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Abstract

Automated seizure detection from scalp EEG is critical for epilepsy management,1

yet existing algorithms often struggle to balance computational efficiency, predic-2

tive performance, and generalizability across diverse patient populations. This3

study investigates the ROCKET framework and complementary state-of-the-art4

frameworks in time series classification and seizure detection tasks, including5

Detach-ROCKET, Detach Ensemble, STFT-based feature transform, catch22 fea-6

tures and EEGNet. Models were trained on the TUSZ dataset and rigorously7

evaluated on both TUSZ and the independent Siena dataset to assess inter-subject8

and cross-dataset generalizability. The Detach Ensemble model achieved strong9

performance with median event-wise F1 scores of 0.89 on TUSZ and 0.53 on10

cross-data evaluation, while maintaining low false positive rates and exceptional11

computational efficiency. These results demonstrate that ROCKET-based mod-12

els are competitive in achieving strong predictive performance, computational13

efficiency, and generalizability promising for practical clinical deployment. The14

implementation will be made available after peer review.15

1 Introduction16

Epilepsy is a chronic neurological disorder characterized by an enduring predisposition to generate17

recurrent, unprovoked epileptic seizures, which are transient episodes of abnormal, excessive, or18

synchronous neuronal activity in the brain [10, 11].Seizures can manifest through diverse symptoms19

ranging from subtle behavioral changes and brief lapses in awareness to dramatic convulsive episodes,20

depending on the brain regions involved and the pattern of electrical discharge propagation [28].21

Beyond the immediate physical risks associated with seizure events, epilepsy imposes substantial bur-22

dens on patients through cognitive impairments, psychological comorbidities, and social limitations23

that diminish quality of life [9, 14, 28]. The unpredictable nature of seizures necessitates continuous24

monitoring and rapid clinical response, making accurate and timely seizure detection a valuable25

technique for patient care and the prevention of potentially life-threatening complications [8].26

Electroencephalography (EEG) is the most widely used and reliable method for monitoring brain27

electrical activity and detecting seizures in clinical practice [18]. However, the manual interpretation28

of EEG recordings is a time-intensive process that requires specialized expertise, making it susceptible29

to inter-observer variability and potential delays in critical decision-making [21]. The increasing30

availability of long-term EEG monitoring systems has further amplified the volume of data requiring31

analysis, creating an urgent need for automated seizure detection algorithms that can assist clinicians32

in providing timely and accurate diagnoses.33

Recent advances in machine learning and time series analysis have opened new possibilities for34

automated EEG analysis. Traditional approaches rely heavily on handcrafted features and conven-35

tional machine learning algorithms [1, 25], while more recent developments have explored deep36

learning methodologies [2, 23]. However, many existing approaches face significant challenges in37
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terms of computational efficiency, generalizability across diverse patient populations, and practical38

deployment in resource-constrained clinical environments [13].39

The ROCKET family of algorithms has emerged as a promising paradigm for time series classification,40

offering state-of-the-art accuracy while maintaining exceptional computational efficiency [5, 6].41

These methods transform time series data using randomly generated convolutional kernels, creating42

discriminative features that can be effectively utilized by simple linear classifiers. Recent extensions,43

including Detach-ROCKET [31] and Detach Ensemble [24], have further enhanced this approach44

through feature selection and ensemble methodologies.45

2 Methods46

2.1 Data Processing47

We employed two datasets in this study: the TUH EEG Seizure Corpus(TUSZ) [22] and the Siena48

Scalp EEG Database [7], comprising recordings from 459 and 14 subjects, respectively. Each49

EEG recording consists of 19 channels corresponding to the standard 10–20 system scalp electrode50

montage. To support model training across multiple datasets, we convert each dataset to the Seizure51

Community Open-Source Research Evaluation (SzCORE) standardized format [4] for data and seizure52

annotations. Models are trained on the TUSZ dataset, including 1,134 recordings with seizures and53

4,585 background recordings. All recordings were downsampled to 128 Hz. Before training, we54

evaluated different window lengths ranging from 2 to 20 seconds using Detach ROCKET models55

to determine the optimal window length, as it has been shown to notebly influence classification56

performance in previous studies [19, 30]. An 8-second window was selected based on its enhanced57

test accuracy and reduced memory requirements. Non-overlapping windows (epochs) were then58

categorized as seizure, interictal, or background, corresponding to segments extracted from seizure59

events, intervals between annotated seizure events, and background recordings, respectively. Both60

interictal and background epochs were labeled as non-seizure.61

2.2 Models62

In this work, we evaluate ROCKET-based and complementary state-of-the-art methods for EEG63

seizure detection, including Detach-ROCKET, Detach Ensemble, STFT-based feature transform,64

catch22 features and EEGNet. ROCKET (RandOm Convolutional KErnel Transform) achieves65

state-of-the-art classification accuracy for time series classification while requiring only a fraction66

of the computational resources used by most existing methods [5]. It transforms time series using67

random convolutional kernels and uses the transformed features to train a linear classifier. The68

method was later reformulated as MINIROCKET, which is up to 75 times faster than ROCKET on69

large datasets and is almost deterministic, while maintaining nearly the same accuracy [6]. Although70

ROCKET and MINIROCKET are efficient and computationally lightweight, many of the randomly71

generated features are redundant or non-informative, increasing the computational burden and may72

reduce the model’s generalizability. Detach-ROCKET addresses this issue by introducing Sequential73

Feature Detachment (SFD), a method designed to identify and prune the non-essential features74

from ROCKET-based models [31]. In SFD, the transformed features are ranked according to their75

contribution to the model’s decisions. At each iteration, a fixed proportion ( 5% in our implementation)76

of the least informative features is discarded. Given the high dimensionality of multivariate time77

series such as the 19-channel EEG data, relying on a single set of randomly generated kernels may78

inadequately capture the complex spatio-temporal patterns and inter-channel relationships critical79

for seizure detection. To address this limitation, we employed the Detach Ensemble model which80

involves training N independent Detach-ROCKET models. Each model is pruned using SFD and81

then assigned a weight based on its performance on the training set [24]. In our implementation, we82

use an ensemble of N = 8 Detach-MINIROCKET models. This number was chosen as a balance83

between seeking improved performance through ensemble diversity and managing computational84

resources.85

Beyond ROCKET-based models, we include three representative baselines spanning complementary86

seizure detection paradigms: (i) frequency-domain features via short-time Fourier transform(STFT).87

Power spectrum density (PSD) on brainwave frequency bands are extracted and fed to a Support88

Vector Machine (SVM) [29]; (ii) catch22 (Canonical Time-series Characteristics) features with89

RandomForest, as a state-of-the-art framework in TSC, provides a concise set of 22 highly dis-90

criminative and computationally inexpensive time-series features, selected from the larger hctsa91

feature set [12, 17] to maximize performance while minimizing redundancy. This focus on feature92
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selection makes it a relevant comparison for our Detach-ROCKET methodology; and (iii) EEGNet,93

a compact convolutional neural network that uses depthwise and separable convolutions to achieve94

computational efficiency and generalizability [16].These baselines respectively represent handcrafted95

features, classical time-series classification methods, and deep learning approaches, offering compre-96

hensive and state-of-the-art comparisons to the Detach-ROCKET methodology. A summary of the97

configurations and parameters of all models is provided in Appendix Appendix A.98

2.3 Evaluation of models99

The performance of the models are assessed through two complementary evaluation frameworks:100

epoch-wise and event-wise analysis. An epoch-wise evaluation is conducted based on the 8-second101

non-overlapping windows. Standard classification metrics including sensitivity, precision, F1-score102

and False Positive Rate(per 24h) are computed on the test set. This epoch-based assessment provides103

views of the model’s ability to correctly classify individual epochs. Moreover, recognizing that104

clinical assessment of epilepsy monitoring often focuses on the detection of seizure events rather than105

isolated time epochs, an event-wise evaluation is performed. During the evaluation procedure, event-106

based sensitivity, precision, F1-score and FPR are calculated base on the open-source timescoring107

library [3]. We use the same rules to combine the epochs to seizure events as configured by the 2025108

Seizure Detection Challenge [27]. Figure 1a illustrates the epoch and event definitions used in our109

evaluation framework and the Challenge. For the specific application of seizure detection, event-wise110

metrics are considered more clinically meaningful than epoch-wise metrics. Therefore, we evaluate111

model performance using both epoch-wise and event-wise F1 scores and false positive rates (FPR),112

with greater emphasis placed on event-wise performance to assess the model’s clinical utility and113

practical applicability.114

3 Experiments115

3.1 Model Performance116

We trained and evaluated our selected models on the TUSZ dataset. We allocated 80% of the subjects117

for training and 20% for evaluation to ensure that performance metrics reflect the model’s ability118

to generalize across different subjects under the same dataset. Figure 1b illustrates the overall119

pipeline for data preparation and experiments on the TUSZ dataset. Extracted epochs are balanced120

before model training. To assess models’ generalization capabilities on completely unseen data,121

we subsequently evaluated performance on the Siena dataset. This independent dataset, which was122

never used during model development or parameter selection, provides a rigorous test of model123

performance across different patient populations, recording equipment, and potential variations in124

EEG signal characteristics.125

(a)

(b)

Figure 1: (a) Epoch-wise and event-wise evaluation framework for seizure detection. Detected events
are matched against ground truth reference events (Ref. Event) within specified tolerance windows
to determine final classification outcomes. And (b) Overview of the experiment pipeline on TUSZ.
Training epochs are balanced to create a balanced and diverse training set.
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Table 1 presents performance metrics for all models trained on the TUSZ dataset and evaluated on126

both datasets. Metrics were computed for each evaluation recording and then averaged across all127

recordings. We report median values and min-max ranges derived from 5-fold cross-validation. The128

selected models, particularly Detach-ROCKET, demonstrated strong epoch-wise and event-wise129

performance on the TUSZ evaluation set, indicating effective generalization across different subjects130

under similar recording conditions. On the independent Siena dataset, the Detach Ensemble model131

achieved notably better F1 scores at both levels with a low event-wise FPR compared to other132

models. When compared to results from the Seizure Detection Challenge 2025 [26], where proposed133

algorithms were trained on publicly available datasets and evaluated on a private EEG dataset ranked134

by event-wise F1 score, the Ensemble model’s lowest F1 score on the independent Siena dataset135

(0.48) exceeded the top-performing competition algorithm (F1 = 0.43). Given that the Siena dataset136

represents a distinct data distribution from the TUSZ training set, this performance indicates the137

model’s competitive generalization capability and robust seizure detection across diverse datasets and138

recording conditions. The full table is shown in Appendix B.139

To examine the model’s generalization capabilities across individuals in greater detail, we computed140

subject-wise performance metrics on the TUSZ evaluation set to investigate the extent of inter-141

subject variability in prediction performance( Appendix C). Considerable inter-subject variability142

was observed across our models. This heterogeneity is anticipated and reflects the inherent challenges143

of EEG-based seizure detection. The observed variation likely stems from multiple factors, including144

differences in seizure types among test subjects, variations in electrode positioning, and inter-subject145

differences in scalp thickness, skull conductivity, and electrode-scalp impedance [15, 20].146

Table 1: Evaluation performance across models, evaluated on TUSZ and Siena datasets at epoch- and
event-levels. Values are median (range). RF = RandomForest, SVM = Support Vector Machine.

Model Level F1 (TUSZ) FPR/24h (TUSZ) F1 (Siena) FPR/24h (Siena)

D-ROCKET Epoch 0.69 (0.58 - 0.70) 7067 (5562 - 7558) 0.31 (0.30 - 0.38) 5313 (672 - 5982)
Event 0.90 (0.87 - 0.91) 28 (22 - 33) 0.39 (0.37 - 0.43) 52 (31 - 68)

D-ROCKET Ens. Epoch 0.57 (0.56 - 0.62) 7785 (5249 - 11237) 0.43 (0.39 - 0.47) 839 (433 - 4619)
Event 0.89 (0.86 - 0.92) 32 (19 - 42) 0.53 (0.48 - 0.60) 24 (19 - 33)

STFT + SVM Epoch 0.40 (0.37 - 0.47) 7307 (6234 - 8709) 0.26 (0.26 - 0.29) 2953 (2737 - 3236)
Event 0.82 (0.76 - 0.89) 47 (24 - 66) 0.31 (0.29 - 0.36) 79 (68 - 81)

catch22 + RF Epoch 0.53 (0.45 - 0.60) 6958 (4734 - 11524) 0.35 (0.34 - 0.36) 1556 (1424 - 1801)
Event 0.86 (0.82 - 0.90) 30 (18 - 47) 0.46 (0.42 - 0.49) 47 (43 - 55)

EEGNet Epoch 0.55 (0.46 - 0.56) 10263 (1864 - 21692) 0.28 (0.14 - 0.44) 4839 (781 - 16952)
Event 0.89 (0.88 - 0.89) 22 (8 - 31) 0.43 (0.20 - 0.61) 67 (20 - 145)

3.2 Computational efficiency147

The computational efficiency of the models, particularly their achievable prediction speed, is a critical148

consideration for real-world deployment of seizure detection systems. We evaluated prediction times149

using a representative 1,200-second EEG recording on a distributed server(See Appendix D for150

more details). The Detach-ROCKET model achieved a prediction time of 0.74 seconds, while the151

ensemble of 8 Detach-MINIROCKET models required 5.27 seconds. Given the superior performance152

provided by ROCKET-based algorithms, these results highlight the computational advantages of153

ROCKET-based approaches and demonstrate their strong potential for applications requiring near154

real-time processing and decision-making.155

4 Conclusions156

This study aimed to develop and evaluate computationally efficient and generalizable algorithms for157

seizure detection from scalp EEG recordings. By leveraging ROCKET-based feature transformation158

algorithms and complementary state-of-the-art TSC and seizure detection algorithms, this work159

demonstrates that ROCKET-based models effectively balance high predictive performance with160

computational efficiency and generalizability. Under our experimental framework, the Detach161

Ensemble model demonstrated strong inter-subject and cross-dataset generalizability through rigorous162

evaluation on both datasets,achieving median event-wise F1 scores of 0.89 on TUSZ and 0.53 on163

cross-dataset evaluation while maintaining low false positive rates. The rapid model prediction times164

confirm the computational efficiency of ROCKET-based approaches, highlighting their potential for165

implementation in near real-time clinical monitoring systems.166
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Appendix A Model Architectures and Parameters259

Table 2: Summary of the main architectural parameters used for each model tested in this work.
Default values refer to those in the respective published implementations.

Model Parameters / Architecture

D-ROCKET 10,000 random convolutional kernels (default).
Sequential Feature Detachment (SFD) with 5% pruning per iteration (default).

D-ROCKET Ens. Ensemble of N = 8 Detach-MINIROCKET models.

STFT + SVM STFT features computed over standard EEG frequency bands:
δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz),
β (13–20 Hz, 20-30 Hz), γ (30–40 Hz, 40-60 Hz).

SVM with RBF kernel using default parameters from scikit-learn.

catch22 + RF 22 canonical time-series features (catch22).
Random Forest with 100 trees, max depth = 16.

EEGNet Default implementation of the official repository github.com/vlawhern/arl-eegmodels.
Hyperparameters (dropout rate, kernel length, F1, D, F2, and epochs) are explored
to obtain optimized results for fair comparison:

Chans = 19, Samples = 1024, dropoutRate = 0.01, kernLength = 64,
F1 = 8, D = 2, F2 = 16, dropoutType = ’Dropout’, epoch = 100.

Appendix B Detailed performance comparison260

Table 3: Performance comparison of different models for seizure detection on TUSZ dataset. The
median values and the range of results from the 5-fold cross-validation are reported for the main
metrics.

Model Level Sens. Prec. F1 FPR/24h

D-ROCKET Epoch 0.74 (0.61–0.76) 0.73 (0.70–0.73) 0.69 (0.58–0.70) 7067 (5562–7558)
Event 0.94 (0.91–0.96) 0.89 (0.87–0.89) 0.90 (0.87–0.91) 28 (22–33)

D-ROCKET Ens. Epoch 0.64 (0.56–0.69) 0.68 (0.65–0.76) 0.57 (0.56–0.62) 7785 (5249–11237)
Event 0.95 (0.90–0.96) 0.88 (0.83–0.91) 0.89 (0.86–0.92) 32 (19–42)

STFT + SVM Epoch 0.41 (0.36–0.48) 0.56 (0.54–0.66) 0.40 (0.37–0.47) 7307 (6234–8709)
Event 0.91 (0.83–0.93) 0.80 (0.73–0.89) 0.82 (0.76–0.89) 47 (24–66)

catch22 + RF Epoch 0.53 (0.49–0.63) 0.69 (0.65–0.76) 0.53 (0.45–0.60) 6958 (4734–11524)
Event 0.92 (0.88–0.95) 0.88 (0.80–0.91) 0.86 (0.82–0.90) 30 (18–47)

EEGNet Epoch 0.62 (0.39–0.77) 0.72 (0.52–0.89) 0.55 (0.46–0.56) 10262 (1864–21692)
Event 0.92 (0.85–0.97) 0.90 (0.88–0.95) 0.89 (0.88–0.89) 22 (8–31)
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Table 4: Performance comparison of different models for seizure detection on Siena dataset. The
median values and the range of results from the 5-fold cross-validation are reported for the main
metrics.

Model Level Sens. Prec. F1 FPR/24h

D-ROCKET Epoch 0.50 (0.37–0.53) 0.33 (0.32–0.41) 0.31 (0.30–0.38) 5313 (672–5982)
Event 0.89 (0.74–0.92) 0.32 (0.30–0.35) 0.39 (0.37–0.43) 52 (31–68)

D-ROCKET Ens. Epoch 0.46 (0.42–0.50) 0.54 (0.45–0.58) 0.43 (0.39–0.47) 839 (433–4619)
Event 0.84 (0.77–0.88) 0.47 (0.39–0.54) 0.53 (0.48–0.60) 24 (19–33)

STFT + SVM Epoch 0.39 (0.39–0.42) 0.27 (0.24–0.31) 0.26 (0.26–0.29) 2953 (2737–3236)
Event 0.84 (0.83–0.86) 0.22 (0.21–0.28) 0.31 (0.29–0.36) 79 (68–81)

catch22 + RF Epoch 0.45 (0.44–0.46) 0.41 (0.36–0.42) 0.35 (0.34–0.36) 1556 (1424–1801)
Event 0.89 (0.89–0.92) 0.38 (0.34–0.42) 0.46 (0.42–0.49) 47 (43–55)

EEGNet Epoch 0.57 (0.24–0.79) 0.40 (0.10–0.59) 0.28 (0.14–0.44) 4839 (781–16952)
Event 0.91 (0.79–0.99) 0.37 (0.12–0.59) 0.43 (0.20–0.61) 66 (20–145)

Appendix C Subject Variation Analysis261

(a) Subject-wise event F1 score distribution
for the Detach-MINIROCKET on the TUSZ
evaluation set.

(b) Subject-wise event FPR distribution for
the Detach-MINIROCKET on the TUSZ test
set.

(c) Subject-wise event F1 score distribution
for the Detach Ensemble on the TUSZ test
set.

(d) Subject-wise event FPR distribution for
the Detach Ensemble model on the TUSZ
test set.

Figure 2: Distribution of subject-wise performance metrics on the TUSZ test set for different model
configurations. Subjects who contributed exclusively background recordings to the test set (i.e., had
no annotated seizure events) are excluded. For these subjects, True Positives (TP) and False Negatives
(FN) are inherently zero, so the F1 score cannot be calculated.
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Appendix D Computational Performance and Hardware Configuration262

All models were trained and evaluated on a distributed NVIDIA DGX-H100 machine using an263

allocated pod with 64GB RAM and 20GB GPU memory. ROCKET-based models and catch22264

utilized both CPU and GPU resources, STFT ran exclusively on CPU, and EEGNet ran exclusively265

on GPU.266

Table 5: Model prediction time (seconds) on a 1200s EEG recording.
D-MINIROCKET D-MINIROCKET Ens. STFT Catch22 EEGNet

0.80 5.27 4.57 14.20 0.78
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