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Abstract
Automated seizure detection from scalp EEG is critical for epilepsy management,
yet existing algorithms often struggle to balance computational efficiency, predic-
tive performance, and generalizability across diverse patient populations. This
study investigates the ROCKET framework and complementary state-of-the-art
frameworks in time series classification and seizure detection tasks, including
Detach-ROCKET, Detach Ensemble, STFT-based feature transform, catch22 fea-
tures and EEGNet. Models were trained on the TUSZ dataset and rigorously
evaluated on both TUSZ and the independent Siena dataset to assess inter-subject
and cross-dataset generalizability. The Detach Ensemble model achieved strong
performance with median event-wise F1 scores of 0.89 on TUSZ and 0.53 on
cross-data evaluation, while maintaining low false positive rates and exceptional
computational efficiency. These results demonstrate that ROCKET-based models
are competitive in achieving strong predictive performance, computational effi-
ciency, and generalizability promising for practical clinical deployment. The imple-
mentation is available at https://github.com/zheyun-shou/eeg_seizure.

1 Introduction
Epilepsy is a chronic neurological disorder characterized by an enduring predisposition to generate
recurrent, unprovoked epileptic seizures, which are transient episodes of abnormal, excessive, or
synchronous neuronal activity in the brain [10, 11].Seizures can manifest through diverse symptoms
ranging from subtle behavioral changes and brief lapses in awareness to dramatic convulsive episodes,
depending on the brain regions involved and the pattern of electrical discharge propagation [28].
Beyond the immediate physical risks associated with seizure events, epilepsy imposes substantial bur-
dens on patients through cognitive impairments, psychological comorbidities, and social limitations
that diminish quality of life [9, 14, 28]. The unpredictable nature of seizures necessitates continuous
monitoring and rapid clinical response, making accurate and timely seizure detection a valuable
technique for patient care and the prevention of potentially life-threatening complications [8].

Electroencephalography (EEG) is the most widely used and reliable method for monitoring brain
electrical activity and detecting seizures in clinical practice [18]. However, the manual interpretation
of EEG recordings is a time-intensive process that requires specialized expertise, making it susceptible
to inter-observer variability and potential delays in critical decision-making [21]. The increasing
availability of long-term EEG monitoring systems has further amplified the volume of data requiring
analysis, creating an urgent need for automated seizure detection algorithms that can assist clinicians
in providing timely and accurate diagnoses.

Recent advances in machine learning and time series analysis have opened new possibilities for
automated EEG analysis. Traditional approaches rely heavily on handcrafted features and conven-
tional machine learning algorithms [1, 25], while more recent developments have explored deep
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learning methodologies [2, 23]. However, many existing approaches face significant challenges in
terms of computational efficiency, generalizability across diverse patient populations, and practical
deployment in resource-constrained clinical environments [13].

The ROCKET family of algorithms has emerged as a promising paradigm for time series classification,
offering state-of-the-art accuracy while maintaining exceptional computational efficiency [5, 6].
These methods transform time series data using randomly generated convolutional kernels, creating
discriminative features that can be effectively utilized by simple linear classifiers. Recent extensions,
including Detach-ROCKET [31] and Detach Ensemble [24], have further enhanced this approach
through feature selection and ensemble methodologies.

2 Methods
2.1 Data Processing
We employed two datasets in this study: the TUH EEG Seizure Corpus(TUSZ) [22] and the Siena
Scalp EEG Database [7], comprising recordings from 459 and 14 subjects, respectively. Each
EEG recording consists of 19 channels corresponding to the standard 10–20 system scalp electrode
montage. To support model training across multiple datasets, we convert each dataset to the Seizure
Community Open-Source Research Evaluation (SzCORE) standardized format [4] for data and
seizure annotations. Models are trained on the TUSZ dataset, including 1,134 recordings with
seizures and 4,585 background recordings. All recordings were downsampled to 128 Hz using
FFT-based resampling methods. Before training, we evaluated different window lengths ranging
from 2 to 20 seconds using Detach ROCKET models to determine the optimal window length, as it
has been shown to notably influence classification performance in previous studies [19, 30]. An 8-
second window was selected based on its enhanced test accuracy and reduced memory requirements.
Non-overlapping windows (epochs) were then categorized as seizure, interictal, or background,
corresponding to segments extracted from seizure events, intervals between annotated seizure events,
and background recordings, respectively. Both interictal and background epochs were labeled as
non-seizure.

2.2 Models

We evaluate ROCKET-based and complementary state-of-the-art methods for EEG seizure detection,
including Detach-ROCKET, Detach Ensemble, STFT-based feature transform, catch22 features and
EEGNet. ROCKET (RandOm Convolutional KErnel Transform) achieves state-of-the-art classi-
fication accuracy for time series classification while requiring only a fraction of the computational
resources used by most existing methods [5]. It transforms time series using random convolutional
kernels and uses the transformed features to train a linear classifier. The method was later reformulated
as MINIROCKET, which is up to 75 times faster than ROCKET on large datasets and is almost deter-
ministic, while maintaining nearly the same accuracy [6]. Although ROCKET and MINIROCKET
are efficient and computationally lightweight, many of the randomly generated features are redundant
or non-informative, increasing the computational burden and may reduce the model’s generalizabil-
ity. Detach-ROCKET addresses this issue by introducing Sequential Feature Detachment (SFD), a
method designed to identify and prune the non-essential features from ROCKET-based models [31].
In SFD, the transformed features are ranked according to their contribution to the model’s decisions.
At each iteration, a fixed proportion ( 5% in our implementation) of the least informative features is
discarded. Given the high dimensionality of multivariate time series such as the 19-channel EEG
data, relying on a single set of randomly generated kernels may inadequately capture the complex
spatio-temporal patterns and inter-channel relationships critical for seizure detection. To address
this limitation, we employed the Detach Ensemble model which involves training N independent
Detach-ROCKET models. Each model is pruned using SFD and then assigned a weight based on
its performance on the training set [24]. In our implementation, we use an ensemble of N = 8
Detach-MINIROCKET models. This number was chosen as a balance between seeking improved
performance through ensemble diversity and managing computational resources.

Beyond ROCKET-based models, we include three representative baselines spanning complementary
seizure detection paradigms: (i) frequency-domain features via short-time Fourier transform(STFT).
Power spectrum density (PSD) on brainwave frequency bands are extracted and fed to a Support
Vector Machine (SVM) [29]; (ii) catch22 (Canonical Time-series Characteristics) features with
RandomForest, as a state-of-the-art framework in TSC, provides a concise set of 22 highly dis-
criminative and computationally inexpensive time-series features, selected from the larger hctsa
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feature set [12, 17] to maximize performance while minimizing redundancy. This focus on feature
selection makes it a relevant comparison for our Detach-ROCKET methodology; and (iii) EEGNet,
a compact convolutional neural network that uses depthwise and separable convolutions to achieve
computational efficiency and generalizability [16].These baselines respectively represent handcrafted
features, classical time-series classification methods, and deep learning approaches, offering compre-
hensive and state-of-the-art comparisons to the Detach-ROCKET methodology. A summary of the
configurations and parameters of all models is provided in Appendix A.

2.3 Evaluation of models

The performance of the models are assessed through two complementary evaluation frameworks:
epoch-wise and event-wise analysis. An epoch-wise evaluation is conducted based on the 8-second
non-overlapping windows. Standard classification metrics including sensitivity, precision, F1-score
and False Positive Rate(per 24h) are computed on the test set. This epoch-based assessment provides
views of the model’s ability to correctly classify individual epochs. Moreover, recognizing that
clinical assessment of epilepsy monitoring often focuses on the detection of seizure events rather than
isolated time epochs, an event-wise evaluation is performed. During the evaluation procedure, event-
based sensitivity, precision, F1-score and FPR are calculated base on the open-source timescoring
library [3]. We use the same rules to combine the epochs to seizure events as configured by the
2025 Seizure Detection Challenge [27]. Figure 1a illustrates the epoch and event definitions used in
our evaluation framework and the Challenge, with detailed rules described in Appendix B. For the
specific application of seizure detection, event-wise metrics are considered more clinically meaningful
than epoch-wise metrics. Therefore, we evaluate model performance using both epoch-wise and
event-wise F1 scores and false positive rates (FPR), with greater emphasis placed on event-wise
performance to assess the model’s clinical utility and practical applicability.

3 Experiments
3.1 Model Performance

We trained and evaluated our selected models on the TUSZ dataset. We allocated 80% of the subjects
for training and 20% for evaluation to ensure that performance metrics reflect the model’s ability
to generalize across different subjects under the same dataset. Figure 1b illustrates the overall
pipeline for data preparation and experiments on the TUSZ dataset. Extracted epochs are balanced
before model training. To assess models’ generalization capabilities on completely unseen data,
we subsequently evaluated performance on the Siena dataset. This independent dataset, which was
never used during model development or parameter selection, provides a rigorous test of model
performance across different patient populations, recording equipment, and potential variations in
EEG signal characteristics.

Table 1 presents performance metrics for all models trained on the TUSZ dataset and evaluated on
both datasets. Metrics were computed for each evaluation recording and then averaged across all
recordings. We report median values and min-max ranges derived from 5-fold cross-validation. The
selected models, particularly Detach-ROCKET, demonstrated strong epoch-wise and event-wise
performance on the TUSZ evaluation set, indicating effective generalization across different subjects
under similar recording conditions. On the independent Siena dataset, the Detach Ensemble model
achieved notably better F1 scores at both levels with a low event-wise FPR compared to other
models. When compared to results from the Seizure Detection Challenge 2025 [26], where proposed
algorithms were trained on publicly available datasets and evaluated on a private EEG dataset ranked
by event-wise F1 score, the Ensemble model’s lowest F1 score on the independent Siena dataset
(0.48) exceeded the top-performing competition algorithm (F1 = 0.43). Given that the Siena dataset
represents a distinct data distribution from the TUSZ training set, this performance indicates the
model’s competitive generalization capability and robust seizure detection across diverse datasets and
recording conditions. The full table is shown in Appendix C.

To examine the model’s generalization capabilities across individuals in greater detail, we computed
subject-wise performance metrics on the TUSZ evaluation set to investigate the extent of inter-
subject variability in prediction performance( Appendix D). Considerable inter-subject variability
was observed across our models. This heterogeneity is anticipated and reflects the inherent challenges
of EEG-based seizure detection. The observed variation likely stems from multiple factors, including
differences in seizure types among test subjects, variations in electrode positioning, and inter-subject
differences in scalp thickness, skull conductivity, and electrode-scalp impedance [15, 20].
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(a)

(b)

Figure 1: (a) Epoch-wise and event-wise evaluation framework for seizure detection. Detected events
are matched against ground truth reference events (Ref. Event) within specified tolerance windows
to determine final classification outcomes. And (b) Overview of the experiment pipeline on TUSZ.
Training epochs are balanced to create a balanced and diverse training set.

Table 1: Evaluation performance across models, evaluated on TUSZ and Siena datasets at epoch- and
event-levels. Values are median (range). RF = RandomForest, SVM = Support Vector Machine.

Model Level F1 (TUSZ) FPR/24h (TUSZ) F1 (Siena) FPR/24h (Siena)

D-ROCKET Epoch 0.69 (0.58 - 0.70) 7067 (5562 - 7558) 0.31 (0.30 - 0.38) 5313 (672 - 5982)
Event 0.90 (0.87 - 0.91) 28 (22 - 33) 0.39 (0.37 - 0.43) 52 (31 - 68)

D-ROCKET Ens. Epoch 0.57 (0.56 - 0.62) 7785 (5249 - 11237) 0.43 (0.39 - 0.47) 839 (433 - 4619)
Event 0.89 (0.86 - 0.92) 32 (19 - 42) 0.53 (0.48 - 0.60) 24 (19 - 33)

STFT + SVM Epoch 0.40 (0.37 - 0.47) 7307 (6234 - 8709) 0.26 (0.26 - 0.29) 2953 (2737 - 3236)
Event 0.82 (0.76 - 0.89) 47 (24 - 66) 0.31 (0.29 - 0.36) 79 (68 - 81)

catch22 + RF Epoch 0.53 (0.45 - 0.60) 6958 (4734 - 11524) 0.35 (0.34 - 0.36) 1556 (1424 - 1801)
Event 0.86 (0.82 - 0.90) 30 (18 - 47) 0.46 (0.42 - 0.49) 47 (43 - 55)

EEGNet Epoch 0.55 (0.46 - 0.56) 10263 (1864 - 21692) 0.28 (0.14 - 0.44) 4839 (781 - 16952)
Event 0.89 (0.88 - 0.89) 22 (8 - 31) 0.43 (0.20 - 0.61) 67 (20 - 145)

3.2 Computational efficiency

The computational efficiency of the models, particularly their achievable prediction speed, is a critical
consideration for real-world deployment of seizure detection systems. We evaluated prediction times
using a representative 1,200-second EEG recording on a distributed server(See Appendix E for
more details). The Detach-ROCKET model achieved a prediction time of 0.74 seconds, while the
ensemble of 8 Detach-MINIROCKET models required 5.27 seconds. Given the superior performance
provided by ROCKET-based algorithms, these results highlight the computational advantages of
ROCKET-based approaches and demonstrate their strong potential for applications requiring near
real-time processing and decision-making.

4 Conclusions
This study aimed to develop and evaluate computationally efficient and generalizable algorithms for
seizure detection from scalp EEG recordings. By leveraging ROCKET-based feature transformation
algorithms and complementary state-of-the-art TSC and seizure detection algorithms, this work
demonstrates that ROCKET-based models effectively balance high predictive performance with
computational efficiency and generalizability. Under our experimental framework, the Detach
Ensemble model demonstrated strong inter-subject and cross-dataset generalizability through rigorous
evaluation on both datasets, achieving median event-wise F1 scores of 0.89 on TUSZ and 0.53 on
cross-dataset evaluation while maintaining low false positive rates. The rapid model prediction times
confirm the computational efficiency of ROCKET-based approaches, highlighting their potential for
implementation in near real-time clinical monitoring systems.
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Appendix A Model Architectures and Parameters

Table 2: Summary of the main architectural parameters used for each model tested in this work.
Default values refer to those in the respective published implementations.

Model Parameters / Architecture

D-ROCKET 10,000 random convolutional kernels (default).
Sequential Feature Detachment (SFD) with 5% pruning per iteration (default).

D-ROCKET Ens. Ensemble of N = 8 Detach-MINIROCKET models.

STFT + SVM STFT features computed over standard EEG frequency bands:
δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz),
β (13–20 Hz, 20-30 Hz), γ (30–40 Hz, 40-60 Hz).

SVM with RBF kernel using default parameters from scikit-learn.

catch22 + RF 22 canonical time-series features (catch22).
Random Forest with 100 trees, max depth = 16.

EEGNet Default implementation of the official repository github.com/vlawhern/arl-eegmodels.
Hyperparameters (dropout rate, kernel length, F1, D, F2, and epochs) are explored
to obtain optimized results for fair comparison:

Chans = 19, Samples = 1024, dropoutRate = 0.01, kernLength = 64,
F1 = 8, D = 2, F2 = 16, dropoutType = ’Dropout’, epoch = 100.

Appendix B Rules for Combining Seizure Epochs into Events

The following rules were applied in this study to merge individual seizure epochs into seizure events:

Minimum Overlap: Any temporal overlap, however brief, between a reference event and a hypothesis
event is sufficient to consider it a potential match.

Pre-ictal Tolerance: A hypothesis event starting up to 30 seconds before the onset of a reference
event can still be considered a detection of that event.

Post-ictal Tolerance: A hypothesis event ending up to 60 seconds after the end of a reference event
can still be considered part of the detection of that event.

Minimum Duration: Reference or hypothesis events separated by less than 90 seconds are merged
into a single, longer event before scoring. This duration corresponds to the sum of the pre- and
post-ictal tolerances, preventing closely spaced detections from being penalized multiple times.

Appendix C Detailed performance comparison

Table 3: Performance comparison of different models for seizure detection on TUSZ dataset. The
median values and the range of results from the 5-fold cross-validation are reported for the main
metrics.

Model Level Sens. Prec. F1 FPR/24h

D-ROCKET Epoch 0.74 (0.61–0.76) 0.73 (0.70–0.73) 0.69 (0.58–0.70) 7067 (5562–7558)
Event 0.94 (0.91–0.96) 0.89 (0.87–0.89) 0.90 (0.87–0.91) 28 (22–33)

D-ROCKET Ens. Epoch 0.64 (0.56–0.69) 0.68 (0.65–0.76) 0.57 (0.56–0.62) 7785 (5249–11237)
Event 0.95 (0.90–0.96) 0.88 (0.83–0.91) 0.89 (0.86–0.92) 32 (19–42)

STFT + SVM Epoch 0.41 (0.36–0.48) 0.56 (0.54–0.66) 0.40 (0.37–0.47) 7307 (6234–8709)
Event 0.91 (0.83–0.93) 0.80 (0.73–0.89) 0.82 (0.76–0.89) 47 (24–66)

catch22 + RF Epoch 0.53 (0.49–0.63) 0.69 (0.65–0.76) 0.53 (0.45–0.60) 6958 (4734–11524)
Event 0.92 (0.88–0.95) 0.88 (0.80–0.91) 0.86 (0.82–0.90) 30 (18–47)

EEGNet Epoch 0.62 (0.39–0.77) 0.72 (0.52–0.89) 0.55 (0.46–0.56) 10262 (1864–21692)
Event 0.92 (0.85–0.97) 0.90 (0.88–0.95) 0.89 (0.88–0.89) 22 (8–31)
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Table 4: Performance comparison of different models for seizure detection on Siena dataset. The
median values and the range of results from the 5-fold cross-validation are reported for the main
metrics.

Model Level Sens. Prec. F1 FPR/24h

D-ROCKET Epoch 0.50 (0.37–0.53) 0.33 (0.32–0.41) 0.31 (0.30–0.38) 5313 (672–5982)
Event 0.89 (0.74–0.92) 0.32 (0.30–0.35) 0.39 (0.37–0.43) 52 (31–68)

D-ROCKET Ens. Epoch 0.46 (0.42–0.50) 0.54 (0.45–0.58) 0.43 (0.39–0.47) 839 (433–4619)
Event 0.84 (0.77–0.88) 0.47 (0.39–0.54) 0.53 (0.48–0.60) 24 (19–33)

STFT + SVM Epoch 0.39 (0.39–0.42) 0.27 (0.24–0.31) 0.26 (0.26–0.29) 2953 (2737–3236)
Event 0.84 (0.83–0.86) 0.22 (0.21–0.28) 0.31 (0.29–0.36) 79 (68–81)

catch22 + RF Epoch 0.45 (0.44–0.46) 0.41 (0.36–0.42) 0.35 (0.34–0.36) 1556 (1424–1801)
Event 0.89 (0.89–0.92) 0.38 (0.34–0.42) 0.46 (0.42–0.49) 47 (43–55)

EEGNet Epoch 0.57 (0.24–0.79) 0.40 (0.10–0.59) 0.28 (0.14–0.44) 4839 (781–16952)
Event 0.91 (0.79–0.99) 0.37 (0.12–0.59) 0.43 (0.20–0.61) 66 (20–145)

Appendix D Subject Variation Analysis

(a) Subject-wise event F1 score distribution
for the Detach-MINIROCKET on the TUSZ
evaluation set.

(b) Subject-wise event FPR distribution for
the Detach-MINIROCKET on the TUSZ
evaluation set.

(c) Subject-wise event F1 score distribution
for the Detach Ensemble on the TUSZ evalu-
ation set.

(d) Subject-wise event FPR distribution for
the Detach Ensemble model on the TUSZ
evaluation set.

Figure 2: Distribution of subject-wise performance metrics on the TUSZ test set for different model
configurations. Subjects who contributed exclusively background recordings to the test set (i.e., had
no annotated seizure events) are excluded. For these subjects, True Positives (TP) and False Negatives
(FN) are inherently zero, so the F1 score cannot be calculated.
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Appendix E Computational Performance and Hardware Configuration

All models were trained and evaluated on a distributed NVIDIA DGX-H100 machine using an
allocated pod with 64GB RAM and 20GB GPU memory. ROCKET-based models and catch22
utilized both CPU and GPU resources, STFT ran exclusively on CPU, and EEGNet ran exclusively
on GPU.

Table 5: Model prediction time (seconds) on a 1200s EEG recording.
D-MINIROCKET D-MINIROCKET Ens. STFT Catch22 EEGNet

0.80 5.27 4.57 14.20 0.78
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