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ABSTRACT

Masked Image Modeling (MIM) is a powerful self-supervised strategy for visual
pre-training without the use of labels. MIM applies random crops to input images,
processes them with an encoder, and then recovers the masked inputs with a de-
coder, which encourages the network to capture and learn structural information
about objects and scenes. The intermediate feature representations obtained from
MIM are suitable for fine-tuning on downstream tasks. In this paper, we propose
an Image Modeling framework based on random orthogonal projection instead of
binary masking as in MIM. Our proposed Random Orthogonal Projection Image
Modeling (ROPIM) reduces spatially-wise token information under guaranteed
bound on the noise variance and can be considered as masking entire spatial im-
age area under locally varying masking degrees. Since ROPIM uses a random
subspace for the projection that realizes the masking step, the readily available
complement of the subspace can be used during unmasking to promote recovery
of removed information. In this paper, we show that using random orthogonal
projection leads to superior performance compared to crop-based masking. We
demonstrate state-of-the-art results on several popular benchmarks.

1 INTRODUCTION
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Figure 1: Training efficiency of ROPIM vs. other
methods. ROPIM achieves a higher accuracy (see
also LGP-ROPIM) with a lower training time. The
blue and yellow regions indicate fast methods and
high-accuracy methods, respectively. ROPIM has
both high accuracy and is fast (the green region).

Masked Image Modeling (MIM) (Bao et al.,
2022; He et al., 2022; Xie et al., 2022)
has achieved promising performance by pre-
training backbones that are then fine-tuned on
different downstream tasks such as image clas-
sification or semantic segmentation.

Most MIM techniques follow the general
paradigm of self-prediction, i.e., they ran-
domly mask out some regions in the input data
and then learn to recover the missing data.
Current MIM methods (Bao et al., 2022; He
et al., 2022; Xie et al., 2022) mainly apply
masking in the spatial domain by randomly ex-
cluding image patches. Since raw image pixels
are highly correlated within their spatial neigh-
bourhood, a high masking ratio (60%-75%)
leads to high quality features (He et al., 2022; Xie et al., 2022).

Existing MIM approaches typically replace a random set of input tokens with a special learnable
symbol, called MASK, and aim to recover either masked image pixels (He et al., 2022; Xie et al.,
2022), masked content features (Wei et al., 2022) or latent representations (Baevski et al., 2022).
This additional learnable MASK token is applied over large masked areas, up to 75% of image (He
et al., 2022), and is not used in the fine-tuning stage (Fang et al., 2023).

In this paper, we propose a new Random Orthogonal Projection Image Modeling (ROPIM) pre-
training framework, which uses a simple projection strategy with provable noise bounds due to the
loss of information. ROPIM is based on orthogonal projection (Charikar et al., 2002) which is
applicable to raw pixels and latent feature representations. Figure 1 compares the top-1 accuracy

*Corresponding authors. ††MH conducted this work during the employment with CSIRO. PK also in
charge of the theory. The code is available at https://github.com/csiro-robotics/ROPIM.
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Figure 2: Our proposed Random Orthogonal Projection Image Modeling (ROPIM) vs. Masked Im-
age Modeling (MIM). MIM in Fig. 2a performs masking on patches of an input image, passed to the
backbone, followed by unmasking. Our ROPIM in Fig. 2b performs the orthogonal projection of
patch embeddings onto a random subspace, passed to the backbone, followed by application of the
complement of orthogonal projection. Thus, the loss focuses on the recovery of the lost information.

vs. total pre-training (PT) time with sate-of-the-art SSL methods. ROPIM achieves higher accuracy
while requiring significantly less total pre-training time. Total PT time is calculated as time per
epoch multiplied by number of epochs. For fair comparisons, the reported times in Figure 1 are
derived from the use of the same resources (8×P100 GPUs) and maximum possible batch size per
GPU for each method. More details are discussed in Table 5 of Appendix A.

MIM ROPIM

Figure 3: For MIM, unmasked parts of the recov-
ered image, combined with the masked parts do ap-
proximate the input image. Our tokens, randomly
projected and complement of the projection (equiv-
alent of unmasking) along spatial modes, also ap-
proximately recover the input when added together.

Figure 2 shows our ROPIM approach. Our
framework does not require a separate tok-
enizer network as in BEiT (Bao et al., 2022)
and CIM (Fang et al., 2023) or a large de-
coder that requires additional computations.
Figure 3 shows that no matter whether an in-
put image is randomly masked or projected
to an orthogonal subspace, the network is en-
couraged to recover its complement. Adding
masked/projected image to its complement
subspace has to approximate the original image. ROPIM projects the features of patch embed-
dings along their spatial mode into a random subspace. Subsequently, we use the complement of
this random subspace to guide the loss function to recover the removed information. We apply Ran-
dom Orthogonal Projection (ROP) at the token level, hence the imposed computation overhead is
negligible. We note that our proposed approach does not require MASK tokens.

Figure 4: Left to right: original image, masking,
unmasking, ROP, complement of ROP. Notice the
“continuous” masking nature of ROP and comple-
ment of ROP.

Figure 4 compares visually binary masking
in MIM with Random Orthogonal Projection
(ROP). Compared with ROP, binary mask-
ing creates limited number of patterns, e.g.,
for 4 tokens one gets 24 masking and un-
masking patterns only. Such a randomness
is limited–the network cannot learn to recover
from masking patterns that never occurred. In
contrast, ROP is a linear interpolation between
several tokens. Thus, it can be considered as a
“continuous” masking where multiple locations are combined into a coefficient by the projection
pattern. Since this “combination” is achieved by the projection matrix, we readily have the com-
plement space needed for recovery of the removed information via a lightweight projection step.
Hence, the network learns faster (Fig. 1) as it is challenged by richer masking-unmasking patterns.
Moreover, ROP is a form of randomized data corruption, or rather a lossy projection step with a
guaranteed bound on the noise variance it introduces. In contrast, binary masking in MIM methods
is prone to remove crucial image regions, potentially resulting in performance degradation (Li et al.,
2021), especially when high masking ratio is applied. Injecting a bounded noise is hence critical to
learn semantically meaningful features.

Our contributions can be summarized as follows:

i. We propose ROPIM, a simple but effective image modeling based on the so-called count sketch-
ing, with the aim of reducing local semantic information under the bounded noise variance.

ii. In contrast to the binary masking (MIM), ROP forms “continuous” masking by a known pro-
jection matrix which has an easily-obtainable complement space matrix, which we use in the
reconstruction loss to guide the recovery of the removed input information.
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iii. We propose to project patch tokens along their spatial mode into a random subspace, which is
computationally negligible, enjoying the high throughput of MIM methods.

Our results show that proposed “continuous” masking/unmasking strategy creates a rich model with
less pre-training cost, without the use of an auxiliary network, large decoder or a tokenizer.

2 RELATED WORK

Transformers (Vaswani et al., 2017), popular in natural language processing (BERT (Devlin et al.,
2018) and GPT-3 (Brown et al., 2020)), capture attention between tokens. Image Transformers (Par-
mar et al., 2018) and Vision Transformers (ViT) (Dosovitskiy et al., 2021) also achieve persuasive
results in supervised and unsupervised learning on large-scale datasets. ViT inspired data-efficient
models such as DeiT (Touvron et al., 2021), self-supervised DINO (Caron et al., 2021b), CrossViT
(Chen et al., 2021a), and general-purpose architectures such as Swin-T (Liu et al., 2021b) and Twins
(Chu et al., 2021). Kindly notice, in this work, we do not propose new transformers.

Self-supervised Learning (Liu et al., 2021a) is essential for data hungry architectures with trans-
formers. The lack of labels has led the vision community to study self-supervised learning based on
contrastive or generative setting. Many self-supervised models use pretext tasks (Liu et al., 2021a).
Generative techniques such as Denoising AutoEncoder (DAE) (Vincent et al., 2008) inject noise into
the input data and train a network with a bottleneck to recover the original input. Many methods
build on DAE under different corruption strategies, e.g., masking pixels or removing color chan-
nels. Contrastive models such as DINO and MoCo v3 (Caron et al., 2021a; Chen et al., 2021b)
use data augmentations to generate different image views, pull positive feature pairs while pushing
away negative pairs. BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021b) eliminate negative
sampling and prevent dimensional collapse. COSTA (Zhang et al., 2022) eliminates multiple views.
Finally, COLES (Zhu et al., 2021), EASE (Zhu & Koniusz, 2022a) and GLEN (Zhu & Koniusz,
2022b) introduce the negative sampling into Laplacian Eigenmaps.

Masked Image Modeling (MIM) techniques (Bao et al., 2022; He et al., 2022; Xie et al., 2022)
learn representations from images corrupted by masking. Inspired by success in transformer-based
masked language modeling (Devlin et al., 2018), Dosovitskiy et al. (Dosovitskiy et al., 2021) ex-
plored the prediction of masked image patches for self-supervision for visual data. Recent works
(Bao et al., 2022; He et al., 2022; Xie et al., 2022; Baevski et al., 2022; Wei et al., 2022) use MIM
with a transformer-based architecture (Vaswani et al., 2017) and various objective functions.

Most MIM methods (Bao et al., 2022; He et al., 2022; Xie et al., 2022; Baevski et al., 2022; Wei et al.,
2022; Mishra et al., 2022) use masking in the spatial domain by randomly excluding image patches
or tokens. MAE (He et al., 2022) and SimMIM (Xie et al., 2022) recover masked raw pixels. BEiT
(Bao et al., 2022) uses a discrete VAE (dVAE) network to transform image patches to visual tokens.
During pre-training, the semantic tokens are recovered. However, BEiT requires an additional dVAE
network to be pre-trained on patches. iBOT (Zhou et al., 2022) uses a teacher network online
tokenizer and performs self-distillation on masked patch and class tokens. Data2vec (Baevski et al.,
2022) uses a teacher-student framework to reconstruct latent representations. MaskedFeat (Wei
et al., 2022) recovers Histograms of Oriented Gradients. Tian et al. (Tian et al., 2022) use different
learning objectives for image degradation, including zoom-in, zoom-out, fish-eye distortion, blur
and de-colorization. MFM (Xie et al., 2023) uses Fast Fourier Transform for masked frequency
modeling. Recent approaches CAN (Mishra et al., 2022) and LGP (Jiang et al., 2023) combine
Contrastive Learning (CL) with MIM for due to their complementarity. LGP (Jiang et al., 2023)
implements layer grafted pre-training in a sequential fashion. Corrupted Image Modeling (CIM)
(Fang et al., 2023) uses an auxiliary generator with a trainable BEiT network to corrupt images
in a better way than artificial MASK tokens. Similar to BEiT, CIM requires an additional dVAE
network–its pre-training per epoch is 2× slower than BEiT (Fang et al., 2023).

Our ROPIM differs from the above models: (i) we do not mask patches, but perform projection onto
a random subspace along the spatial mode of tokens, (ii) we do not perform unmasking, but use the
complement of the subspace to support the loss of ROPIM in recovering the removed information.

Count Sketching is a widely used unsupervised dimensionality reduction technique (Weinberger
et al., 2009; Cormode & Muthukrishnan, 2005). Several variants of count sketching have been pro-
posed in the literature, including Count-Min Sketch (Cormode & Muthukrishnan, 2005). However,
the core concept is based on capturing a small sketch of the data with a random projection function.
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3 APPROACH

Figure 5: Understanding the projection of ϕ on the
unitary projection matrix P (subspace), given as
Pϕ, and its retraction given as ϕ′ =P†Pϕ. Pro-
jection matrix P̄ (subspace) complementary to P
is also indicated. Vector ϕ projected on P̄ and then
retracted from it is given as ϕ′′= P̄†P̄ϕ. Notice
that ϕ′+ϕ′′=ϕ. The lossy nature of this projection
occurs when P†P+ P̄†P̄ ̸= I, i.e., not the full di-
agonal matrix is recovered.

Below, we detail our ROPIM pipeline. Firstly,
we explain our notations and ROP. Then,
we introduce our problem formulation and
ROPIM pipeline.

3.1 PRELIMINARIES

Notations. Let x ∈ Rd be a d-dimensional
feature vector. IN stands for the index set
{1, 2, · · · , N}. We define 1= [1, ..., 1]

T (‘all
ones’ vector). Capitalised bold symbols such
as Φ denote matrices, lowercase bold symbols
such as ϕ denote vectors, and regular fonts de-
note scalars e.g., Φi,j , ϕi, n or Z. Φi,j is the
(i, j)-th entry of Φ. Symbol δ(x)=1 if x=0,
δ(x) = 0 if x ̸= 0, and I is the identity ma-
trix. Operator ∥·∥1 on matrix is the ℓ1 norm of
vectorised matrix.
Proposition 1. Let K and K ′ be the sizes of the input and the projected output. Let vector h∈IK

K′

contain K uniformly drawn integer numbers from {1, · · · ,K ′} and vector s ∈ {−1, 1}K contain
K uniformly drawn values from {−1, 1}. The projection matrix P ∈ {−1, 0, 1}K′×K is given as
Pij(h, s)=sj ·δ(hj−i) and the projection Π : RK→RK′

is a linear operation Πh,s(ϕ)=P(h, s)ϕ
(or simply Π(ϕ)=Pϕ).

Following are properties of count sketches we utilize in our work:
Property 1. The inner product of count sketches is an unbiased estimator. Specifically, we
have Eh,s

[
⟨Πh,s(ϕx),Πh,s(ϕy)⟩ − ⟨ϕx,ϕy⟩

]
= 0 with variance bounded by 1

K′ (⟨ϕx,ϕy⟩2 +
∥ϕx∥22∥ϕy∥22).

Proof. See Weinberger et al. (Weinberger et al., 2009) for proof.

Property 2. The unitary projection matrix P enjoys a simple pseudo-inverse P†= K′

K PT.

Proof. The transpose for inverse follows from the fact that P is constructed as a unitary matrix.

Property 3. The distance of vector ϕ to subspace P is given as ∥ϕ−P†Pϕ∥2. Thus ϕ′=P†Pϕ is
the vector with the removed information resulting from the lossy operations: (i) projection of ϕ on
subspace P followed by (ii) retraction from the subspace into the original feature space.

Proof. These relations follow from Grassmann feature maps of subspaces (Harandi et al., 2015).

Property 4. As the complement of P†P is I−P†P, the distance of ϕ to the complement basis of
subspace P is ∥P†Pϕ∥2. Thus ϕ′′=(I−P†P)ϕ is a vector complementary to ϕ′, i.e., ϕ′+ϕ′′=ϕ.

embedding sketching

CLS PE
trasnsf.
blocks

complementdecoderdownstream task
The ROPIM pipeline. sketching

Figure 6: Overview of the Random Orthogonal Projection Image Modeling (ROPIM) pipeline. An
image is divided into patch tokens, and embedded. Sketching matrix P∼P is drawn and ROP (with
its inverse) is applied to embeddings Φ. Subsequently, Φ′ is passed through transformer f(·). Op-
erator ⊕ is an addition. CLS and PE are the class token and positional embedding. Finally, decoder
(only one linear projection layer) and the reconstruction loss which targets the inverse projection,
are applied. Once ROPIM is trained, we use Ψ as feature representations for the downstream task.
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Figure 7: (top) Comparison of errors of ROP by sketching vs. masking. 5000 images (normalized in
range [0, 1]) randomly sampled from CIFAR10 were divided each into 16 × 16 tokens. Sketching
ratio ρ= .25 was applied which corresponds to masking ratio 1−ρ = .75. Fig. 7a shows histogram-
binned ℓ1 errors (green) computed between tokens in X and their sketch projected-retracted lossy
versions P†PX. The ℓ1 errors (red) between tokens in X and the masked versions are shown.
As is clear, masking produces many locations with zero error. In contrast, sketching introduces
some errors to every token. Fig. 7b shows histogram counts of tokens for which the reconstruction
error was greater than 0.1. Clearly, sketching modified more regions than masking. Fig. 7c is
as 7a but the reconstruction error of each token is normalized by the number of tokens in image
with error greater than 0.1. Clearly, sketching introduces lesser error per token but modifies plenty
more spatial locations than masking, which explains why ROP is superior to masking. (bottom) The
same analysis for complement sketching and unmasking. Fig. 7d, 7e and 7f again show that ROP
operates on more regions spatially-wise than unmasking. Unlike other operations, ROP enjoys an
easy complement sketching in analogy to unmasking.

Figure 5 illustrates the essence of Properties 3 & 4. Projection onto P is a lossy operation whose
lost information is quantified by the bounded noise variance in Property 1. The same applies to
projection onto P̄, i.e., the complement of P. Figure 7 shows errors computed on 16×16×5000
image tokens (CIFAR10). Unlike masking/unmasking, ROPIM “soft-masks” & “soft-unmasks”
more tokens at once by principled operations with bounded reconstruction errors.

3.2 PROBLEM FORMULATION

We employ the standard vision transformer (Dosovitskiy et al., 2021) for our Random Orthogonal
Projection Image Modelling (ROPIM). Figure 6 provides an overview of the ROPIM pipeline.

Algorithm 1 Random Orthogonal Projection Im-
age Modeling (ROPIM).

Input Dtrain: training dataset; τ : iterations; ρ:
sketching ratio; set K ′=ρK.
for t = 1, · · · , τ do

X∼Dtrain (draw an image with tokens)
P∼P(K ′) (draw proj. matrix (Propos. 1))
Update the main network branch by Eq. (4):
argmin

Θ∗
Lrec(X;Θ∗,P)

end for

For an image with dimensions H ×W × C
representing height, width, and the number of
channels, we extract a series of 2D patches, re-
shape them into vectors, and stack into a ma-
trix X ∈ RN×(P 2·C), where P×P is the patch
size, and N is the number of patches extracted
with the goal of forming patch embeddings.
Patch embeddings are obtained as:

Φ = XW, (1)

where W ∈ R(P 2·C)×D is the linear projec-
tion matrix used to obtain the matrix of em-
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beddings Φ ∈ RN×D. In MIM, a random portion of the input patch embeddings are replaced with
a MASK token, and then a network is trained to recover the masked patches.

In this paper, instead of patch-wise masking, we apply ROP with the sketching ratio ρ= K′

K which
determines the lossy effect on projected embeddings. We apply the ROP operation along the spatial
mode of the matrix of embeddings. Specifically, we perform the projection matrix followed by
retraction, as explained in Property 3:

Φ′= P†PXW, (2)

where P is the unitary projection matrix with a trivial pseudo-inverse (Property 2). Matrix Φ′

contains our projected embeddings of patches. Note Φ′∈RN×D & Φ∈RN×D have the same size.

Then we add the class token and positional embeddings Φ′, and we pass Φ′ into the transformer,
i.e., Ψ = f(Φ′). We use a linear prediction head to reconstruct the raw pixel values via the ℓ1 loss.
Specifically, we apply:

X
∼∼
= (I−P†P)f(Φ′)W∗, (3)

where W∗∈RD×(P 2·C) is the output linear projection, and (I−P†P)Ψ is the complement map of
P†P (Property 4) which explicitly promotes the recovery of the removed input information. Figure
8 illustrates the effects of Eq. (2) & (3) on images and patches within. We skip W & W∗ for clarity.

input image after sketching after comple-
ment sk. 

after sketching after comple-
ment sk. 

Figure 8: The effect of ROP on images sam-
pled from ImageNet (first column). Second/fourth
columns: images after applying Eq. (2) with W=
I, i.e., P†PX (sketching ratio ρ= .5 and ρ= .75 re-
spectively). Third/fifth columns: images after ap-
plying the complement of Eq. (2), i.e., (I−P†P)X
(for ρ = .5 and ρ = .75 respectively). Notice that
adding images in columns two and three (or four
and five) recover the original images.

Combining the above steps from Eq. (2) and
(3), we obtain the ROPIM pipeline:

Lrec(X;Θ∗,P) = ∥(I−P†P)(X−X̃)∥1, (4)

X̃=fΘ(P†PXW)W∗. (5)

Notice that X
∼∼
=(I−P†P)X̃ but we move the

complement ROP (with its inverse), I−P†P,
into Eq. (4) as the complement ROP (with its
inverse) has to be also applied to X in order to
promote only the recovery of lost information.
Lrec(X;Θ∗,P) is the reconstruction loss we
minimize w.r.t. Θ∗ ≡ {Θ,W,W∗}, that is,
network parameters Θ, and linear projection
matrices W and W∗. Notice that X̃ depends
on several arguments, i.e., X̃ ≡ X̃(X;Θ∗,P)
but we drop them in subsequent equations for
brevity.

ROPIM is given by Alg. 1. We skip mini-
batch level operations for simplicity. Note that
for each image sample, we draw a new pro-
jection matrix P according to Proposition 1
and then we simply minimize the reconstruc-
tion loss from Eq. (4).

4 EXPERIMENTS

4.1 DATASETS

We perform self-supervised pre-training on ImageNet-1k (Russakovsky et al., 2015). For further
ablation studies we use ImageNet100 (Tian et al., 2020) to pre-train a smaller variant of ViT. We
also use iNaturlaist 2017 (Van Horn et al., 2018) classification dataset and ADE20k segmentation
dataset (Zhou et al., 2019) for large-scale networks and datasets evaluations. Flowers102 (Nilsback
& Zisserman, 2008), CUB-200 (Wah et al., 2011) and CIFAR10/100 are used for evaluation of
smaller scale experiments discussed in Appendix B, Table 6.

ImageNet-1K (Russakovsky et al., 2015) used by us is ILSVRC-2012 with 1k classes and 1.3M
images. ADE20K (Zhou et al., 2019) is a semantic segmentation dataset including 150 semantic
categories, 20K training images, 2K validation images, and 3K images for testing. iNaturalist 2017
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(iNat17) dataset (Van Horn et al., 2018) contains images from 5089 fine-grained categories of differ-
ent species of plants and animals. Those categories are annotated with 13 super-categories including
579,184 training images and 95,986 validation images. CIFAR10/CIFAR100 (Krizhevsky et al.,
2009) consists of 50K and 10K training and testing images of resolution 32×32 from 10 and 100
classes respectively. ImageNet100 is a subset of ImageNet Large Scale Visual Recognition Chal-
lenge 2012. It contains random 100 classes proposed by Tian et al. (Tian et al., 2020). ImageNet100
train and validation sets contain 1300 and 50 images per class, respectively.

4.2 EXPERIMENTAL SETTINGS Table 1: Top-1 classification accuracy on ImageNet-1k. ∗BEiT
and CIM need an additional stage to pre-train dVAE tokenizer.

Method Backbone Pre-training
epochs

Fine-tuning
Top1 acc %

Supervised (Touvron et al., 2021) ViT-B/16 81.8
DINO (Caron et al., 2021a) ViT-B/16 1600 82.8
MoCo v3 (Chen et al., 2021b) ViT-B/16 600 83.2
BEiT∗ (Bao et al., 2022) ViT-B/16 300 (+dVAE) 82.9
BEiT∗ (Bao et al., 2022) ViT-B/16 800 (+dVAE) 83.2
MAE (He et al., 2022) ViT-B/16 800 83.1
MFM (Xie et al., 2023) ViT-B/16 300 83.1
CIM-RESPIX∗ (Fang et al., 2023) ViT-B/16 300 (+dVAE) 83.3
CIM-REVDET∗ (Fang et al., 2023) ViT-B/16 300 (+dVAE) 83.3
ROPIM ViT-B/16 300 83.5
ROPIM ViT-B/16 500 83.7
ROPIM ViT-B/16 800 84.0
Supervised (Touvron et al., 2021) ViT-S/16 79.9
DINO (Caron et al., 2021a) ViT-S/16 1600 81.5
MoCo v3 (Chen et al., 2021b) ViT-S/16 600 81.4
BEiT∗ (Bao et al., 2022) ViT-S/16 300 (+dVAE) 81.3
CIM-RESPIX∗ (Fang et al., 2023) ViT-S/16 300 (+dVAE) 81.5
CIM-REVDET∗ (Fang et al., 2023) ViT-S/16 300 (+dVAE) 81.6
ROPIM ViT-S/16 300 81.8
ROPIM ViT-S/16 500 82.0

We conduct our experiments
on ImageNet-1k with ViT-Base
(ViT-B) and ViT-Small (ViT-S)
(Dosovitskiy et al., 2021). For
further ablation studies we use
ViT-Tiny (ViT-T) (Dosovitskiy
et al., 2021) which includes 12
layers, 3 heads and embedding
size 192 and a total 5.6M num-
ber of parameters. The patch size
of all ViT models is 16×16 in-
dicated by ‘/16’ In all of our
experiments we use relative po-
sitional embedding (Dosovitskiy
et al., 2021).

We train our models using
AdamW optimizer, a weight
decay of 0.05, β1 = 0.9, β2 =
0.95, and a cosine learning rate
scheduler. ViT-B and ViT-S are
pre-trained with an initial 10 epochs linear warm-up procedure and a batch size of 1520. For
ROPIM, sketching ratio ρ= 1

7 is used unless otherwise mentioned.

After pre-training, we evaluate our models on image classification and segmentation benchmarks
with end-to-end fine-tuning. Detailed hyperparameters are available in Appendix D. DAE represen-
tations, e.g. MIM, are strong nonlinear features and perform well when a nonlinear head is tuned
(He et al., 2022). On the other hand, linear probing results of contrastive SSL methods are not well
correlated with their transfer learning performance (Chen & He, 2021a). Therefore, similar to prior
work (Fang et al., 2023; He et al., 2022; Xie et al., 2022) fine-tuning results are the main focus of
this paper.

BASELINES

We compare our ROPIM against several state-of-the-art self-supervised pre-training methods in-
cluding DINO (Caron et al., 2021a), MoCo v3 (Chen et al., 2021b), BEiT (Bao et al., 2022), MAE
(He et al., 2022), MFM (Xie et al., 2023) and CIM (Fang et al., 2023). We also included models
trained in a supervised setting, denoted as “Supervised”, where a classification or segmentation head
is used for training. Notice that the “Supervised” baselines do not use the image decoder.

4.3 COMPARISON TO THE STATE OF THE ART

Table 1 shows the comparison of our ROPIM method with the current self-supervised pre-training
approaches on ImageNet-1k. For a fair comparison, the results are reported for a similar backbone,
i.e. ViT-B or ViT-S. Using ViT-B, our approach achieves a top-1 classification accuracy of 83.5% and
83.7% for 300 and 500 pre-training epochs respectively, outperforming all other baselines without
requiring an additional dVAE training to be used as the tokenizer network or a large decoder.

7



Published as a conference paper at ICLR 2024

4.3.1 TRANSFER LEARNING Table 2: Top-1 class. acc. of iNaturalist17, CIFAR10 & CI-
FAR100 by fine-tuning pre-trained ViT-B/16 (ImageNet-1K).

Method Dataset Pre-training
epochs

Fine-tuning
Top1 acc %

Supervised (He et al., 2022) iNaturalist17 68.7
MAE (He et al., 2022) iNaturalist17 1600 70.5
ROPIM iNaturalist17 300 71.3
MAE (He et al., 2022) CIFAR10 1600 97.0
BEiT (Bao et al., 2022) CIFAR10 800 96.1
ROPIM CIFAR10 300 97.6
MAE (He et al., 2022) CIFAR100 1600 82.5
BEiT (Bao et al., 2022) CIFAR100 800 80.0
ROPIM CIFAR100 300 85.7

To evaluate the pre-trained
models for transfer learning1,
we study the performance of
our pre-trained ViT-B model
on two large-scale classification
and segmentation datasets, i.e.
iNaturlaist 2017 and ADE20K.

Classification. Table 2 shows the
classification accuracy of iNat-
uralist 2017, CIFAR10 and CI-
FAR100 when fine-tuning the
model pre-trained on ImageNet-
1k. Compared to the reported accuracy in MAE (He et al., 2022) with the same backbone, i.e.
ViT-B/16, pre-trained for 1600 epochs, we achieve +.8%, +.6% and 3.2% improvement for iNatu-
ralist, CIFAR10 and CIFAR100, respectively, while using a model pre-trained for 300 epochs only.

Table 3: ADE20K semantic segmentation (mIoU) using Uper-
Net (Xiao et al., 2018). (Baselines from MAE (He et al., 2022).)

Method Backbone Pre-training
epochs

Fine-tuning
mIoU

Supervised (He et al., 2022) ViT-B/16 - 47.4
BEiT (He et al., 2022) ViT-B/16 800 47.1
MoCo v3 (He et al., 2022) ViT-B/16 300 47.3
MAE (He et al., 2022) ViT-B/16 1600 48.1
ROPIM ViT-B/16 300 48.5

Semantic segmentation. The ef-
ficiency of our proposed ROPIM
for transfer learning on a segmen-
tation task is presented in Table
3. Following (He et al., 2022;
Xie et al., 2022), we run exper-
iments on ADE20K using Uper-
Net (Xiao et al., 2018). Ta-
ble 3 shows that our pre-training
improves results over supervised
pre-training, tokenizer-based BEiT, and MAE approaches with less pre-training time.

input image after sketching predicted comple-
ment sk. 

reconstructed
image

Figure 9: The effect of ROP on images sampled
from ImageNet (first column) and patches within.
Second column: images after applying Eq. (2) with
W=I, i.e., P†PX (sketching ratio ρ= .25). Third
column: images after recovering the complement
of Eq. 5, i.e., (I−P†P)fΘ(·)W∗. Fourth column:
reconstructed images (second and third columns
added).

For ADE20K segmentation we use an AdamW
optimizer, a weight decay of 0.05, a batch size
of 16, and a grid search for learning rate. All
models are trained for 160K iterations with an
input resolution of 512×512. Following (Bao
et al., 2022; Xie et al., 2022) we initialized the
segmentation models using model weights af-
ter supervised fine-tuning on ImageNet-1K.

4.4 VISUALIZATION

Figure 9 displays sample images, their
sketched images2, the predicted images af-
ter complement count sketching3 and the fi-
nal reconstructed images as “sketched im-
age+predicted complement-sketched image”.
Note that sketched image is the available data
sent to the network. The visible regions rep-
resent non-removed information, whereas the
corrupt parts are regions where the lossy na-
ture of sketching removed information. In a
similar way, the predicted complement space
can be seen as information predicted by the
network, which was removed from the input

1SSL methods call pre-training and fine-tuning on separate datasets as transfer learning (Grill et al., 2020;
Caron et al., 2021a; He et al., 2022).

2By “sketched image”, we mean ROP was applied along the spatial mode, followed by inverse ROP.
3By complement sketching, we mean that we applied the complement of the chosen random projection

along the spatial mode, followed by its inverse.
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image. As can be seen, combining sketched images with the corresponding recovered complement-
sketched images produce the reconstructed images which are visually very close to the original
images. The advantage of using ROP is that, as a lossy projection, it is well characterized by the
noise variance (the lost information is characterized by the bound on the noise variance). At the
same time, the complement of the random subspace enables the recovery of the lost information.

4.5 FURTHER EXPERIMENTS
AND ABLATION STUDIES

Table 4: Top-1 classification acc. on Ima-
geNet100. ∗BEiT tokenizer trained on ImageNet-
1K, N/A to other methods.

Method Backbone Fine-tuning
Top1 acc %

DINO (Caron et al., 2021a) ViT-T/16 84.60
MoCo v3 (Chen et al., 2021b) ViT-T/16 82.58
BEiT∗ (Bao et al., 2022) ViT-T/16 85.32
MAE (He et al., 2022) ViT-T/16 82.58
SimMIM (Xie et al., 2022) ViT-T/16 85.08

Supervised ViT-T/16 82.52

ROPIM, ℓ1 loss ViT-T/16 86.43
ROPIM, ℓ2 loss ViT-T/16 86.70

To conduct further experiments and ablation
studies, in addition to ViT-S and ViT-B, we
train a smaller variant of ViT, ViT-T with Ima-
geNet100. ViT-T is pre-trained for 800 epochs
with a batch size of 512. The “Supervised”
results for ViT-T are obtained by training the
model from scratch with random initialized
weights for 800 epochs and a grid search for
best performing base learning rate. We apply
all data augmentation policies used during our
fine-tuning for “Supervised” training.

Table 4 shows performance of our implementation of pre-training and fine-tuning baselines on Ima-
geNet100 dataset with ViT-T as backbone. Note for pre-training on ImageNet100 we had to use the
tokenizer trained on ImageNet-1k to report BEiT (Bao et al., 2022) results. Thus, the BeiT result in
this case are for reference only. For a fair comparison with other methods using ViT-T, we followed
the procedure in (He et al., 2022; Xie et al., 2022) where a grid search for the same set of hyper-
parameters is applied for all methods (Bao et al., 2022). For all baselines we run both pre-training
and fine-tuning with their default (best performing) setup.

Sketching ratio ρ. Table 9 of Appendix C shows an ablation study on different values of ρ for
different backbones and datasets. We observed that ρ = 1

7 achieves the highest performance and
hence this value was used for all experiments unless otherwise mentioned.

Increasing number of pre-training and fine-tuning epochs. Table 1 shows a consistent im-
provement in performance of ROPIM for ImageNet-1k when increasing the number of pre-training
epochs. Top-1 accuracy for ImageNet100 with varying number of pre-training and fine-tuning
epochs are shown in Tables 7 and 8 of Appendix C.

The final gist. Consider a masking problem with just 2 tokens. For standard binary masking, in total
there are 22 unique masking patterns. Assuming 50% masking ratio, that just limits patterns to mere
2. However, if masking has more “continuous” nature (e.g., as ROPIM), one can get for example
{0%, 25%, 50%, 75%, 100%} of original energy preserved per token, which gives 52 unique mask-
ing patterns. Under 50% masking ratio (assuming it equals to 50% lost information), that yields
(0%, 100%), (25%, 75%), (50%, 50%), (75%, 25%), (100%, 0%) pattern pairs (5 in total). ROPIM
has a similar effect to this toy example, but in addition (i) it provides complementary “unmasking”
patterns (ii) with bounded/known variance for the implicitly injected noise as per Properties 1–4.

5 CONCLUSIONS

We have presented Random Orthogonal Projection Image Modeling (ROPIM), a self-supervised pre-
training method for Vision Transformers (ViT). Compared to the popular MIM techniques, ROPIM
applies count sketching to project features of patch embeddings along their spatial mode into a ran-
dom subspace (formed according to the sketch matrix principles) and subsequently retracts them
from the subspace into the original feature space. ROPIM incurs minimal computational over-
heads while providing richer masking-unmasking patterns with a guaranteed bounded variance of
the noise, e.g., we can “touch” more tokens spatially-wise than masking to create richer masking
patterns. We quantify how much we corrupt these tokens and we have a theoretically guaranteed
“unsketching” mechanism in analogy to unmasking. ROPIM does not require customized architec-
ture designs, heavy decoders, or tokenizer networks. We hope ROPIM can inspire further research
devoted to improving corruption strategies for self-supervised network pre-training.
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ABSTRACT

Below we include remaining experiments and details of our proposed Random Or-
thogonal Projection Image Modeling (ROPIM). Appendix A presents a compara-
tive analysis of the training cost of ROPIM in contrast to state-of-the-art methods.
In Appendix B, we delve into additional experiments related to transfer learning
with smaller-scale datasets. Appendix C includes ablation studies on the sketch-
ing ratio and the effects of varying pre-training and fine-tuning epochs. Detailed
discussion on pre-training and fine-tuning settings are included in Appendix D.
Additional works are discussed in Appendix E.

A RUNTIMES

Figure 1 compares top-1 accuracy vs. total pre-training (PT) time with SOTA methods. For fair
comparisons, we used the same resources (8×P100 GPUs) and maximum possible batch size for
each method, i.e., GPU memory usage for all methods is 16GB per GPU. Total PT time is time
per epoch × number of PT epochs. Table 5 shows more details. As seen, MAE has smaller time
per epoch, however, it requires larger number of PT epochs to converge and this results in a less
efficient total runtime. We note that MAE (He et al., 2022) removes MASK tokens from the encoder
to increase pre-training speed. However, recent methods such as CIM (Fang et al., 2023), Data2vec
(Baevski et al., 2022), SimMIM (Xie et al., 2022), and MFM (Xie et al., 2023) retain MASK tokens
in the encoder to ensure compatibility with different architectures, including hierarchical ViTs (e.g.,
Swin) and CNNs. Similarly, our ROPIM offers flexibility to be applied to various architectures.
We have additionally incorporated results obtained from the LGP (Jiang et al., 2023) mechanism.
LGP (Jiang et al., 2023) combines MIM with contrastive learning in a sequential manner. The initial
stage involves training the network with MIM loss functions. Following that, the training process
proceeds with contrastive learning, incorporating a learning rate decay strategy. During this phase,
the lower layers of the network are assigned a smaller learning rate. LGP employs MAE (He et al.,
2022) for MIM and MoCo v3 (Chen et al., 2021) for contrastive learning. We have labeled this by
“LGP-MAE” in Figure 1 and Table 5. We followed the same settings, replaced MAE with ROPIM in

*Corresponding authors. ††MH conducted this work during the employment with CSIRO. PK also in
charge of the theory. The code is available at https://github.com/csiro-robotics/ROPIM.

Table 5: Runtimes using the same resources (8×P100 GPUs).

Method PT
epochs

Memory usage
per GPU (GB)

Time per
epoch (min)

Total PT
time (hour)

Top-1
Acc. %

MoCo v3 (Chen et al., 2021) 600 16 126 1260 83.2
BeiT (Bao et al., 2022) 800 16 63 840 83.2
MAE (He et al., 2022) 800 16 31 413 83.1
MAE (He et al., 2022) 1600 16 31 826 83.6
MFM (Xie et al., 2023) 300 16 47 235 83.1
CIM (Fang et al., 2023) 300 16 120 600 83.3
CIM (Fang et al., 2023) 800 16 120 1600 83.4
CAN (Mishra et al., 2022) 800 16 75 1000 83.4
CAN (Mishra et al., 2022) 1600 16 75 2000 83.6

ROPIM 300 16 47 235 83.5
ROPIM 500 16 47 391 83.7
ROPIM 800 16 47 626 84.0

LGP-MAE (Jiang et al., 2023) 1600 (MAE) + 300 (MoCo v3) 16 31 (MAE) + 126 (MoCo v3) 826 (MAE) + 630 (MoCo v3) 83.9
LGP-ROPIM 800 (ROPIM) + 300 (MoCo v3) 16 47 (ROPIM) + 126 (MoCo v3) 626 (ROPIM) + 630 (MoCo v3) 84.1
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the first stage, and continued training of ROPIM with MoCo v3 for 300 epochs. The corresponding
results are indicated by “LGP-ROPIM”.

B TRANSFER LEARNING FOR SMALLER SCALE DATASETS

To further investigate the efficiency of our pre-trained models for transfer learning we run fine-
tuning on the pre-trained ViT-T model on ImageNet100 for Flower102, CUB-200, CIFAR10 and
CIFAR100 datasets. For fine-tuning CIFAR10/100 on ViT-T we simply up-sample CIFAR image
resolutions from 32×32 to 224 × 224.

Flowers102 (Nilsback & Zisserman, 2008) contains images of 102 fine-grained flower species with
1020 train and 6149 test samples. We pre-process this dataset by center-cropping images and resiz-
ing crops to 224×224. Caltech-UCSD Birds 200 (CUB-200) (Wah et al., 2011) is annotated with
200 bird species and contains 5994 training images and 5794 testing images.

Table 6 shows that model pre-trained by ROPIM provides powerful features for transfer learning,
outperforming SimMIM (Xie et al., 2022) and MAE (He et al., 2022) baselines in all four datasets.

Table 6: Transfer learning on smaller scale datasets.

Method Backbone Pre-training
dataset

Fine-tuning
dataset Top-1 acc %

MAE (He et al., 2022) ViT-T/16 ImageNet100 Flowers102 50.55
SimMIM (Xie et al., 2022) ViT-T/16 ImageNet100 Flowers102 53.00
ROPIM ViT-T/16 ImageNet100 Flowers102 54.09
MAE (He et al., 2022) ViT-T/16 ImageNet100 CUB-200 53.62
SimMIM (Xie et al., 2022) ViT-T/16 ImageNet100 CUB-200 59.01
ROPIM ViT-T/16 ImageNet100 CUB-200 61.36
MAE (He et al., 2022) ViT-T/16 ImageNet100 CIFAR10 94.96
SimMIM (Xie et al., 2022) ViT-T/16 ImageNet100 CIFAR10 95.79
ROPIM ViT-T/16 ImageNet100 CIFAR10 96.63
MAE (He et al., 2022) ViT-T/16 ImageNet100 CIFAR100 79.55
SimMIM (Xie et al., 2022) ViT-T/16 ImageNet100 CIFAR100 80.91
ROPIM ViT-T/16 ImageNet100 CIFAR100 81.82

C FURTHER ABLATIONS STUDIES

C.1 THE EFFECT OF INCREASING NUMBER OF PRE-TRAINING AND FINE-TUNING EPOCHS

For MIM-based methods in general, training with longer epochs improves their performance (He
et al., 2022; Bao et al., 2022). Tables 1 and 7 show the effect of increasing the number of pre-
training epochs when the same dataset, ImageNet-1k and ImageNet100, is used during pre-training
and fine-tuning. As seen, there is a consistent improvement in classification accuracy with increasing
the number of pre-training epochs.

Table 7: The effect of increasing the number of pre-training epochs on top-1 accuracy. ImageNet100
is used for both pre-training and fine-tuning of ViT-T. Models are fine-tuned with 100 epochs.

Pre-training
epochs Backbone Dataset Top-1 acc %

SimMIM
Top-1 acc %
ROPIM

300 ViT-T/16 ImgNet100 82.09 82.98
600 ViT-T/16 ImgNet100 83.32 84.20
800 ViT-T/16 ImgNet100 85.08 86.43

Table 8 shows the effect of increasing the number of fine-tuning epochs. ROPIM achieves a classi-
fication accuracy of 88.71% on ImageNet100 for 300 fine-tuning epochs which is .71% higher than
SimMIM for the same setting.
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Table 8: The effect of increasing the number of fine-tuning epochs on top-1 classification accuracy.
ImageNet100 is used for both pre-training and fine-tuning.

Fine-tuning
epochs Backbone Dataset Top-1 acc %

SimMIM
Top-1 acc %
ROPIM

100 ViT-T/16 ImgNet100 85.08 86.43
200 ViT-T/16 ImgNet100 87.31 87.80
300 ViT-T/16 ImgNet100 88.0 88.71

C.2 ABLATIONS ON DIFFERENT VALUES OF SKETCHING RATIO ρ

As seen in Table 9, ρ=.14 achieves better results for different backbones.

Table 9: ROPIM top-1 acc. for pretraining ViT-T, ViT-S and ViT-B with ImageNet100 and
ImageNet-1k and using different sketching ratio ρ.

Dataset Backbone ρ Top1 acc %

ImageNet100 ViT-T/16 .07 86.1
ImageNet100 ViT-T/16 .14 86.4
ImageNet100 ViT-T/16 .25 84.4
ImageNet100 ViT-T/16 .50 85.1

ImageNet-1k ViT-S/16 .07 81.5
ImageNet-1k ViT-S/16 .14 81.8
ImageNet-1k ViT-S/16 .25 81.6
ImageNet-1k ViT-S/16 .50 81.5

ImageNet-1k ViT-B/16 .07 83.4
ImageNet-1k ViT-B/16 .14 83.5
ImageNet-1k ViT-B/16 .25 83.3
ImageNet-1k ViT-B/16 .50 83.3

D DETAILS OF PRE-TRAINING AND FINE-TUNING SETUPS

Table 10: Fine-tuning hyper-parameters for BEiT, MAE, SimMIM and ROPIM.

Config Value

Optimizer AdamW
Weight decay 0.05
Optimizer momentum β1 = 0.9, β2 = 0.999
Learning rate schedule cosine decay
Warmup epochs 5
Label smoothing 0.1
Mixup 0.8
Cutmix 1.0
Drop path 0.1
Rand Augment 9/0.5

Main settings of ROPIM, SimMIM, MAE (He et al., 2022) and BeiT (Bao et al., 2022) are similar
for fine-tuning, shown in Table 10. Below we provide additional details.

SETUP OF ROPIM

The models are pre-trained with linear learning rate (lr) scaling rule, lr = base lr × batch size/512
is used. Data augmentation strategy includes random resize cropping with the scale range of [0.67,
1], an the aspect ratio range of [3/4, 4/3], followed by random horizontal flipping and color normal-
ization. Pre-training base learning rate for ViT-T is 1e-3, and 1.5e-4 for ViT-S and ViT-B.
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During fine-tuning a weight decay of 0.05, β1 = 0.9, β2 = 0.999, a stochastic depth ratio of 0.1 is
employed. We also follow the data augmentation used in (Bao et al., 2022; Xie et al., 2022) and
use Mixup, Cutmix, label smoothing, and random erasing. Vit-B and ViT-T models are fine-tuned
for 100 epochs unless otherwise mentioned. ViT-S is fine-tuned for 200 epochs. Kindly note that
all other baseline methods use the same or longer fine-tuning epochs compared to our work. For
fine-tuning, we run a grid search on {5e-3, 1e-2, 2e-2} and report the highest performing one.

In what follows, we provide the pre-training and fine-tuning setup of our ablation studies with ViT-T
on ImageNet100. For all baselines, we ran a grid-search on their default learning rate, multiplied by
{.1, 1, 2, 4, 10}, and we reported the best performing result. Kindly note that the grid search is a
common strategy for selecting hyper-parameters in self-supervised pipelines (Bao et al., 2022).

SETUP OF SIMMIM

Following the default setting in SimMIM (Xie et al., 2022) for ViT backbone, we used random
masking with a patch size of 32×32 and a mask ratio of 0.6, a linear prediction head with a target
image size of 224, the ℓ1 loss for masked pixel prediction. The models are pre-trained with the
AdamW optimizer, a base learning rate of 1e-3, and a multi-step learning rate scheduler with an
initial 10 epochs linear warm-up procedure. A linear lr scaling rule, lr = base lr × batch size/512
is used. Data augmentation strategy during pre-training includes random resize cropping with the
scale range of [0.67, 1], an aspect ratio range of [3/4, 4/3], followed by random horizontal flipping
and color normalization.

For fine-tuning, base learning rate of 5e-3 with a layer-wise lr decay of 0.65 is used.

SETUP OF MAE

For pre-training, MAE (He et al., 2022) uses the cosine learning rate scheduler with a base learning
rate of 1.5e-4, the AdamW optimizer with momentum β1 = 0.9, β2 = 0.95 and linear lr scaling rule
lr = base lr × batch size/256. Random-resized cropping and horizontal flipping are used during
pre-training. The features of MAE are extracted from the encoder of the pre-trained network and
fine-tuned following the standard supervised ViT training.

For fine-tuning, a base learning rate of 5e-3 and a layer-wise lr decay of 0.75 are used.

SETUP OF BEIT

Image tokenizer of BEiT (Bao et al., 2022) is adopted from (Ramesh et al., 2021) and the vocabulary
size of visual tokens is set as 8192. BEiT uses the AdamW optimizer with a base learning rate of
1.5e-3 for pre-training. We follow their default augmentation policies, i.e., random-resized cropping,
horizontal flipping and color jittering for pre-training the network.

For fine-tuning, base lr of 3e-3 and a layer-wise lr decay of 0.65 are used.

SETUP OF DINO

We pre-train DINO (Caron et al., 2021) with the AdamW optimizer and a base learning rate of 5e-4.
We used linear lr scaling rule, lr = base lr × batch size/256, with warm up epochs set to 10. For
augmentations, color jittering, Gaussian blur, solarization and multi-cropping are used following
the default setting.

During fine-tuning, we used the pre-trained network with a linear classifier and trained end-to-end
for 100 epochs. An SGD optimizer with learning rate of 1e-3 and cosine learning rate decay is used.
Random-resized crop and random horizontal flip augmentations were applied during fine-tuning.

SETUP OF MOCO V3

We pre-trained MoCo v3 (Chen et al., 2021) with base learning rate of 1.5e-4 and lr scaling rule lr =
base lr × batch size/256. Random-resized cropping, horizontal flipping, color jittering, grayscale
conversion, blurring and solarization were applied following (Chen et al., 2021).
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We fine-tuned the pre-trained model end-to-end for 100 epochs following DEiT (Touvron et al.,
2021) setup. We used the official implementation of MoCo v3 to convert the pre-trained model
to DEiT supporting format to perform fine-tuning. Here, we used a learning rate of 5e-4, an
AdamW optimizer with cosine learning rate decay and 5 warm-up epochs. Linear lr scaling rule,
lr = base lr × batch size/512 is used.

We applied the default augmentations in DEiT which include color jitter, rand augment = 9/0.5,
mixup prob = 0.8, cutmix prob = 1.0 and erasing prob = 0.25.

E MORE RELATED WORKS

Self-supervised learning is an active research area. Researchers from different fields have been cre-
ative in using MIM techniques for various applications such as video (Wang et al., 2023b), point
clouds (Tian et al., 2023) and hyper-spectral images (Mohamed et al., 2024). However, they are not
directly related to our work as they research other modality types. Combining multiple pre-training
strategies and data from various modalities/sources can also greatly boost the training of large-scale
models (Su et al., 2023). Another very recent pipeline, Correlational Image Modeling (CorIM) (Li
et al., 2023a), proposes a self-supervised pre-training task leveraging a cropping strategy, a bootstrap
encoder, and a correlation decoder. However, the performance of CorIM (83.1% top 1 accuracy for
ViT-B) appeared short of the performance of pure ROPIM 83.5% with 300 pre-training epochs.
Along with masked image modeling, other strategies utilize multiple contrastive heads (Wang et al.,
2023a). Different with masked modeling, noteworthy is also abundance of other self-supervised
strategies applied in self-supervised 2D/3D feature matching for re-localization (Ramezani et al.,
2023), image deblurring (Zhang et al., 2023a), image-to-image translation (Shiri et al., 2019), seg-
mentation self-distillation (Kang et al., 2023), GAN consistency regularization (Ni & Koniusz,
2023), keypoint contrastive learning (Lu & Koniusz, 2024), categorical data learning (Li et al.,
2023b), traffic predictive coding (Prabowo et al., 2023a;b), multi-language output self-supervision
(Tas & Koniusz, 2021) and graph contrastive collaborative learning (Zhang et al., 2023b).
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