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Abstract

Deep learning(DL) in the medical imaging field suffers from lack of usable data1

compared to natural image because of the private and sensitive nature of medical2

data. Also it is a highly imbalanced data because for almost any disease, medical3

imaging has more patients not having it rather than having it. To address these4

problems, synthetic data generation is considered to be a promising solution. In5

this study, we present Lesion In-aNd-Out Painting (LINOP) to generate synthetic6

medical images for data augmentation. Generative model based on Mask Aware7

Transformer (MAT) architecture was used to synthesize lesions onto normal im-8

age (inpainting) and synthesis outside of lesion area (outpainting). We train and9

validate a lesion inpainting pipeline on mammography dataset and a lesion outpaint-10

ing pipeline on chest X-ray dataset. For mammography, proposed augmentation11

showed up to 30.3% improvements on mass localization in terms of mAP@50, and12

for CXR, up to 10.3% improvements on disease classification in terms of AUROC.13

1 Introduction14

In the middle of the remarkable success of deep learning, there has always been a big, well-defined15

dataset. For instance, ImageNet[1] plays an important role for developing and validating new deep16

learning algorithms in computer vision. It is also true for the medical imaging field. The release of17

multiple, large, publicly available Chest X-ray (CXR) datasets has encouraged research interest and18

boosted the number of publications [2]. This has increased the dialogue among radiologists and data19

scientists, which serves to guide and move the field forward [3].20

However, in most cases, the medical imaging field suffers from lack of usable data compared to natural21

image because of the private and sensitive nature of medical data. Also it is a highly imbalanced22

data because for almost any disease, medical imaging has more patients not having it rather than23

having it. To address these problems in medical data, synthetic data generated from DL models such24

as generative adversarial networks (GAN) is considered to be a promising solution. But generating25

images showing certain types of disease is challenging and difficult to ensure that the imaging feature26

of certain disease has been correctly generated.27

In this study, we present Lesion In-aNd-Out Painting (LINOP) to generate synthetic medical images28

for data augmentation. Using the inpainting method, it is possible to accurately generate a lesion29

of the desired size in the desired location. Also, using the outpainting method, the imaging feature30

of the disease can be clearly preserved. These aspects of inpainting and oupainting approach can31

improve the reliability and controllability of the generated image compared to the generating entire32

images. MAT[4] architecture based generative model was used to synthesize lesions onto normal33

image (inpainting) and synthesis outside of lesion area (outpainting).34
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Figure 1: Example of a lesion inpainting on mammography image. The red arrow indicates the
synthetic mass.

We train and validate a lesion inpainting pipeline on mammography dataset and a lesion outpainting35

pipeline on CXR dataset. For mammography, proposed inpainting augmentation showed up to36

30.3% improvements on mass localization in terms of mAP@50, and for CXR, proposed outpainting37

augmentation showed improvement on 4 class disease classification both on accuracy and AUROC,38

up to 11.2% and 10.3% increases respectively. The example of synthetic data generation process is39

depicted in Figure 140

2 Methods41

2.1 Dataset42

VinDr-Mammo VinDr-Mammo[5] is an a large-scale full-field digital mammography dataset of43

5,000 four-view exams, which are double read by experienced mammographers to provide cancer44

assessment and breast density following the Breast Imaging Report and Data System (BI-RADS).45

Breast abnormalities that require further examination are also marked by bounding box. In this study,46

we used "Mass" only images to train the lesion inpainting model, and "No finding" images to generate47

inpainting results for data augmentation.48

VinDr-CXR VinDr-CXR[6] is an open large-scale dataset of chest X-rays with radiologist’s49

annotations. The published dataset consists of 18,000 postero-anterior view chest x-ray scans that50

come with both the localization of critical findings and the classification of common thoracic diseases.51

These images were annotated by a group of 17 radiologists with at least 8 years of experience for52

the presence of 22 critical findings and each finding is localized with a bounding box. The dataset is53

divided into the training set of 15,000 scans and the test set of 3,000 scans. In this study, we used54

10,478 of "No finding" only images from training set to train the outpainting model, and 4,522 not55

"No finding" images to generate outpainting results for data augmentation.56

2.2 Mask Aware Transformer (MAT)57

To perform realistic-looking inpainting and outpainting, we used a DL-model based on MAT[4]58

architecture. It consists of a convolutional head designed for tokenization, a transformer body that59

extracts information through multi-head contextual attention and window shifting, and a Conv-U-Net60

used for reconstruction. The shifted window enables cross-window connections to conduct non-local61

interactions and the multi-head contextual attention module employs the feature from the partial valid62

tokens. In the original work, non-saturating adversarial loss was adopted to enhance the quality and63

diversity of the texture synthesis. The non-saturating adversarial loss is formulated as,64

LG = −Ex̂ [log (D (x̂))] ,
LD = −Ex [log (D (x))]− Ex̂ [log (1−D (x̂))] ,
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where x and x̂ are the real and generated outputs. In addition, the generator was optimized by65

employing a perceptual loss. The perceptual loss is expressed as66

Lp =
∑
t

si ∥ϕi (x̂)− ϕi (x)∥ ,

where ϕi(·) is the layer activation of pre-trained VGG-19[7] network, with scaling coefficients si.67

3 Results68

The MAT-based LINOP model was trained with VinDr-Mammo and VinDr-CXR dataset separately69

for 1,000 kimgs on 4 NVIDIA V100 GPUs and choosed the checkpoint that shows the best FID score.70

The best FID score for VinDr-Mammo and VinDr-CXR was 6.76 at 840 kimgs and 3.83 at 960 kimgs,71

respectively.72

3.1 Synthetic data generation for mass detection73

We generated synthetic mass onto a normal mammography image using the proposed inpainting74

pipeline. Normal mammography images were fed into the LINOP model trained with VinDr-Mammo75

with masking images. The size and location of the masking area determines the size and location of76

the mass to be generated. The examples with various mask sizes are shown in Figure 2.77

Figure 2: Examples of mass inpainting results with various mask sizes.

To evaluate the effectiveness of inpainting augmentation, mass localization of mammography was78

performed on images crrespoding to normal and mass cases. Cascade R-CNN was trined for object79

detection, and original VinDr-Mammo data was randomly split it to 80% training, 10% validation and80

10% test set, and the 976 inpainting data was used as training data. Table 1 shows the experimental81

results of original only baseline and proposed inpainting augmentation for different portions of data82

used. Proposed augmentation showed improvement on mAP@50, up to 30.3% increases.83

Table 1: Mass localization performance of original only and proposed inpainting augmentation.

Dataset mAP@50

Baseline 0.228
+ 50% of inpainting augmentation 0.2814
+ 100% of inpainting augmentation 0.297

3.2 Synthetic data generation for disease classification84

We also generated synthetic abnormal chest x-ray images using the proposed outpainting pipeline.85

Chest X-rays with abnormal findings were fed into the LINOP model trained with VinDr-CXR with86

masking images. For outpainting, the masking area is where the abnormal finding is, so the generated87

image also contains the information of abnormal findings from original images while changing the88

other areas which have no information of abnormal findings. The example of this outpainting process89

is shown in Figure 3.90
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Figure 3: Examples of the proposed outpainting pipeline on chest X-ray image. (A) shows outpainting
process of pleural effusion case and (B) shows outpainting process of pneumonia case.

To evaluate the effectiveness of outpainting augmentation, 4 class classification of CXR was performed91

on images corresponding to normal, pleural effusion, pneumothorax and pneumonia among the total92

data. Densenet121 was trained for classification and original VinDr-CXR data was randomly split93

it to 80% training, 10% validation and 10% test set, and the outpainting data was used as training94

data. Table 2 shows the experimental results of original only baseline and proposed outpainting95

augmentation for different portions of data used, from 100% to 12.5%. For all portions, proposed96

augmentation showed improvement both on accuracy and AUROC, up to 11.2% and 10.3% increases97

respectively.98

Table 2: Classification performance of original only and proposed augmentation for different portions
of dataset used.

Portion of dataset used: 100% 50% 25% 12.5%
Baseline Accuracy 0.8113 0.7506 0.723 0.661

AUROC 0.933 0.8845 0.8387 0.8023
Outpainting Accuracy 0.8571 0.8349 0.7912 0.7102

augmentation AUROC 0.9638 0.9528 0.9255 0.8619

4 Conclusion99

In this study, We present the LINOP model, lesion inpainting and outpainting model for medical100

image data augmentation. We generated lesion inpainting results using mammography data with101

mass and outpainting results with CXR data with various abnormal findings. Using the proposed102

method, it is possible to accurately generate a lesion of the desired size in the desired location or keep103

the imaging feature of the disease. This approach can improve the reliability and controllability of104

the generated image compared to the generating entire images, and is expected to further improve105

the quality of synthetic data for data augmentation. Further studies on more modalities of medical106

images and lesions, as well as studies verifying the data augmentation effect of generated images,107

should be conducted.108
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