
Self-Improving Language Models for Evolutionary Program Synthesis:
A Case Study on ARC-AGI

Julien Pourcel 1 Cédric Colas* 1 2 Pierre-Yves Oudeyer* 1

Abstract
Many program synthesis tasks prove too challeng-
ing for even state-of-the-art language models to
solve in single attempts. Search-based evolution-
ary methods offer a promising alternative by ex-
ploring solution spaces iteratively, but their effec-
tiveness remain limited by the fixed capabilities
of the underlying generative model. We propose
SOAR, a method that learns program synthesis by
integrating language models into a self-improving
evolutionary loop. SOAR alternates between (1)
an evolutionary search that uses an LLM to sam-
ple and refine candidate solutions, and (2) a hind-
sight learning phase that converts search attempts
into valid problem-solution pairs used to fine-tune
the LLM’s sampling and refinement capabilities —
enabling increasingly effective search in subse-
quent iterations. On the challenging ARC-AGI
benchmark, SOAR achieves significant perfor-
mance gains across model scales and iterations,
leveraging positive transfer between the sampling
and refinement finetuning tasks. These improve-
ments carry over to test-time adaptation, enabling
SOAR to solve 52% of the public test set.1

1. Introduction
Program synthesis promises to transform how humans inter-
act with computers by automatically discovering programs
that satisfy their intent. Instead of writing precise instruc-
tions, users can express their goals through constraints, ex-
amples, or natural language, letting synthesis algorithms
figure out the implementation details. However, finding a
program that satisfies all constraints may be challenging due
to the vast space of possible implementations.

Traditional program synthesis approaches rely on iterated

*Equal supervision 1Inria 2MIT. Correspondence to: Julien
Pourcel <julien.pourcel@inria.fr>.

Proceedings of the 42 nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Our code is open-sourced at: github.com/flowersteam/SOAR

search through the space of possible programs, using meth-
ods like genetic programming or sequential Bayesian infer-
ence (Koza, 1994; Liang et al., 2010). These approaches
generate initial candidates based on task constraints, then
iteratively refine them through mutation and crossover op-
erations. However, their effectiveness depends heavily on
having intelligent program generators and mutation opera-
tors — without these, algorithms must expend massive com-
putation, blindly exploring the space of possible solutions.

Large language models (LLMs) have marked a new turn in
program synthesis by acting as powerful program genera-
tors (Roziere et al., 2023; Guo et al., 2024), solving many
tasks in a single attempt (Li & Ellis, 2024). For harder
problems, they can serve as intelligent operators for evolu-
tionary search, proposing targeted modifications to existing
solutions (Lehman et al., 2023; Olausson et al., 2023; Mey-
erson et al., 2024). But these approaches face a fundamental
limitation: the capabilities of the model used for sampling
and refinement remain fixed, and simply sampling more
candidates or trying more refinements yields diminishing
returns. This paper introduces a system that learns to sample
and refine programs from past synthesis attempts, enabling
sustained performance improvements beyond the limits of
search-based methods.

We propose Self-improving Operators for Automated pro-
gram Refinements (SOAR), a framework that integrates
language models into a self-improving evolutionary loop.
SOAR alternates between two phases: first, using an LLM
to sample and refine candidate programs through evolution-
ary search (Sample&Refine phase), then using these search
traces to fine-tune the model’s sampling and refinement ca-
pabilities. This creates a virtuous cycle — better models
enable more effective search, which in turn provides bet-
ter training data for further model improvements. Unlike
previous approaches that rely on human-engineered domain-
specific languages to scaffold search, or human-generated
solutions to finetune program generators, SOAR learns to
synthesize programs in Python, learning solely from its own
synthesis attempts, including both successes and failures.

We demonstrate SOAR’s effectiveness on the Abstraction
and Reasoning Corpus (ARC), a program synthesis bench-
mark specifically designed to challenge AI models’ core rea-

1

https://github.com/flowersteam/SOAR

Learning program synthesis with self-improving language models: A case study on ARC-AGI

Data selection

search traces

Sampling & refinement
LLM fine-tuning

finetuned LLM (init. base LLM)

3k prog.

ARC task

Majority
vote

6k prog.

solution

Program solution Evolutionary Search LearningARC task

? 

iterate

Learned program
sampling

Learned program
refinement

Figure 1. Overview of the SOAR architecture solving a task from the Abstract Reasoning Corpus. Each ARC task implicitly encodes
for grid transformation f̂ demonstrated via examples {xtrain, ytrain} such that f̂(xtrain) = ytrain. To solve a task, one must find the output
grids ytest corresponding to test input grids xtest. SOAR learns to synthesize transformation programs f in Python by alternating between
an evolutionary search phase (sampling and refining candidate programs with an LLM) and a learning phase (finetuning the LLM on
previous synthesis attempts) — eventually solving 52% of ARC-AGI public test set.

soning capabilities (Chollet, 2019). Each ARC task requires
inferring from just a few examples an implicit transforma-
tion mapping input colored grids to output grids. These
transformations often involve fundamental concepts like ob-
ject permanence, arithmetic, physics, or geometric relations.
Current language models struggle with program synthesis
on ARC: even the state-of-the-art GPT-4.1, or Claude-4-
Sonnet could only solve 8.00% and 20.75% of the test tasks
respectively. While search considerably improves the perfor-
mance of our open-source models (from 1-2% to 14-26%),
fixed model capabilities create a performance ceiling.

Through iterative self-improvement, SOAR breaks through
this ceiling. After four training iterations, SOAR solves
an extra 10-19% tasks across model sizes. Given access to
target tasks, but not to their ground truth solutions, SOAR
learns to solve an extra 3-5% tasks across model sizes with
test-time training. With a final test performance of 52%,
our best model outperforms previous program synthesis
methods based on open weight LLM and without using any
hand-crafted data. Importantly, these gains arise purely from
the model learning to sample and refine better programs
through its own search experience, without requiring task
specific human-engineering or training data.

Our work demonstrates how program synthesis systems
can transcend the limitations of their base models through
self-improvement. We present:

1. a framework that iteratively improves its evolutionary
search capabilities by learning from its own search expe-
rience without human-engineered data,

2. a test-time training mechanism enabling continuous im-
provement on target problems,

3. empirical evidence that iterative model improvement
can help overcome the performance plateaus inherent
to search methods,

4. state-of-the-art results for program synthesis leveraging
open-source LLMs on ARC-AGI’s public test set.

By showing how program synthesis systems can bootstrap

their own improvement, our work opens new possibilities
for creating increasingly capable AI systems that can tackle
complex reasoning tasks through a combination of search
and learned program refinement.

2. Related Work
Traditional program synthesis algorithms rely on iterated
search algorithms like genetic programming or sequential
Monte Carlo (Goldberg; Holland; Koza, 1994; Langdon &
Poli, 2013; Liang et al., 2010; Saad et al., 2019), where their
effectiveness heavily depends on well-engineered program
priors and mutation operators. With the emergence of deep
learning, recent work has explored learning these compo-
nents from data: either training neural networks to sam-
ple programs conditioned on input-output examples (Balog
et al., 2016; Ellis et al., 2021), or training decision mech-
anisms to speed up search (Shi et al., 2022). While these
approaches rely on exhaustive search in constrained hand-
defined programming languages, SOAR learns to synthesize
programs in Python from past synthesis attempts, eliminat-
ing the need for offline datasets or manual engineering.

Large language models have emerged as powerful tools for
program synthesis (Roziere et al., 2023; Guo et al., 2024),
both as direct solution generators (Li & Ellis, 2024) and as
mutation operators for evolutionary search (Lehman et al.,
2023; Olausson et al., 2023; Meyerson et al., 2024). These
capabilities have enabled sophisticated search methods that
can both refine and diversify solutions: e.g. generating di-
verse difficult programming problems (Pourcel et al., 2024),
high-quality poems (Bradley et al., 2023) or interesting pat-
terns in cellular automata (Kumar et al., 2024). Whether
used for convergent or divergent search, these methods treat
the LLM as a fixed component, preventing them from im-
proving through experience. SOAR overcomes this lim-
itation by continuously adapting its underlying language
model through self-improvement.

Recent work has shown that LLMs can learn to reason

2

Learning program synthesis with self-improving language models: A case study on ARC-AGI

by training on successful reasoning traces — either self-
generated (Zelikman et al., 2022; 2024; Guo et al., 2025),
or produced by classical search algorithms (Gandhi et al.,
2024). SOAR also internalizes search traces into the model,
but can do so leveraging both successful and failed attempts,
using hindsight learning. Moreover, SOAR also learns to
refine solutions from past experience, and leverages these
improved capabilities in a test-time evolutionary search.

The Abstraction and Reasoning Corpus (ARC) represents
a particularly challenging synthesis benchmark that has at-
tracted significant attention over the past years (Chollet,
2019). ARC tasks can be solved in two ways: (1) direct
prediction of output grids (transductive approach), or (2) pre-
diction of a transformation program used to generate the
output grids (inductive approach) (Li et al., 2024). First
attempts at leveraging LLMs for transduction achieved poor
results (Xu et al., 2023; Gendron et al., 2023; Mirchandani
et al., 2023) but finetuning models on synthetic data brought
significant performance gains (Li et al., 2024; Akyürek et al.,
2024). Early inductive approaches leveraged heavily human-
engineered domain-specific languages (DSL) and exhaustive
search (Hodel, 2023; Wind, 2020). More recent approaches
used closed-source LLM for Python synthesis: sampling
and refining populations of candidate programs (Wang et al.,
2023; Li et al., 2024). Two recent projects trained LLMs
to sample programs in ARC: Butt et al. (2024) used on-
line RL and hindsight learning in a custom DSL, while
Li et al. (2024) used human-generated Python solutions.
With SOAR, we continuously refine search operators (sam-
pling and refinement) solely from past synthesis attempts,
achieving competitive performance while eliminating any
dependence on human engineering and datasets.

3. Method
SOAR (Self-improving Operators for Automated program
Refinements) is a framework that enables program synthesis
systems to learn and improve from their own search experi-
ences. Rather than relying on a fixed language model to sam-
ple or refine programs, SOAR implements a self-improving
loop where the system’s capabilities grow through iterative
search and learning phases (Fig. 1). During the evolutionary
search phase, SOAR uses an LLM to both sample candidate
programs and refine them through targeted modifications,
producing a diverse set of solution attempts (Section 3.2).
In the learning phase, these search traces are used to fine-
tune the underlying LLM, enhancing its ability to sample
and refine programs for future tasks (Section 4.2). SOAR
iterates this process to create a virtuous cycle: better models
enable more effective search, which in turn provides richer
training data for further model improvements (Section 3.4).

3.1. Problem definition

The ARC benchmark is a canonical example of program-
ming by example (PBE) (Menon et al., 2013), where the
goal is to synthesize a program that satisfies a specification
defined through input-output examples. Formally, in PBE,
we aim to find a program f within a given programming
language such that for every provided example pair (x, y),
the program correctly maps inputs to outputs: y = f(x).
This paradigm enables users to specify desired behavior im-
plicitly through examples rather than writing explicit code.

In the specific case of ARC, each task consists of:

1. a set of 2–10 training examples {(xtrain, ytrain)} where
xtrain and ytrain are colored grid pairs;

2. a set of test inputs {xtest} for evaluation.

The goal is to find a Python function f such that f(xtrain) =
ytrain for all training examples, and f(xtest) produces the
correct (hidden) ytest.

Each grid is a 2D array of size h× w with (h, w) ∈ [1..30]
where each cell contains an integer from 0 to 9 representing
a color. The challenge lies in discovering the underlying
transformation pattern from just a few examples. ARC is
composed of 400 train tasks to use for algorithm develop-
ment (ARC-train), and 400 test tasks to use for evaluation
(ARC-test), with each task containing both training input-
output examples to guide the inference and test input-output
grids to test it. Each ARC task encodes a new implicit
transformation that may involve fundamental concepts like
counting, arithmetic, pattern completion, or spatial reason-
ing. This makes them relatively easy for humans, yet sur-
prisingly difficult for AI systems (LeGris et al., 2024).

3.2. Program synthesis as evolutionary search with
LLM-based sampling and refinement

ARC tasks are too challenging for current language models
to solve directly (see proof in Section 4.1). SOAR combines
the generative capabilities of LLMs with an evolutionary
search process that iteratively improves candidate solutions.
At a high level, our Sample&Refine search first samples
an initial pool of candidate solutions (sampling step), then
iteratively refines the most promising ones using execution
feedback (refinement step). In the end, we use majority
voting to select the most likely test output grids to submit
for evaluation (see Appendix D.1). Appendix G provides
the prompts used for sampling and refinement.

Program sampling. Given a base LLM parameterized by
θ, we sample a set of Python programs f without constrain-
ing ourselves to a hand-coded domain-specific language:

f ∼ Pθ(· | xtest, xtrain, ytrain).

3

Learning program synthesis with self-improving language models: A case study on ARC-AGI

Each candidate program is executed through a Python in-
terpreter to produce output grids: ytest = f(xtest). This
inductive approach allows us to implement a sample-and-
test strategy — scaling the number of candidate solutions
increases our chances of discovering a transformation that
satisfies all input-output examples, a requirement for our
program to truly capture the implicit transformation of the
task. AlphaCode scaled this approach to millions of at-
tempts per task to achieve human-level performance on
coding challenges (Li et al., 2022).

Program refinement. When a candidate program f pro-
duces incorrect outputs (ysynth = f(xtrain) ̸= ytrain), we can
use this execution feedback to guide the LLM in refining its
solution f → f+:

f+ ∼ Pθ(· | f, xtest, xtrain, ytrain, ysynth),
clearly labeling both successful (ysynth = ytrain), and failed
(ysynth ̸= ytrain) transformations in the refinement prompt.

Sample&Refine search algorithm. Our search process
consists of two steps: (1) an initial sampling step that in-
dependently samples 3k candidate solutions, and (2) a re-
finement step with a budget of 3k refinements. The second
step frames refinement as a generative multi-armed bandit:
each refinement creates a new arm that can further be re-
fined. We tackle this problem with REX, a combination
of Thompson sampling based on the accuracy of training
input-output examples with an additional exploration bonus
(Tang et al., 2024). This efficiently balances our search
budget between the exploration of new program variations
and the exploitation of known successful paths.

Ensembling with weighted majority voting. We start
with 6k candidate programs (3k from sampling, 3k from
refinement). Each program is evaluated on the ARC task’s
input-output examples to compute its example accuracy, and
is also run on the test input to produce an output grid. We
then group programs by their test output grid and assign
each unique grid a score: the sum of example accuracies of
all programs that produced it. This gives us a weighted vote
over test outputs, favoring grids produced by more accurate
programs (see Appendix D.1 for more details). This en-
sembling approach helps mitigate individual program errors
while capturing common patterns across successful solu-
tions. We eventually return two candidate solutions, as per
the benchmark rules (Chollet, 2024).

3.3. Learning to search via self-improved sampling and
refinement

The search process described above relies entirely on the
base LLM’s ability to sample and refine programs. We
propose to leverage the data generated during the Sam-
ple&Refine search phase to improve these capabilities

through finetuning. Specifically, each search attempt pro-
duces a rich set of program candidates, including both suc-
cessful and failed attempts, that can serve as training data
for enhancing both program sampling and refinement.

Finetuning sampling capabilities. We aim to improve
our model’s ability to sample correct programs by learning
from its past synthesis attempts. For each task in the ARC-
train set, we have access to ground truth test outputs ytest,
allowing us to identify correct sampled programs fcorrect.
This gives us a dataset Dgen

correct of (task, solution) pairs.

However, this approach faces a significant limitation: search
fails to sample any correct solution in most tasks, severely
limiting the size of Dgen

correct. To address this, we augment our
training data through hindsight relabeling (Andrychowicz
et al., 2017). The key insight is that any program f0 sampled
during search, while possibly incorrect for its intended task,
is by definition correct for the task of mapping inputs to the
outputs it produces. Formally, given a program:

f0 ∼ Pθ(f | xtest, xtrain, ytrain),
we can create a new synthetic task for which f0 is a correct
solution by executing f0 on all inputs:

∀x ∈ xtrain, ysynth = f0(x).
This gives us a new valid (task, solution) pair:
{(xtrain, ysynth, xtest), f0} where f0 is guaranteed to be cor-
rect by construction. This approach allows us to leverage all
programs sampled during search for training, not just those
that happened to solve their intended tasks.

The resulting synthetic dataset Dgen
synth contains 6k datapoints

collected for each of the 400 tasks in ARC-train — a total
of 2.4M datapoints. Given our limited computational re-
sources, we sub-sample this dataset to ≤ 50 examples per
task. This is done by ranking solutions according to their
accuracy on input-output examples and test pairs, then sam-
pling 25 top performing solutions (greedy approach), then
sampling 25 bottom performing solutions to introduce some
diversity in the set of relabelled problem-solution pairs. Sec-
tion 4.2 compares this solution to alternatives. With the
resulting dataset D

′gen
synth, we finetune our model to sample

better programs by minimizing:
L = ED

′gen
correct

[− log Pθ(f | xtrain, ytrain, xtest)] .

Finetuning refinement capabilities. Beyond improving
initial program sampling, we aim to enhance our model’s
ability to refine incorrect programs using execution feed-
back. For tasks in ARC-train where we have access to
ground truth outputs, we can identify correct refinements:
cases where an incorrect program f was successfully re-
fined into a correct program f+. We collect these successful
refinements into a dataset Drefine

correct.

Here again, we subsample this dataset to ≤ 50 examples

4

Learning program synthesis with self-improving language models: A case study on ARC-AGI

per task. This is achieved by balancing the sampling over
bins of the input-output accuracy of the parent program:
0%, 1-34%, 34-98%, and 100% to ensure diversity. Sec-
tion 4.2 compares this strategy to alternatives. With the
resulting dataset D′refine

correct, we finetune our model to better
refine programs by minimizing:
L = EDrefine

correct

[
- log Pθ(f+ | f, xtest, xtrain, ytrain, ysynth)

]
.

3.4. Closing the loop: iterative self-improvement on
training and testing tasks

Self-improvement on training tasks. The search and
learning phases described above form the building blocks
of SOAR’s self-improvement loop. At each iteration i, we
alternate between: (1) Sample&Refine search phase: Using
model θi to sample and refine programs through evolution-
ary search and (2) Learning phase: Using the search traces
to train an improved model θi+1 by finetuning the base
model (see Figure 1). Each iteration builds upon previous
improvements — the model finetuned in iteration i’s learn-
ing phase powers the search in iteration i + 1, generating
richer training data to train the model i + 1. This creates a
virtuous cycle where better models enable more effective
search which, in turn, yields better training data.

After this training phase, we collect and deduplicate all so-
lutions generated by the models using an embedding model
with a cosine similarity threshold of 0.9 (CodeRankEmbed).
We then subsample this dataset as described in Section 3.3
(50 examples per ARC-train problem) and use the resulting
dataset to finetune a base model that will serve as the basis
of test-time training iterations.

Test-time training. We can adapt the self-improvement
loop to let the agent learn from target problems where the
ground truth is not accessible. This is achieved by focusing
on finetuning sampling capabilities by selecting solution ex-
amples according to their training accuracy on input–output
examples only (instead of ground truth accuracy), before
applying hindsight relabeling. Refinement finetuning could
potentially be adapted to work without ground truth (at test
time) with hindsight relabeling. However, we reserve this
approach for future work, as our current test-time improve-
ment method focuses solely on refining explicit sampling
capabilities. This enables a powerful test-time training loop:
after running several iterations of full self-improvement on
the training set, we can further adapt our model through
additional iterations focused specifically on test tasks.

Implementation details. We evaluate SOAR in combina-
tion with LLMs from the Qwen-2.5-Coder series (7B, 14B,
32B), known for their strong coding capabilities while re-
maining small enough to allow compute-efficient finetuning
(Hui et al., 2024). We also used Qwen-2.5-72B and Mistral-

large-2407 to study larger models, including one trained on
different data, by a different company. We finetune models
on a single H100 using the RS-LoRA (7B and 14B models)
and RS-QLoRA algorithms (Hu et al., 2021; Dettmers et al.,
2024; Kalajdzievski, 2023) (larger models) with the Unsloth
library (Daniel et al., 2023). We use LoRA rank 256 with
α = 32, and train for 3 epochs with a learning rate of 5e-5
(see Section D.4 for details).

4. Experiments
Our experiments explore how program synthesis systems
can grow beyond their initial capabilities through self-
improvement. We begin by showing that even the strongest
language models struggle to solve ARC tasks without search,
establishing the need for iterative exploration (Sec. 4.1).
From there, we demonstrate how models can learn to search
more effectively by fine-tuning on their own synthesis at-
tempts—improving both their ability to sample and re-
fine programs (Sec. 4.2). These improvements accumulate
across iterations, creating a virtuous cycle of increasingly ef-
fective search (Sec. 4.3). Crucially, this cycle allows SOAR
to break through the performance ceilings encountered by
scaling model size or compute budget alone (Section 4.4).
We conclude by analyzing the diversity of generated so-
lutions and find that while SOAR tends to converge on
consistent programs after success, it preserves diversity on
unsolved tasks (Sec. 4.5). Together, these results establish
SOAR as a significant advance in program synthesis, demon-
strating how systems can bootstrap their own improvement
through iterative search and learning. Appendix H provides
examples of sampled programs and refinement examples.

4.1. Program synthesis methods must leverage search

Can state-of-the-art language models solve ARC tasks in a
single attempt? To find out, we evaluated several models in
a one-shot setting, where each model tries to generate a cor-
rect program in just one try. As shown in Table 1, even the
strongest models achieve modest success rates on ARC-test:
e.g. Claude-4-Sonnet (20.75%), GPT-4.1 (8.00%). Smaller
open-source models perform even worse, with Qwen-2.5-
Coder models achieving 1.00-2.25% success rates across
model sizes. Direct program synthesis remains too challeng-
ing for current language models.

Two approaches can potentially improve performance:
(1) transduction, where models directly predict output grids
without generating programs, or (2) inductive program
synthesis combined with search. While both approaches
currently yield comparable results (Li et al., 2024), pro-
gram synthesis offers a key advantage: it enables sys-
tematic exploration of the solution space, allowing perfor-
mance to scale with additional compute through search. We
compare three settings using a series of Qwen-2.5-Coder

5

https://huggingface.co/nomic-ai/CodeRankEmbed

Learning program synthesis with self-improving language models: A case study on ARC-AGI

models: (1) single-shot sampling, (2) sampling 6k candi-
date programs (Sample-6k), and (3) using half the bud-
get for initial sampling and half for targeted refinements
(Sample&Refine-6k). Table 1 shows that both sampling and
sample&refine search dramatically improve performance,
with Sample&Refine-6k achieving the best results across
all model sizes. Notably, this allows smaller open-source
models to outperform much larger closed-source ones by
leveraging additional computation: the 7B model beats GPT-
4.1, and ≥32B models beat Claude-4-Sonnet. Only state-
of-the-art reasoning models (o3-mini and Gemini-2.5-Pro
outperform Sample&Refine-6k with Qwen ≥32B (see more
model evaluations in Appendix 6).

However, search performance typically scales logarithmi-
cally with compute budget and is ultimately bounded by
the capabilities of the base model used for sampling and
refinement. This observation motivates our key question:
can we learn to search more effectively by improving these
underlying capabilities? Our experiments demonstrate how
iterative self-improvement breaks through this barrier.

Model 1-shot Sample
-6k

Sample&
Refine-6k

SOAR
-6k

Qwen-2.5-C-7B 1.00 5.63 14.25 36.25
Qwen-2.5-C-14B 1.00 12.63 19.87 42.75
Qwen-2.5-C-32B 1.50 12.88 25.25 44.38
Qwen-2.5-72B 1.75 18.50 25.62 44.88
Mistral-Large-2 2.50 19.75 26.25 45.50
GPT-4.1 8.00 – – –
Claude-4-Sonnet 20.75 – – –

Reasoners
o3-mini 33.00 – – –
Gemini-2.5-pro 38.25 – – –

Table 1. Performance on ARC-test (% solved). Scores are com-
puted using LLMs performing program synthesis. Sampling small
open-source models 6k times with majority voting (Sample-6k)
or sampling them 3k times and executing 3k refinement steps
before majority voting (Sample&Refine-6k) outperforms the one-
shot program synthesis performance of much larger non-reasoning
closed-source models. SOAR nearly doubles search performance
for all models. Sample&Refine and SOAR not run with closed-
source models for budget reasons.

4.2. Learning to sample and refine programs

Our framework for learning to search alternates between
search and learning phases: first using the model to sample
and refine solutions, then using these attempts to improve
the model’s capabilities. This section analyzes how to ef-
fectively extract training signal from search attempts, exam-
ining three key questions: (1) how to learn better program
sampling, (2) how to learn better program refinement, and
(3) whether and how these capabilities can be learned jointly.
We conduct these experiments using Qwen-2.5-Coder-14B
and make design choices based on the ARC-train perfor-

mance to avoid overfitting the method to test tasks.

Learning to sample programs. A key challenge in im-
proving sampling capabilities is extracting meaningful train-
ing signal from search attempts. While we could only train
on successful solutions, this would severely limit our train-
ing data since many tasks remain unsolved. Instead, we
explore several strategies for creating synthetic training data
from all sampled programs through hindsight relabeling (see
Section 3.3). For each ARC-train task:

• correct-only: sample uniformly up to 50 solutions that
solved the task (no hindsight learning);

• uniform: sample uniformly 50 candidate solutions,
then apply hindsight learning to create corresponding
problem-solution pairs;

• greedy: sample the 50 solutions that solved the most
train and test examples, then apply hindsight learning;

• greedy-diverse: sample 25 solutions greedily, then 25
solutions that solved the fewest training examples (for
diversity), before applying hindsight learning.

Table 2 compares these strategies by measuring sampling
accuracy after finetuning (% of train tasks solved using 3k
samples). While all methods leveraging finetuned mod-
els improve over the baseline, the greedy-diverse method
performed best — suggesting the importance of balancing
between learning from successful solutions and maintaining
diversity in the training data.

Sample-3k acc

no finetuning 29.29
finetune: correct-only 34.67

finetune: uniform 32.38
finetune: greedy 34.3

finetune: greedy-diverse 36.46
Table 2. Sampling finetuning. ARC-train performance after sam-
pling 3k samples with Qwen-2.5-Coder-14B models finetuned for
program sampling (% solved).

Learning to refine programs. Beyond sampling initial
solutions, we aim to improve the model’s ability to refine
programs using execution feedback. We explore two strate-
gies for curating refinement examples from search traces.
For each ARC task:

• uniform: sample uniformly up to 50 successful refine-
ment examples;

• diverse: balance that sample based on the training
scores of the incorrect parent program (0%, 1–34%,
34–98%, and 100% with incorrect test outputs).

Table 3 shows the ARC-train performance of search methods
leveraging a non-finetuned model for sampling (3k samples)
and a finetuned model for refinement (3k refinements) using
either of these two data generation methods. Both strategies

6

Learning program synthesis with self-improving language models: A case study on ARC-AGI

improve refinement capabilities substantially, with diverse
sampling performing marginally better (42.88% when refin-
ing solutions sampled by a non-finetuned model).

Sample-3k acc Sample&Refine

no finetuning 29.67 34.83
finetune: uniform 42.67
finetune: diverse 42.88

Table 3. Refinement finetuning: ARC-train performance of Sam-
ple&Refine search methods (6k budget) using a non-finetuned
Qwen-2.5-Coder-14B model in the sampling step before refining
sampled solutions with different Qwen-2.5-Coder-14B models
finetuned for program refinement (% solved).

Positive synergy between sample and refine tasks.
Should we train separate models for sampling and refine-
ment, or can a single model learn both effectively? Table 4
shows that joint finetuning outperforms both base models
and task-specific finetuning—for both sampling and search
performance. This indicates a clear synergy: learning to
sample helps refinement, and vice versa. The results sug-
gest that both tasks benefit from shared representations of
program structure and transformation patterns. Rather than
splitting effort between specialized models, joint learning of-
fers a more efficient and effective path. Appendix E presents
more detailed experiments supporting this result.

Sample model Refine model Sample-3k Sample&
Refine-6k

base base 29.67 34.83
fine-samp fine-ref 36.46 43.88
fine-both fine-both 39.79 44.42

Table 4. ARC-train accuracy using different combinations of
models for the Sample (col 1) and Refine (col 2) phases.
fine-samp/ref/both refers to Qwen-2.5-Coder-14B finetuned for
sampling, refinement, or both, respectively. Sample-3k and
Sample&Refine-6k (cols 2, 3) indicate the ARC-train accuracy
after sampling (3k solutions) and after search (3k samples + 3k
refinements).

4.3. Learning to search with iterated self-improvement

Having established effective methods for self-improvement,
we now examine how improvements compound through
iterations and scale with model size.

Self-improvement on ARC-train problems. Figure 2
shows substantial gains across iterations for all model sizes,
solving an extra +27% (7B), +24% (14B), +20% (32B),
+19% (72B) and +22% (Mistral) problems on ARC-train.
The relationship between model size and performance re-
veals several interesting patterns: (1) larger models start

SOAR(base-model) 1 2 3
Training iteration

30

40

50

60

70

80

AR
C-

tr
ai

n
sc

or
e

(%
)

QC-7B
QC-14B
QC-32B
Q-72B
Mistral-Large
all models
oracle (all models)

Figure 2. Iterated self-improvement on training problems. ARC-
train performance across training iterations. Training iteration 0:
search with base models. All: score achieved by applying majority
voting on the combined generated solutions of the five models.

with better search capabilities, with the >32B models out-
performing smaller variants at iteration 0; (2) smaller mod-
els show steeper improvements in early iterations; (3) all
model sizes continue to benefit from further training itera-
tions, though gains may slow down in later iterations; and
(4) relative improvements are largest for smaller models,
with the 7B model nearly doubling its performance.

We found that pooling data from the search traces of our five
models before performing majority voting (5× 6k samples
per task) significantly outperformed all of them (see brown
line on Fig. 2) — suggesting that different model sizes may
solve problems in complementary ways. However, majority
voting is not an ideal aggregation strategy; we observed
an average score gap of 9.5% between majority voting and
oracle performance across our models, where the oracle
is defined as a task being solved if at least one solution
produces the correct output. This gap indicates room for
improvement in developing better ensembling methods.

Since pooled data from multiple models and iterations con-
sistently yielded better performance during search (see Fig-
ure 2), we trained a series of base models on a subset of
the combined dataset of all training iterations and model
sizes (as described in Section 3.4). These models, trained
on a greater diversity of programs and refinement strategies,
significantly outperform models trained on their own data
only (Table 5). We use these models called SOAR(all train)
as starting points for test-time training steps.

Model size SOAR(3 train) SOAR(all train)

QC-7B 19.9 33.0
QC-14B 24.5 39.1
QC-32B 28.0 41.1
Q-72B 34.6 39.8

Mistral-Large-123B 28.5 40.1

Table 5. ARC-test accuracy after training base models on a subset
of 1) the data obtained at the 2nd SOAR iteration using that same
model size, SOAR(3 train); 2) all data collected by all models and
all previous train iterations SOAR(all train).

7

Learning program synthesis with self-improving language models: A case study on ARC-AGI

SOAR(all-train) 1 2
Test time training iteration

35

40

45

50

55
AR

C-
te

st
 s

co
re

 (
%

)
QC-7B
QC-14B
QC-32B
Q-72B
Mistral-Large
all models
oracle (all models)

Figure 3. Iterated self-improvement on test problems. ARC-test
performance across test-time training iterations. Iteration 0: search
with the models finetuned in training iteration 4 (right-most points
in Figure 2). All: score achieved by applying majority voting on
the combined search data of the five models.

Self-improvement on ARC-test problems (test-time train-
ing). The results from Section 4.3 demonstrated signifi-
cant performance gains through iterative self-improvement
on training tasks. However, practical applications require
systems that can improve on new problems without access to
ground-truth solutions. This raises a key question: Can our
self-improvement framework continue to raise performance
when adapted to target test problems?

Starting from models fine-tuned on all data collected
through 4 iterations on ARC-train problems (previous sec-
tion), we perform two additional iterations of test-time train-
ing on ARC-test problems, leading to an extra 5% perfor-
mance on ARC-test (Figure 2). Taken together, the combina-
tion of train-time and test-time improvements dramatically
raised performance across all model scales. Our 7B model
improved from its initial 14.25% to 36.25% accuracy on
ARC-test, a 2.5 fold increase. Similarly, the 14B model
rose from 19.87% to 42.75%, the 32B model improved from
25.25% to 44.37%, 72B from 25.62% to 44.87%, while
Mistral-Large-2 accuracy improved from 26.25% to 45.5%.
By combining solutions across all model sizes through ma-
jority voting, we achieved our peak performance of 52.00%
on ARC-test and an oracle performance of 57.25%.

4.4. Escaping scaling plateaus through
self-improvement

Figure 4 shows that simply running search with increasing
model size eventually yields diminishing returns. While
larger models perform better in early iterations, Sample-6k
and Sample&Refine-6k curves flatten beyond 32B, suggest-
ing a model-size scaling plateau: more parameters alone
do not suffice when the model’s sampling and refinement
behaviors remain fixed. In contrast, the SOAR curves re-
veal a different pattern. While each SOAR iteration also
plateaus, subsequent iterations consistently lift the perfor-
mance ceiling — establishing new, higher scaling curves.

7 14 32 72 123
Model size (B)

0

10

20

30

40

50

AR
C-

te
st

 s
co

re
 (

%
)

Claude-4-Sonnet

GPT-4.1

Gemini-2.5-Pro

o3-mini

SOAR (all models)

One-shot
SOAR (base model)
SOAR (1 train)
SOAR (2 train)
SOAR (3 train)
SOAR (all train + 0 test)
SOAR (all train + 1 test)
SOAR (all train + 2 test)
SOAR (all models)

Figure 4. Performance plateaus with increasing model size when
using fixed sampling and refinement capabilities (Sample-6k and
Sample&Refine-6k). In contrast, SOAR progressively lifts the
scaling curves across iterations, enabling smaller models to match
or outperform much larger ones. Note that only the 7B, 14B, and
32B models are from the same family (Qwen-2.5-Coder), 72B is
from the Qwen-2.5 family, and 123B is Mistral-large-2407.

Self-improvement enables each model size to reach perfor-
mance levels that previously required much larger models.

Figure 5 reveals a similar ceiling when scaling search bud-
get. With the 7B base model, performance saturates after
roughly 5k search attempts. In contrast, SOAR-iteration 1
nearly doubles its ARC-test accuracy, which remains true
when controlling for FLOP budget (see Appendix B). No-
tably, a significant fraction of this gain appears during the
refinement phase. These results show that search alone is
insufficient — learning to refine is essential.

0 1000 2000 3000 4000 5000 6000
Number of samples

0

5

10

15

20

25

30

35

AR
C-

te
st

 s
co

re
 (

%
)

Sa
m

pl
e

Re
fin

e

SOAR (base-model)
SOAR (1 train)
SOAR (2 train)
SOAR (3 train)
SOAR (all train + 0 test)
SOAR (all train + 1 test)
SOAR (all train + 2 test)

Figure 5. Search alone hits diminishing returns with increased bud-
get: the base 7B model plateaus after about 5k search attempts.
SOAR outperforms this baseline by a wide margin, with improve-
ments compounding across iterations.

Together, these results show that SOAR breaks through both
model-size and search-budget plateaus by improving the
model itself. Rather than pushing harder against fixed limits
(scaling model sizes or search budgets), SOAR lifts them —
transforming flat scaling curves into steps of improvement.
This effect is especially striking for smaller models: Qwen-
2.5-7B reaches 36.25% on ARC-test after SOAR’s itera-
tions, outperforming much larger systems like o3-mini and
Claude-4-Sonnet. These results establish SOAR as a sig-
nificant advance in program synthesis approaches to ARC.

8

Learning program synthesis with self-improving language models: A case study on ARC-AGI

Our approach outperforms prior methods that relied on ex-
tensive human-generated training data (Li et al., 2024) and
and expensive search methods built on much larger closed-
source models (Greenblatt, 2024) (see further comparisons
in Appendix Table 6). By enabling models to improve them-
selves from scratch, SOAR eliminates the need for hand-
engineered programs, DSLs, or external datasets—marking
a step toward more autonomous, scalable synthesis systems.

4.5. Solution diversity across iterations

To keep on improving and solving harder problems, SOAR
must keep on exploring the space of possible solutions. Fig-
ure 6 shows a steady decrease in solution diversity across
self-improvement iterations for the problems SOAR man-
aged to solve. For unsolved problems, diversity initially
drops after the first iteration but then plateaus, suggest-
ing that our relabeling method may help maintain some
exploratory capacity. While this helps preserve diversity
on unsolved tasks, integrating explicit diversity-enhancing
strategies could further extend SOAR’s ability to explore
solution spaces and sustain continual improvement.

0 1 2 3
Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
iv

er
si

ty
(a

vg
 p

ai
rw

is
e

di
st

an
ce

)

Solved
Unsolved

Figure 6. Solution diversity across generations of SOAR. Thin
lines indicate solution diversity across for each of the 400 ARC-
train problems, colored in green when solved, in red when un-
solved. Thick lines indicate averages across solved and unsolved
problems respectively. SOAR maintains solution diversity for
unsolved problems but converges on lower solution diversity for
solved problems. Diversity is measured as the average pairwise
cosine distance in embedding space (CodeRankEmbed)

5. Discussion
Our work shows that program synthesis systems can tran-
scend their initial capabilities by iteratively improving both
sampling and refinement through a cycle of evolutionary
search and learning. Here we reflect on the broader implica-
tions and challenges ahead.

ARC was explicitly designed to resist pattern matching
and require core reasoning, making it a strong testbed
for program synthesis (Chollet, 2024). Most models fail
without human-written examples or human-encoded priors.
SOAR’s ability to improve purely from its own search ex-
perience — without demonstrations or DSLs — show that

self-improvement alone can bootstrap strong reasoning ca-
pabilities in general-purpose language models.

Our experiments highlight two key findings. First, SOAR
overcomes the performance plateaus typically observed
when scaling model size or search budget. By improving the
underlying model itself, it establishes new, higher scaling
baselines. Second, we observe complementary problem-
solving strategies across model sizes: smaller models often
learn faster and sometimes solve tasks that larger ones miss.
Training base models on aggregated solutions from multi-
ple models and iterations yields the strongest improvements
(see Table 5), while ensembling solutions across model sizes
leads to our best ARC-test performance (52%). These re-
sults suggest that cross-model diversity is a key driver of
performance gains in self-improving program synthesis.

Crucially, SOAR offers a substantial advantage over ap-
proaches that rely on fixed models within static search loops.
State-of-the-art systems like FunSearch and AlphaEvolve
(Romera-Paredes et al., 2024; Liu et al., 2024; AlphaEvolve-
team, 2025) use program synthesis without adapting the
model. SOAR could serve as a drop-in upgrade, enabling
these systems to continually learn from their own search
traces. The framework could also be extended with richer
operators, such as crossover (Meyerson et al., 2024).

While SOAR is domain-agnostic, we only evaluate it on
ARC. Future work should test its applicability to domains
like software engineering or mathematical discovery (Dong
& Ma, 2025; Jain et al.). Computational efficiency is an-
other limitation: SOAR currently requires 6,000 synthesis
attempts per task per iteration. Although we observe steady
gains, these diminish over time, hinting at potential lim-
its. Whether these are intrinsic or methodological remains
open, but several strategies could help, such as adaptively
rerouting the search budget from solved tasks to harder ones,
or improving optimization methods (e.g., see Chow et al.
(2024); Tang et al. (2025); Gehring et al. (2024)).

One likely bottleneck is low solution diversity. While prior
work found that RL and finetuning often reduce output di-
versity (Zhang et al., 2025; Yue et al., 2025), we find that
SOAR preserves diversity on unsolved tasks, likely due to
hindsight relabeling, which retroactively creates new prob-
lems from failed programs. Still, this maintained diversity
appears insufficient to sustain continual progress. Future
work could enhance it by explicitly optimizing for diversity
during finetuning, introducing quality-diversity methods, or
generating new problems to expand solution diversity (Co-
las et al., 2022; Pourcel et al., 2024). These directions may
help maintain a virtuous cycle of improvement and push
program synthesis closer to open-ended discovery.

9

https://huggingface.co/nomic-ai/CodeRankEmbed

Learning program synthesis with self-improving language models: A case study on ARC-AGI

Acknowledgments
This work benefitted from access to the HPC resources of
IDRIS under the allocation A0171011996 made by GENCI.
It was also co-funded by AI Chair ANR DeepCuriosity
ANR-19-CHIA-0004. Cédric Colas acknowledges funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement No 101065949.

Impact Statement
This work demonstrates how iterative model improvement
can help overcome the performance plateaus typically en-
countered when scaling both model size and search budget.
This finding suggests an important principle for developing
more capable AI systems that could benefit society across
numerous applications, from software development to sci-
entific discovery.

However, the development of self-improving AI systems
naturally raises safety considerations. While our results
show clear performance slow downs rather than unbounded
improvement, suggesting inherent limitations to our spe-
cific approach, the general principle of systems improving
through self-directed learning could inspire future systems
with broader capabilities. This underscores the importance
of implementing appropriate safeguards and oversight mech-
anisms when developing such systems.

We demonstrate these results using open-source language
models and will release our complete codebase upon publi-
cation. We believe this transparency is crucial for respon-
sible development of increasingly capable AI systems, and
we encourage researchers building on this work to maintain
similar standards of openness while carefully considering
potential societal impacts.

References
Akyürek, E., Damani, M., Qiu, L., Guo, H., Kim, Y., and

Andreas, J. The surprising effectiveness of test-time
training for abstract reasoning, 2024. Preprint.

AlphaEvolve-team. AlphaEvolve: A Gemini-powered cod-
ing agent for designing advanced algorithms — deep-
mind.google. https://deepmind.google/disc
over/blog/alphaevolve-a-gemini-power
ed-coding-agent-for-designing-advance
d-algorithms/, 2025.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. Advances
in neural information processing systems, 30, 2017.

Austin, J., Douglas, S., Frostig, R., Levskaya, A., Chen,

C., Vikram, S., Lebron, F., Choy, P., Ramasesh, V., Web-
son, A., and Pope, R. How to scale your model. 2025.
Retrieved from https://jax-ml.github.io/scaling-book/.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. Deepcoder: Learning to write programs.
arXiv preprint arXiv:1611.01989, 2016.

Bradley, H., Dai, A., Teufel, H., Zhang, J., Oostermeijer,
K., Bellagente, M., Clune, J., Stanley, K., Schott, G., and
Lehman, J. Quality-diversity through ai feedback. arXiv
preprint arXiv:2310.13032, 2023.

Butt, N., Manczak, B., Wiggers, A., Rainone, C., Zhang,
D. W., Defferrard, M., and Cohen, T. Codeit: Self-
improving language models with prioritized hindsight
replay. In International Conference on Machine Learn-
ing, 2024.

Chollet, F. On the measure of intelligence. arXiv preprint
arXiv:1911.01547, 2019.

Chollet, F. Arc prize website. "https://arcprize.o
rg/", 2024. ARC Prize Leaderboard.

Chow, Y., Tennenholtz, G., Gur, I., Zhuang, V., Dai, B.,
Thiagarajan, S., Boutilier, C., Agarwal, R., Kumar, A.,
and Faust, A. Inference-aware fine-tuning for best-of-
n sampling in large language models. arXiv preprint
arXiv:2412.15287, 2024.

Colas, C., Karch, T., Sigaud, O., and Oudeyer, P.-
Y. Autotelic agents with intrinsically motivated goal-
conditioned reinforcement learning: a short survey. Jour-
nal of Artificial Intelligence Research, 74:1159–1199,
2022.

Daniel, H., Michael, H., and team, U. Unsloth, 2023. URL
http://github.com/unslothai/unsloth.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36, 2024.

Dong, K. and Ma, T. Beyond limited data: Self-play llm
theorem provers with iterative conjecturing and proving.
arXiv preprint arXiv:2502.00212, 2025.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L.,
Hewitt, L., Cary, L., Solar-Lezama, A., and Tenenbaum,
J. B. Dreamcoder: Bootstrapping inductive program
synthesis with wake-sleep library learning. In Proceed-
ings of the 42nd acm sigplan international conference on
programming language design and implementation, pp.
835–850, 2021.

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma,
A., and Goodman, N. D. Stream of search (sos): Learning

10

https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://arcprize.org/
https://arcprize.org/
http://github.com/unslothai/unsloth

Learning program synthesis with self-improving language models: A case study on ARC-AGI

to search in language. arXiv preprint arXiv:2404.03683,
2024.

Gehring, J., Zheng, K., Copet, J., Mella, V., Carbonneaux,
Q., Cohen, T., and Synnaeve, G. Rlef: Grounding code
llms in execution feedback with reinforcement learning.
arXiv preprint arXiv:2410.02089, 2024.

Gendron, G., Bao, Q., Witbrock, M., and Dobbie, G. Large
language models are not strong abstract reasoners. arXiv
preprint arXiv:2305.19555, 2023.

Goldberg, e. a. Genetic algorithms and machine learning.
3(2):95–99. ISSN 1573-0565. doi: 10.1023/A:102260
2019183. URL https://doi.org/10.1023/A:
1022602019183.

Greenblatt, R. Draw more samples. "https://redwoo
dresearch.substack.com/p/getting-50-s
ota-on-arc-agi-with-gpt", 2024. Accuracy
from ARCPrize Leaderboard.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K.,
Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y., et al.
Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hodel, M. Arc-dsl. https://github.com/michael
hodel/arc-dsl, 2023. [Online GitHub repository].

Holland, J. H. Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence. The MIT Press. ISBN
978-0-262-27555-2. doi: 10.7551/mitpress/1090.001.00
01. URL https://direct.mit.edu/books/m
onograph/2574/Adaptation-in-Natural-a
nd-Artificial-SystemsAn.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,
Liu, T., Zhang, J., Yu, B., Lu, K., et al. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186, 2024.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-
codebench: Holistic and contamination free evaluation
of large language models for code. In The Thirteenth
International Conference on Learning Representations.

Kalajdzievski, D. A rank stabilization scaling factor for
fine-tuning with lora. arXiv preprint arXiv:2312.03732,
2023.

Koza, J. R. Genetic programming as a means for program-
ming computers by natural selection. Statistics and com-
puting, 4:87–112, 1994.

Kumar, A., Lu, C., Kirsch, L., Tang, Y., Stanley, K. O., Isola,
P., and Ha, D. Automating the search for artificial life with
foundation models. arXiv preprint arXiv:2412.17799,
2024.

Langdon, W. B. and Poli, R. Foundations of genetic pro-
gramming. Springer Science & Business Media, 2013.

LeGris, S., Vong, W. K., Lake, B. M., and Gureckis, T. M.
H-arc: A robust estimate of human performance on the ab-
straction and reasoning corpus benchmark. arXiv preprint
arXiv:2409.01374, 2024.

Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C.,
and Stanley, K. O. Evolution through large models. In
Handbook of Evolutionary Machine Learning, pp. 331–
366. Springer, 2023.

Li, W.-D. and Ellis, K. Is programming by example solved
by llms? arXiv preprint arXiv:2406.08316, 2024.

Li, W.-D., Hu, K., Larsen, C., Wu, Y., Alford, S., Woo, C.,
Dunn, S. M., Tang, H., Naim, M., Nguyen, D., Zheng,
W.-L., Tavares, Z., Pu, Y., and Ellis, K. Combining
induction and transduction for abstract reasoning, 2024.
URL https://arxiv.org/abs/2411.02272.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Liang, P., Jordan, M. I., and Klein, D. Learning programs:
A hierarchical bayesian approach. In ICML, volume 10,
pp. 639–646, 2010.

Liu, F., Tong, X., Yuan, M., Lin, X., Luo, F., Wang, Z.,
Lu, Z., and Zhang, Q. Evolution of heuristics: Towards
efficient automatic algorithm design using large language
model. arXiv preprint arXiv:2401.02051, 2024.

Menon, A., Tamuz, O., Gulwani, S., Lampson, B., and Kalai,
A. A machine learning framework for programming
by example. In International Conference on Machine
Learning, pp. 187–195. PMLR, 2013.

Meyerson, E., Nelson, M. J., Bradley, H., Gaier, A., Moradi,
A., Hoover, A. K., and Lehman, J. Language model
crossover: Variation through few-shot prompting. ACM
Transactions on Evolutionary Learning, 4(4):1–40, 2024.

11

https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1023/A:1022602019183
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://github.com/michaelhodel/arc-dsl
https://github.com/michaelhodel/arc-dsl
https://direct.mit.edu/books/monograph/2574/Adaptation-in-Natural-and-Artificial-SystemsAn
https://direct.mit.edu/books/monograph/2574/Adaptation-in-Natural-and-Artificial-SystemsAn
https://direct.mit.edu/books/monograph/2574/Adaptation-in-Natural-and-Artificial-SystemsAn
https://arxiv.org/abs/2411.02272

Learning program synthesis with self-improving language models: A case study on ARC-AGI

Mirchandani, S., Xia, F., Florence, P., Ichter, B., Driess, D.,
Arenas, M. G., Rao, K., Sadigh, D., and Zeng, A. Large
language models as general pattern machines. arXiv
preprint arXiv:2307.04721, 2023.

Olausson, T. X., Inala, J. P., Wang, C., Gao, J., and Solar-
Lezama, A. Is self-repair a silver bullet for code genera-
tion? arXiv preprint arXiv:2306.09896, 2023.

Pourcel, J., Colas, C., Molinaro, G., Oudeyer, P.-Y., and
Teodorescu, L. Aces: generating diverse programming
puzzles with autotelic language models and semantic
descriptors. Neurips, 2024.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, 625
(7995):468–475, 2024.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Saad, F. A., Cusumano-Towner, M. F., Schaechtle, U., Ri-
nard, M. C., and Mansinghka, V. K. Bayesian synthesis
of probabilistic programs for automatic data modeling.
Proceedings of the ACM on Programming Languages, 3
(POPL):1–32, 2019.

Shi, K., Bieber, D., and Singh, R. Tf-coder: Program
synthesis for tensor manipulations. ACM Transactions on
Programming Languages and Systems (TOPLAS), 44(2):
1–36, 2022.

Tang, H., Hu, K., Zhou, J. P., Zhong, S. C., Zheng, W.-L.,
Si, X., and Ellis, K. Code repair with LLMs gives an
exploration-exploitation tradeoff. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net
/forum?id=o863gX6DxA.

Tang, Y., Zheng, K., Synnaeve, G., and Munos, R. Optimiz-
ing language models for inference time objectives using
reinforcement learning. arXiv preprint arXiv:2503.19595,
2025.

Wang, R., Zelikman, E., Poesia, G., Pu, Y., Haber, N., and
Goodman, N. D. Hypothesis search: Inductive reasoning
with language models. arXiv preprint arXiv:2309.05660,
2023.

Wind, J. S. 1st place 2020 arc kaggle. https://gi
thub.com/top-quarks/ARC-solution, 2020.
[Online GitHub repository].

Xu, Y., Li, W., Vaezipoor, P., Sanner, S., and Khalil, E. B.
Llms and the abstraction and reasoning corpus: Suc-
cesses, failures, and the importance of object-based rep-
resentations. arXiv preprint arXiv:2305.18354, 2023.

Yue, Y., Chen, Z., Lu, R., Zhao, A., Wang, Z., Song, S., and
Huang, G. Does reinforcement learning really incentivize
reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Zelikman, E., Wu, Y., and Goodman, N. D. Star: Self-taught
reasoner. arXiv preprint arXiv:2203.14465, 2022.

Zelikman, E., Harik, G., Shao, Y., Jayasiri, V., Haber, N.,
and Goodman, N. D. Quiet-star: Language models can
teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Zhang, Y., Diddee, H., Holm, S., Liu, H., Liu, X., Samuel,
V., Wang, B., and Ippolito, D. Noveltybench: Evaluating
language models for humanlike diversity. arXiv preprint
arXiv:2504.05228, 2025.

Zheng, L., Yin, L., Xie, Z., Sun, C. L., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., et al.
Sglang: Efficient execution of structured language model
programs. Advances in Neural Information Processing
Systems, 37:62557–62583, 2024.

12

https://openreview.net/forum?id=o863gX6DxA
https://openreview.net/forum?id=o863gX6DxA
https://github.com/top-quarks/ARC-solution
https://github.com/top-quarks/ARC-solution

Learning program synthesis with self-improving language models: A case study on ARC-AGI

A. Comparison with prior work

Method % ARC-test solved # attempt/task Fair comparison?

One-shot LLM sampling (1 attempt / task)
Claude-3.5-Sonnet / Claude-4-Sonnet 11.25 / 20.75 1 Yes (closed-source LLM)

GPT-4.1 / o3-mini 8.00 / 33.00 1 Yes (closed-source LLM)
Mistral-large-2 2.50 1 Yes
Qwen2.5-72B 4.00 1 Yes

Qwen2.5-Coder-(7/14/32B) 1.00 / 1.00 / 1.75 1 Yes
Sample&Refine

Mistral-large-2 26.25 6000 Yes
Qwen2.5-72B 25.62 6000 Yes

Qwen2.5-Coder-(7/14/32B) (QC-nB) 14.25 / 19.87 / 25.25 6000 Yes
Ours: iterated self-improved search (SOAR)

SOAR-Mistral 45.50 6000 ours
SOAR-Q-72B 44.87 6000 ours

SOAR-QC-(7/14/32B) 36.25 / 42.75 / 44.37 6000 ours
SOAR-QC-all 52.00 6000×5 ours

SOAR-QC-all (Oracle) 57.25 6000×5 ours, but using oracle eval (skip maj. vote)
Prior inductive approaches

CodeIt (Butt et al., 2024) 15.00 2500 Yes
BARC-induction (Heavy) (Li et al., 2024) 30.50 10000 Yes, but heavy use of human data and closed LLM

BARC-induction (Potpourri) (Li et al., 2024) 38.00 20000 Yes, but heavy use of human data and closed LLM
Icecuber (Wind, 2020) 39.00 Unknown No, looking at val set, human DSL

(Greenblatt, 2024) 42.00 8160 Yes, but closed-source LLM

Table 6. Comparison of inductive methods on the ARC benchmark. Our approach SOAR outperforms previous induction performance.

B. Scaling laws
Finetuning costs: Finetuning is inexpensive compared to the search phase. FLOPs per iteration is 6N × (100 ·T), where N
is LLM parameters and T is tokens per completion. With≤ 100 datapoints per task, sampling FLOPs is 2N × (6000 ·T ·n),
making finetuning ∼ 5% of total FLOPs—nearly negligible. Additionally, autoregressive generation is slower (token-by-
token forward passes), while finetuning processes sequences in one forward and backward pass (see Austin et al. (2025) for
more details). Figure 8 plots the performance of the different generations of SOAR with a search budget of 6k, against the
performance of Sample&Refine using the base model with a search budget of 12.6k matching the FLOPs used by SOAR at
generation 1 (6k search by the base model, 6k search by the finetuned model, and 5% extra to cover for finetuning costs).
SOAR at generation 1 reaches far superior performance with the same computational budget.

13

Learning program synthesis with self-improving language models: A case study on ARC-AGI

0 2000 4000 6000 8000 10000 12000
Number of Samples

0

10

20

30

40

50

60

AR
C-

tr
ai

n
sc

or
e

(%
)

Sa
m

pl
e

Re
fin

e

SOAR (base-model)
SOAR (base-model, 12.6k)
SOAR (1-train)
SOAR (2-train)
SOAR (3-train)

Figure 7. Scaling laws of iterated self-improvement on training problems. ARC-train performance across training iterations (gen-0 base
model) for Qwen-2.5-Coder-7b. We increased the number of generation zero samples to 12,600 to match the total FLOPS usage of
generation two, including both training and inference.

14

Learning program synthesis with self-improving language models: A case study on ARC-AGI

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

60

70

80

AR
C-

tr
ai

n
sc

or
e

(%
)

Sa
m

pl
e

Re
fin

e

Qwen2.5-Coder-7B-Instruct
Soar (base-model)
Soar (0 train)
Soar (1 train)
Soar (2 train)
Soar (3 train)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

60

70

80

AR
C-

tr
ai

n
sc

or
e

(%
)

Sa
m

pl
e

Re
fin

e

Qwen2.5-Coder-14B-Instruct
Soar (base-model)
Soar (0 train)
Soar (1 train)
Soar (2 train)
Soar (3 train)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

60

70

80

AR
C-

tr
ai

n
sc

or
e

(%
)

Sa
m

pl
e

Re
fin

e

Qwen2.5-Coder-32B-Instruct
Soar (base-model)
Soar (0 train)
Soar (1 train)
Soar (2 train)
Soar (3 train)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

60

70

80

AR
C-

tr
ai

n
sc

or
e

(%
)

Sa
m

pl
e

Re
fin

e

Qwen2.5-72B-Instruct
Soar (base-model)
Soar (0 train)
Soar (1 train)
Soar (2 train)
Soar (3 train)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

60

70

80

AR
C-

tr
ai

n
sc

or
e

(%
)

Sa
m

pl
e

Re
fin

e

Mistral-Large-Instruct-2407
Soar (base-model)
Soar (0 train)
Soar (1 train)
Soar (2 train)
Soar (3 train)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

60

70

80

AR
C-

tr
ai

n
sc

or
e

(%
)

Sa
m

pl
e

Re
fin

e

Comparison of the last generation
Soar (3 train)

QC-7B
QC-14B
QC-32B
Q-72B
Mistral-Large

Figure 8. Scaling laws of iterated self-improvement on training problems. ARC-train performance across training iterations.

15

Learning program synthesis with self-improving language models: A case study on ARC-AGI

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

AR
C-

te
st

 s
co

re
 (

%
)

Sa
m

pl
e

Re
fin

e

Qwen2.5-Coder-7B-Instruct
SOAR (base model)
SOAR (all train + 0 test)
SOAR (all train + 1 test)
SOAR (all train + 2 test)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

AR
C-

te
st

 s
co

re
 (

%
)

Sa
m

pl
e

Re
fin

e

Qwen2.5-Coder-14B-Instruct
SOAR (base model)
SOAR (all train + 0 test)
SOAR (all train + 1 test)
SOAR (all train + 2 test)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

AR
C-

te
st

 s
co

re
 (

%
)

Sa
m

pl
e

Re
fin

e

Qwen2.5-Coder-32B-Instruct
SOAR (base model)
SOAR (all train + 0 test)
SOAR (all train + 1 test)
SOAR (all train + 2 test)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

AR
C-

te
st

 s
co

re
 (

%
)

Sa
m

pl
e

Re
fin

e

Qwen2.5-72B-Instruct
SOAR (base model)
SOAR (all train + 0 test)
SOAR (all train + 1 test)
SOAR (all train + 2 test)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

AR
C-

te
st

 s
co

re
 (

%
)

Sa
m

pl
e

Re
fin

e

Mistral-Large-Instruct-2407
SOAR (base model)
SOAR (all train + 0 test)
SOAR (all train + 1 test)
SOAR (all train + 2 test)

21 23 25 27 29 211 213

Number of Samples
0

10

20

30

40

50

AR
C-

te
st

 s
co

re
 (

%
)

Sa
m

pl
e

Re
fin

e

Comparison of the last generation (gen-3)
QC-7B
QC-14B
QC-32B
Q-72B
Mistral-Large

Figure 9. Scaling laws of iterated self-improvement on test problems. ARC-test performance across training iterations (gen-0 model
trained on).

16

Learning program synthesis with self-improving language models: A case study on ARC-AGI

C. Model ensembling

0 20 40
ARC-test score (%)

QC-7B
QC-14B
QC-32B

QC-14B+7B
Q-72B

Mistral
QC-32B+14B+7B

Q-72B+QC-32B+14B+7B
Mistral+Q-72B

Mistral+Q-72B+QC-32B
Mistral+Q-72B+QC-32B+14B

All models

Figure 10. ARC-test score for different model combinations

D. Implementation details
D.1. Weighted Majority Voting Algorithm

The algorithm processes the ensemble of model responses, each containing output predictions for a set of input grids. It
groups responses by their test output grids and applies weighted voting to select the most reliable predictions (see Alg. 1).

Weighted Majority Voting Algorithm:

1. Pattern Extraction: Each response’s complete set of test outputs is serialized into a pattern key.

2. Weighted Voting: Patterns are weighted using the formula: weight = count + c× train_accuracy, where count is
the frequency of the pattern, train_accuracy is the mean accuracy of the generated program on the training examples,
and c is a scaling parameter, as we want to penalize low pattern with a low train_accuracy we set it to a high values
(c = 1000).

3. Selection: The top n_output patterns with highest weights are selected as final outputs.

Algorithm 1 Weighted Majority Voting algorithm

Require: Set of responses with test outputs and training accuracies, scaling parameter c, number of outputs n_output
Ensure: Top n_output patterns with highest weights (n_output = 2 when testing)

1: Pattern Extraction:
2: for each response do
3: Serialize the complete set of test outputs into a pattern key
4: end for
5: Weighted Voting:
6: for each unique pattern do
7: Compute count← frequency of the pattern
8: Compute train_accuracy ← mean accuracy of the generated program on training examples
9: Compute weight← count + c× train_accuracy

10: end for
11: Selection:
12: Select the top n_output patterns with the highest weight values as final outputs

17

Learning program synthesis with self-improving language models: A case study on ARC-AGI

D.2. Majority voting data selection for test time training data

To select data for Test Time Training, we employed our greedy-diverse data selection process, introducing a minor
modification to the sampling strategy within the greedy component. Since test accuracy is unavailable during this phase, we
utilize a majority voting procedure to identify the most probable correct solution, which is then used to train our models (see
Algorithm 2).

Algorithm 2 Weighted Sampling from Categories

Require: Ensemble of responses with associated training accuracy; N : number of responses to sample
Ensure: List of sampled responses

1: Group responses according to their test output grids
2: For each group gi, compute the majority voting weight
3: Normalize the weights
4: Allocate ngi samples to each group gi by drawing from a multinomial distribution with parameters (group weights, N)
5: Initialize an empty list for sampled responses
6: for each group gi do
7: For each response in gi, compute quality score (c× train_accuracy)
8: Normalize quality scores within the group (use uniform weights if all scores are zero)
9: Sample ngi responses from gi, weighted by quality scores

10: Add the sampled responses to the output list
11: end for
12: return the list of sampled responses

D.3. REX Modification

For the REX (Refinement through EM-based sampling) algorithm, we adopted the hyperparameter C = 20, aligning with
the recommendations from the hyperparameter analysis presented in the original REX publication (Tang et al., 2024).
Recognizing that REX’s inherent sequential processing can lead to substantial computational time, we implemented two key
modifications to enhance its efficiency:

1. Accelerated Refinement via Multiple Completions: To speed up the REX algorithm, we modified the sampling
process. Instead of generating a single completion per prompt, we sampled four completions simultaneously. This
approach leverages the efficiency of modern inference systems where the computational cost associated with prompt
processing is incurred only once, even when generating multiple output sequences.

2. Parallelized REX Instances: To further reduce overall execution time, we parallelized the execution of REX itself.
Rather than running a single REX process, we launched four independent REX instances that were executed concurrently
across multiple compute nodes. This approach draws conceptual parallels to island genetic algorithms, where a global
population is partitioned into isolated subpopulations that evolve independently. Such parallelization strategies offer
several advantages: they promote greater diversity in the search space, mitigate the risk of premature convergence, and
have demonstrated promising results in recent work such as FunSearch (Romera-Paredes et al., 2024).

D.4. Training

We fine-tuned our model using Unsloth (Daniel et al., 2023), starting from the Instruct model at each iteration. The training
setup included a warmup ratio of 0.1, the AdamW optimizer with a learning rate of 5e-5, a batch size of 1, gradient
accumulation over 64 steps, and a weight decay of 0.05. Training was performed only on the response using RS-LoRA or
RS-QLoRA for larger models (those exceeding 14 billion parameters) in bfloat16 precision. Additionally, for each training
example, the order of the grid was randomly shuffled to improve generalization.

D.5. Inference

For inference, we employed SGLang (Zheng et al., 2024) as our engine. To accelerate generation, we sampled 50 completions
in parallel for each task. Each task’s prompt included one few-shot example drawn from the ARC training set, selected from
a different task from the previous generation (or from the current generation for the first iteration). To reduce computational

18

Learning program synthesis with self-improving language models: A case study on ARC-AGI

cost, generation for a task was halted once at least 100 solutions achieved perfect accuracy on ARC input-output examples.
This criterion was applied independently during both the sampling and refinement phases.

Algorithm 3 SOAR

Require: pretrained LLM, ARC dataset
Ensure: Best performing program solution

1: loop
2: Generate 3k program candidates
3: Apply program refinement to obtain 6k programs
4: Perform majority voting on refined programs
5: Update search traces
6: Perform data selection
7: Apply generation & refinement fine-tuning
8: end loop
9: return Top performing program solutions

E. Learning to generate and refine programs jointly
Given that both generation and refinement can be improved independently, should we train separate specialized models
or can a single model learn both capabilities? Table 7 explores several combinations of using base/finetuned models for
generation and refinement steps. The results reveal several key insights:

1. Negative transfer from generation to refinement: Models finetuned for generation (fine-gen) decrease refinement
performance compared to base models (exp 2 < exp 1),

2. Positive transfer from refinement to generation: Models finetuned for refinement only (fine-ref) strongly improve program
generation compared to base models (exp 7 > exp 1), even more so than models finetuned for generation (exp 7 > exp 5),

3. Positive interaction effects between refinement and generation: Models finetuned for refinement and generation jointly
(fine-both) lead to better generation (exp 8 > exp 7 > exp 1) and better refinements (exp 8 > exp 6 > exp 1) than leveraging
two models trained on each of the tasks.

These results demonstrate the importance of learning both to better generate and to better refine programs, and highlighting a
useful synergy between the two capabilities. This suggests these tasks share underlying knowledge about program structure
and transformation patterns.

Exp Gen model Ref model Gen acc Search acc

1 base base 29.67 34.83
2 fine-gen 32.92
3 fine-ref 42.88
4 fine-both 44.04

5 fine-gen base 36.46 40.63
6 fine-ref 43.88

7 fine-ref base 39.17 39.93

8 fine-both 39.79 44.42

Table 7. ARC-train performance using different combinations of models for generation (col 2) and refinement (col 3). fine-gen/ref/both
indicate a base model finetuned for generation, refinement or both. Gen acc and search acc indicate the ARC-train accuracy after
generations (3k solutions) and after search (3k generations + 3k refinements).

F. Program synthesis using a mix of induction and transduction
During our analysis of data collected in the self-improving phase on ARC-train tasks, we identified some solutions that
employed a hybrid approach combining transduction and induction (see Code F). These solutions used Python to compute

19

Learning program synthesis with self-improving language models: A case study on ARC-AGI

basic properties like matrix dimensions, then applied a "transduction" strategy to directly map these computed properties to
hardcoded outputs.

This hybrid approach presents several issues:

Impact on Majority Voting: Such solutions can severely compromise our majority weighting strategy. Instead of learning
generalizable patterns, the model essentially copies and pastes training outputs from the prompt, which skews the voting
mechanism toward potentially incorrect solutions.

Limited Generalization: The hardcoded conditional structure (as shown in the example) creates brittle solutions that only
work for specific input dimensions encountered during training, failing to capture the underlying logical patterns that define
the ARC task.

Detection and Mitigation: Fortunately, these problematic solutions can be easily identified and filtered out by checking
whether any computed outputs using the solution appear in the code (solution). This simple validation step helps maintain
the integrity of our inductive learning process.

def transform(grid_lst: list[list[int]]) -> list[list[int]]:
grid = [row[:] for row in grid_lst]
rows, cols = (len(grid), len(grid[0]))
central_value = None
for r in range(rows):

for c in range(cols):
if grid[r][c] != 0:

central_value = grid[r][c]
break

if central_value is not None:
break

if central_value is None:
return grid

if rows == cols == 13:
pattern = [[0, ..., 0]]

elif rows == 17 and cols == 12:
pattern = [[0, ..., 0]]

elif rows == 13 and cols == 18:
pattern = [[0, ..., 0]]

elif rows == 17 and cols == 19:
pattern = [[0, ..., 0]]

else:
return grid

return pattern

G. Prompts
Prompt for sampling solution:

----- Role: system --------------------
You are an AI assistant specialized in solving Abstract Reasoning Corpus (ARC-AGI) tasks by
reasoning and generating Python code.
----- Role: user --------------------
You are an AI assistant specialized in solving Abstract Reasoning Corpus (ARC-AGI) tasks by
generating Python code.
Your goal is to analyze input-output grid pairs. The outputs were produced by applying a
transformation rule to the inputs. Implement the transformation rules as a Python function.
You should only write the implemented the transformation in code.

You must write code in triple backticks (‘‘‘python and then ‘‘‘). You must write a function
called ‘transform‘ which takes a single argument, the input grid as ‘list[list[int]]‘, and
returns the transformed grid (also as ‘list[list[int]]‘).
You should make sure that you implement a version of the transformation which works in general
(at least for all given input-output pairs and test input pairs).

20

Learning program synthesis with self-improving language models: A case study on ARC-AGI

The number in the input grid can be mapped to the following colors: 0:Black; 1:Blue; 2:Red; 3:
Green; 4:Yellow; 5:Grey; 6:Pink; 7:Orange; 8:Purple; 9:Brown

Now, solve the following ARC-AGI task:

Task to solve:
Input 1 (grid shape: 3 by 3):
[[3 3 8]
[3 7 0]
[5 0 0]]

Output 1 (grid shape: 3 by 3):
[[0 0 5]
[0 7 3]
[8 3 3]]

Input 2 (grid shape: 3 by 3):
[[5 5 2]
[1 0 0]
[0 0 0]]

Output 2 (grid shape: 3 by 3):
[[0 0 0]
[0 0 1]
[2 5 5]]

Test Input 1 (grid shape: 3 by 3):
[[6 3 5]
[6 8 0]
[4 0 0]]
‘‘‘

Prompt for sampling Refinement:

----- Role: system --------------------
You are an AI assistant specialized in solving Abstract Reasoning Corpus (ARC-AGI) tasks by
reasoning and generating Python code.
----- Role: user --------------------
You are an AI assistant specialized in solving Abstract Reasoning Corpus (ARC-AGI) tasks by
repairing Python code implementations.
Your goal is to analyze input-output grid pairs. The outputs were produced by applying a
transformation rule to the inputs.
You will be given a python function ‘transform‘ that was supposed to implement the
transformation rule, but it is not working correctly for all inputs.
You role is to fix this ‘transform‘ function.

Your solution should be:
- Accurate: Correctly fix the transformation for all given inputs so they give correct outputs
as provided (it should also work for all test inputs)
- Comprehensive: Handles all possible input scenarios
- Well-structured: Uses clear, readable, and efficient code

The number in the input grid can be mapped to the following colors: 0:Black; 1:Blue; 2:Red; 3:
Green; 4:Yellow; 5:Grey; 6:Pink; 7:Orange; 8:Purple; 9:Brown

Now, repair the following ARC-AGI task implementation:

Task to solve:
Input 1 (grid shape: 3 by 3):

21

Learning program synthesis with self-improving language models: A case study on ARC-AGI

[[0 7 7]
[7 7 7]
[0 7 7]]

Output 1 (grid shape: 9 by 9):
[[0 0 0 0 7 7 0 7 7]
[0 0 0 7 7 7 7 7 7]
[0 0 0 0 7 7 0 7 7]
[0 7 7 0 7 7 0 7 7]
[7 7 7 7 7 7 7 7 7]
[0 7 7 0 7 7 0 7 7]
[0 0 0 0 7 7 0 7 7]
[0 0 0 7 7 7 7 7 7]
[0 0 0 0 7 7 0 7 7]]

Input 2 (grid shape: 3 by 3):
[[4 0 4]
[0 0 0]
[0 4 0]]

Output 2 (grid shape: 9 by 9):
[[4 0 4 0 0 0 4 0 4]
[0 0 0 0 0 0 0 0 0]
[0 4 0 0 0 0 0 4 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 4 0 4 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 4 0 0 0 0]]

Input 3 (grid shape: 3 by 3):
[[0 0 0]
[0 0 2]
[2 0 2]]

Output 3 (grid shape: 9 by 9):
[[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 2]
[0 0 0 0 0 0 2 0 2]
[0 0 0 0 0 0 0 0 0]
[0 0 2 0 0 0 0 0 2]
[2 0 2 0 0 0 2 0 2]]

Input 4 (grid shape: 3 by 3):
[[6 6 0]
[6 0 0]
[0 6 6]]

Output 4 (grid shape: 9 by 9):
[[6 6 0 6 6 0 0 0 0]
[6 0 0 6 0 0 0 0 0]
[0 6 6 0 6 6 0 0 0]
[6 6 0 0 0 0 0 0 0]
[6 0 0 0 0 0 0 0 0]
[0 6 6 0 0 0 0 0 0]
[0 0 0 6 6 0 6 6 0]
[0 0 0 6 0 0 6 0 0]
[0 0 0 0 6 6 0 6 6]]

22

Learning program synthesis with self-improving language models: A case study on ARC-AGI

Input 5 (grid shape: 3 by 3):
[[2 2 2]
[0 0 0]
[0 2 2]]

Output 5 (grid shape: 9 by 9):
[[2 2 2 2 2 2 2 2 2]
[0 0 0 0 0 0 0 0 0]
[0 2 2 0 2 2 0 2 2]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 2 2 2 2 2 2]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 2 2 0 2 2]]

Test Input 1 (grid shape: 3 by 3):
[[7 0 7]
[7 0 7]
[7 7 0]]

Previous implementation:
‘‘‘python
def transform(grid):

n = len(grid)
m = len(grid[0])
output_size = n * m
output = [[0] * output_size for _ in range(output_size)]
for i in range(n):

for j in range(m):
value = grid[i][j]
for ii in range(i * m, (i + 1) * m):

for jj in range(j * n, (j + 1) * n):
output[ii][jj] = value

return output
‘‘‘
This implementation of transform function correctly worked on 0/5 train input-output pairs.
Detailed results:
Output 1 computed by ‘transform‘ is incorrect.
The execution gave the following results (grid shape: 9 by 9):
[[0 0 0 7 7 7 7 7 7]
[0 0 0 7 7 7 7 7 7]
[0 0 0 7 7 7 7 7 7]
[7 7 7 7 7 7 7 7 7]
[7 7 7 7 7 7 7 7 7]
[7 7 7 7 7 7 7 7 7]
[0 0 0 7 7 7 7 7 7]
[0 0 0 7 7 7 7 7 7]
[0 0 0 7 7 7 7 7 7]]
Output 2 computed by ‘transform‘ is incorrect.
The execution gave the following results (grid shape: 9 by 9):
[[4 4 4 0 0 0 4 4 4]
[4 4 4 0 0 0 4 4 4]
[4 4 4 0 0 0 4 4 4]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 4 4 4 0 0 0]
[0 0 0 4 4 4 0 0 0]
[0 0 0 4 4 4 0 0 0]]
Output 3 computed by ‘transform‘ is incorrect.
The execution gave the following results (grid shape: 9 by 9):
[[0 0 0 0 0 0 0 0 0]

23

Learning program synthesis with self-improving language models: A case study on ARC-AGI

[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 2 2 2]
[0 0 0 0 0 0 2 2 2]
[0 0 0 0 0 0 2 2 2]
[2 2 2 0 0 0 2 2 2]
[2 2 2 0 0 0 2 2 2]
[2 2 2 0 0 0 2 2 2]]
Output 4 computed by ‘transform‘ is incorrect.
The execution gave the following results (grid shape: 9 by 9):
[[6 6 6 6 6 6 0 0 0]
[6 6 6 6 6 6 0 0 0]
[6 6 6 6 6 6 0 0 0]
[6 6 6 0 0 0 0 0 0]
[6 6 6 0 0 0 0 0 0]
[6 6 6 0 0 0 0 0 0]
[0 0 0 6 6 6 6 6 6]
[0 0 0 6 6 6 6 6 6]
[0 0 0 6 6 6 6 6 6]]
Output 5 computed by ‘transform‘ is incorrect.
The execution gave the following results (grid shape: 9 by 9):
[[2 2 2 2 2 2 2 2 2]
[2 2 2 2 2 2 2 2 2]
[2 2 2 2 2 2 2 2 2]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 2 2 2 2 2 2]
[0 0 0 2 2 2 2 2 2]
[0 0 0 2 2 2 2 2 2]]
Output Test 1 computed by ‘transform‘ (we don’t know if it is correct or not) The execution
gave the following results (grid shape: 9 by 9):
[[7 7 7 0 0 0 7 7 7]
[7 7 7 0 0 0 7 7 7]
[7 7 7 0 0 0 7 7 7]
[7 7 7 0 0 0 7 7 7]
[7 7 7 0 0 0 7 7 7]
[7 7 7 0 0 0 7 7 7]
[7 7 7 7 7 7 0 0 0]
[7 7 7 7 7 7 0 0 0]
[7 7 7 7 7 7 0 0 0]]

The previous code give incorrect output for: Output 1, Output 2, Output 3, Output 4, Output 5.
Now, you need to fix the code to produce correct output for all inputs.

% ----- Role: Assistant (response) -------------------
‘‘‘python
def transform(grid):

output = [[0 for _ in range(9)] for _ in range(9)]
for i in range(3):

for j in range(3):
if grid[i][j] != 0:

for x in range(3):
for y in range(3):

output[i * 3 + x][j * 3 + y] = grid[x][y]
return output

‘‘‘

24

Learning program synthesis with self-improving language models: A case study on ARC-AGI

H. Examples of Solutions
H.1. ARC Problem 6b9890af

Solve the task online here, then read the program.

def transform(grid):

def find_bounding_box(grid, color):
min_row, max_row, min_col, max_col = (float(’inf’), float(’-inf’), float(’inf’),

float(’-inf’))
for i, row in enumerate(grid):

for j, cell in enumerate(row):
if cell == color:

min_row = min(min_row, i)
max_row = max(max_row, i)
min_col = min(min_col, j)
max_col = max(max_col, j)

return (min_row, max_row, min_col, max_col)

def create_bounding_box(grid, color):
min_row, max_row, min_col, max_col = find_bounding_box(grid, color)
bounding_box = []
for i in range(min_row, max_row + 1):

row = grid[i][min_col:max_col + 1]
bounding_box.append(row)

return bounding_box

def resize_bounding_box(bounding_box, size):
resized_box = [[0] * size for _ in range(size)]
rows, cols = (len(bounding_box), len(bounding_box[0]))
row_step = rows / (size - 1) if rows > 1 else 0
col_step = cols / (size - 1) if cols > 1 else 0
for i in range(size):

for j in range(size):
if i == 0 or i == size - 1 or j == 0 or (j == size - 1):

resized_box[i][j] = bounding_box[0][0]
else:

row_idx = min(int(i * row_step), rows - 1)
col_idx = min(int(j * col_step), cols - 1)
resized_box[i][j] = bounding_box[row_idx][col_idx]

return resized_box
colors = set()
for row in grid:

for cell in row:
if cell != 0:

colors.add(cell)
color_bounding_boxes = {}
for color in colors:

color_bounding_boxes[color] = create_bounding_box(grid, color)
max_size = 0
for color in colors:

bounding_box = color_bounding_boxes[color]
max_dim = max(len(bounding_box), len(bounding_box[0]))
max_size = max(max_size, max_dim)

output_size = max_size
output_grid = [[0] * output_size for _ in range(output_size)]
for color in colors:

bounding_box = color_bounding_boxes[color]
resized_box = resize_bounding_box(bounding_box, output_size)
for i in range(output_size):

for j in range(output_size):
if resized_box[i][j] == color:

output_grid[i][j] = color
return output_grid

25

https://neoneye.github.io/arc/edit.html?dataset=ARC&task=6b9890af

Learning program synthesis with self-improving language models: A case study on ARC-AGI

H.2. ARC Problem 72ca375d

Solve the task online here, then read the program.

def transform(grid):

def find_largest_rectangle(grid):
rows, cols = (len(grid), len(grid[0]))
max_area = 0
max_rectangle = (0, 0, 0, 0)
for i in range(rows):

for j in range(cols):
if grid[i][j] == 0:

continue
color = grid[i][j]
width = 1
while j + width < cols and grid[i][j + width] == color:

width += 1
for k in range(i, rows):

if grid[k][j] != color:
break

for l in range(j, j + width):
if grid[k][l] != color:

break
else:

continue
break

area = (k - i) * (l - j)
if area > max_area:

max_area = area
max_rectangle = (i, j, k, l)

return max_rectangle

def extract_rectangle(grid, rect):
i, j, k, l = rect
return [row[j:l] for row in grid[i:k]]

def find_largest_connected(grid, color):
rows, cols = (len(grid), len(grid[0]))
visited = [[False] * cols for _ in range(rows)]
max_size = 0
max_component = []

def dfs(i, j, component):
if i < 0 or i >= rows or j < 0 or (j >= cols) or visited[i][j] or (grid[i][j]

!= color):
return

visited[i][j] = True
component.append((i, j))
dfs(i + 1, j, component)
dfs(i - 1, j, component)
dfs(i, j + 1, component)
dfs(i, j - 1, component)

for i in range(rows):
for j in range(cols):

if grid[i][j] == color and (not visited[i][j]):
component = []
dfs(i, j, component)
if len(component) > max_size:

max_size = len(component)
max_component = component

return max_component

def extract_component(grid, component):
min_i = min((c[0] for c in component))

26

https://neoneye.github.io/arc/edit.html?dataset=ARC&task=72ca375d

Learning program synthesis with self-improving language models: A case study on ARC-AGI

max_i = max((c[0] for c in component))
min_j = min((c[1] for c in component))
max_j = max((c[1] for c in component))
return [row[min_j:max_j + 1] for row in grid[min_i:max_i + 1]]

rect = find_largest_rectangle(grid)
rect_grid = extract_rectangle(grid, rect)
if len(rect_grid) == 2 and len(rect_grid[0]) == 4:

return rect_grid
color = grid[rect[0]][rect[1]]
component = find_largest_connected(grid, color)
component_grid = extract_component(grid, component)
return component_grid

H.3. ARC Problem 1f642eb9

Solve the task online here, then read the program.

def transform(grid):
def dfs(x, y, component_num):

if x < 0 or x >= len(grid) or y < 0 or (y >= len(grid[0])) or (grid[x][y] != 5):
return

grid[x][y] = component_num
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:

dfs(x + dx, y + dy, component_num)
component_num = 1
for i in range(len(grid)):

for j in range(len(grid[0])):
if grid[i][j] == 5:

dfs(i, j, component_num)
component_num += 1
if component_num > 4:

component_num = 1
component_map = {i: num for i, num in enumerate(range(1, component_num), start=1)}
for i in range(len(grid)):

for j in range(len(grid[0])):
if grid[i][j] in component_map:

grid[i][j] = component_map[grid[i][j]]
return grid

H.4. ARC Problem ef26cbf6

Solve the task online here, then read the program.

def transform(grid):
transformed_grid = [row[:] for row in grid]
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]

def in_bounds(x, y):
return 0 <= x < len(grid) and 0 <= y < len(grid[0])

for i in range(len(grid)):
for j in range(len(grid[i])):

if grid[i][j] == 8:
for dx, dy in directions:

ni, nj = (i + dx, j + dy)
if in_bounds(ni, nj) and grid[ni][nj] != 8:

if grid[ni][nj] != 0:
transformed_grid[i][j] = grid[ni][nj]

else:
step = 1
while in_bounds(ni + dx * step, nj + dy * step) and grid[ni +

dx * step][nj +
dy * step] == 0:

step += 1

27

https://neoneye.github.io/arc/edit.html?dataset=ARC&task=1f642eb9
https://neoneye.github.io/arc/edit.html?dataset=ARC&task=ef26cbf6

Learning program synthesis with self-improving language models: A case study on ARC-AGI

if in_bounds(ni + dx * step, nj + dy * step) and grid[ni + dx
* step][nj + dy *
step] != 0:

transformed_grid[i][j] = grid[ni + dx * step][nj + dy *
step]

return transformed_grid

H.5. ARC Problem 1f876c06

Solve the task online here, then read the program.

def transform(grid):
rows = len(grid)
cols = len(grid[0]) if rows > 0 else 0
transformed_grid = [row[:] for row in grid]
for num in range(1, 10):

positions = [(r, c) for r in range(rows) for c in range(cols) if grid[r][c] == num
]

for i in range(len(positions) - 1):
r1, c1 = positions[i]
r2, c2 = positions[i + 1]
dr = 1 if r2 > r1 else -1 if r2 < r1 else 0
dc = 1 if c2 > c1 else -1 if c2 < c1 else 0
r, c = (r1 + dr, c1 + dc)
while r != r2 or c != c2:

transformed_grid[r][c] = num
r += dr
c += dc

return transformed_grid

I. History of refinement
I.1. ARC Problem 22168020

Solve the task online here, then read the programs.

incorrect program
def transform(grid):

def fill_gaps(row):
start, end = (-1, -1)
for i, val in enumerate(row):

if val != 0:
if start == -1:

start = i
end = i

if start != -1 and end != -1:
for i in range(start, end + 1):

if row[i] == 0:
row[i] = row[start]

return row
for i in range(len(grid)):

grid[i] = fill_gaps(grid[i])
for col in range(len(grid[0])):

column_values = [grid[row][col] for row in range(len(grid))]
start, end = (-1, -1)
for i, val in enumerate(column_values):

if val != 0:
if start == -1:

start = i
end = i

if start != -1 and end != -1:
for i in range(start, end + 1):

28

https://neoneye.github.io/arc/edit.html?dataset=ARC&task=1f876c06
https://neoneye.github.io/arc/edit.html?dataset=ARC&task=22168020

Learning program synthesis with self-improving language models: A case study on ARC-AGI

if column_values[i] == 0:
column_values[i] = column_values[start]
grid[i][col] = column_values[start]

return grid

incorrect program
def transform(grid):

def fill_gaps(line):
"""
Fill gaps between non-zero values in a single line (row or column).
"""
filled_line = line[:]
n = len(line)
start = -1
for i in range(n):

if line[i] != 0:
if start == -1:

start = i
end = i
for j in range(start + 1, end):

filled_line[j] = line[start]
start = end

return filled_line
for i in range(len(grid)):

grid[i] = fill_gaps(grid[i])
for col in range(len(grid[0])):

column_values = [grid[row][col] for row in range(len(grid))]
filled_column = fill_gaps(column_values)
for row in range(len(grid)):

grid[row][col] = filled_column[row]
return grid

correct program
def transform(grid):

def fill_gaps(line):
"""
Fill gaps between non-zero values in a single line (row or column).
"""
filled_line = line[:]
n = len(line)
i = 0
while i < n:

if line[i] != 0:
start_value = line[i]
j = i + 1
while j < n and line[j] == 0:

j += 1
end_value = line[j] if j < n else 0
if start_value == end_value:

for k in range(i + 1, j):
filled_line[k] = start_value

i = j
else:

i += 1
return filled_line

for i in range(len(grid)):
grid[i] = fill_gaps(grid[i])

for col in range(len(grid[0])):
column_values = [grid[row][col] for row in range(len(grid))]
filled_column = fill_gaps(column_values)
for row in range(len(grid)):

grid[row][col] = filled_column[row]

29

Learning program synthesis with self-improving language models: A case study on ARC-AGI

return grid

I.2. ARC Problem 0d3d703e

Solve the task online here, then read the programs.

incorrect program
def transform(grid):

transformation_mapping = {((3, 1, 2), (3, 1, 2), (3, 1, 2)): ((4, 5, 6), (4, 5, 6), (4
, 5, 6)), ((2, 3, 8), (2, 3, 8), (2, 3, 8
)): ((6, 4, 9), (6, 4, 9), (6, 4, 9)), ((
5, 8, 6), (5, 8, 6), (5, 8, 6)): ((1, 9,
2), (1, 9, 2), (1, 9, 2)), ((9, 4, 2), (9
, 4, 2), (9, 4, 2)): ((8, 3, 6), (8, 3, 6
), (8, 3, 6)), ((8, 1, 3), (8, 1, 3), (8,
1, 3)): ((7, 5, 4), (7, 5, 4), (7, 5, 4)

)}
grid_tuple = tuple((tuple(row) for row in grid))
return list(map(list, transformation_mapping.get(grid_tuple, grid)))

incorrect program
def transform(grid):

transformation_mapping = {((3, 1, 2), (3, 1, 2), (3, 1, 2)): ((4, 5, 6), (4, 5, 6), (4
, 5, 6)), ((2, 3, 8), (2, 3, 8), (2, 3, 8
)): ((6, 4, 9), (6, 4, 9), (6, 4, 9)), ((
5, 8, 6), (5, 8, 6), (5, 8, 6)): ((1, 9,
2), (1, 9, 2), (1, 9, 2)), ((9, 4, 2), (9
, 4, 2), (9, 4, 2)): ((8, 3, 6), (8, 3, 6
), (8, 3, 6)), ((8, 1, 3), (8, 1, 3), (8,
1, 3)): ((7, 5, 4), (7, 5, 4), (7, 5, 4)

)}
grid_tuple = tuple((tuple(row) for row in grid))
transformed_grid = transformation_mapping.get(grid_tuple, grid_tuple)
return [list(row) for row in transformed_grid]

correct program
def transform(grid):

transformation_mapping = {3: 4, 1: 5, 2: 6, 8: 9, 5: 1, 6: 2, 9: 8, 4: 3}
transformed_grid = [[transformation_mapping.get(grid[i][j], grid[i][j]) for j in range

(len(grid[0]))] for i in range(len(grid))
]

return transformed_grid

30

https://neoneye.github.io/arc/edit.html?dataset=ARC&task=0d3d703e

