
25254–25274. PMLR, 2023.

[31] Kentaro Ozeki, Risako Ando, Takanobu Morishita, Hirohiko Abe, Koji Mineshima, and Mitsuhiro Okada.
Exploring reasoning biases in large language models through syllogism: Insights from the neubaroco
dataset. In Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL
2024, pages 16063–16077. Association for Computational Linguistics (ACL), 2024.

[32] Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empowering large
language models with symbolic solvers for faithful logical reasoning. arXiv preprint arXiv:2305.12295,
2023.

12

[33] Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty, Arindam
Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning ability of large
language models. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13679–13707, 2024.

[34] Barbara H. Partee, Alice ter Meulen, and Robert E. Wall. Mathematical methods in linguistics. 1990.

[35] Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna Budhiraja, Mutsumi Nakamura, Neeraj Varshney,
and Chitta Baral. Multi-logieval: Towards evaluating multi-step logical reasoning ability of large language
models. arXiv preprint arXiv:2406.17169, 2024.

[36] Hyun Ryu, Gyeongman Kim, Hyemin S Lee, and Eunho Yang. Divide and translate: Compositional first-
order logic translation and verification for complex logical reasoning. arXiv preprint arXiv:2410.08047,
2024.

[37] Damien Sileo. Scaling synthetic logical reasoning datasets with context-sensitive declarative grammars.
arXiv preprint arXiv:2406.11035, 2024.

[38] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

[39] Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Proofwriter: Generating implications, proofs, and
abductive statements over natural language. arXiv preprint arXiv:2012.13048, 2020.

[40] Fumiya Uchiyama, Takeshi Kojima, Andrew Gambardella, Qi Cao, Yusuke Iwasawa, and Yutaka Matsuo.
Which programming language and what features at pre-training stage affect downstream logical inference
performance? In EMNLP, 2024.

[41] Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang Jiao, and
Michael Lyu. Logicasker: Evaluating and improving the logical reasoning ability of large language models.
In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages
2124–2155, 2024.

[42] Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang Jiao, and
Michael R Lyu. A & b== b & a: Triggering logical reasoning failures in large language models. arXiv
preprint arXiv:2401.00757, 2024.

[43] Binwu Wang, Pengkun Wang, Wei Xu, Xu Wang, Yudong Zhang, Kun Wang, and Yang Wang. Kill
two birds with one stone: Rethinking data augmentation for deep long-tailed learning. In The Twelfth
International Conference on Learning Representations, 2024.

[44] Pengkun Wang, Zhe Zhao, HaiBin Wen, Fanfu Wang, Binwu Wang, Qingfu Zhang, and Yang Wang. Llm-
autoda: Large language model-driven automatic data augmentation for long-tailed problems. Advances in
Neural Information Processing Systems, 37:64915–64941, 2024.

[45] Siyuan Wang, Zhongyu Wei, Yejin Choi, and Xiang Ren. Can llms reason with rules? logic scaffolding for
stress-testing and improving llms. arXiv preprint arXiv:2402.11442, 2024.

[46] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems, 35:24824–24837, 2022.

[47] Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. arXiv preprint
arXiv:2410.23123, 2024.

[48] Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv preprint
arXiv:2405.00451, 2024.

[49] Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful logical reasoning
via symbolic chain-of-thought. arXiv preprint arXiv:2405.18357, 2024.

[50] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

[51] Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1, grade-
school math and the hidden reasoning process. arXiv preprint arXiv:2407.20311, 2024.

13

[52] Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

[53] Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van Den Broeck. On the paradox
of learning to reason from data. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, pages 3365–3373, 2023.

[54] Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao. On the diagram of thought. arXiv preprint
arXiv:2409.10038, 2024.

[55] Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and
Nan Duan. Ar-lsat: Investigating analytical reasoning of text. arXiv preprint arXiv:2104.06598, 2021.

14

Impact Statement, Limitations and Future Work

This paper follows existing research on logical reasoning data synthesis and constructs a multi-
hop complex logical reasoning dataset for model training, which helps LLMs learn advanced and
generalizable logical reasoning capabilities. Furthermore, our synthesized data can be used to
precisely evaluate the model’s multi-step logical reasoning ability, contributing to research on
enhancing models’ logical reasoning capabilities. Moreover, our work does not involve human or
animal experiments, so the ethical impacts and expected societal implications are those that are well
established.

This paper presents work whose goal is to advance the field of logical data synthesis. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

As for the limitations of LogicTree, while it significantly enhances the logical reasoning abilities
of LLMs by synthesizing logical datasets, it cannot be integrated with other forms of reasoning.
Exploring how to incorporate other reasoning paradigms, such as commonsense reasoning, into
logical reasoning data to enhance the comprehensive reasoning abilities of LLMs will be the focus of
our future work.

A More Related Works

A.1 Prompt-Based Methods for Enhancing Logical Reasoning

Leveraging large language models (LLMs) for complex logical reasoning problems has been a key
focus of recent research. Many efforts[12, 25] focus on designing more effective prompting strategies
to help LLMs complete complex logical reasoning tasks. For example, Chain-of-Thought (CoT)[46]
guides LLMs to reason step by step nd output the final answer based on the reasoning process. In order
to better simulate rational logical thought processes, (author?) [54] proposed Diagram-of-Thought
(DoT) that models iterative logical reasoning in LLMs as the construction of a directed acyclic graph
(DAG). Other approaches involve prompting LLMs to first translate natural language into symbolic
language, which is then used to facilitate logical reasoning. Symbolic Chain-of-Thought (SymbCoT)
[49] converts input from natural language into a symbolic representation and subsequently constructs
a step-by-step reasoning plan based on symbolic logic rules. Logic-of-Thought[23] employs LLMs to
extract logical expressions and applies logical reasoning rules to derive extended logical expressions,
which are then translated back into natural language to support subsequent reasoning.

Additionally, some research integrates LLMs with external tools, such as solvers, to enhance reasoning
capabilities[26, 32]. These approaches first leverage LLMs to convert natural language input into
a symbolic form (such as logic programming languages, first-order logic, constraint satisfaction
problems, or Boolean satisfiability formulations) compatible with external solvers, which are then
used to perform logical reasoning and yield the desired result.

Although prompt-based methods can effectively leverage the potential of large language models
(LLMs), their performance remains fundamentally constrained by the models’ inherent reasoning
capabilities. This limitation is particularly evident in smaller models, which often produce hal-
lucinations and logical errors during inference. On the other hand, approaches that incorporate
external solvers primarily exploit the model’s ability to translate natural language into symbolic
representations, rather than enhancing its intrinsic reasoning ability. In contrast, our approach focuses
on synthesizing a large amount of high-quality logical reasoning data from a training perspective,
which helps enhance the inherent reasoning capabilities of LLMs.

A.2 Reasoning Data Synthesis

An increasing number of studies have focused on synthesizing complex tasks and high-quality rea-
soning processes [43, 44, 22], which are utilized for supervised fine-tuning or preference alignment
training[6, 17]. For example, the O1 series of studies leverages reinforcement learning and Monte
Carlo Tree Search(MCTS) that enable LLMs to optimize reasoning processes autonomously. Benefit-
ing from the extensive tree search space and the guidance of an excellent Process Reward Model,
these methods can generate high-quality reasoning processes[52, 10, 48]. However, this approach
incurs high computational costs and long search times, while generation efficiency is particularly

15

crucial in LLM-based settings[11]. In contrast, our method leverages rigorous symbolic logic trees to
guide the LLM, offering lower costs and higher correctness.

B More Details about Experiments

B.1 Information of Logical Reasoning Benchmarks

In this study, we selected six representative benchmarks to evaluate the reasoning capabilities of the
models. These benchmarks encompass various aspects of logical reasoning, diverse contexts, and
difficulty levels, making them suitable for a comprehensive evaluation. As shown in Table 4, we
provide brief explanations of each benchmark.

Table 4: Information of Logical Reasoning Benchmarks used in our experiments

Benchmark Data Count Explanation
LogicBench 160 LogicBench is a natural language dataset designed to evaluate

the logical reasoning abilities of LLMs. In this work, we use
the MCQA (Multiple Choice Question-Answering) subset of
LogicBench(Eval), which focuses on tasks that apply a single
inference rule.

LogiQA 1527 LogiQA 2.0 is an enhanced dataset for evaluating logical rea-
soning in natural language understanding tasks. We use the
main part of LogiQA, which includes multiple-choice reading
comprehension questions.

FOLIO 203 FOLIO is an expert-crafted dataset for evaluating natural lan-
guage reasoning with first-order logic. It includes logically
complex examples presented in natural language and their for-
mal FOL representations. For our experiment, we use all val-
idation data, leveraging its dual-format structure to precisely
assess models’ ability to interpret and reason with formal logi-
cal constructs.

BBH 1187 BIG-Bench Hard (BBH) is a subset of 23 challenging tasks
from the BIG-Bench benchmark, focusing on advanced rea-
soning. For our experiment, we use three tasks: Causal Judg-
ment, evaluating causal reasoning in stories; Formal Fallacies
Syllogisms Negation, testing logical consistency in argument
schemes; and Logical Deduction, assessing sequence deduction
skills.

AGIEval 740 AGIEval is a benchmark assessing foundation models’ abilities
through tasks from high-standard exams. For our experiment,
we use the LSAT (Law School Admission Test) tasks, which
evaluate logical reasoning, reading comprehension, and ana-
lytical reasoning. These tasks challenge models to analyze
complex information and draw accurate conclusions, providing
a valuable assessment of their capabilities in legal reasoning
and analysis.

Multi-LogiEval 525 Multi-LogiEval is a dataset designed to evaluate LLMs’ multi-
step reasoning abilities across various logic types. This focus al-
lows for a precise evaluation of LLMs’ capabilities in handling
logical constructs while maintaining manageable complexity.

B.2 Experiment Setups

This section details our experimental design, covering model selection and the specific training
configurations. To rigorously validate the effectiveness of LogicTree, we conduct extensive exper-
iments using a diverse set of prominent open-source models spanning various families and scales.

16

We utilize models from the Llama-3.1, Mistral-v0.3, Qwen2.5, and Deepseek-R1-Distill families,
with parameter scales ranging from 1.5B to 70B. We employ two distinct fine-tuning strategies: full
fine-tuning is applied to smaller-scale models (under 8B), while the larger 70B model utilizes LoRA
fine-tuning. Llama-3.1-8B, Mistral-7B-v0.3 and Qwen2.5-7B are both trained with a learning rate of
1e− 6. Qwen2.5-1.5B and Qwen2.5-3B are trained with a learning rate of 3e− 6. Llama-3.1-70B,
due to its LoRA fine-tuning method, is trained with a higher learning rate of 2e − 5. The training
utilizes a maximum context length of 4096 tokens, a global batch size of 128, and is conducted for 3
epochs. DeepSpeed with gradient checkpointing and BF16 precision is used for efficient memory
usage. The learning rate scheduler follows a cosine schedule, and the warmup ratio is set to 0.03.

B.3 More results of Different Models

To comprehensively validate the effectiveness of LogicTree, We use advanced reasoning models
such as DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-Distill-Qwen-7B. As shown in the table 5,
LogicTree consistently improves the performance of DeepSeek-R1-Distill-Llama-8B and DeepSeek-
R1-Distill-Qwen-7B across multiple benchmarks, with average gains of 6.5 % and 4.9 %, respectively.
Notably, on logic-intensive benchmarks such as the ML series, the improvements reach up to 13.3 %
and 10.9 %. These results further confirm the effectiveness of LogicTree in enhancing the logical
reasoning capabilities of LLMs.

Table 5: Results of DeepSeek-R1-Distill series models across multiple logical reasoning benchmarks.

Model Dataset Avg
LogicB. LogIQA FOLIO AGIEval-LR AGIEval-AR ML-D1 ML-D2 ML-D3 ML-D4 ML-D5

DeepSeek-R1-Distill-Qwen-7B
Vanilla 86.8 52.4 61.2 56.8 32.6 70.0 57.0 60.0 55.0 44.4 57.6
+LogicTree 90.6 53.4 63.4 62.4 34.4 80.9 67.6 62.5 56.6 53.3 62.5
∆ +3.8 +1.0 +2.2 +5.6 +1.8 +10.9 +10.6 +2.5 +1.6 +9.9 +4.9

DeepSeek-R1-Distill-Llama-8B
Vanilla 83.1 53.4 53.1 53.3 30.4 78.0 67.1 60.0 49.2 46.6 57.4
+LogicTree 91.2 54.9 57.8 57.3 33.9 86.3 73.3 66.0 62.5 56.6 63.9
∆ +8.1 +1.5 +4.7 +4.0 +3.5 +7.3 +6.2 +6.0 +13.3 +10.0 +6.5

In addition,we conduct additional experiments using Qwen2.5-1.5B and Qwen2.5-3B to further eval-
uate the effectiveness of LogicTree on smaller language models. As shown in the Table 6, LogicTree
effectively enhances the logical reasoning capabilities of smaller models such as Qwen2.5-1.5B
and Qwen2.5-3B, achieving consistent and substantial improvements across multiple benchmarks.
Specifically, Qwen2.5-1.5B achieves an average accuracy gain of 7.7 %, and Qwen2.5-3B improves
by 9.3 %, demonstrating that our synthesized data remains effective even for smaller-scale models.

Table 6: Results of small models across multiple logical reasoning benchmarks.

Model Dataset Avg
LogicBench LogiQA2.0 FOLIO AGIEval-LR AGIEval-AR ML-D1 ML-D2 ML-D3 ML-D4 ML-D5

Qwen2.5-1.5B
Vanilla 65.0 43.9 48.5 39.5 17.4 65.6 53.3 48.8 43.3 31.1 45.8
+LogicTree 74.4 48.4 53.4 42.4 21.3 80.9 56.2 54.8 54.2 44.4 53.5

Qwen2.5-3B
Vanilla 74.4 53.9 51.0 53.5 20.9 74.5 55.2 46.5 45.0 36.6 51.2
+LogicTree 83.9 56.2 61.2 55.7 24.4 86.3 67.6 59.3 58.3 50.0 60.5

B.4 More Results on Multi-LogiEval

We have further conducted additional experiments on multi-step reasoning(sec4.3) using LLaMA3.1-
70B to validate the robustness of our method. Although the 70B model shows some performance
improvement over the 8B model at various reasoning depths, it still faces a decline in accuracy as the
number of reasoning steps increases. When the reasoning depth reaches 5, the model’s accuracy is
only 44%. Our method significantly enhances the model’s logical reasoning accuracy across different
reasoning depths, demonstrating its superiority. As shown in the table 7, the LLaMA3.1-70B model
achieved notable performance, even surpassing the vanilla model and all baseline methods, which
highlights the scalability of our approach.

17

Table 7: Results of Llama-3.1-70B on Multi-LogiEval

Model Method d1 d2 d3 d4 d5

Llama-3.1-8B

vanilla 86.67 61.90 54.81 50.83 33.33
PARARULE 86.67 71.43 62.22 57.50 53.33
logicAsker 91.66 58.09 57.03 56.66 57.77
FLD×2 86.67 72.31 61.85 56.47 38.89
LogicTree 94.17 80.00 74.81 66.67 61.11

Mistral-7B-v0.3

vanilla 76.67 54.29 51.85 37.50 26.67
PARARULE 81.67 73.33 57.04 40.00 37.78
logicAsker 81.67 67.62 68.89 53.33 54.44
FLD×2 80.00 72.38 63.70 47.50 46.67
LogicTree 93.30 78.10 71.85 66.67 57.78

Qwen2.5-7B

vanilla 73.33 68.57 52.59 43.33 24.44
PARARULE 77.50 71.43 52.59 47.50 31.11
logicAsker 75.83 71.43 54.07 45.00 28.89
FLD×2 73.33 70.48 54.07 39.17 31.11
LogicTree 86.67 73.33 56.30 52.50 48.89

Llama-3.1-70B

vanilla 90.8 64.7 58.2 61.7 44.4
PARARULE 93.3 69.5 59.3 63.3 56.7
LogicAsker 93.3 69.5 60.0 65.8 46.7
FLD×2 90.8 66.7 63.9 61.7 46.7
LogicTree 96.7 73.3 76.3 74.2 60.0

B.5 Results on Quantitative Evaluation of Synthetic Data

Table 8: Evaluation of logical consistency of synthetic data across multiple models

Model Consistency
GPT-4o 97.6%
Deepseek-R1 96.8%

Logical Consistency To minimize instantiation errors as much as possible, we designed a two-
stage prompting strategy to guide the LLM in instantiating logical reasoning trees. Through this
process, the LLM does not need to perform reasoning on its own; it only needs to perform symbolic
translation. Additionally, we employed a systematic verification method to filter out errors and
filtered out 8.73% of erroneous data, thereby improving the overall data quality. We also conducted
additional experiments to evaluate the logical consistency of the filtered instantiated data. Specifically,
we prompted multiple LLMs to independently assess whether the logical expressions and their
corresponding natural language statements were logically consistent. As shown in Table 8, our data
maintained a high level of logical consistency across evaluations by several state-of-the-art models.
The prompt used for evaluation with LLMs is as follows:
You are an expert in logical reasoning and formal logic. Based on the
correspondence between entities and logical symbols, your task is to
evaluate the consistency between the given natural language statements
and corresponding logical expressions. Please assess whether the logical
expressions accurately translate the logical semantics of the natural
language statements.

Realism & Contextual Richness We conducted additional validation experiments to demonstrate
the superiority of our synthesized data in terms of realism and contextual richness. Specifically,
we employed multiple LLMs to evaluate the synthesized data and compared the results with other
methods. The evaluation metrics are defined as follows:

18

Realism Contextual richness Diversity
0

2

4

6

8

10

Re
al

ism
 &

 C
on

te
xt

ua
l R

ich
ne

ss
 (0

-1
0)

Methods
PARARULE
Logicasker
FLD*2
LogicTree

0

10

20

30

40

50

60

Nu
m

be
r o

f D
iv

er
sit

y
Sc

en
ar

io
s (

0-
60

)

Figure 3: Comparison of Different Methods Across Realism, Contextual Richness, and Diversity.
The red bars represent LogicTree, which significantly outperforms other baseline methods.

1. Realism: Assess whether the data presents a realistic, plausible, and logically consistent
real-world scenario.

2. Contextual richness: Assess whether the data includes diverse and detailed elements that
enrich the scenario.

Notably, due to the rich world knowledge and strong language capabilities of LLMs, LogicTree
achieved the highest score for realism and contextual richness in Figure 3. LogicTreeground synthetic
reasoning data in concrete and context-rich real-world scenarios that incorporate semantically relevant
entities or events, capable of reflecting the complexity and diversity of real-world reasoning tasks.
The prompts used for evaluation with LLMs are as follows:
You are an expert in data evaluation, contextual analysis, and scenario
validation. Your task is to evaluate the contextual richness of the
generated data, assigning a single score out of 10 to reflect the overall
quality.
The evaluation should consider the following criteria:
1. Contextual Depth: Assess whether the data includes diverse and
detailed elements that enrich the scenario.
2. Variety of Information: Determine whether the generated data presents
a broad range of relevant contextual elements.
Scoring Guidelines:
• 10: Very contextually rich with a wide variety of relevant information.
• 9: Generally rich in context, with sufficient variety and depth, though
slightly lacking in some aspects. • 8: Moderately rich with noticeable
diversity, but certain areas could be expanded to enhance contextual
richness. • 6: Provides basic context with some variety. • 5: Limited
contextual richness, with minimal diversity or detailed elements. • 3:
Poorly developed with very few diverse contextual elements, resulting in a
shallow scenario. • 1: Lacks any meaningful contextual richness, offering
almost no variety or depth.

19

You are an expert in You are an expert in data evaluation, logical
reasoning, and real-world scenario validation. Your task is to evaluate
the realism of the generated data, assigning a single score out of 10 to
reflect the overall quality. The evaluation should consider the following
criteria:
1. Realism: Assess whether the data presents a realistic and plausible
real-world scenario.
2. Logical Consistency: Determine whether the generated data maintains
internal logical coherence.
Scoring Guidelines:
• 10: Highly realistic and plausible. • 9: Mostly realistic and
consistent with minor deviations that do not affect overall plausibility.
• 8: Generally realistic and coherent with slight inconsistencies
or plausible. • 7: Somewhat realistic but with inconsistencies that
slightly affect coherence or plausibility. • 6: Reasonably realistic
but with noticeable flaws that slightly impact plausibility and background
consistency.. • 5: Lacks realism and consistency, with major flaws in
logical coherence and background alignment. • 3: Highly unrealistic and
implausible, with multiple errors and misalignments. • 1: Completely
unrealistic and logically incoherent.

ast
ron

om
y

blo
ckc

ha
in

en
vir

on
men

t

tec
hn

olo
gy law art

med
icin

e

sta
rtu

ps

sci
en

ce
spo

rts

ed
uca

tio
n

ren
ew

ab
le

ag
ric

ult
ure

ph
ilos

op
hy

soc
iolo

gy
urb

an

eco
no

mics

po
liti

cs rea
l

bu
sin

ess
cul

tur
e

fin
an

ce

mach
ine

cyb
ers

ecu
rity log

ic

ph
ysi

cs

mark
eti

ng

en
gin

ee
rin

g
spa

ce
musi

c

fas
hio

n

art
ific

ial

jou
rna

lism
tou

ris
m
he

alt
h

ph
oto

gra
ph

y

lite
rat

ure

che
mistr

y

clim
ate

en
ter

tai
nm

en
t
vir

tua
l

lea
de

rsh
ip
soc

ial

rob
oti

cs

math
em

ati
cs

inn
ov

ati
on
his

tor
y

pe
rso

na
l
da

ta

bio
log

y

bio
tec

hn
olo

gy

psy
cho

log
y

Topic Name

0

20

40

60

80

100

Fr
eq

ue
nc

y

Figure 4: Statistical analysis of the diversity of the synthesized scenarios. We summarized over 50
common themes and prompted the LLM to instantiate multiple real-world scenarios for each logical
reasoning tree.

Diversity Scenarios Our goal in introducing instantiation diversity is to enable the model to truly
learn logical reasoning rules rather than simply memorizing implicit relationships between specific
contents. To achieve this, we summarized over 50 common themes and prompted the LLM to
instantiate multiple real-world scenarios for each logical reasoning tree. We also provided a statistical
analysis(Figure 4) of the diversity of the synthesized scenarios to demonstrate the effectiveness of
this approach.

20

C More Details about Logical Reasoning Tree Generation

C.1 Logical Reasoning Tree Generation Process

¬𝑪

¬𝑪

Logical Rules

Syllogism

Modus Ponens

Instantiation...

...

Backward

Deduction

Applicable Rules Based on Structural Pattern Matching

A ⋁𝑩

𝐀 ⋁𝑩 → (¬𝑪)

¬𝑪

A ⋁𝑩

𝐀 ⋁𝑩 → (¬𝑪)

𝐀 ⋁𝑩 → 𝑮

𝑮 → (¬𝑪)

Figure 5: More Details about Logical Reasoning Tree Generation

To clarify our computational cost, we analyzed the number of LLM output tokens consumed when
generating each data instance. Specifically, assuming that each reasoning step consumes T output
tokens, the computational cost of generating a data instance with reasoning steps m is as follows for
each method. We define Instantiation Cost and Verification Cost.

1. For the Instantiation Cost:1) The first call to LLM populates the abstract logical symbols
with concrete natural language entities. We denote the number of output tokens consumed
in this step as c. 2) The second call translates the sequence of reasoning steps into natural
language. We assume that translating each individual reasoning step requires an average of
output tokensT . The computational cost of generating a data instance with reasoning steps
m is:

Costinst = m · T + c

2. For the Verification Cost:We assume that the complexity of verifying a single step is
comparable to that of translating it during instantiation. Consequently, the computational
cost for verifying a data instance with m reasoning steps is:

Costver = m · T
.

As shown in the table 9 (the data in the parentheses), the ratio of synthesized tokens to consumed
tokens for our method is mT

2mT+c (close to 1/2, in our data T = 79 ± 14, c = 114 ± 44), which
is significantly lower than the cost of other methods. Our framework’s guarantee of correctness
eliminates the need for multiple LLM calls. Consequently, its generation cost is entirely acceptable
in comparison with other approaches.

C.2 Statistical Information of Key Properties for logical synthetic data

In order to construct logical reasoning tree, previous methods typically concatenate rules iteratively
from a predefined set and randomly replace atomic formulas with complex ones, resulting in an
uncontrollable generation process. Moreover, rules are only concatenated when the conclusion of one

21

Table 9: A comparison of the generation costs for different LLM-based data synthesis methods.

Method V-STaR ALPHALLM LogicTree

Number of LLM
invocations k mbk 3

Number of
consumed LLM
output tokens

mkt mbk(Trollout) + mT 2mT + c

Number of
synthesized tokens mT mT mT

Explanation Where k is the
number of
candidate
reasoning

trajectories.

Where b is the number of
candidate reasoning nodes
per step, k is the number of
rollout simulations for each

node, and Trollout is the
additional tokens consumed
during the rollout process.

where c denotes
the tokens

consumed during
the first

invocation to
generate the
instantiated

entities.

matches the premise of another, which restricts the diversity and complexity of reasoning patterns
(e.g., preventing the integration of propositional and first-order logic rules).

In contrast, we designed a backward deduction method based on structural pattern matching of
formulas, which does not require the formula to be identical to the conclusion of the logic rule;
instead, it only compares whether the structural patterns of their are matched. In this way, we
generate multi-step logical reasoning trees that incorporate diverse and complex reasoning patterns,
encompassing both propositional logic and first-order logic. In Table 10, we provide additional
details about our synthetic data and compare it with other methods. And in table 11, we present
supplementary statistical information to further characterize our dataset.

Table 10: The comparison of synthetic logic corpora, which focuses on several key characteristics:
the number of logical rules, the reasoning depth, the symbolic-to-natural language translation method,
and the instantiation approach.

Logic Rules Reasoning Steps Translation Instantiation
RuleTaker 2 1-5 Template Random Entities
PARARULE 2 1-5 Template Random Entities
FLD 13 1-8 Template WorldNet
FLD×2 ≈ 50 1-8 Template WorldNet
LogicTree 190 1-15 LLM-based Realistic Scenario

Table 11: Statistical information for logic trees with 5 to 8 reasoning steps, including (1) the average
maximum depth of the trees, (2) the average number of nodes per tree, (3) the average number of
distinct rules applied, as well as (4) the proportion of first-order logic rules and propositional logic
rules used in each tree.

Step Number of
Nodes

Maximum
Depth

Number of
Distinct rules

Proportion of
Fol

Proportion of
Prop

5 11.46± 1.19 3.68± 1.42 4.14± 0.52 31.42 68.58
6 13.46± 1.01 5.04± 0.32 4.75± 0.81 30.45 69.55
7 15.78± 1.81 5.61± 0.56 5.29± 0.72 29.94 70.06
8 18.30± 2.01 6.04± 0.76 5.67± 0.97 28.82 71.18

22

C.3 Logical Rules used in LogicTree

This section presents the logical rules employed in the LogicTree generation process. These rules
are fundamental to automated reasoning and inference generation, serving as the foundation for
constructing structured logical trees. Drawn from both First-order Logic and Propositional Logic, the
applied rules encompass a variety of logical inference patterns, including Modus Ponens, Hypothetical
Syllogism, Disjunctive Syllogism, and Universal Instantiation. Table 12 presents the symbolic form
and natural language explanation for a selection of common logical rules.

Table 12: Some Logical Rules Used in LogicTree Generation Process and Their Explanations

Rule Name Rule Symbol Explanation

First-order Logic
MP (∀x(p(x) → q(x)) ∧ p(a)) ⊢ q(a) Modus Ponens: Universal elimination combined

with conjunction provides the result q(a).

MT (∀x(p(x) → q(x)) ∧ ¬q(a)) ⊢ ¬p(a) Modus Tollens: From universal elimination and
negation, derives ¬p(a).

HS (∀x((p(x) → q(x)) ∧ (q(x) →
r(x)))) ⊢ (p(a) → r(a))

Hypothetical Syllogism: Nested implications
for quantified variables result in the conditional
p(a) → r(a).

DS (∀x(p(x) ∨ q(x)) ∧ ¬p(a)) ⊢ q(a) Disjunctive Syllogism: Disjunction with univer-
sal quantification simplifies to q(a) if ¬p(a) is
given.

UI ∀x(p(x)) ⊢ p(a) Universal Instantiation: From the universal quan-
tifier ∀x(p(x)), deduce the specific instance p(a).

Propositional Logic
MP ((p → q) ∧ p) ⊢ q Modus Ponens: If p → q and p, then q.

DS ((p ∨ q) ∧ ¬p) ⊢ q Disjunctive Syllogism: If p ∨ q and ¬p, then q.

MT ((p → q) ∧ ¬q) ⊢ ¬p Modus Tollens: If p → q and ¬q, then ¬p.

HS ((p → q) ∧ (q → r)) ⊢ (p → r) Hypothetical Syllogism: If p → q and q → r,
then p → r.

MI (p → q) ⊣⊢ (¬p ∨ q) Material Implication: Expresses conditional as
disjunction.

DMT ¬(p ∧ q) ⊣⊢ ¬p ∨ ¬q De Morgan’s Theorem: Simplifies negation of
conjunctions.

CD ((p → q)∧(r → s)∧(p∨r)) ⊢ (q∨s) Constructive Dilemma: Combines conditional
and disjunctive reasoning.

DD ((p → q) ∧ (r → s) ∧ (¬q ∨ ¬s)) ⊢
(¬p ∨ ¬r) Destructive Dilemma: If one or more results fail,

one or more premises fail.

BD ((p → q) ∧ (r → s) ∧ (p ∨ ¬s)) ⊢
(q ∨ ¬r) Bipolar Dilemma: Variation of dilemma reason-

ing combining conditions.

23

D Details about Prompts for Scenario Instantiation

This section discusses the prompts used during the reasoning scenario instantiation step, detailing
their structure and role in guiding the model to produce relevant and coherent outputs for logic trees.

D.1 Logical Tree Instantiation

As shown in Figure 6, our logical tree instantiation prompt primarily consists of five components: 1.
Role-play: Setting the context for the model to assume a relevant role. 2. Instantiation instruction:
Guiding the model to instantiate logical symbols using appropriate real-world scenarios. 3. Logical
expression translation instruction: Assisting the model in understanding key logical relationships
by providing in-context learning examples for translation. 4. Diversity control: Selecting different
instantiation scenarios to ensure diversity. 5. Specific instantiation in-context learning examples:
Offering concrete examples to further guide the instantiation process.

You are a highly skilled logic analyst with expertise in understanding and interpreting complex logical
relationships.

Please deeply understand the logical rules between the propositions. Note the meanings of the logical
symbols:
 - '~' (NOT): Negation, indicates the proposition is not true.
 - '>' (IMPLIES):Implies, indicates that there is a inferential relationship between the two propositions.
 -'|' (OR): Logical disjunction, indicates that at least one of the propositions on either side is true.
 - '&' (AND): Logical conjunction, indicates that both propositions on either side are true.
 - '∀x' (FOR ALL): Universal quantifier, indicates that a statement is true for all values of x.
While satisfying the logical rules, replace the symbolic propositions with real life complex events from the
most relevant field. Please think step by step to ensure that the replaced events can naturally satisfy the
logic rules.

Use the corresponding events to explain each logic rule expression in natural language. Please follow the
priority order in the logical expression, think step by step, and ensure the translation is accurate and clear.
For example:
 i: P1>(~((~P0)&Q))----If P1 is true, either P0 is true, or Q is false, or both.
 ii: (~(Q|R0))>P2----If both Q and R0 are false, then P2 must be true.
 iii:(~P2)|(P0|Q)----Either P2 is false, or at least one of P0 or Q is true.
 iv: ((P1&P2)>((~Q)>P0))----If both P1 and P2 are true, then [if Q is false, P0 must also be true.].
 v: (∀x(P4(x)))----For all x, P4(x) is true.

Generate 3 examples from multiple domains [{domain}], We hope you can leverage relevant entities in this
field to construct the aforementioned complex events.

------------example1------------{example1}
------------example2------------{example2}
------------example3------------{example3}

Figure 6: Prompt for Logical Tree Instantiation

24

D.2 Reasoning Process Generation

As shown in Figure 7, our reasoning process generation prompt primarily consists of five components:
1. Role-play: Setting the context for the model to assume a relevant role. 2. Understanding of logical
relations: It requires recognizing logical operators, understanding how propositions are structured,
and determining how they interact based on formal logic rules. 3. Step-by-Step Reasoning Process
Generation: In this stage, a structured sequence of logical steps is generated, following formal
inference rules. Each step should be clearly justified to show how the conclusion is logically derived
from the premises. 4. Conclusion and Answer Explanation: This part provides the final outcome
derived from the reasoning process and offers a concise explanation of why the conclusion is valid.
5. Specific reasoning process generation learning examples: Offering concrete examples to further
guide the instantiation process.

You are a highly skilled logic analyst with expertise in understanding and interpreting complex logical
relationships.

The following is a logical reasoning context and some conclusions. For each conclusion,the truth value can
be Yes, No or Uncertain. And We have extracted the main event entities and logic expressions from the
context and conclusions. Note the meanings of the logical symbols:
 - '~' (NOT): Negation, indicates the proposition is not true.
 - '>' (IMPLIES):Implies, indicates that there is a inferential relationship between the two propositions.
 -'|' (OR): Logical disjunction, indicates that at least one of the propositions on either side is true.
 - '&' (AND): Logical conjunction, indicates that both propositions on either side are true.
 - '∀x' (FOR ALL): Universal quantifier, indicates that a statement is true for all values of x.

Please refer to the following reasoning steps and the extracted entities to provide a detailed reasoning
explanation in natural language. For each step of reasoning, we provide the given premises and the

conclusions that can be deduced. Please carefully explain each step in detail.

for each conclusion, refer to the reasoning process generated above and provide an explanation that aligns
with the corresponding answer.

------------example1------------{example1}
------------example2------------{example2}
------------example3------------{example3}

Figure 7: Prompt for Reasoning Process Generation

25

E Examples of Synthetic Logical Reasoning data

root node inode leaf node

∀𝒙 (¬𝑹(𝒙))

¬𝑹(𝒂)

𝑷 → 𝑻

𝑻 → 𝑸

𝑷 → 𝑸
𝑷 ⋁ (𝑹(𝒂))

𝑷

𝑸

Logical Reasoning Tree Synthetic data

LogicTree Others

1.∀x (¬R(x)) : Everyone is not a
robot.
2.P → T : If someone presses the
emergency button, then the alarm
will sound.
3.T → Q : If the alarm sounds, then
the main door will be locked.
4.P ⋁ R(a) : Either someone
pressed the emergency button, or
Max is a robot.

1.∀x (¬R(x)) : No one is a banana
that can speak French.
2.P → T : If a unicorn won the
lottery, then the moon turned
into cheese.
3.T → Q : If the moon turned into
cheese, then all socks
disappeared worldwide.
4.P ⋁ R(a) : Either a unicorn won
the lottery, or Albert Einstein is a
banana that can speak French.

No Relevance !

Figure 8: The logical reasoning trees and the corresponding synthetic data are presented, with the left
side generated by LogicTree and the right side produced using a template-based random substitution
method. It can be observed that the data synthesized by LogicTree maintains a coherent contextual
semantic relationship, whereas the data generated by other methods is either unrelated or even
contradictory.

Figure 9: An example of a more complex logical reasoning tree, where green blocks implying the
leaves to generate scenarioes

26

Entities:

•P1: Emergency shelters were opened in time.

•P2: Casualties occurred.

•P3(x): x is located in a high-risk seismic zone.

•P4: Local authorities activated the emergency response protocol.

•P5: A magnitude 6.0 or greater earthquake was detected.

•Q0: People were safely evacuated.

•Q1: Warning sirens were activated.

•T0: The national emergency broadcast was triggered.

•a: City A

Rules:

rule1: ((P3(a) ∧ P4) → (P1 → Q0)) If City A is in a high-risk seismic zone and local authorities

activated the emergency response protocol, then if emergency shelters were opened in time, people

were safely evacuated.

rule2: ∀x(P3(x)) All regions are located in high-risk seismic zones.

rule3: (P5 → P4) If a magnitude 6.0 or greater earthquake was detected, then the emergency

response protocol was activated.

rule5: (Q1 → P2) If warning sirens were activated, then casualties occurred.

rule6: (T0 → P1) If the national emergency broadcast was triggered, then emergency shelters were

opened in time.

rule7: (Q1 ∨ T0) Either warning sirens were activated, or the national emergency broadcast was

triggered.

rule8: ¬P2 No casualties occurred.

Reasoning process:

Step1: From rule5 (Q1 → P2) [if warning sirens were activated, then casualties occurred], rule7 (Q1 ∨

T0) [either warning sirens were activated or the national emergency broadcast was triggered], and

rule6 (T0 → P1) [if the national emergency broadcast was triggered, then emergency shelters were

opened in time], we can deduce that (P2 ∨ P1) [either casualties occurred or emergency shelters were

opened in time].

Step2: According to rule2 (∀x(P3(x))) [all cities are located in high-risk seismic zones], we can

conclude that (P3(a)) [City A is located in a high-risk seismic zone].

Step3: From rule3 (P5 → P4) [if a magnitude 6.0 or greater earthquake was detected, then the

emergency response protocol was activated] and assuming (P5) [a magnitude 6.0+ earthquake was

detected], we can conclude that (P4) [the emergency response protocol was activated].

Step4: According to rule1 ((P3(a) ∧ P4) → (P1 → Q0)) [if City A is in a high-risk seismic zone and the

emergency response protocol was activated, then if emergency shelters were opened in time, people

were safely evacuated], and from step2 (P3(a)) and step3 (P4), we can deduce that (P1 → Q0) [if

emergency shelters were opened in time, people were safely evacuated].

Step5: From step1 (P2 ∨ P1) [either casualties occurred or emergency shelters were opened in time]

and rule8 (¬P2) [no casualties occurred], we can conclude that (P1) [emergency shelters were

opened in time].

Step6: From step4 (P1 → Q0) [if emergency shelters were opened in time, people were safely

evacuated] and step5 (P1) [emergency shelters were opened in time], we can conclude that (Q0)

[people were safely evacuated].

Figure 10: The Generated Entities, Rules and Reasoning Process of an Example

27

conclusion1: people were safely evacuated.

answer: Yes

explanation: From step6, we deduced that people were safely evacuated (Q0). Therefore,

the conclusion that people were safely evacuated is true.

conclusion2: emergency shelters were not opened in time

answer: No

explanation: From step5, we deduced that emergency shelters were opened in time (P1).

Therefore, the conclusion that emergency shelters were not opened in time is false.

conclusion3: either casualties occurred or emergency shelters were opened in time

answer: No

explanation: From step1, we deduced that either casualties occurred or emergency shelters

were opened in time (P2 ∨ P1). From step5, we know emergency shelters were opened in

time (P1), making the statement “It is not the case that either casualties occurred or

emergency shelters were opened in time” false.

conclusion4: it is not the case that if emergency shelters were opened in time, people were

safely evacuated

answer: No

explanation: From step4, we deduced that if emergency shelters were opened in time,

people were safely evacuated (P1 → Q0). Therefore, the conclusion that it is not the case

that if emergency shelters were opened in time, people were safely evacuated is false.

Figure 11: The Generated Answers of an Example

28

Figure 12: An example of instantiating a logic tree for diverse scenarios

Figure 13: An example of instantiating a logic tree for diverse scenarios

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the introduction, we state our main contributions and provide extensive
experiments to support these claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the final section of the article, we discuss the limitations of this work and
future directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

30

Answer: [NA]

Justification: This work primarily focuses on synthetic data and model training.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed explanation of the methodology in the Section 3 and
offer a comprehensive experimental setup in the Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

31

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: we use open-source datasets, and the code used in this paper will be made
publicly available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We offer a comprehensive experimental setup in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We follow relevant works in this field to report experiment statistical signifi-
cance
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We offer a comprehensive experimental setup in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss this part in detail in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

33

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all of the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

34

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

35

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: In the method section, we detail the use of LLMs and provide specific prompts.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminary
	Method
	Logical Reasoning Tree Generation
	Reasoning Scenario Instantiation via LLMs
	Synthetic Reasoning Example Post-processing

	Experiments
	Experimental Setup
	Main Results
	Results of Multi-step Reasoning
	Results on Generalization Experiments Across Multiple Domains
	Ablation Study

	Related Works
	Synthetic Logic Corpus for Training
	Evaluation of Logic Reasoning

	Conclusion
	More Related Works
	Prompt-Based Methods for Enhancing Logical Reasoning
	Reasoning Data Synthesis

	More Details about Experiments
	Information of Logical Reasoning Benchmarks
	Experiment Setups
	More results of Different Models
	More Results on Multi-LogiEval
	Results on Quantitative Evaluation of Synthetic Data

	More Details about Logical Reasoning Tree Generation
	Logical Reasoning Tree Generation Process
	Statistical Information of Key Properties for logical synthetic data
	Logical Rules used in LogicTree

	Details about Prompts for Scenario Instantiation
	Logical Tree Instantiation
	Reasoning Process Generation

	Examples of Synthetic Logical Reasoning data

