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ABSTRACT

Recent advances in text-to-image (T2I) models have enabled training-free regional
image editing by leveraging the generative priors of foundation models. However,
existing methods struggle to balance text adherence in edited regions, context
fidelity in unedited areas, and seamless integration of edits. We introduce Can-
nyEdit, a novel training-free framework that addresses this trilemma through two
key innovations. First, Selective Canny Control applies structural guidance from
a Canny ControlNet only to the unedited regions, preserving the original image’s
details while allowing for precise, text-driven changes in the specified editable area.
Second, Dual-Prompt Guidance utilizes both a local prompt for the specific edit
and a global prompt for overall scene coherence. Through this synergistic approach,
these components enable controllable local editing for object addition, replacement,
and removal, achieving a superior trade-off among text adherence, context fidelity,
and editing seamlessness compared to current region-based methods. Beyond
this, CannyEdit offers exceptional flexibility: it operates effectively with rough
masks or even single-point hints in addition tasks. Furthermore, the framework
can seamlessly integrate with vision-language models in a training-free manner
for complex instruction-based editing that requires planning and reasoning. Our
extensive evaluations demonstrate CannyEdit’s strong performance against leading
instruction-based editors in complex object addition scenarios.

(a) Addition in a complex scene: Add another woman running on the treadmill.

(b) Dual additions requiring planning: Add a dog lying on the ground and add a woman reading on the sofa.

(c) Reasoning-based edit: Make the food be healthy (VLM’s reasoning: replace the fried food with healthy food and add a salad bowl).

(d) Edit with user-provided mask: Add a small single-person sofa in the middle of the home.

Input Input⋆ CannyEdit Kontext Qwen-edit Kontext⋆ Qwen-edit⋆

Figure 1: CannyEdit, a training-free method, demonstrates versatility by functioning as both a
precise mask-based editor (d) and a flexible instruction-based tool (a, b, c) with point hints for
edits provided by vision-language models (VLMs). Its training-free framework enables seamless
integration with leading VLMs to handle complex edits requiring planning or abstract reasoning. In
contrast, competitors like FLUX.1 Kontext [dev] (Kontext) (Labs et al., 2025) and Qwen-Image-Edit
(Qwen-edit) (Team, 2025b) struggle with these tasks, even when provided with identical visual hints.
Inputs and competitors’ results using these hints are marked with ⋆.
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1 INTRODUCTION

Recent advances in text-to-image (T2I) models have achieved substantial progress in quality and
controllability (Rombach et al., 2022; Betker et al., 2023; Chen et al., 2023; Esser et al., 2024;
Black-Forest Labs, 2024). These advancements have enabled diverse downstream applications,
utilizing their enhanced quality, efficiency, and versatility. In this work, we address one of the most
challenging applications: region-based image editing, which entails modifying user-specified image
areas (e.g., adding, replacing, or removing objects) while maintaining overall image consistency.
Region-based image editing extends standard T2I generation by introducing a critical constraint:
the generated content must align not only with the text prompt (Text Adherence) but also with the
existing visual context of the image (Context Fidelity). This problem is commonly known as the
editability-fidelity trade-off.

Initial efforts of region-based editing centered on training-based inpainting methods (Rombach et al.,
2022; Zhang et al., 2023a; Zhuang et al., 2024; Black-Forest Labs, 2024), which train a model to
fill masked regions from a text prompt. While being good at maintaining the context fidelity, these
approaches are often sensitive to mask shape and struggle to generalize to realistic interactions,
affecting the adherence to instructions to generate high-quality desired edits. More recently, the
research of training-based methods has shifted to instruction-based models (Brooks et al., 2023;
Li et al., 2024d; Hui et al., 2024; Wei et al., 2024; Liu et al., 2025; Labs et al., 2025; Wu et al.,
2025; Deng et al., 2025; Team, 2025b), which excel at various free-form edits. Their key limitation,
however, is a lack of precise spatial control; as shown in Figures 1 (d), and 13, even leading models
can fail to reliably target user-specified areas to edit despite clear guidance.

In this paper, we explore an alternative: training-free methods that leverage the generative priors
of foundation T2I models. While initially developed for UNet-based diffusion models (Hertz et al.,
2022; Cao et al., 2023; Tumanyan et al., 2023), recent work has shifted to more advanced rectified-
flow-based Multi-Modal Diffusion Transformers (MM-DiTs) (Rout et al., 2024; Wang et al., 2024;
Deng et al., 2024; Tewel et al., 2025; Zhu et al., 2025). A key advantage of MM-DiTs is their
flexibility to control the generation process, e.g., one can inject the query/key/value of source-image
tokens (obtained via inversion (Deng et al., 2024; Rout et al., 2024; Wang et al., 2024)) into that of
the generated tokens at each denoising timestep, improving context fidelity. However, the improved
context fidelity often comes at a cost of text adherence, as exemplified by results of RFSolver-
Edit (Wang et al., 2024) under different injection steps in Figure 3 (b.1-b.6), where it is unable to
strike a good balance between the two criteria. A quantitative study on this is shown in Figure 2.

Figure 2: Quantitative study shows that
CannyEdit achieves the best editability-
fidelity trade-off under varying hyperpa-
rameter settings.

To achieve a better trade-off, KV-Edit (Zhu et al., 2025)
introduces user-provided masks to separate regions to be
edited from those to be preserved. During generation,
KV-Edit only updates the image tokens in the unmasked
regions while keeping the masked regions intact. Although
this greatly improves the trade-off (as shown by the orange
points in Figure 2), KV-Edit sometimes produces conspicu-
ous artifacts and inconsistencies at mask boundaries, espe-
cially when the mask is not precise. Typical examples are
shown in Figure 3 (c.1, d.1). This imperfection highlights
another key aspect of region-based image editing: Editing
Seamlessness, which is essential to good user experience.
We hypothesize that the boundary artifacts of KV-Edit are
sourced from its hard context replacement strategy, which
ensures context fidelity but breaks the interdependency
necessary for smooth boundary transitions.

Building upon these insights, we introduce CannyEdit,
a novel training-free image editing method designed to
resolve the core trilemma of editability, fidelity, and seamlessness. CannyEdit is built on two
synergistic innovations that directly address the shortcomings of prior work.

To overcome the harsh artifacts of rigid masking, we first propose Selective Canny Control. This
“soft” control strategy uses a Canny ControlNet (Zhang et al., 2023b) to enforce structural guidance
from the source image only on unedited regions. This preserves the original layout at the unedited
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+ mask refinement

(b.1) (b.2) (b.3) (b.4) (b.5)

RFSolver-Edit

KV-Edit CannyEdit

(c.1) (c.2)

KV-Edit CannyEdit 

(d.1)

Source prompt:

An adorable kitten in the grassy park.

Target prompt:

An adorable kitten in the grassy park with a 

lady by its side.

Local edit prompt:

A lady crouched on the grass looking at her cat.
(c) (d.3)

inject 1 step inject 2 steps inject 4 steps inject 6 steps inject 8 steps

(d) (d.2)

(a) source image (b.6)

inject 10 steps

Figure 3: Editing results of different methods. RFSolver-Edit’s outputs fail to balance context
fidelity and successful addition simultaneously. While KV-Edit and CannyEdit deliver a better
trade-off, CannyEdit results in more natural and seamless edits whereas KV-Edit’s results introduce
artifacts such as a partially cropped subject in (c.1), and a partially generated extra cat in (d.1).

region while creating a structurally flexible canvas for the edit. It avoids the partition of edited and
unedited regions on the latent noise directly. To ensure the generated content is both accurate and
contextually coherent, we then introduce Dual-Prompt Guidance. This technique uses a specific
local prompt for high-precision text adherence to editing instructions, while a global target prompt
maintains overall scene consistency and facilitates realistic interactions. This dual-prompt control is
achieved by modifying attention computations within the MM-DiTs. Together, these two techniques
ensure a smooth and natural integration of edits, as examples shown in Figure 3 (c.2, d.2).

This powerful combination allows CannyEdit to achieve a superior trade-off among text adherence,
context fidelity, and editing seamlessness compared to region-based baselines like KV-Edit (Zhu
et al., 2025) and popular inpainting methods such as BrushEdit (Li et al., 2024d), PowerPaint (Zhuang
et al., 2024), and FLUX Fill (Black-Forest Labs, 2024). Moreover, it achieves a significant qualitative
leap in editing realism, as validated by a user study and VLM-based evaluation.

Crucially, CannyEdit’s training-free and flexible framework unlocks capabilities beyond traditional
region-based editing:

• Multi-Region Editing: It can perform multiple distinct edits in a single generation pass.
• Flexible Guidance: It operates effectively with imprecise spatial cues like rough masks or

single-point hints, preserving context fidelity (Figure 3, (d.2, d.3)).
• Zero-Shot VLM Integration: It pairs a VLM for high-level reasoning with CannyEdit for

precise execution, enabling complex edits that require planning (Figure 1, (b)(c)).
We demonstrate that in a controlled setting for complex object addition, CannyEdit quantitatively
outperforms leading open-sourced instruction-based editors like FLUX.1 Kontext [dev] (Labs
et al., 2025) and Qwen-image-edit (Team, 2025b) in context fidelity and text adherence when all
methods are provided the same VLM-inferred point hints.

2 RELATED WORK

Training-based image editing methods. Training-based methods can be categorized into three
streams. First, inpainting trains models to fill masked regions based on text prompts (Rombach
et al., 2022; Zhang et al., 2023a; Zhuang et al., 2024; Black-Forest Labs, 2024). However, it is
sensitive to mask shapes, and often exhibits weak text adherence along with boundary artifacts. In
contrast, CannyEdit’s training-free design leverages the generalization of foundational T2I models;
its soft structural control enhances seamlessness and, by refining the edit region during generation,
reduces the dependence on precise masks. Second, instruction-based models are trained on large-
scale before-and-after image pairs combined with instruction prompts (Liu et al., 2025; Labs et al.,
2025; Wu et al., 2025; Deng et al., 2025; Team, 2025b). These models enable impressive free-form
edits but lack robust spatial controllability. CannyEdit addresses this limitation by incorporating
explicit, mask-driven localization and scale control. Third, co-training editors with VLMs aims to
enhance editing reasoning abilities (Fu et al., 2024; Huang et al., 2024; Fang et al., 2025; Zhou et al.,
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2025). However, this approach requires extensive training and locks the models to specific VLMs.
In contrast, CannyEdit can integrate with VLMs in a training-free manner, allowing for on-the-fly
upgrades without the rigidity and high costs associated with co-trained systems.
Training-free image editing methods. Training-free editing methods typically use a two-stage
attention-based pipeline: (1) Inversion: the source image is inverted into the diffusion model’s latent
space to extract attention features during each denoising step; (2) Source-attention injection: these
features are injected into text-image cross-attention during target image generation. Early works like
Prompt-to-Prompt (Hertz et al., 2022) and MasaCtrl (Cao et al., 2023) manipulated cross-attention
maps in the UNet model between text tokens and image regions. Recent methods (Rout et al., 2024;
Wang et al., 2024; Deng et al., 2024; Tewel et al., 2025; Zhu et al., 2025) extend this to more advanced
rectified-flow-based transformer models, such as FLUX. As discussed in Section 1, balancing text
adherence in edited regions, preserving unedited context, and achieving seamless integration remain
key challenges for existing methods. In contrast to approaches that rely solely on attention injection,
our work introduces a novel framework that combines explicit structural control with a modified
attention process for dual-prompt guidance.
Controllability in T2I generation. Introducing controllability in text-to-image (T2I) generation
significantly advances precise image manipulation, unlocking various applications (Tan et al., 2024;
Zhang et al., 2023b; Li et al., 2024a;c; Zhao et al., 2023). ControlNet is a pivotal framework
integrating multiple conditional inputs—such as Canny edge maps for layout and depth maps for
spatial arrangement. Specifically, we identify Canny ControlNet as effective for image editing. As
an optional plug-and-play module for foundational T2I models, it ensures generated images adhere
to both textual prompts and structural details from Canny edges (Canny, 1986). For image editing,
we propose to selectively apply the Canny control to enable precise editing in targeted regions while
preserving layout consistency elsewhere.

3 METHOD

3.1 PRELIMINARIES: FLUX AND CANNY CONTROLNET

Attention (Eq. 1)

img txt

𝑄 𝐾 𝑉

𝑍𝐼

canny edge map txt

Eq. 2

𝑄′ 𝐾′ 𝑉′

(a) Multi-stream block in FLUX (b) Multi-stream block in ControlNet

𝑍𝑇 𝑍𝐼
′ 𝑍𝑇

′

Projection Projection

Attention (Eq. 1)

Conv

Figure 4: The architecture of multi-stream block in
FLUX and in FLUX-ControlNet.

Our method builds upon FLUX, a promi-
nent open-source T2I foundation model.
FLUX uses the Diffusion Transformer
(DiT) architecture (Peebles & Xie, 2023)
and utilizes Rectified Flow (RF) (Liu et al.,
2022) to model data-to-noise transforma-
tions. It processes multi-modal inputs via
a sequence of multi-stream layers (which
use separate projection matrices for text
and image tokens) and single-stream lay-
ers (which use shared projection matrices).
The FLUX-Canny-ControlNet (XLabs AI,
2024) integrates duplicates of two multi-
stream blocks from FLUX to inject structural layout guidance into it, as shown in Figure 4.

The attention module within the FLUX multi-stream block, shown in Figure 4 (a), computes cross-
attention between image tokens (I) and text tokens (T):

Z =

[
ZI

ZT

]
= softmax

(
QK⊤
√
dk

)
V, where Q =

[
QI

QT

]
, K =

[
KI

KT

]
, V =

[
VI
VT

]
. (1)

Here, Q,K, V represent the query, key, and value matrices, respectively.

Figure 4 (b) illustrates the Canny ControlNet’s computational flow (dashed lines). The ControlNet
is conditioned on embeddings of Canny edge map tokens and text tokens. Furthermore, the image
embedding from the FLUX block is summed with the Canny edge map embedding within the
ControlNet. The image token outputs from the FLUX block (ZI) and the ControlNet block (Z ′

I) are
subsequently combined via ZI ← ZI + β · conv(Z ′

I), where conv denotes a 1× 1 convolution layer,
and β is a hyperparameter controlling the strength of the Canny layout guidance.
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Flux 

𝑃𝑠𝑜𝑢𝑟𝑐𝑒

1） Inversion 2） Denoising

Flux 

Selective Canny Control

Dual-Prompt

Guidance

𝑷𝒕𝒂𝒓𝒈𝒆𝒕

𝑷𝒍𝒐𝒄𝒂𝒍ControlNet 

⨂

⊕

ControlNet’s 

output ෨𝑍′𝐼

…...

Inverted noise

Mask 𝐸

Figure 5: The inversion-denoising process of CannyEdit. 1) inversion: Starting from the source
image, its Canny edge map, and a source prompt Psource, we use FireFlow to obtain the inverted noise
xtN and corresponding Canny ControlNet outputs Z̃ ′

I. 2) denoising: Using the inverted noise xtN ,
we perform guided generation with selective Canny control (via a mask E), and dual prompts, Plocal
and Ptarget, to provide multi-level text guidance.

3.2 SELECTIVE CANNY CONTROL

Image editing with diffusion models typically employs an inversion-denoising framework. This
involves first inverting the source image to obtain an initial latent xtN that effectively captures its
content at the final timestep N , essentially mapping the image back through the diffusion process
to its noisy latent representation. We utilize FireFlow (Deng et al., 2024) for this inversion step,
chosen for its favorable balance between precision and computational cost. A key aspect of our
method is that, during this inversion process, while operating on the source image, we apply the
Canny ControlNet and cache its outputs (Z̃ ′

I) at relevant blocks and timesteps. These cached outputs
encode structural guidance derived directly from the source image’s Canny edges and features.

As illustrated in Figure 5, for the subsequent denoising phase, where the edited image is generated,
we leverage these cached outputs via a technique we call selective Canny control. Based on a
user-provided binary mask E (where Eij = 1 indicates an editable patch). We here assume that
the mask E is precise. Later, in Section 3.4, we introduce how CannyEdit refines imprecise masks
Ê. With E, we apply the cached ControlNet guidance Z̃ ′

I only to the masked region (1−E). This
selective application is mathematically implemented by masking the cached ControlNet output before
adding it to the output features:

ZI ← ZI + β · (1− E)⊙ conv(Z̃ ′
I). (2)

By applying structural guidance from the source image’s Canny edges exclusively to the unedited
background region, we effectively preserve its original layout and visual details. Concurrently, the
deliberate absence of Canny control within the masked editing region allows the diffusion process
there to be guided primarily by the target text prompt, facilitating the desired modifications. Using
the pre-computed cached outputs also enhances computational efficiency during the generation phase.

3.3 DUAL-PROMPT GUIDANCE

For text-aligned and seamless edits, we introduce a dual-prompt guidance strategy that modifies the
attention computation to fuse two signals: a local prompt for region-specific accuracy and a global
target prompt for overall contextual consistency. Although termed “dual-prompt”, this strategy can
accommodate multiple local prompts for simultaneous edits in several regions. For simplicity, we
describe an implementation with two local prompts guiding two distinct regions; extension to more
regions and prompts is straightforward.

3.3.1 GENERAL FORMULATION

Let the two image regions be I1 and I2, their corresponding local prompts be T1 and T2, and
the global prompt be T*. The number of tokens of these regions/prompts is denoted by | · |. At
each timestep, the query matrix Q is formed by concatenating the query of these tokens: Q =
[QI1 , QI2 , QT1 , QT2 , QT* ]. The key K and value V matrices are constructed analogously.

Following Chen et al. (2024), we implement multi-level and multi-region text guidance in a training-
free manner by applying regional text control via an attention mask M within the self-attention

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

module of the FLUX blocks. The attention computation in Equation 1 becomes:

Z = softmax

(
QK⊤
√
dk
⊙M

)
V, where M =

[
MI→I MI→T

MT→I MT→T

]
(3)

is the attention mask applied to the concatenated image-text tokens.

For text-to-text (T2T) attention, MT→T, we prevent information leakage between distinct guidance
signals by restricting each text prompt to attend only to its own tokens. This is enforced using a
block-diagonal attention mask: MT→T = diag(1|T1|×|T1|,1|T2|×|T2|,1|T*|×|T*|), where 1n×n is an
all-ones matrix of size n × n. This structure enables full self-attention within each prompt while
zeroing out off-diagonal blocks to disable cross-prompt interactions.

For text-to-image (T2I) attention, MT→I, local prompts provide guidance to their respective image
regions, while the global target prompt interacts with all image regions to capture broader contextual
information. This is achieved with:

MT→I =

1|T1|×|I1| 0|T1|×|I2|
0|T2|×|I1| 1|T2|×|I2|
1|T*|×|I1| 1|T*|×|I2|

 , (4)

where 0n×m denotes an all-zeros matrix. Symmetrically, we let the image-to-text (I2T) attention
MI→T = (MT→I)

⊤ to allow bidirectional information flow between modalities.

Finally, for image-to-image (I2I) attention, MI→I, by default we only allow attention only within
each respective region: MI→I = diag(1|I1|×|I1|,1|I2|×|I2|), thereby maintaining the integrity of
region-specific processing.

3.3.2 ADJUSTMENTS FOR PRACTICAL EDITING TASKS

The default block-diagonal MI→I is suitable when all regions are considered independently editable.
However, for practical editing tasks, this mask can be adjusted based on the roles of different regions.
For instance, when adding new content, let I1 be the edit region and I2 be the background region.
The local prompt T2 for the background region can be the source image’s original prompt. In this
scenario, MI→I can be modified to:

MI→I(I1 → I2) =

[
1|I1|×|I1| 1|I1|×|I2|
0|I2|×|I1| 1|I2|×|I2|

]
. (5)

This adjustment, through the 1|I1|×|I2| block, allows the edit region I1 to attend to the background
region I2. This enables the model to integrate contextual information from the background, leading
to a more context-aware edit. This masking approach can be extended to scenarios with multiple
editable regions while preserving background integrity.

To further enhance seamless blending between edited and background regions, we refine I2I attention
involving the background area adjacent to the edit boundary. Let I1 be the edit region, I: be the
portion of the background region at the boundary of I1, and I2 be the remaining background region
(distinct from I: and I1). The I2I attention mask is then defined as

MI→I(I1 → I2; I1 ↔ I:↔ I2) =

 1|I1|×|I1| 1|I1|×|I:| 1|I1|×|I2|
1|I:|×|I1| 1|I:|×|I:| 1|I:|×|I2|

0|I2|×|I1| 1|I2|×|I:| 1|I2|×|I2|

 . (6)

The key change from Equation (5) is the introduction of the boxed block 1|I:|×|I1|, which allows
the background region at the boundary (I:) to attend to the edit region (I1), enabling the model to
incorporate contextual cues from the edited content into these boundary areas. Consequently, the
boundary regions can better align visually and semantically with the edits, reducing artifacts and
improving overall image coherence.

3.3.3 PROMPTING STRATEGIES FOR VARIOUS EDITING TASKS

The specifics of local prompts vary depending on the editing task. For object insertion and replace-
ment, local prompts describe the objects to be introduced or the new objects that will substitute
existing ones. For object removal, the default local prompt that we use is “empty background”. We
also employ classifier-free guidance (Ho & Salimans, 2022) by using descriptions of the objects
targeted for removal as negative local prompts.

6
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3.4 PROGRESSIVE MASK REFINEMENT FOR OBJECT ADDITION

In practice, users often lack a fine-grained binary mask E for object addition tasks as the objects
do not yet exist in the image. To improve usability, our method starts with an approximate mask Ê,
which can be an imprecise binary shape (e.g., an oval indicating the target location) or a soft mask
derived from a user-provided point C, where Êij = 1− ∥(i, j)− C∥2. Here, ∥(i, j)− C∥2 denotes
the Euclidean distance between the point (i, j) and C.

Starting from the approximate mask Ê, We employ a two-stage process. Initially, CannyEdit
operates with Ê until a refinement timestep, trefine. During this first stage, the approximate mask
guides the edit in Canny control and attention computation. The selective Canny control now
becomes: ZI ← ZI + β · (1− Ê)⊙ conv(Z̃ ′

I). This equation grants more structural freedom near
the user’s hint to allow editability while maintaining stricter control elsewhere. Additionally, we
incorporate Ê into the attention between image tokens (I) and local editing prompt tokens (T1):
QI[i,j]

⊤KT1√
dk

← QI[i,j]
⊤KT1√
dk

+ log(Êij + ϵ), ensuring that regions near the desired edit region receive
a stronger influence from the local editing prompt (a small ϵ is added to avoid log(0)). A similar
masking strategy is applied to intra-image tokens to boost editability near the target area.

At the timestep trefine, a refined mask, E, is automatically generated by applying the SAM-2 seg-
mentation model (Ravi et al., 2024) to the denoised image. This process uses point prompts derived
from the most salient locations in the aggregated cross-attention maps between image tokens and the
tokens of the local editing prompt. The strategy of using segmentation models for mask refinement,
also explored by Li et al. (2024b) and Tewel et al. (2025), yields a high-quality mask. Following
mask refinement, the editing process continues with the precise mask, E, leveraging the standard
selective Canny control and dual-prompt guidance as introduced previously.

This editing with mask refinement offers significant flexibility, accepting single-point hints as location
indicators for where to edit. This design is key to enabling seamless, training-free integration
with VLMs, which can supply the VLM-inferred point hints for edits and text inputs for complex
instruction-based editing, as will be demonstrated in Section 4.

4 EXPERIMENT

Experimental Setup. We evaluate CannyEdit against state-of-the-art methods in two settings.
Mask-Based Editing: We compare CannyEdit with established mask-based methods to evaluate its
performance in traditional region-based editing tasks including object addition, replacement and
removal. Competitors include the inversion-based KV-Edit and inpainting models like BrushEdit (Li
et al., 2024d), FLUX Fill (Black-Forest Labs, 2024), and PowerPaint-FLUX (Zhuang et al., 2024).
For a fairer comparison, we re-trained PowerPaint on FLUX with their provided training dataset, as
the original is UNet-based.
Instruction-Based Editing: We benchmark CannyEdit against leading open-source instruction-based
editors: Step1X-Edit (Liu et al., 2025), OmniGen2 (Wu et al., 2025), BAGEL (Deng et al., 2025),
FLUX.1 Kontext [dev] (Kontext) (Labs et al., 2025) , and Qwen-image-edit (Qwen-edit) (Team,
2025b). We focus on the single and multiple object addition tasks in this setup as object addition is
generally more challenging. Point hints for CannyEdit are generated by GLM-4.5V (Team, 2025a) 1.
To ensure a fair comparison, we evaluate competing methods both with and without these point hints.

Datasets. We introduce the Real Image Complex Editing Benchmark (RICE-Bench) to address
the lack of complex object interactions in existing benchmarks (Sheynin et al., 2024; Gu et al.,
2024). RICE-Bench contains 80 images with challenging real-world scenarios for object addition,
replacement, and removal. In addition to single-object addition (RICE-Bench-Add), we introduce
RICE-Bench-Add2, a subset with 40 examples focused on the more difficult task of adding two
objects in a single pass. Example images from the benchmark are shown in Figures 1, 3,7, 8 and 10,
with details of data curation provided in Appendix E.

Metrics. We evaluate edits on three criteria: Context Fidelity (CF), Text Adherence (TA), and
Perceptual Realism (PR). CF measures background preservation using the cosine similarity between

1Detailed prompts to GLM-4.5V are provided in Appendix B.1.
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Table 1: Quantitative results under the mask-based setting on RICE-Bench. All the methods use
the same masks. The metrics are context fidelity (CF), Text Adherence (TA), and Perceptual Realism
(PR). Bold and underlined values represent the best and second-best scores.

Add Removal Replace

Metrics CF↑
×102

TA↑
×102

PR↑
×102

CF↑
×102

TA↑
×102

PR↑
×102

CF↑
×102

TA↑
×102

PR↑
×102

KV-Edit 93.91 17.25 65.61 69.81 16.62 70.12 64.72 12.36 65.48
BrushEdit 87.26 18.98 78.09 63.43 31.29 73.58 59.11 7.40 81.10
FLUX Fill 88.21 21.62 66.03 70.94 10.91 68.01 60.20 8.13 67.52
PowerPaint-FLUX 84.63 24.34 84.88 62.31 21.40 78.21 60.75 8.92 86.78

CannyEdit (Ours) 88.72 28.12 96.41 63.28 34.22 92.12 64.43 16.77 95.32

Table 2: Quantitative comparison on the RICE-Bench-Add (Add) and RICE-Bench-Add2 (Add2)
datasets under the instruction-based setting, evaluating Context Fidelity (CF), Text Adherence
(TA), and Perceptual Realism (PR). CannyEdit’s results are based on VLM-generated point hints,
differing from its mask-based results in Table 1. For fairness, competing editors were tested with and
without these same hints (results with hints are marked by ⋆). Methods with CF scores below 0.70,
indicating significant context failure and therefore considered ineffective edits, are marked in gray
(see visual results of OmniGen2⋆ in Figures 10 for reference). Bold and underlined values represent
the best and second-best scores among effective methods.

Add Add2

Metrics CF↑
×102

TA↑
×102

PR↑
×102

CF↑
×102

TA (avg.)↑×102
PR↑

×102

Step1X-Edit 79.30 21.35 63.34 77.56 24.15 61.12
OmniGen2 76.52 19.02 75.01 65.02 27.45 74.01
BAGEL 75.60 20.76 70.33 64.35 24.74 72.12
Qwen-image-edit 79.40 21.79 93.71 68.72 26.31 94.89
FLUX.1 Kontext 83.13 24.28 95.12 78.94 23.81 92.39

Step1X-Edit⋆ 81.25 18.33 61.22 80.75 22.61 60.59
OmniGen2⋆ 68.88 18.81 73.39 57.83 28.33 74.22
BAGEL⋆ 74.94 21.09 69.54 72.39 23.34 65.42
Qwen-image-edit⋆ 81.27 24.67 93.23 74.20 24.40 93.01
FLUX.1 Kontext⋆ 84.92 26.91 93.43 81.06 23.44 91.51

CannyEdit (Ours) 87.53 28.49 94.56 83.76 25.34 92.56

DINO embeddings (Caron et al., 2021) of the original and edited images. TA assesses prompt
adherence via the change in GroundingDINO (Liu et al., 2024) detection confidence. For addi-
tion/replacement, this is pgdino(edited image, edited object)−pgdino(source image, edited object); for
removal, the terms are reversed to measure successful elimination. PR evaluates how well the edited
image align with real-world characteristics using GPT-4o (OpenAI, 2025a), which rates the visual
convincingness of edits on a three-point scale (0, 0.5, 1). The prompt methodology, detailed in
Appendix D.2, is adapted from Zhang et al. (2023c).

Implementation details. Our method is built on FLUX.1-[dev] and FLUX-Canny-ControlNet. We
use 50 denoising steps, a guidance scale of 4.0, and a Canny strength β of 0.8 for non-masked
regions. Competing methods use their official default settings. Further details on hyperparameters
and computational costs are provided in Appendix D.1.

4.1 RESULTS UNDER MASK-BASED SETTING

Quantitative Results. Table 1 confirms CannyEdit’s superior performance in controllable local
editing. Across addition, removal, and replacement tasks, CannyEdit consistently leads in both text
adherence and perceptual realism while maintaining competitive context fidelity. Unlike methods
such as KV-Edit, which preserve backgrounds at the great expense of perceptual realism, CannyEdit
achieves an exceptional balance among all three metrics. Additional evaluation on PIE-Bench yields
similar conclusion (see Appendix A.3).

Qualitative Results. Complementing the quantitative results with visual comparisons, Figures 7 and
8 showcase examples of CannyEdit compared against KV-Edit and the best-performing training-based
method, PowerPaint-FLUX. Besides, we conducted a user study to evaluate the seamlessness of edits.
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Figure 6: Chain-of-thought editing process where a VLM reasons step-by-step about edits and
CannyEdit executes them. Detailed reasoning steps for this are provided in Appendix B.5.

The study revealed that CannyEdit is much less likely to be identified as AI-edited compared to other
region-based methods. Further details can be found in Appendix A.2.

4.2 RESULTS UNDER INSTRUCTION-BASED SETTINGS

Quantitative Results. As shown in Table 2, our training-free method, CannyEdit, outperforms
leading training-based instruction editors on both the RICE-Bench-Add (single edit) and RICE-
Bench-Add2 (double edit) benchmarks. CannyEdit achieves the highest scores in context fidelity and
text adherence while maintaining comparable realism. This advantage holds when competitors are
given the same VLM-generated point hints, which we provided as text coordinates in the prompt—a
strategy proven more effective than visual markers (see details in Appendix B.3).

Qualitative Results. Visualizations comparing CannyEdit with instruction-based editors using iden-
tical point hints are shown in Figure 10. Similar to the ones in Figures 1 (a,b), CannyEdit consistently
maintains good context fidelity and text adherence across these examples, whereas the results from
other methods are less consistent. CannyEdit also delivers strong perceptual realism, whereas outputs
from Step1X-Edit and BAGEL exhibit noticeable degradation. Furthermore, CannyEdit enables
precise, mask-based control of edit location and size (Figures 1(d), 12), a capability instruction-based
methods lack even when various mask-providing strategies are attempted (Appendix B.4, Figure 13).
Finally, through Chain-of-Thought (CoT) with a VLM, CannyEdit handles complex, reasoning-based
edits (Figures 1(c), 6), tackling tasks that remain challenging for other editors.

4.3 ROBUSTNESS AND ABLATION ANALYSIS

CannyEdit maintains consistent performance regardless of visual guidance format. Comparing results
on RICE-Bench-Add using user-provided masks (Table 1) versus VLM-inferred point hints (Table
2), metrics remain remarkably stable (Context Fidelity: 88.72 vs. 87.53; Text Adherence: 28.12
vs. 28.49), proving its effectiveness with both dense and sparse guidance. Appendix C presents
additional component-level ablations validating our design choices and further robustness analyses.

5 CONCLUSION

In conclusion, this work introduces CannyEdit, a novel training-free method that addresses the core
trilemma of region-based image editing—text adherence, context fidelity, and editing seamlessness.
By combining selective structural control with dual-prompt guidance, CannyEdit produces high-
quality edits that follow instructions while blending naturally into the original context, outperforming
prior region-based methods. Its training-free design enables single-pass multi-region editing, tolerance
to imprecise inputs, and seamless integration with state-of-the-art VLMs without additional training.
Quantitative and qualitative results show that CannyEdit outperforms leading instruction-based editors
in complex object addition tasks under controlled settings. We also outline current limitations and
directions for improvement in Appendix F, pointing to promising avenues for future work.
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A MORE RESULTS UNDER MASK-BASED SETTING

A.1 VISUAL EXAMPLES

Visual examples demonstrating object addition, replacement, and removal under the mask-based
setting are provided in Figure 7, which compares results generated by CannyEdit, KV-Edit, and
the training-based method PowerPaint-FLUX. These examples illustrate that CannyEdit achieves a
compelling balance between context fidelity, text adherence, and seamless editing quality. In contrast,
KV-Edit could struggle to accurately follow the provided text prompts (as observed in (a), (b), and
(f)), while outputs of PowerPaint-FLUX exhibit noticeable degradation in overall image quality.
Additionally, Figure 8 provides specific examples demonstrating that, compared to CannyEdit, KV-
Edit’s slightly improved context fidelity comes at a significant cost to both editing seamlessness and
text adherence.

(a) Add a woman embracing the man. (b) Replace the man with a woman

(c) Replace the dog with a boy. (d) Remove the dog.

(e) Replace the male player with a female player. (f) Remove the football player.

Input CannyEdit KV-Edit PowerPaint-FLUX CannyEdit KV-Edit PowerPaint-FLUX

Figure 7: Visual examples of our CannyEdit, KV-Edit (Zhu et al., 2025), and PowerPaint-
FLUX (Zhuang et al., 2024). across adding, removal and replacement tasks. The samples are
from the RICE-Bench.

(a) Add a person running on the street. (b) Add a woman watching the yacht.

(c) Replace the woman with a man. (d) Replace the sports car with a racing motorcycle.

Input CannyEdit KV-Edit Input CannyEdit KV-Edit

Figure 8: Visual examples demonstrating that the slightly improved context fidelity of KV-Edit (Zhu
et al., 2025) comes at a significant cost to editing seamlessness and text adherence.
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Table 3: Results of user study comparing CannyEdit with representative methods on RICE-Bench
(± denotes 95% confidence interval). In Task1, participants identify AI-edited images from paired
real (Real) and generated (Gen) images. Seamless edits yield selection ratios close to random chance
(50%), as achieved by CannyEdit. In Task2, users directly compare CannyEdit against other methods;
lower selection ratios for “ours” indicate superior editing seamlessness of CannyEdit.

General User (96 participants) Expert (41 participants)

Generated vs. Real CannyEdit vs. Others Generated vs. Real CannyEdit vs. Others

Ratio regarded as AIGC (%) Gen↓ Real↑ Ours↓ Itself↓ Gen↓ Real↑ Ours↓ Itself↓

KV-Edit 86.96±7.19 13.04±7.19 37.50±5.72 62.50±5.72 89.09±9.24 10.91±9.24 37.69±10.2 62.31±10.2
BrushEdit 79.20±8.99 20.80±8.99 30.00±4.90 70.00±4.90 82.00±12.1 18.00±12.1 19.29±9.99 80.71±9.99
PowerPaint-FLUX 76.08±5.49 23.92±5.49 38.08±6.66 61.92±6.66 88.00±6.57 12.00±6.57 33.85±7.32 66.15±7.32

CannyEdit (Ours) 49.20±3.56 50.80±3.56 N/A N/A 42.00±8.12 58.00±8.12 N/A N/A

A.2 USER STUDY

To complement the automatic metrics and systematically assess the perceived seamlessness of the
edits, we conducted a user study with a total of 137 participants, comprising 96 general users with
limited AIGC experience and 41 experts with formal training or experience.

The study involved two tasks where participants viewed pairs of images and were asked to identify
which image was most likely AI-edited. In Task 1, an image edited by our method was compared
against a real, unedited image. In Task 2, an image generated by our method is compared against
one from another method. To minimize bias, the presentation order of images and questions was
randomized. Only successful edits with high text adherence scores were included. A preliminary
screening test filtered out participants with low accuracy in distinguishing AI-edited from real images,
ensuring data reliability.

The results, presented in Table 3, highlight our method’s ability to produce highly seamless edits.
In Task 1, general users identified images from our method as AI-edited only 49.20% of the time,
while experts did so even less frequently at 42.00%. This indicates that our edited images were often
indistinguishable from real ones. Conversely, images from alternative methods were much more
readily identified as AI-generated, with detection rates ranging from 76.08% to 89.09%. Consistent
with Task 1, in Task 2, images generated by our method were consistently less likely to be perceived
as AI-edited when compared directly to outputs from other methods, further underscoring the superior
seamlessness of our editing approach.

A.3 EXPERIMENT RESULTS ON PIE-BENCH

Add a hat to the table with flowers. Add a deer in the forest.

Input Mask CannyEdit KV-Edit Input Mask CannyEdit KV-Edit

LPIPS(×103) ↓ 51.84 22.90 LPIPS(×103) ↓ 35.52 16.44
PSNR ↑ 22.85 26.54 PSNR ↑ 26.61 27.90

Figure 9: Visual examples of our CannyEdit and KV-Edit (Zhu et al., 2025) on PIE examples along
with their quantitative results on background preservation.

We extend our evaluation to PIE-Bench (Ju et al., 2024) which involves more images in various
editing tasks. Following Zhu et al. (2025), we use seven metrics: HPSv2 (Wu et al., 2023) and
aesthetic scores (Schuhmann et al., 2022) (image quality), PSNR (Huynh-Thu & Ghanbari, 2008),
LPIPS (Zhang et al., 2018), and MSE (background preservation), and CLIP score (Radford et al.,
2021) and Image Reward (Xu et al., 2023) (text adherence). Following Li et al. (2024d); Xu et al.
(2024); Zhu et al. (2025), we exclude the style transfer task to focus on region-based image editing.
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Table 4: Comparison with other methods on PIE-Bench. VAE∗ denotes the inherent reconstruction
error through VAE reconstruction only. Except the result of ours, other results follow (Zhu et al.,
2025).

Metrics
Image Quality Background Preservation Text Adherence

HPS↑
×102

AS↑ PSNR↑ LPIPS↓
×103

MSE↓
×104

CLIP Sim↑ IR↑
×10

VAE∗ 24.93 6.37 37.65 7.93 3.86 19.69 -3.65

P2P (Hertz et al., 2022) 25.40 6.27 17.86 208.43 219.22 22.24 0.017
MasaCtrl (Cao et al., 2023) 23.46 5.91 22.20 105.74 86.15 20.83 -1.66
RF-Inversion (Rout et al., 2024) 27.99 6.74 20.20 179.73 139.85 21.71 4.34
RFSolver-Edit (Wang et al., 2024) 27.60 6.56 24.44 113.20 56.26 22.08 5.18
KV-Edit (Zhu et al., 2025) 27.21 6.49 35.87 9.92 4.69 22.39 5.63
BrushEdit (Li et al., 2024d) 25.81 6.17 32.16 17.22 8.46 22.44 3.33
FLUX Fill (Black-Forest Labs, 2024) 25.76 6.31 32.53 25.59 8.55 22.40 5.71

CannyEdit (Ours) 27.19 6.38 32.18 26.38 9.79 25.36 8.20

The result is displayed in Table 4. As for text alignment, CannyEdit significantly outperforms other
methods both in CLIP similarity(22.44 → 25.36) and Image Reward(5.71 → 8.20). Our method
also keeps a competitive level in image quality. The accuracy of masked region preservation achieved
by CannyEdit is numerically inferior to that of KV-Edit. However, as illustrated by the examples in
Figure 9, the background preservation metrics tend to penalize the more natural and complete results
generated by CannyEdit, which may not effectively reflect the quality of the background preservation.

B MORE RESULTS UNDER INSTRUCTION-BASED SETTING

B.1 PROMPTING FOR POINT HINTS OF EDITING

In experiments on RICE-Bench-Add and RICE-Bench-Add2, we prompt GLM-4.5V (Team, 2025a)
to provide point hints that indicate approximate regions for editing operations. The detailed prompt
are as below:

Let’s say I want to add two new subjects to an image.

Subject A: {Description to subject A to add}.

Subject B: {Description to subject B to add}.

Could you suggest a point coordinate (x,y) for placing each of these
two subjects? The coordinate should be normalized between 0 and 1,
where 0 to 1 means left to right (x) and top to bottom (y).

First consider the position of related objects in the image.

Then, analyze where the added subjects should be positioned (left,
right, above, or below existing elements) and assign a
specific point coordinate where each subject should be centered.

The points should be in areas where the subjects wouldn’t overlap
with existing elements.

Please provide the coordinates in the format:
Subject A: [x,y], Subject B: [x,y].

Prompt Example 1: Instruction prompt for getting the point hints of edits.
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B.2 MORE VISUAL COMPARISONS BETWEEN CANNYEDIT AND INSTRUCTION-BASED
EDITORS

(a) Add a woman waiter standing next to the table, holding a tray with a cup of coffee.

(b) Add a woman kneeling and working in a flower garden, and a small dog standing on a lush lawn.

(c) Add a smiling woman in a white dress standing close to the man in a gray suit.

(d) Add a woman standing on a tennis court, holding a racket, ready to play.

(e) Add a young woman watching the towering castles, and a monkey climbing ancient stone walls.

(f) Add a lone hiker treks through the scorching desert, and an SUV racing across the vast desert.

(g) Add a man standing confidently on a rooftop as an eagle soars gracefully between towering skyscrapers.

Input⋆ CannyEdit Kontext⋆ Qwen-edit⋆ OmniGen2⋆ Step1X-Edit⋆ BAGEL⋆

Figure 10: Visual comparison between CannyEdit and instruction-based editors using equivalent point
hints (the point hints are marked as red/green stars in input⋆) on RICE-Bench-Add/Add2 examples.
For instruction-based editors, point information is provided as text coordinates.

B.3 EVALUATION OF DIFFERENT POINT-PROVIDING STRATEGIES FOR INSTRUCTION-BASED
EDITORS

To ensure a fair comparison, we evaluated two distinct strategies for providing VLM-generated
point hints to baseline instruction-based editors. The experiments on RICE-Bench-Add/Add2 were
conducted using three settings: (a) the instruction prompt only; (b) the instruction prompt augmented
with text coordinates from VLM-inferred hints (e.g., “Near the point (0.6, 0.644), add an elderly
man...”); and (c) the input image marked with a visual prompt (a red star, ⋆) which is referenced in
the text (e.g., “Near the red star in the image, add an elderly man...”). While the main paper reports
results for settings (a) and (b) in Table 2, this section provides a direct comparison between the two
hint-providing strategies: text coordinates (b) and visual markers (c).
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Table 5: Quantitative comparison of two strategies for providing point hints to instruction-based
editors on the RICE-Bench-Add benchmark. Setting 1 embeds coordinates into the text instruction,
while Setting 2 uses visual star markers on the image. The results show that Setting 1 generally
achieves better performance, particularly for the Text Adherence metric.

Metrics Context Fidelty↑
×102

Text Adherence↑×102

Setting 1: Include the text coordinate into the text instruction.

Step1X-Edit⋆ 81.25 18.33
OmniGen2⋆ 68.88 18.81
BAGEL⋆ 74.94 21.09
Qwen-image-edit⋆ 81.27 24.67
FLUX.1 Kontext⋆ 84.92 26.91

Setting 2: Mark the point hints as stars in the input image and mention the star in the text

Step1X-Edit⋆ 80.60 19.10
OmniGen2⋆ 63.76 18.01
BAGEL⋆ 70.29 15.42
Qwen-image-edit⋆ 82.21 22.38
FLUX.1 Kontext⋆ 85.12 25.85

Table 5 presents the quantitative results comparing these two approaches. The data indicates that
embedding coordinates directly into the text instruction generally yields better text adherence. Also,
as qualitative examples shown in Figure 11. the visual marker strategy often leaves the star artifact in
the generated images. We therefore use the text coordinate strategy for all baseline comparisons in
our main analysis.

Input⋆ Kontext Qwen-edit Kontext Qwen-edit
Point coordinates in text Visual prompts in image

Figure 11: Qualitative comparison of two point-providing strategies for FLUX.1 Kontext and Qwen-
image-edit. Setting 1 includes point coordinates in the text instruction, while Setting 2 uses a visual
star marker in the input image. We can see that Setting 2 frequently leaves the star artifact in the
generated image (rightmost 2 columns), degrading the output quality visually.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.4 CANNYEDIT VS. INSTRUCTION-BASED EDITORS FOR MASK-GUIDED EDITING TASKS

Figure 12 demonstrates that CannyEdit effectively supports edits at various scales when masks of
corresponding sizes are provided.

In comparison, in Figure 13, we try three ways of supplying the mask information to the instruction-
based editors, FLUX.1, Kontext [dev], and Qwen-image-edit, but none of them successfully follows
the mask to make precise edits in the user-specified region.

To further quantitatively evaluate this, we conduct experiments on the RICE-Bench-Add examples.
Masks are provided to FLUX.1, Kontext [dev], and Qwen-image-edit by marking the image with
an oval that has a red border and no fill (the strategy (C) in Figure 12). This oval indicates the edit
region and is used with the prompt, “add ... within the red oval and remove the red oval.”. After the
editing process, we compute the Intersection over Union (IoU) between the pixels of the generated
objects (segmented by LanguageSAM (Medeiros, 2024)) and the pixels covered by the red-bordered
oval. The results are as:

CannyEdit: 0.89 Kontext: 0.68 Qwen-Edit: 0.34

The results show that CannyEdit achieves substantially higher spatial precision in placing added
objects within the specified region, outperforming both Kontext and Qwen-Edit by a wide margin.
The visualizations in Figure 14 show that while CannyEdit generates objects that adhere well to the
given mask region, Kontext tends to generate objects that are larger than the specified region in all
three examples. In contrast, Qwen-Edit frequently misplaces the object, generating it outside the
designated area.

(a) Add a small/medium/large sofa to the room.

(b) Add a small/medium/large swimming pool to the park.

(c) Add a small/medium/large floral cluster to the white wall.

(d) Add a small/medium/large ship to the river.

Input w/ small mask w/ medium mask w/ large mask

Figure 12: CannyEdit enables precise, mask-guided local editing, generating objects at specified
locations and scales from masks of varying sizes (masks omitted here; examples of the masks shown
in Figure 13)
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(a1) Add a small sofa to the room.

(a2) Add a medium-sized sofa to the room.

(a3) Add a large sofa to the room.

(b1) Add a small swimming pool to the park.

(b2) Add a medium-sized swimming pool to the park.

(b3) Add a large swimming pool to the park.

input image output image input image output image input image output image

(A) Image with colored mask (B) Image with black mask (C) Image with non-filled oval

Figure 13: Analysis of strategies for providing mask information to instruction-based editors. For
case (a) with sofa, we used FLUX-Kontext.1 [Dev]; for case (b) we used Qwen-image-edit. We tested
three strategies: (A) colored masks with prompt “add ... within the colored mask”, (B) black masks
with similar prompting, and (C) ovals with a red border and no fill with prompt “add ... within the red
oval and remove the red oval.” None of these methods enabled the editors to precisely follow the
masks to generate objects with desired sizes. Strategies (A) and (B) often preserved the mask as an
artifact, while strategy (C) successfully removed the red oval but failed to generate content matching
the specified size.
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Input⋆ CannyEdit Kontext Qwen-edit

Figure 14: Visualizations of fitting a mask region defined by ovals with a red border and no fill, using
the prompt “add ... within the red oval and remove the red oval.” to the instruction-based editors. The
results show that FLUX.1 Kontext consistently generate objects larger than the given region in all
three examples, while Qwen-Image-Edit misplaces the object beyond the designated region in the
second and third examples.

B.5 MORE RESULTS: CANNYEDIT INTEGRATED WITH SOTA VLMS

B.5.1 USING VLM AS AN REASONER AND CANNYEDIT AS AN EXECUTOR

In Figures 1(c) and 6, we demonstrate how CannyEdit supports complex, reasoning-based edits
through a Chain-of-Thought (CoT) process using a VLM reasoner. This process involves the VLM
reasoning about what to edit and where to make the changes, guided by abstract instructions and the
outcomes of each editing step. CannyEdit then performs the precise edits accordingly.

Here, we illustrate the prompting and reasoning process with GPT-5 (OpenAI, 2025b), which was
tasked with interpreting the instruction, “Make this scene a busy ranch,” for Figure 6(a).

User:

<source image> I want to make this scene a busy ranch.

Please help me by suggesting one edit at a time in a step-by-step manner.

For each edit you provide, please include the following:

1. Analysis: Explain why this particular edit is important for making the
scene feel more like a busy ranch.

2. Edit Description: Clearly describe what visual element or object
should be added, removed, or modified.
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3. Location: Specify the center coordinates of the edit using normalized
values between 0 and 1 (where (0, 0) is the top-left corner and (1,
1) is the bottom-right corner).

After you suggest the first edit and explain it thoroughly,
I will show you the updated scene.

Then, based on the result, you can analyze what to edit next.

Let us proceed step by step.

GPT-5:

Analysis: Herd animals are the core visual cue of a working ranch.
Placing a small group of cows in the center instantly communicates
livestock activity and gives us a focal point to build around (
fencing, ranch hands, troughs, etc.). Multiple cows instead of a
single one conveys busy and sets scale for future edits.

Edit Description: Add a group of 4 to 6 grazing cows standing and grazing
, with a few facing different directions. Include subtle shadows on
the grass consistent with the sun coming from top-left. Keep their
size appropriate to a mid-ground placement so they do not dominate
the frame.

Location: Center at (0.50, 0.58) with a spread radius of ~0.12 to
distribute the group naturally across the mid-ground.

User:

<edited image 1> Here is the updated scene, please suggest the next edit
.

GPT-5:

Analysis: Hay bales are classic ranch infrastructure, signaling ongoing
feeding and harvest activity. Placing round bales near the foreground
corners frames the herd, adds depth, and enhances the busy feel with
signs of recent work. Slightly withering patches of grass around the
herd and bales suggest active grazing and trampling, adding realism.

Edit Description:

Add two large round hay bales (golden-brown, rough straw texture, visible
spiral pattern). Include short cast shadows falling slightly down-

right to match lighting.

Left bale and right bale fully visible near the edge.

Locally desaturate and darken grass to a straw-tinged green-brown in
trodden patches: a worn oval around the cows and smaller scuffed
areas near each bale to imply feeding/traffic.

Location:
Left hay bale center: (0.12, 0.86), diameter ~0.15 of image width.
Right hay bale center: (0.88, 0.88), diameter ~0.15 of image width.
Worn grass around herd: oval centered at (0.50, 0.62), radius ~0.22*0.12.

User:

<edited image 2> Here is the updated scene, please suggest the next edit
.

GPT-5:
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Analysis: Adding core ranch structures anchors the scene as a working
operation rather than a random pasture. A classic red barn signals
storage, shelter, and daily activity. A metal windmill provides
utility and vertical interest, common on cattle ranches for filling
stock tanks. Placing them on opposite sides of the horizon balances
the composition and builds depth without distracting from the herd.

Edit Description:

Barn: Add a medium-distant, traditional gabled barn with red siding, and
a sliding door partially open. Keep scale consistent with being
several hundred meters away; soft edges due to distance haze.

Windmill: Add a tall, slender lattice-tower windmill with a multi-blade
wheel and tail vane. Base should meet the ground near the horizon

Location:

Barn center: (0.18, 0.28). Width ~0.16 of image width; base aligned just
above the horizon line.

Windmill center: (0.82, 0.20). Tower height ~0.22 of image height; base
at (0.84, 0.36).

Prompt Example 2: Prompting and reasoning process of GPT-5 for Fiugre 6 (a).

B.5.2 USING VLM AS A LOCATOR AND CANNYEDIT AS AN EXECUTOR

Replacement and removal tasks that require precise grounding are challenging for instruction-based
editors, especially in complex scenes. In Figure 15, we demonstrate that by using GLM-4.5V (Team,
2025a) as a locator, CannyEdit, acting as an executor, effectively solves cases where FLUX.1 Kontext
[dev] and Qwen-Image-Edit fail.

(a) Replace the rightmost basketball player in the bottom row with a female basketball player.

(b) Replace the second girl from the right with a boy.

(c) Replace the No.24 player.

(d) Remove the second white car on the right side of the first row, count only white cars.

Input CannyEdit Kontext Qwen-edit

Figure 15: Visual examples illustrating the power of CannyEdit as a precise image editing executor.
Guided by a sophisticated locator (GLM-4.5V), CannyEdit successfully performs complex removal
and replacement tasks where FLUX.1 Kontext and Qwen-image-edit fail.
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C ABLATION STUDY

C.1 ROBUSTNESS OF CANNYEDIT TO INPUT VISUAL HINTS

In region-based editing, we use oval masks in RICE-Bench-Add to indicate the target edit region.
Below, we report Context Fidelity (CF) and Text Adherence (TA) across different mask configurations:
the default oval masks, simple rectangular masks, and oval/rectangular masks augmented with random
boundary perturbations to emulate imprecise, hand-drawn inputs. We consider two augmentation
regimes: (1) high-frequency, small variations (fine brush strokes) and (2) low-frequency, larger
variations (broad brush strokes).

Beyond masks, we also evaluate robustness to sparse spatial hints by comparing user-provided oval
masks (Table 1) against VLM-inferred point hints (Table 2) on RICE-Bench-Add. The metrics remain
highly stable between the two settings (CF: 88.72 vs. 87.53; TA: 28.12 vs. 28.49), demonstrating
effectiveness under both dense and sparse guidance. Results are summarized below:

Input visual hints Augmentation Context Fidelity (CF) Text Adherence (TA)
Oval Mask / 88.72 28.12

High-freq, smaller variations 87.69 27.98
Low-freq, larger variations 86.21 28.29

Rectangular Mask / 86.22 28.23
High-freq, smaller variations 85.95 28.36
Low-freq, larger variations 85.34 28.52

VLM-inferred Point / 87.53 28.49

We further quantify the importance of the mask refinement procedure described in Section 3.4 for
both standard oval masks and VLM-inferred point hints:

Input visual hints Mask Refinement Context Fidelity (CF) Text Adherence (TA)
Oval Mask Yes 88.72 28.12

No 84.12 29.31

VLM-inferred Point Yes 87.53 28.49
No 70.22 29.50

These results underscore the effectiveness and necessity of mask refinement for preserving image
context, especially when only sparse point hints are provided.

C.2 ABLATIONS ON CANNY CONTROL AND DUAL-PROMPT GUIDANCE

We ablate key components of CannyEdit using addition and replacement tasks from RICE-Bench
under user-provided oval masks. The results are shown in the table below (CC denotes Canny Control
and DP denotes Dual-Prompt guidance). For selective Canny control, we test: (i) using selective
Canny ControlNet outputs computed from the current T2I denoising process instead of using the
cached ControlNet outputs, (ii) removing Canny control entirely, and (iii) using full cached Canny
ControlNet outputs without selectivity. The first two variants substantially reduce context fidelity,
while the third improves context preservation but weakens text adherence. Ablations on dual-prompt
guidance show that both local and global prompts are necessary for balanced performance.

Add Replace

CF↑
×102 TA↑

×102 CF↑
×102 TA↑

×102

CannyEdit (Ours) 88.72 28.12 64.43 16.77

Variants
of CC

selective CC from current T2I 84.81 27.93 55.24 13.89
w/o CC 79.73 26.29 51.51 11.83
full CC 93.41 19.73 64.02 12.51

Variants
of DP

local prompt only 93.43 10.23 58.92 17.09
target prompt only 85.04 24.96 60.82 15.43
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C.3 CHOICE OF CONTROLNET MODALITY

Our method builds upon the Canny ControlNet. We choose this modality to serve the primary
objectives of region-based editing: preserve the untouched context as faithfully as possible while
enabling strong generative flexibility within the edited region. Canny maps capture the core structural
cues of the source image—edges and contours—which, when paired with our inversion strategy,
effectively maintain the original composition and fine details. By selectively disabling Canny
guidance inside the edit mask, the model gains the necessary freedom to follow the text prompt
without compromising the surrounding content.

To support this choice, we compare the available FLUX-ControlNet modalities (Canny, HED, Depth)
and observe that Canny provides the most favorable balance between context preservation and
instruction following. Although Depth yields marginally higher text adherence, it incurs a substantial
loss in context fidelity, rendering it less suitable for high-fidelity edits. The experiment is conducted
on RICE-Bench-Add using user-provided masks.

Modality Context Fidelity (CF) Text Adherence (TA)
Depth 83.37 29.01
HED 81.32 28.33
Canny 88.72 28.12

C.4 HYPERPARAMETER STUDIES

The hyperparameter studies are conducted on RICE-Bench-Add using user-provided masks.

ControlNet strength (β). We use β = 0.8 by default (as in the original Canny ControlNet).
Decreasing the strength mildly improves text adherence but reduces context fidelity. The default
setting provides the best balance for high-quality, context-preserving edits.

ControlNet Strength (β) Context Fidelity (CF) Text Adherence (TA)
0.3 84.15 29.42
0.5 85.87 29.59
0.8 (default) 88.72 28.12

Number of denoising steps. Here we evaluate the trade-off between computational cost and
performance. Our results show that even when reducing the workload to 30 or 40 steps, our model’s
Text Adherence (25.98 and 26.62, respectively) remains significantly higher than both the KV-Edit
(17.25) and PowerPaint-FLUX (24.34) baselines. A more significant performance drop is only
observed at 20 steps. Therefore, while 50 steps yield optimal quality, we recommend a minimum of
30 denoising steps for a robust balance between high-quality output and computational efficiency.

# Steps Context Fidelity (CF) Text Adherence (TA)
20 90.12 23.58
30 89.12 25.98
40 88.51 26.62
50 (default) 88.72 28.12

KV-Edit (baseline) 93.91 17.25
PowerPaint-FLUX (baseline) 84.63 24.34

D IMPLEMENTATION DETAILS

D.1 METHOD EXECUTION DETAILS

We implement our method based on FLUX.1-[dev] (Black-Forest Labs, 2024) and FLUX-Canny-
ControlNet (XLabs AI, 2024), using 50 denoising steps and a guidance value of 4.0. The strength
parameter of Canny control β is set to 0.8 in the inversion and for the non-mask-boundary background
region. Other methods were implemented based on their official code releases’ default settings unless
otherwise specified.
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All evaluation experiments were conducted on a machine with NVIDIA A100 GPUs and an AMD
EPYC 7642 Processor (with a total of 96 cores). Our CannyEdit, using FLUX.1-[dev] and FLUX-
Canny-ControlNet, can be implemented on a single NVIDIA A100 GPU (or other GPUs with
approximately 40 GB of memory for a single editing task). Multi-editing tasks in one generation pass
require more memory due to the involvement of additional text tokens.

Compared to previous training-free image editing methods based on FLUX (Wang et al., 2024; Deng
et al., 2024; Tewel et al., 2025), the additional computational cost of our method primarily arises
from the integration of a Canny ControlNet. However, the FLUX-Canny-ControlNet, with only
0.74B parameters, is lightweight compared to the FLUX model, which has 12B parameters. This
is because the Canny ControlNet includes only two multi-stream blocks, whereas FLUX contains
19 multi-stream blocks and 38 single-stream blocks. The computation overhead introduced by our
method is acceptable, as the lightweight nature of the Canny ControlNet ensures efficient performance
without significantly increasing resource demands.

Compared to leading instruction-based methods, FLUX.1 Kontext [dev], which also has 12B parame-
ters, and Qwen-Image-Edit, which has 20B parameters. Our CannyEdit approach involves inversion,
which requires additional computation. As a result, its computational cost and runtime are higher
than those of FLUX.1 Kontext [dev]. However, despite the additional inversion cost, our method runs
significantly faster than Qwen-Image-Edit. On the machine equipped with an A100 GPU, performing
a single edit on a 512×512 image with 50 denoising steps using CannyEdit takes an average of
approximately 29 seconds, whereas Qwen-Image-Edit requires around 74 seconds for the same task
(we use their official diffusers implementation).

D.2 EVALUATION DETAILS

Perceptual Realism (PR) assesses how well an edited image aligns with real-world visual charac-
teristics. To evaluate this, we employ GPT-4o (OpenAI, 2025a), which rates the visual plausibility
of edits on a three-point scale (0, 0.5, 1). Our prompting methodology is adapted from Zhang et al.
(2023c) and is detailed below.

You are now an evaluator responsible for assessing the Perceptual
Realism (PR) of an AI-generated image. Please assign a score from the
set: [0, 0.5, 1].

General Guidelines for Perceptual Realism (PR) Scoring:

PR = 0: The image contains obvious distortions or artifacts that make it
unrecognizable at first glance.

PR = 0.5: The image has some artifacts, but the objects are still
recognizable, or it has an unnatural sense of detail in certain areas
(i.e., the image looks strange only after close examination).

PR = 1: The image appears generally realistic. It does not need to be
100% perfect, approximately 90% realism is acceptable.

Please analyze the given image based on the above rules, and provide your
reasoning. Finally, assign a PR score from the set [0, 0.5, 1].

Prompt Example 3: Prompt to GPT-4o for evaluating the perceptual realism of the edited images.

E CURATION OF RICE-BENCH

In this work, we focus on real-world image editing scenarios that involve complex interactions
between the edited region and the surrounding image context. However, existing real-world image
benchmarks (Sheynin et al., 2024; Gu et al., 2024) primarily involve edits to minor objects and
lack realistic interactions among objects (e.g., “add a glass of water on the table”). To address this
limitation, we introduce the Real Image Complex Editing Benchmark (RICE-Bench), designed to
better evaluate context fidelity, text adherence, and editing seamlessness in real-world editing tasks.
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Compared to previous benchmark, the edits in RICE-Bench typically involve more significant changes
to the image layout, posing greater challenges in balancing context fidelity and text adherence.

RICE-Bench consists of 80 images depicting real scenes with complex editing scenarios, divided into
adding, replacement, and removal tasks (30 for adding, and 25 each for replacement and removal).
Each example includes a source image, an input mask, a source prompt for description of original
image, a local prompt for object to be edited, and a target prompt describing image after editing as in
Figure 16. Besides single object-addition (RICE-Bench-Add), we manipulate RICE-Bench-Add2,
a subset with another 40 examples for better evaluation of adding two objects in a single forward
pass. Example images from the benchmark are shown in Figures 1, 3,7, 8 and 10. They share
the same curation pipeline but each sample in RICE-Bench-Add2 has one more local prompt and
corresponding mask.

In summary, we curated the datasets from three sources. Two of them are open datasets: PIPE (Wasser-
man et al., 2024), which contains semi-synthetic inpainting data, and PIE (Ju et al., 2024), which
includes some natural images. We also utilize a mainstream LLM (DeepSeek-V3 (DeepSeek-AI et al.,
2025)) and an image generation model (FLUX (Black-Forest Labs, 2024)) to construct and filter high-
quality synthetic images. The LLM and a Vision-Language Model (VLM), Qwen2-VL-72B (Team,
2024), are used to create local editing prompts and target prompts. Based on these sources, the data
curation pipeline can be divided into four steps:

1. Source image construction and filtering. For the PIPE (Wasserman et al., 2024) and PIE (Ju
et al., 2024) sources, we carefully filter images with relatively complex real-life scenarios and
interactions. For synthetic data generation, as referred to in (Tewel et al., 2025), we prepare an
instruction prompt to ask the LLM to generate a set of text prompts, which are utilized to generate
source images by FLUX. The instruction prompt is shown in Prompt Example 4. With synthesized
source images, we further filter high-quality samples without distortion or irrational content.

2. Mask generation. For the adding task, we use cv2.polylines() and cv2.fitEllipse() in
OpenCV (Bradski, 2000) to manually draw oval masks for possible locations to add objects.
For RICE-Bench-Add2, there are two masks. Each for one object to be edited respectively. For
replacement and removal tasks, we use LanguageSAM (Medeiros, 2024) to segment target objects
based on their names.

3. Local prompt generation. For the adding task, we manually describe one or two objects to be
added and ask the VLM (Qwen2-VL-72B) to enrich the details of the description. For replacement
and removal tasks, as referred to in (Zhuang et al., 2024), given the source image and corresponding
editing masks, we first crop the target object and then utilize the VLM to describe the object only.

4. Source prompt and target prompt generation. Given the source image, we first ask the VLM to
caption the image as the source prompt. Based on the source prompt, mask, and corresponding
local prompts, we use the VLM to generate a target prompt that describes the whole image after
editing. For the adding task, an example of the instruction prompt used to generate the target
prompt is shown in Prompt Example 5.

Please generate a JSON list of 100 sets. Each set consists of:
an index, a source prompt.
The source prompt describes a source image.
The source prompt should include a relatively complex real-life
scenario and at least one person.
Here is an example:
{

"index": 1,
"src_prompt": "A beautiful park with a bench, a man is sitting

on it"
}

Prompt Example 4: Instruction prompt for generating texts to create source images.

Given the caption of an image: {source_prompt}, Now I want to add
{num_objects} objects or persons.
Their corresponding descriptions are: {all_local_prompts}.
According to these caption and descriptions, please summarize them
into a refined target prompt within 20 words.
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Return the target prompt only.

Prompt Example 5: Instruction prompt for generating target prompts.

(a) Add a person running on the street. (b) Replace the pepper with three apples.

SourceP: A construction site with barriers and signs. SourceP: A red pepper on a towel.

TargetP: A construction site with barriers and signs, with a person jogging through the area. TargetP: Three red apples on a towel.

LocalP: A person running on a path, wearing athletic shoes and shorts. LocalP: Three red apples.

Source image Mask CannyEdit Source image Mask CannyEdit

Figure 16: Examples of source images, input masks and corresponding text prompts (SourceP:
source prompt; TargetP: global target prompt; LocalP: local edit prompt) in RICE-Bench, along with
CannyEdit’s outputs.

F LIMITATIONS AND FUTURE IMPROVEMENTS

Compared to instruction-based editors like FLUX.1 Kontext and Qwen-Image-Edit, CannyEdit has a
notable limitation: it cannot perform many free-form editing tasks (e.g., transformations that preserve
a human subject’s identity). Instead, CannyEdit’s strengths lie in region-based editing tasks such
as object addition, removal, and replacement. Nevertheless, CannyEdit goes beyond traditional
region-based methods by supporting multiple edits in a single pass, incorporating point-based hints,
and seamlessly integrating with VLM-inferred points for guidance. This difference highlights a
trade-off between flexibility and controllability: instruction-based editors offer greater task flexibility,
whereas CannyEdit provides finer control over where and how edits are applied, resulting in better
preservation of the image’s context. For open-ended creative editing, users might prefer instruction-
based editors. In contrast, for professional editing tasks requiring precision—such as an interior
designer adding specific objects at exact locations and sizes—CannyEdit is the better option due to
its superior controllability.

To further improve controllability, we plan to introduce local control signals within the edit region
in future work. Currently, CannyEdit relaxes its structural (Canny) control inside the edit region,
meaning that portion of the image is guided mainly by the text prompt. We will explore injecting
additional control inputs into this local area—for example, allowing a user to specify the pose of a
person to add or the depth at which an object is inserted. By incorporating such fine-grained, local
directives, CannyEdit could grant users even more precise control over complex edits.

Another potential limitation of CannyEdit is its reliance on a VLM to provide point hints for editing
in an instruction-based setting. This dependency means the editing quality can be constrained by the
accuracy of the VLM’s inferred output. Fortunately, our approach allows for the training-free use of
leading VLMs, a method we have proven to be effective. Nevertheless, we aim to further explore if
and how we can activate the capabilities of weaker VLMs in combination with CannyEdit to achieve
high-quality edits. One promising direction is the implementation of a two-stage training framework,
beginning with Supervised Fine-Tuning (SFT) and followed by Reinforcement Learning (RL). This
SFT-RL approach would be initiated using “warm-starting” data, which could be from the most
advanced VLMs to provide a strong initial foundation for training their less powerful counterparts.
We intend to explore this methodology in future work.

G REPRODUCIBILITY STATEMENT

We have provided technical details of CannyEdit in the main paper. To ensure the reproducibility of
our experiments and to foster future research, we will release our code and curated benchmark upon
the acceptance of the paper.
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H ETHICS STATEMENT

The image editing technique introduced in this paper offers significant societal benefits. By providing
intuitive tools for image modification, this approach reduces time and expense associated with editing
tasks. This enhanced accessibility democratizes visual content creation, empowering users regardless
of technical expertise.

We emphasize that our approach is a training-free method built on the FLUX.1 [dev] model, which
avoids fine-tuning or custom training that could expand capabilities beyond the base model’s intended
scopes. Therefore, our method inherently relies on the existing safeguards of FLUX.1 [dev].

All referenced data sources and codebases are open-source. In alignment with open science principles,
we will release our code and curated benchmark. License terms of all referenced resources will be
strictly honored during release, ensuring full compliance.

For human evaluations, participants differentiated AI-edited images from real images using general
daily-life samples requiring no expertise and containing no harmful content. Participants received
compensation aligned with local standards.

I STATEMENT ON USAGE OF LLMS

The use of LLMs was focused on two distinct aspects, both detailed below, and their contribution
did not extend to assuming authorship responsibilities or making intellectual contributions to the
conclusions. Firstly, LLMs were employed to polish the descriptive text within certain paragraphs
of the manuscript. This involved assisting with grammatical corrections, improving sentence flow,
and enhancing the clarity of the writing. It is important to emphasize that all substantive academic
content including the research questions, methodological design, analysis of results, and theoretical
discussions, are originated solely from the authors. The LLM acted merely as a tool for language
refinement, ensuring that the presentation of our original ideas was clear and professionally articulated.

Secondly, LLMs played a role in the construction of data samples, specifically in the context of
manipulating the evaluation dataset, RICE-bench. Its curation is introduced in Appendix E. In this
capacity, the model was used to generate the textual prompts that were subsequently employed to
create images for evaluation and analysis. The LLM did not generate the final data or interpret the
results; rather, it assisted in producing the initial structured linguistic inputs required for this specific
technical process.
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