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ABSTRACT

Sequence labeling problems arise in several real-world applications such as health-
care and robotics. In many such applications, sequence data are irregularly sampled
and are of varying complexities. Recently, efforts have been made to develop neural
ODE-based architectures to model the evolution of hidden states continuously in
time, to address irregularly sampled sequence data. However, they assume a fixed
architectural depth and limit their flexibility to adapt to data sets with varying
complexities. We propose the neural wave equation, a novel deep learning method
inspired by the wave equation, to address this through continuous modeling of
depth. Neural Wave Equation models the evolution of hidden states continuously
across time as well as depth by using a non-homogeneous wave equation parame-
terized by a neural network. Through d’Alemberds analytical solution of the wave
equation, we also show that the neural wave equation provides denser connections
across the hidden states, allowing for better modeling capability. We conduct
experiments on several sequence labeling problems involving irregularly sampled
sequence data and demonstrate the superior performance of the proposed neural
wave equation model.

1 INTRODUCTION

Sequence data arise in several real-world applications like health care, robotic systems, and speech
recognition. Models such as Recurrent Neural Networks (RNNs)( Rumelhart et al. (1986); Hochreiter
& Schmidhuber (1997); Cho et al. (2014); De Brouwer et al. (2019); Schuster & Paliwal (1997))and
their variants have proven to be highly effective in processing such sequential data. Traditionally,
RNNs are perceived as discrete approximations of underlying dynamical systems, a concept well
documented in the literature ichi Funahashi & Nakamura (1993); Bailer-jones et al. (2002). However,
RNNs face significant challenges in effectively addressing sequence labeling problems arising in
applications such as healthcare, social media, and business, which involves irregularly sampled or
partially observed sequence data Rubanova et al. (2019). There have been efforts in the community
to develop deep learning models that allow continuous transformation of the hidden representation.
Neural Ordinary Differential Equations(Chen et al. (2018)) implicitly model depth by treating it as
a continuous transformation of the input-output map. Neural ODEs combine neural networks with
ordinary differential equations to achieve this resulting in an architecture similar to Resnets( He
et al. (2016)). This continuous modeling allows for flexible,adaptive representations that capture
hierarchical relationships without relying on fixed depth.

Recognizing the limitations of non-uniform data sampling, there has been a paradigm shift towards
developing sequence models inspired by Neural ODEs that emulate the continuous evolution of
hidden states over time. ODE-RNN(Rubanova et al. (2019)) modeled hidden state transformations
over time using a NODE, where hidden representations are continuously transformed taking into
account the time gaps between observations, leading to better hidden state representations. Variants
of ODE-RNN like the GRU-ODE(De Brouwer et al. (2019)) and ODE- LSTM(Lechner & Hasani
(2020)) were consequently proposed for irregular time series data.

In several real-world problems with irregular observations such as social media post classification,
input data could also exhibit varying complexities, and fixed discrete transformations on the depth
dimension would become a limitation. A shallower network may not be able to capture the complexity
of the data properly while a deeper network may overfit the data. ODE- RNN or their variants perform
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Figure 1: Architectural comparison between discrete depth discrete time, discrete depth continuous
time and continuous depth continuous time model

a discrete transformation of the hidden state along depth using neural network transformation, limiting
their flexibility to adapt to complex data sets or require exhaustive model selection.

Unifying the principles of Neural ODE and ODE -RNN naturally leads to Partial Differential
Equations(Farlow (1993)), which model hidden states continuously over both time and depth. PDEs
provide a principled framework for capturing multidimensional dependencies,enabling adaptive
representations for hierarchical and temporal complexities.

The continuous depth recurrent neural differential equation Anumasa et al. (2023)(CDR-NDE)
proposed the application of a partial differential equation, for modeling the evolution of hidden states
continuously over time and depth. The authors of the CDR-NDE paper use the non-homogenous heat
equation with the source function being a neural network, for modeling the hidden states continuously
over time and architectural depth. Though heat equation-based PDEs are useful for modeling
continuous evolution, we find them to have certain limitations that restrict their effectiveness for
sequence data. Intuitively, the diffusive nature of the heat equation implies that the initial information
is often smoothed out and lost.

We propose the neural wave equation, a wave equation-based neural differential equation, which
can provide an effective and natural way to model sequence data. The wave equation can implicitly
consider the dependency with neighboring hidden states over a window and addresses the limitations
exhibited by the heat equation in sequence modeling. The dependency with some particular hidden
states does not arise naturally in the heat equation and hence, needs to be supplemented through
the source terms. These dependencies are captured in the wave equation directly. The propagating
nature of the wave equation makes it more robust to loss of initial information. Further motivation
comes from the existence of an analytical solution for wave equations, and this helps in understanding
the effectiveness of wave equations in modeling sequence data. A schematic representation of the
hidden state evolution in neural wave equations compared to other popular approaches is provided
in Figure 1. Neural wave equations allow for continuous evolution of hidden states across time and
depth while capturing more dependencies. We develop neural wave equation models with several
parameterizations of the source function through a neural network. Neural wave equations can be
solved based on existing solvers for PDE and efficient training techniques based on adjoint methods
can be used to learn the parameters. Our experiments, conducted on diverse datasets such as person
activity recognition, Walker2d kinematic simulationLechner & Hasani (2020), sepsis (PhysioNet
2019)Reyna et al. (2019) and stance classification Derczynski et al. (2017) demonstrate the superior
performance of neural wave equation models over existing baselines for sequence labeling problems.
To summarize,

1. We propose neural wave equations - a non-homogeneous wave equation with its source
function parameterized by a neural network, for sequence labeling problems.

2. We speculate on the potential benefits of using non-homogenous partial differential equations
for sequence modeling over continuous time RNN models with discrete depth by looking at
their analytical solutions.

3. We empirically demonstrate the effectiveness of the neural wave equations on several
sequence labeling tasks with irregularly sampled data.

2 RELATED WORK

Several variants of RNNs were introduced in the past to deal with irregularly sampled sequence data
or sequence data with missing observations. GRU-D and RNN-D Weinan (2017) models make use
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of a decay rate for predicting the missing values. CT-LSTMMei & Eisner (2017) combines both
LSTM and continuous time neural Hawkes process to model the continuous transformation of hidden
states. The latest works in this direction make us of the framework of the neural ordinary differential
equation Chen et al. (2018), to model the continuous evolution of hidden states over time.

ODE-RNN(Rubanova et al. (2019)) and their variants such as GRU-ODEDe Brouwer et al. (2019) and
ODE-LSTM(Lechner & Hasani (2020)), use a NODE-based formulation to model the hidden state
transformation across the irregular observation times, and then an MLP to map it to the corresponding
output. Neural Controlled Differential equation (Kidger et al. (2020)) calculates a continuous path
over the sequence data using cubic splines and subsequently constructs the evolution of a hidden
state in continuous time from it. After a hidden state is calculated, the output from the hidden cell
is obtained by passing the hidden state vector through an MLP. Variants of Neural CDE such as
attentive Neural CDE(Jhin et al. (2024)) and attentive co-evolving Neural CDE(Jhin et al. (2021))
attempt to combine the attention mechanism with NODE by using two Neural CDEs. With the rise of
transformers(Vaswani et al. (2017)), the attention mechanism has gained prominence for modeling
sequence data. Recently, Contiformer(Chen et al. (2023)) introduced a continuous time attention
mechanism in Transformers to model irregularly sampled time-series data. The other promising
direction in sequence modeling tasks is the structured state-space models (Gu et al. (2022)) which
focuses on discretising a differential equation with an alternate RNN and CNN view.

Continuous depth recurrent neural differential equations (CDR-NDE) Anumasa et al. (2023) proposed
the use of partial differential equations, in particular heat equation, to model the evolution of hidden
states over both the temporal and depth dimensions. This overcame the limitations of the discrete
depth modeling of the prior approaches for irregularly sampled sequence data. There exists hardly any
work on modeling deep learning architectures using PDEs. However, there exists a line of research
that aims to use neural networks to solve partial differential equations known as physics-informed
neural networks (PINNS) or Neural PDEs Zubov et al. (2021); Brandstetter et al. (2021); Hu et al.
(2020); Raissi et al. (2019). Hughes et al Hughes et al. (2019) draw a similarity between homogeneous
wave equation and RNN from a computational physics perspective. In contrast to earlier efforts,
the paper focuses on studying the effectiveness of PDEs in developing adaptable deep-learning
architectures for modeling, addressing the irregularly sampled sequence data. In particular, we study
and propose neural wave equations as an effective solution to solve such sequence labeling problems.

3 BACKGROUND

3.1 PROBLEM SETTING

We assume a sequence data set consisting of multiple irregularly sampled sequences of length K. Let
the elements in the sequence be represented as {(t1,x1, y1), (t2,x2, y2), ..., (tK ,xK, yK)} where
ti ∈ R+ is the observation time stamp and xi ∈ RD is D-dimensional input observed at time ti. The
corresponding output yi can be a class label for a classification task or a real value for a regression
task. Our model considers the sequence of observed inputs [x1,x2, . . . ,xK] and their corresponding
times [t1, t2, . . . , tK ] as input and aims to predict the output sequence [y1, y2, . . . , yK ] considering
the dependencies among the input elements in the sequence and their observation times. Our aim
is to learn a function f(., θ) which can predict the output sequence given the input sequence and
observation times so that it exhibits a good generalization performance on the unseen sequences.

3.2 IMPLICIT DEPTH IN DEEP LEARNING

The depth of a neural network is an important hyperparameter that determines the model’s capacity to
learn complex patterns. However, a deeper model may overfit if the input data does not show complex
patterns. Implicit layer depth techniques offer a novel approach to structuring deep learning models
by adaptively determining the effective depth during training or inference. Models such as Neural
ODEs bypass the constraints of predefined layer depth by defining a continuous transformation of
the input with respect to depth via a differential equation. A neural ordinary differential equation
(NODE) offers a continuous approach to deep learning by approximating the input-to-output map
using a learnable neural network and a differential equation of the following form.

dh(t)

dt
= fθ(h(t), t), (1)
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where h(t0) = h0 is the initial condition which is the input to the model or some transformation of
the input, and fθ is a learnable neural network with parameters θ. The differential equation is then
solved with the help of an adaptive step-size solver which automatically adjusts the step size with
varying input complexity. This alleviates the need for tuning the depth of a network manually.

3.3 RECURRENT NEURAL ODE

Recurrent Neural ODEs (ODE-RNN Rubanova et al. (2019)) adapt the neural ODE approach to
model irregularly sampled sequence data. In the ODE-RNN framework, the dynamics of the system
are modeled using a combination of RNN cell and ordinary differential equations, which describe
how the state of the system changes continuously over time. Unlike the neural ODE, ODE-RNN
models the hidden state evolution continuously in the temporal dimension while following discrete
modeling in depth. Assuming, hdk−1 is the hidden state obtained at the previous timestamp tk−1 at
some discrete depth d. hdk−1 is first passed through a neural ODE to obtain the hidden representation
ĥdk at time tk.

ĥdk = ODESolve(hdk−1, (tk−1, tk)) (2)
where ODESolve calls a numerical solver to solve an ODE as referred in Equation 1.
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Figure 2: Discrete depth models such as ODE-RNN and
LSTM require a model selection over depth to obtain the
right model. Neural Wave Equation (red line) achieves
this by implicitly and continuously modeling the depth.
The dataset used in ETTH1 and the task is to predict 24
time steps in the future while considering the previous
96 timesteps.

The hidden state hdk at time tk is then ob-
tained by passing ĥdk and previous layer
hidden representation hd−1

k to an RNN-
cell, hdk = σ(Wh̄h

d−1
k + Whĥ

d
k + bh),

where Wh̄,Wh, bh are parameters of the
RNN-cell. The final output ŷk at time tk
is obtained by repeating the hidden repre-
sentation computation over a user-defined
discrete depth in RNN-ODE. ODE-RNN
provides a better modeling capability, es-
pecially for irregularly sampled sequence
data. However, their capability is limited
by the modeling of depth discretely. In
Fig. 1, we see that in ODE-RNN, depth
is modeled explicitly by stacking multiple
layers of sequential ODE-RNN cells, sim-
ilar to traditional RNN architectures. In
Neural Wave Equation, there is no explicit
concept of depth as seen in traditional neu-
ral networks with stacked layers. Instead,
the transformations of the hidden states are
governed by a partial differential equation,
and the solver performs a number of small transformations which implicitly defines depth (See
Section 4). In RNN and ODE-RNN one has to perform exhaustive model selection over depth to
achieve a good performance. We demonstrate this in Figure 2 by comparing the performance of
ODE-RNN and LSTM for varying depths. We also compare them against the proposed neural wave
equation which models depth implicitly (red line).

3.4 WAVE EQUATION

In this section, we aim to introduce some ideas and terminologies related to the wave equation which
forms the basis of our work. Wave Equation is a partial differential equation of 2nd order in two
variables and intuitively, can model more complex dynamics than 1st order PDEs. It describes the
propagation of mechanistic waves, such as sound, light, and water waves through a medium. The
propagative nature of the wave equation prevents the loss of initial information as opposed to the heat
equation. The homogenous 1D wave equation is formulated as

∂2u(z, t)

∂t2
− c2

∂2u(z, t)

∂z2
= 0 (3)

with the initial value condition u(z, 0) = f(z), ut(z, 0) = ∂u
∂t (z, 0) = g(z) and c is a constant

denoting the speed of the wave in the medium. For simplicity, we assume g(z) = 0 throughout our
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work. The solution of the wave equation, u(z, t) gives the displacement of a wave at any given point
z over time t. It mathematically models how waveforms evolve over time and space in a continuous
manner. The analytical solution of wave equations is given by d’Alemberds formula Sobolev as
u(z, t) = f(z+ct)+f(z−ct)

2 . However, we often do not know the explicit form of the initial value
function f(z), and instead we know only values of f(z) at certain points. In such scenarios, we may
use a numerical method to solve the wave equation via discretization. One such popular method is the
finite difference method(FDM) Abdulkadir et al. (2015). Under the FDM scheme, the wave equation
can be discretized as

uz,t+∆t = 2uz,t − uz,t−∆t +
∆2

t

∆2
t

c2[uz+∆z,t − 2uz,t + uz−∆z,t] (4)

uz,t is the value of the function u(z, t) at position z and time t. We can solve the wave equation
using the above discretization scheme by using numerical methods for solving ODEs. Higher-order
methods like RK-4 are often preferred for higher precision during solving a numerical FDM scheme.

Wave dynamics are better characterized by a non-homogeneous wave equation Farlow (1993) which
is written as

∂2u(z, t)

∂t2
− c2

∂2u(z, t)

∂z2
= F (z, t) (5)

where the function F (z, t) is called a source. It is physically interpreted as an external force that is
acting on each point. The source is a function of time and space as well which means that the external
force acting over each data point may vary over time.

4 NEURAL WAVE EQUATIONS

Sequence modeling problems require predicting the sequence of outputs while capturing dependencies
across the elements in the input sequence. We observe that wave equation offers us a natural way
to accomplish this as they are capable of capturing the dependencies and interactions among the
system states. We propose to model the evolution of hidden states as a wave equation with the source
function parameterized as a neural network. The inputs in the sequence at different observation times
are considered as the initial displacement values associated at the various spatial locations in the
wave equation. The evolution of wave equation over time implicitly models the depth and number of
hidden layer transformations. The proposed neural wave equation captures the dependencies among
the hidden states and model their evolution continuously in both the temporal dimension and depth
dimension.

Considering the FDM discretization Abdulkadir et al. (2015) for the wave equation in Equation 4.
We rewrite it to represent the hidden state evolution with the point z representing the hidden state
at some point in time t of the sequence data and time t representing the evolution of hidden state at
some point in depth d.

ht,d+∆d
= 2ht,d − ht,d−∆d

+
∆2

d

∆2
t

c2[ht+∆t,d − 2ht,d + ht−∆t,d] (6)

Here, ht,d represents the hidden states corresponding to a data point at time t and at depth d.

From the FDM expression, we can clearly see the interaction between the hidden states
ht,d, ht−∆t,d, ht+∆t,d and ht,d−∆d while calculating ht,d+∆d

. A drawback with directly adopt-
ing a homogenous wave equation in a deep-learning setting is the absence of a learnable function
which may be required if the sequence modeling task is complex. To account for it, we also add a
learnable neural network to the FDM scheme as

ht,d+∆d
= 2ht,d − ht,d−∆d

+
∆2

d

∆2
t

c2[ht+∆t,d − 2ht,d + ht−∆t,d]

+ Fθs(ht−∆t,d, ht,d, ht+∆t,d, ht,d−∆d
)

(7)

where Fθs(.) is a learnable neural network with parameters θs. This leads to the proposed, neural
wave equation model, which is a non-homogeneous wave equation with a source function modeled as
the neural network. The neural network Fθs(.) helps in capturing the non-linear dependencies with
neighboring hidden states. The proposed neural wave equation is given as

∂2ht,d
∂d2

− c2
∂2ht,d
∂t2

= Fθs(ht,d, ht−∆t,d, ht+∆t,d, ht,d−∆d) (8)
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The initial value condition for the neural wave equation, f(ti) = h(ti, 0) for some time ti is generated
from the corresponding input xi in the input sequence. For simplicity, we assume ∂h(t,0)

∂d = 0. We
can get a better understanding of the interaction among the hidden states by studying the analytical
solution for the non-homogeneous wave equationSobolev

h(t, d) =
f(t+ cd) + f(t− cd)

2
+

1

2c

∫ d

0

∫ t+c(d−τ)

t−c(d−τ)

Fθs(hs,τ , hs−∆s,τ , hs+∆s,τ , hs,τ−∆τ )dsdτ

(9)
where f(t) = h(t, 0) and Fθs(.) is the source function. We can see that to compute the hidden
state h(t, d) at any time t and depth d, it considers the source function values of hidden states
in a neighborhood and from the previous depths such as h(t − ∆cz, d − ∆d), h(t − ∆cz+1, d −
∆d), .., h(t+∆cz, d−∆d), h(t−∆cz, d− 2∆d), h(t−∆cz+1, d− 2∆d), .., h(t+∆cz, d− 2∆d)
and so on where z takes the value of the current depth i.e d−∆d, d− 2∆d, ... A detailed explanation
of boundary condition is provided in A.12. We discuss the implications of the analytical solution of
the PDEs in general and wave equation in particular in more detail in the following sections.

4.1 SOURCE FUNCTIONS

We model the source function terms using a neural network. We use a combination of GRU-Cell and
MLPs to model the source terms. The source terms serve two main purposes. It adds non-linearity
to the hidden state interactions in the wave equation and provides more control over the flow of
information. Secondly, since we are solving a 1-dimensional wave equation with vector-valued hidden
states, the source terms enable the mixing of information across the latent dimension of the hidden
state. We experiment with several source term formulations of varying numbers of parameters. We
experiment with GRU-cells because it provides a gating mechanism to control the flow of information
into the concerned hidden state from its neighboring states.

• Single GRU : Model the source term as Fθs(ht−∆t,d, ht,d−∆d
) with only ht−∆t,d and

ht,d−∆d
passed through a GRU-Cell.

• Single MLP : Models source term as Fθs(ht−∆t,d, ht,d, ht+∆t,d. All the terms are concate-
nated together and passed through an MLP layer.

• Double Gating : Models source term as Fθs(ht−∆t,d, ht,d, ht+∆t,d, ht,d−∆d
): The ht,d and

ht,d−∆d
are concatenated together and passed through a MLP. The output of the MLP is

then passed into a GRU-Cell with hidden state ht−∆t,d and into another GRU-Cell with
hidden state ht+∆t,d and the results are added.

• MLP+GRU : Models source term as Fθs(ht−∆t,d, ht,d, ht+∆t,d, ht,d−∆d
). The terms

ht−∆t,d, ht,d, ht+∆t,dand ht,d−∆d
are concatenated and passed into an MLP. The output of

the MLP is then passed into a GRU-Cell with hidden state ht,d−∆d
.

4.2 FORWARD PASS

The forward pass in our neural wave equation model consists of 3 stages:

1. An MLP layer that takes the input element in the sequence xt at time t and projects them
into a latent space to obtain the hidden state initial value ht,0, ht,0 =MLPθpre(xt). Let the
initial hidden state values associated with the elements in the sequence be h:,0.

2. The second stage uses an ODESolver to solve the proposed neural wave equation and
obtain the final hidden states, h:,D = ODESolve(h:,0, [0, D], ODEFunc). ODESolve is
a 2nd-order adaptive step size ode solver and ODEFunc is the function that is responsible
for calculating the following discretization term.

∂2ht,d
∂d2

=
1

∆2
t

[ht+∆t,d − 2ht,d + ht−∆t,d] + Fθs(·) (10)

The ODESolve and ODEFunc are used as a black box to solve the neural wave equation
using the method of lines. It calculates ht,d for all values of t at once for a particular d and
moves forward in depth until it reaches D.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3. The third stage uses an MLP layer that takes the output of the ODESolver and projects
it onto the required output space. The output yt associated with an input xt and time t is
obtained as yt =MLPθpost(ht,D).

The architecture of the neural wave equation, forward pass and hidden layer interactions can be
understood from Figure 3.

The FDM method attempts to approximate the analytical solution to a high degree of preci-
sion using a particular class of numerical solvers called adaptive step-size solvers Andersson
et al. (2015). Adaptive step-size solvers provide neural wave equations with the ability to
model continuous transformation over depth. They compute the numerical approximation us-
ing a higher-order solver and a lower-order solver every time. By taking the difference of these
two solutions, it approximates the local error associated with the numerical solution of the ODE.

Shallow
MLP Layer

Initial Hidden States

PDESolver on Equation 10
with RK-45 2nd order

solver

Shallow
MLP Layer

d - Deld

d

d + Deld

t + Deltt - Delt t 
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 B
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h(t,d - Deld)

Output Sequence

Raw Input

Figure 3: Neural wave equation architecture con-
sists of a shallow MLP over input, PDE solver, and
a shallow MLP to produce the output.

We used the adaptive step size solver based
on Dopri45. It uses the RK-4 and RK-5 as
the lower and higher-order solutions respec-
tively. The pseudocode for the algorithm is pro-
vided in Appendix A.10. The model parame-
ters, including wave speed c, MLP parameters
θMLP = (θpre, θpost) and source function pa-
rameters θs are learned using the loss function
computed over the output observations in a se-
quence and over all the sequences. We use a
cross-entropy loss for classification problems
and mean-squared error for regression problems.
For obtaining the gradients, we use an adjoint
sensitivity method developed for PDEs, which
works by converting the wave equation to a sys-
tem of linear 1st-order equations Choon et al.
(2019); Lewis et al. (2006).

4.3 DISCUSSION

In a normal RNN architecture, the evolution of the hidden state dynamics is as follows: ht,d =
F (Wtht−1,d +Wd−1ht,d−1). So, the hidden state at point (t, d) depends only on ht−1,d and ht,d−1.
In the wave equation, the presence of the integral over the source term from 0 to d ensures that each
ht,d is modeled as a function of several hidden states. The trainable parameter c determines the
number of the hidden states with depth less than d that contributes to the evolution of ht,d.

Most of the other works that combine neural ODE architecture with RNN use the neural ODE to
predict the flow of hidden states over a continuous time (Rubanova et al. (2019); Kidger et al. (2020)).
However, they are still discrete in the depth direction. CDR-NDE Anumasa et al. (2023) addresses
this by using a PDE based on heat equation. During our investigation, we note that the reason PDEs
can be used to model sequence data lies in their analytical solution. The analytical solution of ht,d
where the evolution is governed by a PDE will often incorporate a term like

∫ d

0
ψ(τ)

∫
t
F (s, τ)dsdτ .

This implies that a particular hidden state at an arbitrary depth is affected directly by all the values of
hidden states at a lower depth. Consider the last term in Equation 9, which provides d’Alemberds
solution for the wave equation. It considers all the source terms from the previous depths at each
time point to compute the hidden state at the current depth. This is also true in the case of the Heat
Equation. The analytical solution of the heat equation is given by separation of variable Widder
(1976)

h(t, d) =

∞∑
n=1

(an(0) exp
(−kλnd) +

∫ d

0

qn(τ) exp
(−kλn(t−τ) dτ))ϕn(t) (11)

where ϕn(t) = sin (nπt)
T , and qn(d) =

∫ T

0
F (t, d)ϕn(t)dt. The presence of the negative exponential

term in the solution of the heat equation means that the effect of the hidden states located at lower
depths is diminished while calculating the hidden states located at higher depths. The wave equation
does not suffer from this problem as can be observed from its analytical solution.
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5 EXPERIMENTS

The performance of the proposed Neural wave models was assessed through experiments on
datasets containing irregular sequence data such as person activity recognitionMarkelle Kelly (2000),
walker2d-v2 kinematic simulationLechner & Hasani (2020), PhysioNet sepsis prediction, and stance
classification of social media posts Derczynski et al. (2017). These models are benchmarked against
baselines specifically developed for handling irregular sequence data. The experimented configuration
includes setting the hidden state dimension to 64 for all source functions, keeping a minibatch size
of 256, use of the Adam optimizer, a learning rate of 5 × 10−3, and 200 training epochs. These
configurations follow the guidelines as established in Lechner & Hasani (2020). The first MLP
layer is a single layer with hidden dimension 64. The last MLP layer is also a single layer with
hidden dimension equal to the output size. We use the Tsit5 from the package torchdyn Poli et al.
as our adaptive solver, which is an efficient reimplementation of the Dopri45 by Julia Computing
group Rackauckas & Nie (2017). The information about the step size and the ODESolvers that has
been used for all our models and baselines is mentioned in Table 4 in Appendix A.13. Model training
is conducted on an Nvidia Tesla V-100 32GB GPU and a L4 GPU. In our evaluation, we measured
the efficacy of our newly developed model against a set of established baselines. These include
GRU-ODE, CT-GRU, CT-RNN, GRU-D, Phased-LSTM, ODE-LSTM, bidirectional-RNN, RNN
decay, Hawk-LSTM, Augmented LSTM, ODE-RNN, Neural CDE and CDR - NDE models.

5.1 RECOGNIZING PERSON ACTIVITY FROM IRREGULARLY SAMPLED TIME-SERIES

The dataset comprises sensor readings from four distinct sensors attached to five individuals—each
sensor located on an ankle, the chest, and a belt—engaged in performing a series of five activities.
The objective is to utilize this sensor data to categorize the performed activities. Initially identifying
11 distinct activities, this dataset, as recommended by Rubanova et al. (2019), narrows down the
activity classes to 7. The dataset is structured to encapsulate each step of the recording as a set of
7 values; 4 of these values identify the active 7, while the remaining 3 represent the sensor data.
Recordings are segmented into overlapping intervals of 32, with a 16-step overlap, amalgamating all
sequences into a singular dataset. For the purposes of model training and evaluation, 7,769 sequences
are allocated for training and 1,942 for testing.

In our evaluation, we measured the efficacy of our newly developed model against a set of established
baselines known for their proficiency in handling person activity recognition data with irregularly
sampled time-series Markelle Kelly (2000). The neural CDE model reports an accuracy of 75.16%±
0.71 after 40 epochs of training after it converges. Even though GRU-based models perform the
best among the baselines, they are still outperformed by the Neural Wave Equation variants. In the
person’s dataset, the number of function calls by the solver is around 32 on average whereas in the
case of the walker dataset, it is around 26 on average.

In Table 1, Column 2 presents the test accuracy for all models trained on the person-activity
recognition dataset. Notably our Neural Wave model - Double Gating variant outperforms all the
established baseline models with the highest test accuracy.

5.2 WALKER2D-V2 KINEMATIC SIMULATION.

The Walker2D dataset Lechner & Hasani (2020) is derived from simulations in the Walker2d-v2
OpenAI Gym environment, powered by the MuJoCo physics engine. The underlying motion of the
walker is governed by continuous-time physical dynamics, simulating kinematic systems evolving
smoothly over time. The training set was compiled through rollouts in the Walker2d-v2 environment
under a deterministic policy pre-trained via Proximal Policy Optimization, albeit employing a non-
recurrent policy framework. To achieve irregular sampling, 10% of the timesteps were omitted. The
data is partitioned into 9,684 training sequences, 1,937 for testing, and 1,272 for validation.

We tested the performance of our model on irregularly sampled Column 3 of Table 1 delineates
the efficacy of various models on the Walker2d dataset. Our proposed Neural Wave - Single MLP
model outperforms all the baselines. We were unable to run the Neural CDE modelKidger et al.
(2020) due to the long duration required to complete one epoch. We suspect that the construction of
the continuous path with cubic splines is a bottleneck in the Neural CDE model, as increasing the
sequence length and dimension of input features significantly slows it down. Even in the Person’s
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Table 1: Column 2 outlines the test accuracy (mean ± standard deviation) of each model trained on
the dataset titled Person Activity Recognition Markelle Kelly (2000). In Column 3, the Mean-square
error (mean ± standard deviation) for the test data from models trained on the Walker2d dataset
Lechner & Hasani (2020) is detailed. Column 4 and 5 show the AUC Performance of Models for
Unseen Events in Stance ClassificationLeon Derczynski & Kochkina (2019). For all the datasets,
every model is trained for 5 times with 5 different seeds.

Model Person Activity Walker2d Sydneysiege Charliehebdo
Test-Accuracy ↑ Test MSE ↓ AUC ↑ AUC ↑

Discrete Time Discrete Depth
RNN-Decay Weinan (2017) 78.74 ± 3.65 1.44 ± 0.01 0.62 ± 0.00 0.63 ± 0.01
Bidirectional-RNN Schuster & Paliwal (1997) 82.86 ± 1.17 1.09 ± 0.01 0.61 ± 0.00 0.64 ± 0.02
GRU-D Che et al. (2016) 82.52 ± 0.86 1.14 ± 0.01 0.63 ± 0.00 0.65 ± 0.01
Phased-LSTM Neil et al. (2016) 83.34 ± 0.59 1.10 ± 0.01 0.58 ± 0.01 0.60 ± 0.01

Continuous Time Discrete Depth
CT-RNN ichi Funahashi & Nakamura (1993) 82.32 ± 0.83 1.25 ± 0.03 0.56 ± 0.00 0.61 ± 0.01
ODE-RNN Rubanova et al. (2019) 75.03 ± 1.87 1.88 ± 0.05 0.55 ± 0.00 0.57 ± 0.03
ODE-LSTM Lechner & Hasani (2020) 83.77 ± 0.58 0.91 ± 0.02 0.56 ± 0.00 0.59 ± 0.00
CT-GRU Mozer et al. (2017) 83.93 ± 0.86 1.22 ± 0.01 0.63 ± 0.01 0.65 ± 0.02
GRU-ODE De Brouwer et al. (2019) 82.80 ± 0.61 1.08 ± 0.01 0.56 ± 0.00 0.61 ± 0.00
CT-LSTM Lechner & Hasani (2020) 83.42 ± 0.69 1.03 ± 0.02 0.62 ± 0.00 0.65 ± 0.01

Continuous Time Continuous Depth
CDR-NDE Anumasa et al. (2023) 87.54 ± 0.34 0.97 ± 0.04 0.57 ± 0.02 0.55 ± 0.01
CDR-NDE-heat (Euler) 88.24 ± 0.31 0.54 ± 0.01 0.62 ± 0.01 0.58 ± 0.02
CDR-NDE-heat (Dopri5) 88.60 ± 0.26 0.49 ± 0.01 0.62 ± 0.01 0.57 ± 0.01
Neural Wave - Single GRU 88.52 ± 0.34 0.49 ± 0.01 0.60 ± 0.01 0.63 ± 0.02
Neural Wave - Single MLP 90.58 ± 0.58 0.11 ± 0.01 0.59 ± 0.02 0.61 ± 0.01
Neural Wave - Double Gating 93.62 ± 0.38 0.16 ± 0.01 0.61 ± 0.01 0.62 ± 0.02
Neural Wave - MLP+GRU 92.06 ± 0.34 0.12 ± 0.01 0.60 ± 0.01 0.63 ± 0.04

activity dataset, the neural CDE model took 300 sec compared to 18-30 seconds by that of neural
wave equation or 30 - 50 secs of CDR-NDE models. Computational complexity is discussed in detail
in A.7.

5.3 SEPSIS PREDICTION USING PHYSIONET 2019 DATA

We analyze a dataset initially used in the PhysioNet 2019 challenge Reyna et al. (2019) Goldberger
et al. (2000), focusing on sepsis prediction. This dataset contains 40,335 sequences of variable
lengths, documenting patient admissions in an intensive care unit (ICU), and includes five static
features, such as patient age, as well as thirty-four dynamic features like Heart Rate, Blood pressure,
etc. The measurements are taken at hourly intervals.

Table 2: Test AUC (mean ± standard deviation over five
runs) for sepsis prediction on the PhysioNet.

Model Test AUC

GRU-ODE De Brouwer et al. (2019) 0.852 ± 0.010
GRU-∆t 0.878 ± 0.006
GRU-D Che et al. (2016) 0.871 ± 0.022
ODE-RNN Rubanova et al. (2019) 0.874 ± 0.016
Neural CDE Kidger et al. (2020) 0.880 ± 0.006
CDR-NDE-heat Anumasa et al. (2023) 0.880 ± 0.000
Neural Wave - Single GRU 0.885 ± 0.003
Neural Wave - Single MLP 0.885 ± 0.001
Neural Wave - Double Gating 0.890 ± 0.006
Neural Wave - MLP+GRU 0.889 ± 0.003

A significant portion of the data is miss-
ing, with only 10.3% of the values being
observed. Our analysis focuses on the
initial 72 hours of a patiends stay, ad-
dressing the binary classification task of
predicting sepsis development through-
out their entire stay. We divided our data
into a train, validation and test split of
70%, 15 % and 15% respectively. We
compared Neural Wave’s performance
against GRU-ODE, GRU-D, ODE-RNN,
Neural CDEKidger et al. (2020), CDR-
NDE and GRU-∆t, a variant of GRU.
that incorporates the time difference be-
tween observations as an additional input.
We conduct experiments with various models considering the observational intensity. Observational
intensity refers to the frequency of data observations, which can indicate the level of attention or
concern, such as more frequent measurements for patients considered at higher risk ( more details
mentioned in Section 3.5 and 3.6.). Table 2 illustrates the findings, where we use AUC for evaluation
due to the dataseds imbalance.
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For the ODE-RNN, GRU-D, and GRU-∆t models, observational intensity is given by appending
an observed/not-observed mask to the input at each observation. The Neural CDE, GRU-ODE and
Neural Wave model use a continuous, per-channel intensity as explained in Section 3.6 in Kidger
et al. (2020). The results demonstrate that the proposed model, Neural Wave’s - Double gating
provides the best performance, while other neural wave equation models are also equally competitive.

5.4 STANCE CLASSIFICATION

In practical scenarios, particularly on social media platforms like Twitter, tweets associated with a
specific event are posted at varying times, and the intervals between these tweets are not uniform. We
evaluate the models based on their ability to classify the stance of social media posts, specifically
using the Twitter datasetLeon Derczynski & Kochkina (2019), which includes rumors associated
with eight events. Each event comprises a collection of tweets labeled as Support, Query, Deny, or
Comment. To create a sequence data point, we randomly selected 10 tweets and then sorted them
by observation time in the ascending order. To evaluate our models, we considered an unseen event
prediction setup, where the model performance is evaluated on the sequences from an unseen event.
Here, the model is trained on the sequences formed from data from all the events except test event
and tested on the sequences formed from the unseen test event. We selected two events: Sydneysiege
and CharlieHebdo, as the test event for our experiments.

In Table 1, Columns 4 and 5 showcase the test AUC for unseen events for all models. We could
not run the Neural CDE model due to lengthy epoch times, likely slowed by the cubic spline path
construction, particularly as the input feature dimensions and sequence lengths increased. Despite the
high dimensionality (316) of text embeddings in our stance classification data,neural wave equation
models demonstrated robust performance. The stance classification task was intentionally chosen to
check the performance of our model on a high dimensional discrete system. Even if our model does
not beat some of the baselines, the Neural Wave Model - MLP + GRU remains competitive hence
showing the robustness of our model.

5.5 ABLATION STUDIES

We conduct experiments with models considering a homogenous PDE with no source terms to
understand the effect of source functions. The homogeneous neural wave equation model, without
a source term, achieved a test accuracy of 51.73 % ± 0.16 on Person Activity, a test MSE of 0.99
± 0.003 on Walker2D, and a test AUC of 0.857 ± 0.001 on Physionet Sepsis. We observe that
the learnable source function helps to capture the dependencies present in the complex sequence
modeling tasks more effectively and improves performance. From Table 1, we observe that the
performance of the single GRU neural wave equation is lower than the rest. This is attributed to the
fact that in the single GRU model, the source function captures nonlinear dependency between two
neighboring hidden states whereas in the rest of the models, the nonlinear dependency is captured
between all the four neighboring hidden states present in the FDM discretization of the wave equation.
We study the memory consumption of our models on the PhysioNet data. Our models consume more
memory, ranging from 1807MB to 2137MB, compared to the memory-efficient Neural CDE, which
consumes up to 244MB. But, as we saw in the Person activity data, neural wave equations are an
order of magnitude faster than neural CDE and are scalable to large sequence lengths. More details
on time and memory complexity can be found in (A.7)).

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, we propose neural wave equation, a sequence model based on the non-homogenous
wave equation. We show that a non-homogenous wave equation with a learnable source function
is a good fit for sequence modeling tasks involving irregularly sampled data. We establish that the
analytical solution of a non-homogenous wave equation presents a way to implicitly model denser
connections between hidden states. We empirically demonstrate this by comparing our model against
several baselines and outperforming them in several real-world data sets. Neural wave equations have
reasonable computational speed, however this comes at the cost of memory consumption. Studying
the benefits of using partial differential equations for sequence modeling with theoretical rigor and
finding the correct balance between memory and speed is left for future work.
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A APPENDIX / SUPPLEMENTAL MATERIAL

Most of the derivations regarding wave and heat equation can be found in more detail in Sobolev,
Strauss and Evans (2010)

A.1 SOLUTION OF WAVE EQUATION

utt = c2uxx + F (t, x) where
u(0, x) = f(x) and ut(0, x) = g(x)

We break it into two separate problems.

vtt = c2vxx where
v(0, x) = f(x) and vt(0, x) = g(x)

and

wtt = c2wxx + F (t, x) where
w(0, x) = 0 and wt(0, x) = 0

In such a case, the sum of the solutions of the above equations will give us the solution of the wave
equation. To solve the first part Introduce new variables ξ and η:

ξ = x− ct, η = x+ ct. (12)

Then, the partial derivatives transform as follows:
∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
=

∂

∂ξ
+

∂

∂η
, (13)

∂

∂t
=
∂ξ

∂t

∂

∂ξ
+
∂η

∂t

∂

∂η
= −c ∂

∂ξ
+ c

∂

∂η
. (14)

The second derivatives are:
∂2

∂x2
=

(
∂

∂ξ
+

∂

∂η

)2

=
∂2

∂ξ2
+ 2

∂2

∂ξ∂η
+

∂2

∂η2
, (15)

∂2

∂t2
=

(
−c ∂

∂ξ
+ c

∂

∂η

)2

= c2
(
∂2

∂ξ2
− 2

∂2

∂ξ∂η
+

∂2

∂η2

)
. (16)

Substitute into the Wave Equation

Substitute these into the wave equation:

c2
(
∂2v

∂ξ2
− 2

∂2v

∂ξ∂η
+
∂2v

∂η2

)
= c2

(
∂2v

∂ξ2
+ 2

∂2v

∂ξ∂η
+
∂2v

∂η2

)
. (17)

Simplify this to:

0 = 4c2
∂2v

∂ξ∂η
. (18)

This implies:
∂2v

∂ξ∂η
= 0. (19)

The solution of the above equation can be found by integrating twice. So, we know that the solution
will be of the form

v(x, t) = A(x− ct) +B(x+ ct) (20)
Now, A(x) = 1

2f(x)−
1
2c

∫ x

0
g(s)ds and B(x) = 1

2f(x) +
1
2c

∫ x

0
g(s)ds solves the first part of the

wave equation. The solution then can be written down as

v(x, t) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct

g(s)ds (21)

To solve the second part, let us consider another initial value formulation of the wave equation.

14
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rtt = c2rxx where r(τ, x; τ) = 0 and rt(τ, x; τ) = F (τ, x)

In this case, w(t, x) =
∫ t

0
r(τ, x; τ)dτ solves the second part of the wave equation. Using the

Leibnitz rule for differentiation under integral sign, we can write,

wt = r(t, x; t) +
∫ t

0
rt(t, x; τ)dτ =

∫ t

0
rt(t, x; τ)dτ

wtt = rt(x, t; t) +
∫ t

0
rtt(t, x; τ)dτ = F (t, x) +

∫ t

0
rtt(t, x; τ)dτ

and we have

wxx =
∫ t

0
rxx(t, x; τ)dτ = 1

c2

∫ t

0
rtt(t, x; τ)dτ

putting the values of wxx and wtt in the equation, we get

wtt − c2wxx = F (t, x) (22)

By D’Alemberds formula, the solution of this initial value problem is

r(t, x; τ) =
1

2c

∫ x+c(t−τ)

x−c(t−τ)

F (τ, η)dη (23)

and

w(t, x) =
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

F (τ, η)dη (24)

Adding the solutions of both the parts, we get the solutions of wave equations as

u(t, x) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct

g(s)ds+
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

F (τ, η)dη (25)

A.2 FDM DISCRETIZATION OF WAVE EQUATION

∂2ht,d
∂d2

− ∂2ht,d
∂t2

= 0 (26)

Discretization of the 1D Wave equation is as follows:

(h(t,d+∆d)− 2h(t,t) + ht,d−∆d)

∆2
d

− (ht−∆t,d − 2ht,d + ht+∆t,d)

∆2
t

= 0 (27)

(h(t,d+∆d)

∆2
d

=
(2 ∗ ht,d − h(t,d−∆d)

∆2
d

− (ht−∆t,d − 2ht,d + ht+∆t,d)

∆2
t

(28)

ht,d+∆d
= 2ht,d − ht,d−∆d

+
∆2

d

∆2
t

[ht+∆t,d − 2ht,d + ht−∆t,d] (29)

A.3 SOLUTION OF HEAT EQUATION

ut = kuxx +Q(x, t) where u(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x)

Using separation of variables (assuming that the solution is of the form u(x, t) = X(x)T (t)) leads
to an eigenvalue problem

ϕ′′ + λϕ = 0, ϕ(0) = 0, ϕ(L) = 0

The eigenfunctions and eigenvalues are given by

ϕn(x) = sinnπx
L , λn = (nπL )2

15
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Leds assume that the solution is off the form

u(x, t) =

∞∑
n=11

an(t)ϕn(x) (30)

We write

f(x) = u(x, 0) =

∞∑
1

an(0)ϕn(x) (31)

Q(x, t) =

∞∑
1

qn(t)ϕn(x) (32)

The coefficients of the above equations are solved using the Fourier series. We expand

ut(x, t) =
∑∞

1 a′n(t)ϕn(x), uxx(x, t) = −
∑∞

1 an(t)λnϕn(x)

Inserting into the heat equation we get,

ut = kuxx +Q(x, t)∑∞
1 a′n(t)ϕn(x) = −k

∑∞
1 an(t)λnϕn(x) +

∑∞
1 qn(t)ϕn(x)

a′n(t) + kλnan(t) = qn(t) (33)
Solving the above ODE, we get

an(t) exp
kλnt = an(0) +

∫ t

0

qn(τ) exp
kλnt (34)

an(t) = an(0)e
−kλnt +

∫ t

0

qn(τ)e
−kλn(t−τ)dτ (35)

So, we write the solution as follows -

u(x, t) =

∞∑
1

an(t)ϕn(x) =

∞∑
1

[an(0)e
−kλnt +

∫ t

0

qn(τ)e
−kλn(t−τ)dτ ]ϕn(x) (36)

A.4 SOLVING A 2ND ORDER EQUATION AS A SYSTEM OF 1ST ORDER EQUATIONS

In this case, since the entire sequence is fed at once as input, we know the values of yxx So, we can
write the 2nd-order wave equation as a system of 1st-order odes.

Y =

[
y
yt

]
(37)

Yt =

[
0 1
0 0

]
Y +

[
0

c2yxx + F (x, t)

]
(38)

A.5 EXAMPLE OF SOLUTION PROBLEM IN SOLVER

ytt = yxx
y(0, t) = y(L, t) = 0, y(x, 0) = f(x), yt(x, 0) = g(x)

By D’alemberds formula, we know the solution is

y(x, t) =
f(x− ct) + f(x+ ct

2
+

1

2c

∫ x+ct

x−ct

g(s)ds (39)

In the question, f(x) = sin(πx) and g(x) = sin(πx) So, the solution is

y(x, t) =
sinπ(x− t) + sinπ(x+ t)

2
+

1

2

∫ x+t

x−t

sin(πx)dx = sin(πx)[cos(πt)+
sin(πt)

π
] (40)
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Figure 4: The leftmost figure is analytical solution over a grid,the middle figure is numerical solution,
the last figure is the error between the analytical and numerical solution. We notice that the error
between analytical and numerical solution is of the order 1e− 3 which was used as the relative error
tolerance.
A.6 FAST IMPLEMENTATION

ODESolvers are not suited to handle a sequence of vector data. The initial value condition in neural
wave equation, h:,0 is an N ×M matrix where N is the sequence length and M is the number of
input features. While training with batches, B being the batch size, the initial value condition
becomes a B ×N ×M matrix. To efficiently utilize GPUs during training, we collapse the batch
and the sequence length into a single dimension resulting in a (BN)×M matrix. During training,
the input sequence is a tuple of (batchsizeXsequencelengthXinputfeatures). However, neural
ODE solvers can’t handle such data directly. One way to overcome this problem is to loop over batch.
However, it is not GPU efficient. The elegant solution is to collapse batch size and sequence length
into a single dimension and convert the 3d input array into a 2d array. The input matrix looks like -

[
X1

t1X
2
t1 ..X

b
t1X

1
t2X

2
t2 ..X

b
t2 ..X

1
tnX

2
tn ..X

b
tn

]
T

Xi
tj is the input vector corresponding to ith batch at time sequence j. We append this matrix at the

start and at the end by repeating the first and last time sequence of every batch. For example if we
assume the batch size to be 3, and sequence length to be 3, we will have the following matrix

[
X1

t1X
2
t1X

3
t1X

1
t1X

2
t1X

3
t1X

1
t2X

2
t2X

3
t2X

1
t3X

2
t3X

3
t3X

1
t3X

2
t3X

3
t3

]
T

Let this matrix be called h. Note that shifting this matrix lets us calculate the finite difference terms
easily. For example

h[2b :]− 2h[b : −b] + h[: −2b] =



X1
t2

X2
t2

X3
t2

X1
t3

X2
t3

X3
t3

X1
t3

X2
t3

X3
t3


− 2



X1
t1

X2
t1

X3
t1

X1
t2

X2
t2

X3
t2

X1
t3

X2
t3

X3
t3


+



X1
t1

X2
t1

X3
t1

X1
t1

X2
t1

X3
t1

X1
t2

X2
t2

X3
t2


(41)

We can then append the necessary boundary conditions to the calculated matrix and pass it into the
solver again. However, the shifting of matrix for calculating finite difference and source terms must
be done carefully so that the batches does not mix amongst themselves.
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A.7 COMPUTATIONAL COMPLEXITY

We also analysed the computational complexity of neural wave equation with other baselines. Our
implementation indeed uses more memory but is much faster compared to the exisiting methods.

Model Memory (in MB) Speed (epoch/s)
CTRNN 321 259

ODE-LSTM 348 82.39
CTGRU 662 11.45

GRUODE 161 11.93
Avreage 373 90.445
BIRNN 162 30.66
GRUD 48 13.22

PHASED 38 9.4
Average 82.67 17.76

Neural Wave 1972 8.66

Table 3: Computational Complexity Analysis of Neural Wave Equation with other models

It is important to emphasize that the observed speed-memory tradeoff arises from our implementation
technique rather than being an inherent property of the model. Specifically, in most RNN variants
with ODE solvers, it is necessary to loop over the sequence dimension because ODE solvers typically
cannot handle 3-dimensional data directly.To address this limitation, we collapsed the batch and
sequence dimensions into a single dimension. This approach enabled us to utilize the GPU more
efficiently, significantly improving speed by eliminating the need for looping. However, this opti-
mization leads to a higher peak memory allocation, as the entire collapsed batch-sequence matrix
must fit in memory during computation.

A.8 LOSS FUNCTION AND TRAINING

The loss function used to train the model depends on the problem. We use a cross-entropy loss for
classification problems and mean-squared error for regression problems. The loss is a function of
the MLP parameters θMLP = (θpre, θpost) and source function parameters θs. Since we use the
neural ODE framework during training, we prefer the adjoint sensitivity method over the traditional
backpropagation as it offers memory efficiency Chen et al. (2018)Choon et al. (2019). Even though
we mention ODESolvers to solve the wave equation, there are two practical problems one may face
during training. The ODESolvers normally have an ODEFunc argument which is ∂h(t,d)

∂d in the
wave equation. However, the wave equation is a 2nd-order PDE, and hence ∂h(t,d)

∂d is not known.
It is required to convert the wave equation to a system of linear 1st-order equations. We define
H(d) = [ht,d,

∂ht,d

∂d ], and consider a first-order system H(d) = G(θs, H(d), d). Note that here, G is
a function of both ht,d and ∂ht,d

∂d . Following this, we define the adjoint state as a(d) = dL
dH(d) , and an

ODE which satisfies,
dH

dd
= −a(d)∂G(θs, H(d), d)

∂H(d)
(42)

we find H(d) by making an extra call to the ODESolver with dL
dH(D) as the initial condition.

A.9 COMPARISON

D’ALEMBERT SOLUTION OF THE WAVE EQUATION

The wave equation with a source term is given by

h(t, d) =
1

2
(f(t+ cd) + f(t− cd)) +

1

2c

∫ d

0

∫ t+c(t−τ)

t−c(t−τ)

F (s, τ)dsdτ (43)

where h(t, 0) = f(t) and F (.) is the source term.
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COMPARISON WITH RNN TYPE ARCHITECTURES

In a normal RNN architecture, the evolution of the hidden state dynamics is as follows:

ht,d = F (Wtht−1,d +Wd−1ht,d−1) (44)

So, the hidden state at point (t, d) depends only on ht−1,d and ht,d−1. In the wave equation, the
presence of the integral over the source term from 0 to d ensures that each ht,d is modeled as a
function of several hidden states. The trainable parameter c determines the number of the hidden
states with depth < d that contributes to the evolution of ht,d.

COMPARISON WITH HEAT EQUATION

It has been shown that heat equation can also be used to model sequence data. The discretization of
the heat equation is:

h(t, d+∆d) =
∆d

∆t
[h(t−∆t, d)− 2h(t,d) + h(t+∆t,d] + h(t,d) (45)

Straight up comparing with the discretization of the wave equation, we notice that the h(t,d−δd) term
is absent in the heat equation. The analytical solution of the heat equation is:

h(t, d) =

∞∑
n=1

(an(0) exp
(−kλnd) +

∫ d

0

qn(τ) exp
(−kλn(t−τ) dτ)ϕn(t) (46)

where ϕn = sin (nπt)
T ,qn =

∫ T

0
F (t, d)ϕn(t)dt.

Figure 5: The rate of exponential decay in heat equation corresponding to different depth and heat
diffusivity.
The presence of the negative exponential term in the solution of the heat equation means that the
effect of the hidden states located at lower depths is diminished while calculating the hidden states
located at higher depths. The wave equation does not have this problem. In the case of the depth of
the model being shallow, heat and wave equations show similar performance.

A.10 NEURAL WAVE EQUATION ALGORITHM

The algorithm for neural wave equation is provided. The architecture diagram of the encoder-decoder
version is also provided.
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Algorithm 1 Neural Wave Equation
function PRE-NN(input data)

Compute the initial condition using a neural network
h(t, 0)← MLP(input data)
return h(t, 0)

end function
function ODEFUNC(source function, current state)

Compute the second-order time derivative:
second derivative← Finite Difference Formula + source function
Store the current state as it will be required to calculate the FDM for next state.
return second derivative

end function
function NEURALWAVE(initial condition)

Initialize a second-order ODE solver
Solve the wave equation using the solver
return the solution at final time D

end function
function POST-NN(solution at D)

Apply a neural network for post-processing
output← MLP(solution at D)
return output

end function

A.11 ADAPTIVE STEP SIZE SOLVERS

y′(t) = f(t, y(t)), y(a) = ya (47)
The exact solution at nth point is yn and the numerical approximation is ȳn. Approximation of yn
using RK-4 method yields

yRK4
n = ȳn +O(∆5

t ) (48)
while RK-5 yields,

yRK5
n = ȳn +O(∆6

t ) (49)

ϵ = |yRK5
n − yRK4

n | = O(∆5
t ) (50)

Given a relative error tolerance, we can calculate the required step size ∆τ by solving:

ϵ

tol
=

∆5
t

∆5
τ

(51)

∆τ = (
tol

ϵ
)

1
5∆t (52)

A.12 BOUNDARY CONDITIONS

For numerically solving a partial differential equation or an ODE, we need boundary conditions or
initial value conditions. Since, we are using a numerical solver, we also need a list of initial value
conditions. Here, we aim to discuss in detail how the initial value conditions can be initialized in case
of the neural wave equation. First let us take a look at the update equation again. For simplification,
we look at the discretization equation of homogenous wave equation.

ht,d+∆d
= 2ht,d − ht,d−∆d

+
∆2

d

∆2
t

c2[ht+∆t,d − 2ht,d + ht−∆t,d]

We have a sequence of data at different time points (t) to begin with. ht,0 corresponds to these data.
(please note that instead of the raw data, we often pass them through a MLP to get the initial values
at ht,0. This is mainly to reduce or increase the dimension of the data.) Now, let us see how h0,0+∆d

gets calculated. The update equation will read as follows

ht,0+∆d
= 2ht,0 − ht,0−∆d

+
∆2

d

∆2
t

c2[ht+∆t,0 − 2ht,0 + ht−∆t,0]

The ht,0−∆d
value is not available to us and we can use a value of our choice as the boundary

condition. Please note that this is same as specifying the partial derivative of h wrt t’ at point 0. If
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we write our own custom implementation of a solver, we can follow one of the common scheme for
initializing boundary values like dirichlet, neumann or robins. However, in our implementation, we
used the torchdyn solver which takes the derivative at time 0 as 0. Now, we look at the second set of
points where we need boundary conditions. Let’s take a look at the update rule for h0,d+∆d

h0,d+∆d
= 2h0,d − h0,d−∆d

+
∆2

d

∆2
t

c2[h0+∆t,d − 2ht,d + h0−∆t,d]

Here, h0−∆t,d is again not known to us and we need to tackle it just like the above case. Again note
that this is same as specifying the derivative wrt t at 0 and we use 0 in our implementation. However,
one can come up with custom boundary condition according to the problem in hand.

Figure 6: Visualization of the boundary conditions for solving the PDE. The red cells represent the
boundary conditions that must be defined to compute the values at the blue cells (h0,1 and h0,2).
These boundary conditions correspond to unknown values, such as h−1,1, h−1,0, and h0,−1, which
are set based on the problem or solver design (e.g., Dirichlet or Neumann boundary conditions). The
black cells denote the values that are either given (e.g., initial conditions) or computed as part of the
numerical solution process.

A.13 EXPERIMENTS

Table 4 outlines the numerical methods selected for each model. The Neural Wave model employs
the Dopri5/Tsit5 method, setting the absolute and relative tolerance levels to 1e−3. A scheduled
learning rate decay strategy is implemented, with a decay coefficient γ = 0.1, activated at the 100th
epoch.

Table 4: ODE solvers used for different RNODE models. For the Neural Wave model using Dopri5,
the absolute and relative tolerance values are 1e−3 and 1e−3 respectively.

Model ODE-Solver Time-step Ratio
CT-RNN ichi Funahashi & Nakamura (1993) 4-th order Runge-Kutta 1/3
ODE-RNN Rubanova et al. (2019) 4-th order Runge-Kutta 1/3
GRU-ODEDe Brouwer et al. (2019) Explicit Euler 1/4
ODE-LSTM Lechner & Hasani (2020) Explicit Euler 1/4
Neural-CDE Kidger et al. (2020) Dopri5 -
CDR-NDE Anumasa et al. (2023) Explicit Euler 1/2
CDR-NDE-heat Anumasa et al. (2023) Dopri5 -
Neural Wave Dopri5/Tsit5 -

WALKER V2 KINEMATICS

The output is a 17-dimensional vector at each time point, we visualize the comparison between the
ground truth and the predicted values across several randomly selected time points over test samples.
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Figure 7: Comparison between ground truth and predicted position of the observation space of the
walker2d kinematics model.

STANCE CLASSIFICATION

Table 5: Test AUC Performance for Models on Seen Events
Model AUC (Sydneysiege event) AUC (Charliehebdo event)
CT-RNN 0.57 ± 0.00 0.63 ± 0.01
ODE-RNN 0.55 ± 0.01 0.59 ± 0.02
ODE-LSTM 0.56 ± 0.01 0.61 ± 0.01
CT-GRU 0.64 ± 0.01 0.67 ± 0.01
RNN-Decay 0.63 ± 0.01 0.67 ± 0.02
Bidirectional-RNN 0.62 ± 0.01 0.67 ± 0.00
GRU-D 0.64 ± 0.01 0.69 ± 0.01
Phased-LSTM 0.61 ± 0.01 0.64 ± 0.01
GRU-ODE 0.56 ± 0.00 0.63 ± 0.01
CT-LSTM 0.64 ± 0.01 0.66 ± 0.04
Augmented-LSTM 0.64 ± 0.01 0.68 ± 0.00
CDR-NDE 0.57 ± 0.01 0.60 ± 0.01
CDR-NDE-heat(Euler) 0.64 ± 0.01 0.66 ± 0.01
CDR-NDE-heat(Dopri5) 0.63 ± 0.01 0.65 ± 0.01
Neural Wave - Single GRU 0.59 ± 0.01 0.62 ± 0.01
Neural Wave - Single MLP 0.60 ± 0.02 0.65 ± 0.01
Neural Wave - Double Gating 0.60 ± 0.01 0.60 ± 0.01
Neural Wave - MLP+GRU 0.61 ± 0.02 0.64 ± 0.01
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