
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL WAVE EQUATIONS FOR IRREGULARLY SAM-
PLED SEQUENCE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequence labeling problems arise in several real-world applications such as health-
care and robotics. In many such applications, sequence data are irregularly sampled
and are of varying complexities. Recently, efforts have been made to develop neural
ODE-based architectures to model the evolution of hidden states continuously in
time, to address irregularly sampled sequence data. However, they assume a fixed
architectural depth and limit their flexibility to adapt to data sets with varying
complexities. We propose the neural wave equation, a novel deep learning method
inspired by the wave equation, to address this through continuous modeling of
depth. Neural Wave Equation models the evolution of hidden states continuously
across time as well as depth by using a non-homogeneous wave equation parame-
terized by a neural network. Through d’Alemberds analytical solution of the wave
equation, we also show that the neural wave equation provides denser connections
across the hidden states, allowing for better modeling capability. We conduct
experiments on several sequence labeling problems involving irregularly sampled
sequence data and demonstrate the superior performance of the proposed neural
wave equation model.

1 INTRODUCTION

Sequence data arise in several real-world applications like health care, robotic systems, and speech
recognition. Models such as Recurrent Neural Networks (RNNs)(Rumelhart et al. (1986); Hochreiter
& Schmidhuber (1997); Cho et al. (2014); De Brouwer et al. (2019); Schuster & Paliwal (1997))and
their variants have proven to be highly effective in processing such sequential data. Traditionally,
RNNs are perceived as discrete approximations of underlying dynamical systems, a concept well
documented in the literature ichi Funahashi & Nakamura (1993); Bailer-jones et al. (2002). However,
RNNs face significant challenges in effectively addressing sequence labeling problems arising in
applications such as healthcare, social media, and business, which involves irregularly sampled or
partially observed sequence data Rubanova et al. (2019). There have been efforts in the community
to develop deep learning models that allow continuous transformation of the hidden representation.
Neural Ordinary Differential Equations(Chen et al. (2018)) implicitly model depth by treating it as
a continuous transformation of the input-output map. Neural ODEs combine neural networks with
ordinary differential equations to achieve this resulting in an architecture similar to Resnets(He
et al. (2016)). This continuous modeling allows for flexible,adaptive representations that capture
hierarchical relationships without relying on fixed depth.

Recognizing the limitations of non-uniform data sampling, there has been a paradigm shift towards
developing sequence models inspired by Neural ODEs that emulate the continuous evolution of
hidden states over time. ODE-RNN(Rubanova et al. (2019)) modeled hidden state transformations
over time using a NODE, where hidden representations are continuously transformed taking into
account the time gaps between observations, leading to better hidden state representations. Variants
of ODE-RNN like the GRU-ODE(De Brouwer et al. (2019)) and ODE- LSTM(Lechner & Hasani
(2020)) were consequently proposed for irregular time series data.

In several real-world problems with irregular observations such as social media post classification,
input data could also exhibit varying complexities, and fixed discrete transformations on the depth
dimension would become a limitation. A shallower network may not be able to capture the complexity
of the data properly while a deeper network may overfit the data. ODE- RNN or their variants perform

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

X1

 t 1

X2

 t2

X3

 t3

h(2,1)

h(1,1)

h(2,2)

h(1,2)

h(2,3)

h(1,3)

X1

 t 1

X2

 t2

X3

 t3

h(2,1)

h(1,1)

h(2,2)

h(1,2)

h(2,3)

h(1,3)

X1

 t 1

X2

 t2

X3

 t3

h(2,1)

h(1,1)

h(2,2)

h(1,2)

h(2,3)

h(1,3)

A - RNN Variant B - ODE-RNN Variant C - Neural Wave Equation

Figure 1: Architectural comparison between discrete depth discrete time, discrete depth continuous
time and continuous depth continuous time model

a discrete transformation of the hidden state along depth using neural network transformation, limiting
their flexibility to adapt to complex data sets or require exhaustive model selection.

Unifying the principles of Neural ODE and ODE -RNN naturally leads to Partial Differential
Equations(Farlow (1993)), which model hidden states continuously over both time and depth. PDEs
provide a principled framework for capturing multidimensional dependencies,enabling adaptive
representations for hierarchical and temporal complexities.

The continuous depth recurrent neural differential equation Anumasa et al. (2023)(CDR-NDE)
proposed the application of a partial differential equation, for modeling the evolution of hidden states
continuously over time and depth. The authors of the CDR-NDE paper use the non-homogenous heat
equation with the source function being a neural network, for modeling the hidden states continuously
over time and architectural depth. Though heat equation-based PDEs are useful for modeling
continuous evolution, we find them to have certain limitations that restrict their effectiveness for
sequence data. Intuitively, the diffusive nature of the heat equation implies that the initial information
is often smoothed out and lost.

We propose the neural wave equation, a wave equation-based neural differential equation, which
can provide an effective and natural way to model sequence data. The wave equation can implicitly
consider the dependency with neighboring hidden states over a window and addresses the limitations
exhibited by the heat equation in sequence modeling. The dependency with some particular hidden
states does not arise naturally in the heat equation and hence, needs to be supplemented through
the source terms. These dependencies are captured in the wave equation directly. The propagating
nature of the wave equation makes it more robust to loss of initial information. Further motivation
comes from the existence of an analytical solution for wave equations, and this helps in understanding
the effectiveness of wave equations in modeling sequence data. A schematic representation of the
hidden state evolution in neural wave equations compared to other popular approaches is provided
in Figure 1. Neural wave equations allow for continuous evolution of hidden states across time and
depth while capturing more dependencies. We develop neural wave equation models with several
parameterizations of the source function through a neural network. Neural wave equations can be
solved based on existing solvers for PDE and efficient training techniques based on adjoint methods
can be used to learn the parameters. Our experiments, conducted on diverse datasets such as person
activity recognition, Walker2d kinematic simulationLechner & Hasani (2020), sepsis (PhysioNet
2019)Reyna et al. (2019) and stance classification Derczynski et al. (2017) demonstrate the superior
performance of neural wave equation models over existing baselines for sequence labeling problems.
To summarize,

1. We propose neural wave equations - a non-homogeneous wave equation with its source
function parameterized by a neural network, for sequence labeling problems.

2. We speculate on the potential benefits of using non-homogenous partial differential equations
for sequence modeling over continuous time RNN models with discrete depth by looking at
their analytical solutions.

3. We empirically demonstrate the effectiveness of the neural wave equations on several
sequence labeling tasks with irregularly sampled data.

2 RELATED WORK

Several variants of RNNs were introduced in the past to deal with irregularly sampled sequence data
or sequence data with missing observations. GRU-D and RNN-D Weinan (2017) models make use

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of a decay rate for predicting the missing values. CT-LSTMMei & Eisner (2017) combines both
LSTM and continuous time neural Hawkes process to model the continuous transformation of hidden
states. The latest works in this direction make us of the framework of the neural ordinary differential
equation Chen et al. (2018), to model the continuous evolution of hidden states over time.

ODE-RNN(Rubanova et al. (2019)) and their variants such as GRU-ODEDe Brouwer et al. (2019) and
ODE-LSTM(Lechner & Hasani (2020)), use a NODE-based formulation to model the hidden state
transformation across the irregular observation times, and then an MLP to map it to the corresponding
output. Neural Controlled Differential equation (Kidger et al. (2020)) calculates a continuous path
over the sequence data using cubic splines and subsequently constructs the evolution of a hidden
state in continuous time from it. After a hidden state is calculated, the output from the hidden cell
is obtained by passing the hidden state vector through an MLP. Variants of Neural CDE such as
attentive Neural CDE(Jhin et al. (2024)) and attentive co-evolving Neural CDE(Jhin et al. (2021))
attempt to combine the attention mechanism with NODE by using two Neural CDEs. With the rise of
transformers(Vaswani et al. (2017)), the attention mechanism has gained prominence for modeling
sequence data. Recently, Contiformer(Chen et al. (2023)) introduced a continuous time attention
mechanism in Transformers to model irregularly sampled time-series data. The other promising
direction in sequence modeling tasks is the structured state-space models (Gu et al. (2022)) which
focuses on discretising a differential equation with an alternate RNN and CNN view.

Continuous depth recurrent neural differential equations (CDR-NDE) Anumasa et al. (2023) proposed
the use of partial differential equations, in particular heat equation, to model the evolution of hidden
states over both the temporal and depth dimensions. This overcame the limitations of the discrete
depth modeling of the prior approaches for irregularly sampled sequence data. There exists hardly any
work on modeling deep learning architectures using PDEs. However, there exists a line of research
that aims to use neural networks to solve partial differential equations known as physics-informed
neural networks (PINNS) or Neural PDEs Zubov et al. (2021); Brandstetter et al. (2021); Hu et al.
(2020); Raissi et al. (2019). Hughes et al Hughes et al. (2019) draw a similarity between homogeneous
wave equation and RNN from a computational physics perspective. In contrast to earlier efforts,
the paper focuses on studying the effectiveness of PDEs in developing adaptable deep-learning
architectures for modeling, addressing the irregularly sampled sequence data. In particular, we study
and propose neural wave equations as an effective solution to solve such sequence labeling problems.

3 BACKGROUND

3.1 PROBLEM SETTING

We assume a sequence data set consisting of multiple irregularly sampled sequences of length K. Let
the elements in the sequence be represented as {(t1,x1, y1), (t2,x2, y2), ..., (tK ,xK, yK)} where
ti ∈ R+ is the observation time stamp and xi ∈ RD is D-dimensional input observed at time ti. The
corresponding output yi can be a class label for a classification task or a real value for a regression
task. Our model considers the sequence of observed inputs [x1,x2, . . . ,xK] and their corresponding
times [t1, t2, . . . , tK] as input and aims to predict the output sequence [y1, y2, . . . , yK] considering
the dependencies among the input elements in the sequence and their observation times. Our aim
is to learn a function f(., θ) which can predict the output sequence given the input sequence and
observation times so that it exhibits a good generalization performance on the unseen sequences.

3.2 IMPLICIT DEPTH IN DEEP LEARNING

The depth of a neural network is an important hyperparameter that determines the model’s capacity to
learn complex patterns. However, a deeper model may overfit if the input data does not show complex
patterns. Implicit layer depth techniques offer a novel approach to structuring deep learning models
by adaptively determining the effective depth during training or inference. Models such as Neural
ODEs bypass the constraints of predefined layer depth by defining a continuous transformation of
the input with respect to depth via a differential equation. A neural ordinary differential equation
(NODE) offers a continuous approach to deep learning by approximating the input-to-output map
using a learnable neural network and a differential equation of the following form.

dh(t)

dt
= fθ(h(t), t), (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where h(t0) = h0 is the initial condition which is the input to the model or some transformation of
the input, and fθ is a learnable neural network with parameters θ. The differential equation is then
solved with the help of an adaptive step-size solver which automatically adjusts the step size with
varying input complexity. This alleviates the need for tuning the depth of a network manually.

3.3 RECURRENT NEURAL ODE

Recurrent Neural ODEs (ODE-RNN Rubanova et al. (2019)) adapt the neural ODE approach to
model irregularly sampled sequence data. In the ODE-RNN framework, the dynamics of the system
are modeled using a combination of RNN cell and ordinary differential equations, which describe
how the state of the system changes continuously over time. Unlike the neural ODE, ODE-RNN
models the hidden state evolution continuously in the temporal dimension while following discrete
modeling in depth. Assuming, hdk−1 is the hidden state obtained at the previous timestamp tk−1 at
some discrete depth d. hdk−1 is first passed through a neural ODE to obtain the hidden representation
ĥdk at time tk.

ĥdk = ODESolve(hdk−1, (tk−1, tk)) (2)
where ODESolve calls a numerical solver to solve an ODE as referred in Equation 1.

1 2 3 4 5 6 7 8 9
Model Depth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)
MSE Comparison of LSTM and ODE-RNN with Neural Wave Equation

Neural Wave Equation
LSTM
ODE-RNN

Figure 2: Discrete depth models such as ODE-RNN and
LSTM require a model selection over depth to obtain the
right model. Neural Wave Equation (red line) achieves
this by implicitly and continuously modeling the depth.
The dataset used in ETTH1 and the task is to predict 24
time steps in the future while considering the previous
96 timesteps.

The hidden state hdk at time tk is then ob-
tained by passing ĥdk and previous layer
hidden representation hd−1

k to an RNN-
cell, hdk = σ(Wh̄h

d−1
k + Whĥ

d
k + bh),

where Wh̄,Wh, bh are parameters of the
RNN-cell. The final output ŷk at time tk
is obtained by repeating the hidden repre-
sentation computation over a user-defined
discrete depth in RNN-ODE. ODE-RNN
provides a better modeling capability, es-
pecially for irregularly sampled sequence
data. However, their capability is limited
by the modeling of depth discretely. In
Fig. 1, we see that in ODE-RNN, depth
is modeled explicitly by stacking multiple
layers of sequential ODE-RNN cells, sim-
ilar to traditional RNN architectures. In
Neural Wave Equation, there is no explicit
concept of depth as seen in traditional neu-
ral networks with stacked layers. Instead,
the transformations of the hidden states are
governed by a partial differential equation,
and the solver performs a number of small transformations which implicitly defines depth (See
Section 4). In RNN and ODE-RNN one has to perform exhaustive model selection over depth to
achieve a good performance. We demonstrate this in Figure 2 by comparing the performance of
ODE-RNN and LSTM for varying depths. We also compare them against the proposed neural wave
equation which models depth implicitly (red line).

3.4 WAVE EQUATION

In this section, we aim to introduce some ideas and terminologies related to the wave equation which
forms the basis of our work. Wave Equation is a partial differential equation of 2nd order in two
variables and intuitively, can model more complex dynamics than 1st order PDEs. It describes the
propagation of mechanistic waves, such as sound, light, and water waves through a medium. The
propagative nature of the wave equation prevents the loss of initial information as opposed to the heat
equation. The homogenous 1D wave equation is formulated as

∂2u(z, t)

∂t2
− c2

∂2u(z, t)

∂z2
= 0 (3)

with the initial value condition u(z, 0) = f(z), ut(z, 0) = ∂u
∂t (z, 0) = g(z) and c is a constant

denoting the speed of the wave in the medium. For simplicity, we assume g(z) = 0 throughout our

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

work. The solution of the wave equation, u(z, t) gives the displacement of a wave at any given point
z over time t. It mathematically models how waveforms evolve over time and space in a continuous
manner. The analytical solution of wave equations is given by d’Alemberds formula Sobolev as
u(z, t) = f(z+ct)+f(z−ct)

2 . However, we often do not know the explicit form of the initial value
function f(z), and instead we know only values of f(z) at certain points. In such scenarios, we may
use a numerical method to solve the wave equation via discretization. One such popular method is the
finite difference method(FDM) Abdulkadir et al. (2015). Under the FDM scheme, the wave equation
can be discretized as

uz,t+∆t = 2uz,t − uz,t−∆t +
∆2

t

∆2
t

c2[uz+∆z,t − 2uz,t + uz−∆z,t] (4)

uz,t is the value of the function u(z, t) at position z and time t. We can solve the wave equation
using the above discretization scheme by using numerical methods for solving ODEs. Higher-order
methods like RK-4 are often preferred for higher precision during solving a numerical FDM scheme.

Wave dynamics are better characterized by a non-homogeneous wave equation Farlow (1993) which
is written as

∂2u(z, t)

∂t2
− c2

∂2u(z, t)

∂z2
= F (z, t) (5)

where the function F (z, t) is called a source. It is physically interpreted as an external force that is
acting on each point. The source is a function of time and space as well which means that the external
force acting over each data point may vary over time.

4 NEURAL WAVE EQUATIONS

Sequence modeling problems require predicting the sequence of outputs while capturing dependencies
across the elements in the input sequence. We observe that wave equation offers us a natural way
to accomplish this as they are capable of capturing the dependencies and interactions among the
system states. We propose to model the evolution of hidden states as a wave equation with the source
function parameterized as a neural network. The inputs in the sequence at different observation times
are considered as the initial displacement values associated at the various spatial locations in the
wave equation. The evolution of wave equation over time implicitly models the depth and number of
hidden layer transformations. The proposed neural wave equation captures the dependencies among
the hidden states and model their evolution continuously in both the temporal dimension and depth
dimension.

Considering the FDM discretization Abdulkadir et al. (2015) for the wave equation in Equation 4.
We rewrite it to represent the hidden state evolution with the point z representing the hidden state
at some point in time t of the sequence data and time t representing the evolution of hidden state at
some point in depth d.

ht,d+∆d
= 2ht,d − ht,d−∆d

+
∆2

d

∆2
t

c2[ht+∆t,d − 2ht,d + ht−∆t,d] (6)

Here, ht,d represents the hidden states corresponding to a data point at time t and at depth d.

From the FDM expression, we can clearly see the interaction between the hidden states
ht,d, ht−∆t,d, ht+∆t,d and ht,d−∆d while calculating ht,d+∆d

. A drawback with directly adopt-
ing a homogenous wave equation in a deep-learning setting is the absence of a learnable function
which may be required if the sequence modeling task is complex. To account for it, we also add a
learnable neural network to the FDM scheme as

ht,d+∆d
= 2ht,d − ht,d−∆d

+
∆2

d

∆2
t

c2[ht+∆t,d − 2ht,d + ht−∆t,d]

+ Fθs(ht−∆t,d, ht,d, ht+∆t,d, ht,d−∆d
)

(7)

where Fθs(.) is a learnable neural network with parameters θs. This leads to the proposed, neural
wave equation model, which is a non-homogeneous wave equation with a source function modeled as
the neural network. The neural network Fθs(.) helps in capturing the non-linear dependencies with
neighboring hidden states. The proposed neural wave equation is given as

∂2ht,d
∂d2

− c2
∂2ht,d
∂t2

= Fθs(ht,d, ht−∆t,d, ht+∆t,d, ht,d−∆d) (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The initial value condition for the neural wave equation, f(ti) = h(ti, 0) for some time ti is generated
from the corresponding input xi in the input sequence. For simplicity, we assume ∂h(t,0)

∂d = 0. We
can get a better understanding of the interaction among the hidden states by studying the analytical
solution for the non-homogeneous wave equationSobolev

h(t, d) =
f(t+ cd) + f(t− cd)

2
+

1

2c

∫ d

0

∫ t+c(d−τ)

t−c(d−τ)

Fθs(hs,τ , hs−∆s,τ , hs+∆s,τ , hs,τ−∆τ)dsdτ

(9)
where f(t) = h(t, 0) and Fθs(.) is the source function. We can see that to compute the hidden
state h(t, d) at any time t and depth d, it considers the source function values of hidden states
in a neighborhood and from the previous depths such as h(t − ∆cz, d − ∆d), h(t − ∆cz+1, d −
∆d), .., h(t+∆cz, d−∆d), h(t−∆cz, d− 2∆d), h(t−∆cz+1, d− 2∆d), .., h(t+∆cz, d− 2∆d)
and so on where z takes the value of the current depth i.e d−∆d, d− 2∆d, ... A detailed explanation
of boundary condition is provided in A.12. We discuss the implications of the analytical solution of
the PDEs in general and wave equation in particular in more detail in the following sections.

4.1 SOURCE FUNCTIONS

We model the source function terms using a neural network. We use a combination of GRU-Cell and
MLPs to model the source terms. The source terms serve two main purposes. It adds non-linearity
to the hidden state interactions in the wave equation and provides more control over the flow of
information. Secondly, since we are solving a 1-dimensional wave equation with vector-valued hidden
states, the source terms enable the mixing of information across the latent dimension of the hidden
state. We experiment with several source term formulations of varying numbers of parameters. We
experiment with GRU-cells because it provides a gating mechanism to control the flow of information
into the concerned hidden state from its neighboring states.

• Single GRU : Model the source term as Fθs(ht−∆t,d, ht,d−∆d
) with only ht−∆t,d and

ht,d−∆d
passed through a GRU-Cell.

• Single MLP : Models source term as Fθs(ht−∆t,d, ht,d, ht+∆t,d. All the terms are concate-
nated together and passed through an MLP layer.

• Double Gating : Models source term as Fθs(ht−∆t,d, ht,d, ht+∆t,d, ht,d−∆d
): The ht,d and

ht,d−∆d
are concatenated together and passed through a MLP. The output of the MLP is

then passed into a GRU-Cell with hidden state ht−∆t,d and into another GRU-Cell with
hidden state ht+∆t,d and the results are added.

• MLP+GRU : Models source term as Fθs(ht−∆t,d, ht,d, ht+∆t,d, ht,d−∆d
). The terms

ht−∆t,d, ht,d, ht+∆t,dand ht,d−∆d
are concatenated and passed into an MLP. The output of

the MLP is then passed into a GRU-Cell with hidden state ht,d−∆d
.

4.2 FORWARD PASS

The forward pass in our neural wave equation model consists of 3 stages:

1. An MLP layer that takes the input element in the sequence xt at time t and projects them
into a latent space to obtain the hidden state initial value ht,0, ht,0 =MLPθpre(xt). Let the
initial hidden state values associated with the elements in the sequence be h:,0.

2. The second stage uses an ODESolver to solve the proposed neural wave equation and
obtain the final hidden states, h:,D = ODESolve(h:,0, [0, D], ODEFunc). ODESolve is
a 2nd-order adaptive step size ode solver and ODEFunc is the function that is responsible
for calculating the following discretization term.

∂2ht,d
∂d2

=
1

∆2
t

[ht+∆t,d − 2ht,d + ht−∆t,d] + Fθs(·) (10)

The ODESolve and ODEFunc are used as a black box to solve the neural wave equation
using the method of lines. It calculates ht,d for all values of t at once for a particular d and
moves forward in depth until it reaches D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3. The third stage uses an MLP layer that takes the output of the ODESolver and projects
it onto the required output space. The output yt associated with an input xt and time t is
obtained as yt =MLPθpost(ht,D).

The architecture of the neural wave equation, forward pass and hidden layer interactions can be
understood from Figure 3.

The FDM method attempts to approximate the analytical solution to a high degree of preci-
sion using a particular class of numerical solvers called adaptive step-size solvers Andersson
et al. (2015). Adaptive step-size solvers provide neural wave equations with the ability to
model continuous transformation over depth. They compute the numerical approximation us-
ing a higher-order solver and a lower-order solver every time. By taking the difference of these
two solutions, it approximates the local error associated with the numerical solution of the ODE.

Shallow
MLP Layer

Initial Hidden States

PDESolver on Equation 10
with RK-45 2nd order

solver

Shallow
MLP Layer

d - Deld

d

d + Deld

t + Deltt - Delt t

PDESOLVE

A
dj

oi
nt

 B
ac

kp
ro

p

F(.)

h(t,d)h(t - Delt,d) h(t - Delt,d)

h(t,d + Deld)

h(t,d - Deld)

Output Sequence

Raw Input

Figure 3: Neural wave equation architecture con-
sists of a shallow MLP over input, PDE solver, and
a shallow MLP to produce the output.

We used the adaptive step size solver based
on Dopri45. It uses the RK-4 and RK-5 as
the lower and higher-order solutions respec-
tively. The pseudocode for the algorithm is pro-
vided in Appendix A.10. The model parame-
ters, including wave speed c, MLP parameters
θMLP = (θpre, θpost) and source function pa-
rameters θs are learned using the loss function
computed over the output observations in a se-
quence and over all the sequences. We use a
cross-entropy loss for classification problems
and mean-squared error for regression problems.
For obtaining the gradients, we use an adjoint
sensitivity method developed for PDEs, which
works by converting the wave equation to a sys-
tem of linear 1st-order equations Choon et al.
(2019); Lewis et al. (2006).

4.3 DISCUSSION

In a normal RNN architecture, the evolution of the hidden state dynamics is as follows: ht,d =
F (Wtht−1,d +Wd−1ht,d−1). So, the hidden state at point (t, d) depends only on ht−1,d and ht,d−1.
In the wave equation, the presence of the integral over the source term from 0 to d ensures that each
ht,d is modeled as a function of several hidden states. The trainable parameter c determines the
number of the hidden states with depth less than d that contributes to the evolution of ht,d.

Most of the other works that combine neural ODE architecture with RNN use the neural ODE to
predict the flow of hidden states over a continuous time (Rubanova et al. (2019); Kidger et al. (2020)).
However, they are still discrete in the depth direction. CDR-NDE Anumasa et al. (2023) addresses
this by using a PDE based on heat equation. During our investigation, we note that the reason PDEs
can be used to model sequence data lies in their analytical solution. The analytical solution of ht,d
where the evolution is governed by a PDE will often incorporate a term like

∫ d

0
ψ(τ)

∫
t
F (s, τ)dsdτ .

This implies that a particular hidden state at an arbitrary depth is affected directly by all the values of
hidden states at a lower depth. Consider the last term in Equation 9, which provides d’Alemberds
solution for the wave equation. It considers all the source terms from the previous depths at each
time point to compute the hidden state at the current depth. This is also true in the case of the Heat
Equation. The analytical solution of the heat equation is given by separation of variable Widder
(1976)

h(t, d) =

∞∑
n=1

(an(0) exp
(−kλnd) +

∫ d

0

qn(τ) exp
(−kλn(t−τ) dτ))ϕn(t) (11)

where ϕn(t) = sin (nπt)
T , and qn(d) =

∫ T

0
F (t, d)ϕn(t)dt. The presence of the negative exponential

term in the solution of the heat equation means that the effect of the hidden states located at lower
depths is diminished while calculating the hidden states located at higher depths. The wave equation
does not suffer from this problem as can be observed from its analytical solution.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

The performance of the proposed Neural wave models was assessed through experiments on
datasets containing irregular sequence data such as person activity recognitionMarkelle Kelly (2000),
walker2d-v2 kinematic simulationLechner & Hasani (2020), PhysioNet sepsis prediction, and stance
classification of social media posts Derczynski et al. (2017). These models are benchmarked against
baselines specifically developed for handling irregular sequence data. The experimented configuration
includes setting the hidden state dimension to 64 for all source functions, keeping a minibatch size
of 256, use of the Adam optimizer, a learning rate of 5 × 10−3, and 200 training epochs. These
configurations follow the guidelines as established in Lechner & Hasani (2020). The first MLP
layer is a single layer with hidden dimension 64. The last MLP layer is also a single layer with
hidden dimension equal to the output size. We use the Tsit5 from the package torchdyn Poli et al.
as our adaptive solver, which is an efficient reimplementation of the Dopri45 by Julia Computing
group Rackauckas & Nie (2017). The information about the step size and the ODESolvers that has
been used for all our models and baselines is mentioned in Table 4 in Appendix A.13. Model training
is conducted on an Nvidia Tesla V-100 32GB GPU and a L4 GPU. In our evaluation, we measured
the efficacy of our newly developed model against a set of established baselines. These include
GRU-ODE, CT-GRU, CT-RNN, GRU-D, Phased-LSTM, ODE-LSTM, bidirectional-RNN, RNN
decay, Hawk-LSTM, Augmented LSTM, ODE-RNN, Neural CDE and CDR - NDE models.

5.1 RECOGNIZING PERSON ACTIVITY FROM IRREGULARLY SAMPLED TIME-SERIES

The dataset comprises sensor readings from four distinct sensors attached to five individuals—each
sensor located on an ankle, the chest, and a belt—engaged in performing a series of five activities.
The objective is to utilize this sensor data to categorize the performed activities. Initially identifying
11 distinct activities, this dataset, as recommended by Rubanova et al. (2019), narrows down the
activity classes to 7. The dataset is structured to encapsulate each step of the recording as a set of
7 values; 4 of these values identify the active 7, while the remaining 3 represent the sensor data.
Recordings are segmented into overlapping intervals of 32, with a 16-step overlap, amalgamating all
sequences into a singular dataset. For the purposes of model training and evaluation, 7,769 sequences
are allocated for training and 1,942 for testing.

In our evaluation, we measured the efficacy of our newly developed model against a set of established
baselines known for their proficiency in handling person activity recognition data with irregularly
sampled time-series Markelle Kelly (2000). The neural CDE model reports an accuracy of 75.16%±
0.71 after 40 epochs of training after it converges. Even though GRU-based models perform the
best among the baselines, they are still outperformed by the Neural Wave Equation variants. In the
person’s dataset, the number of function calls by the solver is around 32 on average whereas in the
case of the walker dataset, it is around 26 on average.

In Table 1, Column 2 presents the test accuracy for all models trained on the person-activity
recognition dataset. Notably our Neural Wave model - Double Gating variant outperforms all the
established baseline models with the highest test accuracy.

5.2 WALKER2D-V2 KINEMATIC SIMULATION.

The Walker2D dataset Lechner & Hasani (2020) is derived from simulations in the Walker2d-v2
OpenAI Gym environment, powered by the MuJoCo physics engine. The underlying motion of the
walker is governed by continuous-time physical dynamics, simulating kinematic systems evolving
smoothly over time. The training set was compiled through rollouts in the Walker2d-v2 environment
under a deterministic policy pre-trained via Proximal Policy Optimization, albeit employing a non-
recurrent policy framework. To achieve irregular sampling, 10% of the timesteps were omitted. The
data is partitioned into 9,684 training sequences, 1,937 for testing, and 1,272 for validation.

We tested the performance of our model on irregularly sampled Column 3 of Table 1 delineates
the efficacy of various models on the Walker2d dataset. Our proposed Neural Wave - Single MLP
model outperforms all the baselines. We were unable to run the Neural CDE modelKidger et al.
(2020) due to the long duration required to complete one epoch. We suspect that the construction of
the continuous path with cubic splines is a bottleneck in the Neural CDE model, as increasing the
sequence length and dimension of input features significantly slows it down. Even in the Person’s

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Column 2 outlines the test accuracy (mean ± standard deviation) of each model trained on
the dataset titled Person Activity Recognition Markelle Kelly (2000). In Column 3, the Mean-square
error (mean ± standard deviation) for the test data from models trained on the Walker2d dataset
Lechner & Hasani (2020) is detailed. Column 4 and 5 show the AUC Performance of Models for
Unseen Events in Stance ClassificationLeon Derczynski & Kochkina (2019). For all the datasets,
every model is trained for 5 times with 5 different seeds.

Model Person Activity Walker2d Sydneysiege Charliehebdo
Test-Accuracy ↑ Test MSE ↓ AUC ↑ AUC ↑

Discrete Time Discrete Depth
RNN-Decay Weinan (2017) 78.74 ± 3.65 1.44 ± 0.01 0.62 ± 0.00 0.63 ± 0.01
Bidirectional-RNN Schuster & Paliwal (1997) 82.86 ± 1.17 1.09 ± 0.01 0.61 ± 0.00 0.64 ± 0.02
GRU-D Che et al. (2016) 82.52 ± 0.86 1.14 ± 0.01 0.63 ± 0.00 0.65 ± 0.01
Phased-LSTM Neil et al. (2016) 83.34 ± 0.59 1.10 ± 0.01 0.58 ± 0.01 0.60 ± 0.01

Continuous Time Discrete Depth
CT-RNN ichi Funahashi & Nakamura (1993) 82.32 ± 0.83 1.25 ± 0.03 0.56 ± 0.00 0.61 ± 0.01
ODE-RNN Rubanova et al. (2019) 75.03 ± 1.87 1.88 ± 0.05 0.55 ± 0.00 0.57 ± 0.03
ODE-LSTM Lechner & Hasani (2020) 83.77 ± 0.58 0.91 ± 0.02 0.56 ± 0.00 0.59 ± 0.00
CT-GRU Mozer et al. (2017) 83.93 ± 0.86 1.22 ± 0.01 0.63 ± 0.01 0.65 ± 0.02
GRU-ODE De Brouwer et al. (2019) 82.80 ± 0.61 1.08 ± 0.01 0.56 ± 0.00 0.61 ± 0.00
CT-LSTM Lechner & Hasani (2020) 83.42 ± 0.69 1.03 ± 0.02 0.62 ± 0.00 0.65 ± 0.01

Continuous Time Continuous Depth
CDR-NDE Anumasa et al. (2023) 87.54 ± 0.34 0.97 ± 0.04 0.57 ± 0.02 0.55 ± 0.01
CDR-NDE-heat (Euler) 88.24 ± 0.31 0.54 ± 0.01 0.62 ± 0.01 0.58 ± 0.02
CDR-NDE-heat (Dopri5) 88.60 ± 0.26 0.49 ± 0.01 0.62 ± 0.01 0.57 ± 0.01
Neural Wave - Single GRU 88.52 ± 0.34 0.49 ± 0.01 0.60 ± 0.01 0.63 ± 0.02
Neural Wave - Single MLP 90.58 ± 0.58 0.11 ± 0.01 0.59 ± 0.02 0.61 ± 0.01
Neural Wave - Double Gating 93.62 ± 0.38 0.16 ± 0.01 0.61 ± 0.01 0.62 ± 0.02
Neural Wave - MLP+GRU 92.06 ± 0.34 0.12 ± 0.01 0.60 ± 0.01 0.63 ± 0.04

activity dataset, the neural CDE model took 300 sec compared to 18-30 seconds by that of neural
wave equation or 30 - 50 secs of CDR-NDE models. Computational complexity is discussed in detail
in A.7.

5.3 SEPSIS PREDICTION USING PHYSIONET 2019 DATA

We analyze a dataset initially used in the PhysioNet 2019 challenge Reyna et al. (2019) Goldberger
et al. (2000), focusing on sepsis prediction. This dataset contains 40,335 sequences of variable
lengths, documenting patient admissions in an intensive care unit (ICU), and includes five static
features, such as patient age, as well as thirty-four dynamic features like Heart Rate, Blood pressure,
etc. The measurements are taken at hourly intervals.

Table 2: Test AUC (mean ± standard deviation over five
runs) for sepsis prediction on the PhysioNet.

Model Test AUC

GRU-ODE De Brouwer et al. (2019) 0.852 ± 0.010
GRU-∆t 0.878 ± 0.006
GRU-D Che et al. (2016) 0.871 ± 0.022
ODE-RNN Rubanova et al. (2019) 0.874 ± 0.016
Neural CDE Kidger et al. (2020) 0.880 ± 0.006
CDR-NDE-heat Anumasa et al. (2023) 0.880 ± 0.000
Neural Wave - Single GRU 0.885 ± 0.003
Neural Wave - Single MLP 0.885 ± 0.001
Neural Wave - Double Gating 0.890 ± 0.006
Neural Wave - MLP+GRU 0.889 ± 0.003

A significant portion of the data is miss-
ing, with only 10.3% of the values being
observed. Our analysis focuses on the
initial 72 hours of a patiends stay, ad-
dressing the binary classification task of
predicting sepsis development through-
out their entire stay. We divided our data
into a train, validation and test split of
70%, 15 % and 15% respectively. We
compared Neural Wave’s performance
against GRU-ODE, GRU-D, ODE-RNN,
Neural CDEKidger et al. (2020), CDR-
NDE and GRU-∆t, a variant of GRU.
that incorporates the time difference be-
tween observations as an additional input.
We conduct experiments with various models considering the observational intensity. Observational
intensity refers to the frequency of data observations, which can indicate the level of attention or
concern, such as more frequent measurements for patients considered at higher risk (more details
mentioned in Section 3.5 and 3.6.). Table 2 illustrates the findings, where we use AUC for evaluation
due to the dataseds imbalance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

For the ODE-RNN, GRU-D, and GRU-∆t models, observational intensity is given by appending
an observed/not-observed mask to the input at each observation. The Neural CDE, GRU-ODE and
Neural Wave model use a continuous, per-channel intensity as explained in Section 3.6 in Kidger
et al. (2020). The results demonstrate that the proposed model, Neural Wave’s - Double gating
provides the best performance, while other neural wave equation models are also equally competitive.

5.4 STANCE CLASSIFICATION

In practical scenarios, particularly on social media platforms like Twitter, tweets associated with a
specific event are posted at varying times, and the intervals between these tweets are not uniform. We
evaluate the models based on their ability to classify the stance of social media posts, specifically
using the Twitter datasetLeon Derczynski & Kochkina (2019), which includes rumors associated
with eight events. Each event comprises a collection of tweets labeled as Support, Query, Deny, or
Comment. To create a sequence data point, we randomly selected 10 tweets and then sorted them
by observation time in the ascending order. To evaluate our models, we considered an unseen event
prediction setup, where the model performance is evaluated on the sequences from an unseen event.
Here, the model is trained on the sequences formed from data from all the events except test event
and tested on the sequences formed from the unseen test event. We selected two events: Sydneysiege
and CharlieHebdo, as the test event for our experiments.

In Table 1, Columns 4 and 5 showcase the test AUC for unseen events for all models. We could
not run the Neural CDE model due to lengthy epoch times, likely slowed by the cubic spline path
construction, particularly as the input feature dimensions and sequence lengths increased. Despite the
high dimensionality (316) of text embeddings in our stance classification data,neural wave equation
models demonstrated robust performance. The stance classification task was intentionally chosen to
check the performance of our model on a high dimensional discrete system. Even if our model does
not beat some of the baselines, the Neural Wave Model - MLP + GRU remains competitive hence
showing the robustness of our model.

5.5 ABLATION STUDIES

We conduct experiments with models considering a homogenous PDE with no source terms to
understand the effect of source functions. The homogeneous neural wave equation model, without
a source term, achieved a test accuracy of 51.73 % ± 0.16 on Person Activity, a test MSE of 0.99
± 0.003 on Walker2D, and a test AUC of 0.857 ± 0.001 on Physionet Sepsis. We observe that
the learnable source function helps to capture the dependencies present in the complex sequence
modeling tasks more effectively and improves performance. From Table 1, we observe that the
performance of the single GRU neural wave equation is lower than the rest. This is attributed to the
fact that in the single GRU model, the source function captures nonlinear dependency between two
neighboring hidden states whereas in the rest of the models, the nonlinear dependency is captured
between all the four neighboring hidden states present in the FDM discretization of the wave equation.
We study the memory consumption of our models on the PhysioNet data. Our models consume more
memory, ranging from 1807MB to 2137MB, compared to the memory-efficient Neural CDE, which
consumes up to 244MB. But, as we saw in the Person activity data, neural wave equations are an
order of magnitude faster than neural CDE and are scalable to large sequence lengths. More details
on time and memory complexity can be found in (A.7)).

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, we propose neural wave equation, a sequence model based on the non-homogenous
wave equation. We show that a non-homogenous wave equation with a learnable source function
is a good fit for sequence modeling tasks involving irregularly sampled data. We establish that the
analytical solution of a non-homogenous wave equation presents a way to implicitly model denser
connections between hidden states. We empirically demonstrate this by comparing our model against
several baselines and outperforming them in several real-world data sets. Neural wave equations have
reasonable computational speed, however this comes at the cost of memory consumption. Studying
the benefits of using partial differential equations for sequence modeling with theoretical rigor and
finding the correct balance between memory and speed is left for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yahya Ali Abdulkadir et al. Comparison of finite difference schemes for the wave equation based on
dispersion. Journal of Applied Mathematics and Physics, 3(11):1544, 2015.

Christian Andersson, Claus Führer, and Johan Åkesson. Assimulo: A unified framework for {ODE}
solvers. Mathematics and Computers in Simulation, 116(0):26 – 43, 2015. ISSN 0378-4754. doi:
http://dx.doi.org/10.1016/j.matcom.2015.04.007.

Srinivas Anumasa, Geetakrishnasai Gunapati, and P. K. Srijith. Continuous depth recurrent neu-
ral differential equations. In Machine Learning and Knowledge Discovery in Databases: Re-
search Track: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023,
Proceedings, Part II, pp. 223–238, Berlin, Heidelberg, 2023. Springer-Verlag. ISBN 978-3-
031-43414-3. doi: 10.1007/978-3-031-43415-0_14. URL https://doi.org/10.1007/
978-3-031-43415-0_14.

Coryn Bailer-jones, David Mackay, and Philip Withers. A recurrent neural network for modelling
dynamical systems. Network: Computation in Neural Systems, 9, 08 2002. doi: 10.1088/
0954-898X_9_4_008.

Johannes Brandstetter, Daniel E Worrall, and Max Welling. Message passing neural pde solvers. In
International Conference on Learning Representations, 2021.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David A. Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. CoRR, abs/1606.01865, 2016.
URL http://arxiv.org/abs/1606.01865.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
Continuous-time transformer for irregular time series modeling. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=YJDz4F2AZu.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/D14-1179.

Loy Kak Choon et al. On numerical methods for second-order nonlinear ordinary differential
equations (odes): A reduction to a system of first-order odes. Universiti Malaysia Terengganu
Journal of Undergraduate Research, 1(4):1–8, 2019.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. Advances in neural information processing systems,
32, 2019.

Leon Derczynski, Kalina Bontcheva, Maria Liakata, Rob Procter, Geraldine Wong Sak Hoi, and
Arkaitz Zubiaga. SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support
for rumours. In Steven Bethard, Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel
Cer, and David Jurgens (eds.), Proceedings of the 11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pp. 69–76, Vancouver, Canada, August 2017. Association for Computational
Linguistics. doi: 10.18653/v1/S17-2006. URL https://aclanthology.org/S17-2006.

Lawrence C. Evans. Partial differential equations. American Mathematical Society, Providence, R.I.,
2010. ISBN 9780821849743 0821849743.

11

https://doi.org/10.1007/978-3-031-43415-0_14
https://doi.org/10.1007/978-3-031-43415-0_14
http://arxiv.org/abs/1606.01865
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://openreview.net/forum?id=YJDz4F2AZu
https://openreview.net/forum?id=YJDz4F2AZu
https://aclanthology.org/D14-1179
https://aclanthology.org/S17-2006

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stanley J Farlow. Partial differential equations for scientists and engineers. Courier Corporation,
1993.

Ary Goldberger, Luís Amaral, Leon Glass, Jeffrey Hausdorff, Plamen Ivanov, Roger Mark, Joseph
Mietus, George Moody, Chung-Kang Peng, and H. Stanley. Physiobank, physiotoolkit, and
physionet : Components of a new research resource for complex physiologic signals. Circulation,
101:E215–20, 07 2000. doi: 10.1161/01.CIR.101.23.e215.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Yihao Hu, Tong Zhao, Shixin Xú, Lizhen Lin, and Zhiliang Xu. Neural-pde: a rnn based neural
network for solving time dependent pdes. Commun. Inf. Syst., 22:223–245, 2020. URL https:
//api.semanticscholar.org/CorpusID:239769335.

Tyler W. Hughes, Ian A. D. Williamson, Momchil Minkov, and Shanhui Fan. Wave physics as an
analog recurrent neural network. Science Advances, 5(12):eaay6946, 2019. doi: 10.1126/sciadv.
aay6946. URL https://www.science.org/doi/abs/10.1126/sciadv.aay6946.

Ken ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time
recurrent neural networks. Neural Networks, 6(6):801–806, 1993. ISSN 0893-6080. doi: https:
//doi.org/10.1016/S0893-6080(05)80125-X. URL https://www.sciencedirect.com/
science/article/pii/S089360800580125X.

Sheo Jhin, Heejoo Shin, Sujie Kim, Seoyoung Hong, Minju Jo, Solhee Park, Noseong Park, Se-
ungbeom Lee, Hwiyoung Maeng, and Seungmin Jeon. Attentive neural controlled differential
equations for time-series classification and forecasting. Knowledge and Information Systems,
66(3):1885–1915, 2024. doi: 10.1007/s10115-023-01977-5. URL https://doi.org/10.
1007/s10115-023-01977-5.

Sheo Yon Jhin, Minju Jo, Taeyong Kong, Jinsung Jeon, and Noseong Park. ACE-NODE: attentive
co-evolving neural ordinary differential equations. CoRR, abs/2105.14953, 2021. URL https:
//arxiv.org/abs/2105.14953.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 6696–6707. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf.

Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled time
series. arXiv preprint arXiv:2006.04418, 2020.

Arkaitz Zubiaga Ahmet Aker Kalina Bontcheva Maria Liakata Leon Derczynski, Genevieve Gorrell
and Elena Kochkina. Rumoureval 2019 data. Figshare, 2019. URL https://figshare.com/
articles/RumourEval_2019_data/8845580/1.

John M. Lewis, S. Lakshmivarahan, and Sudarshan Dhall. First-order adjoint method: nonlinear
dynamics, pp. 401–421. Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 2006.

Kolby Nottingham Markelle Kelly, Rachel Longjohn. The uci machine learning repository,
https://archive.ics.uci.edu. 2000.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. Advances in neural information processing systems, 30, 2017.

12

https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://api.semanticscholar.org/CorpusID:239769335
https://api.semanticscholar.org/CorpusID:239769335
https://www.science.org/doi/abs/10.1126/sciadv.aay6946
https://www.sciencedirect.com/science/article/pii/S089360800580125X
https://www.sciencedirect.com/science/article/pii/S089360800580125X
https://doi.org/10.1007/s10115-023-01977-5
https://doi.org/10.1007/s10115-023-01977-5
https://arxiv.org/abs/2105.14953
https://arxiv.org/abs/2105.14953
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://figshare.com/articles/RumourEval_2019_data/8845580/1
https://figshare.com/articles/RumourEval_2019_data/8845580/1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael C Mozer, Denis Kazakov, and Robert V Lindsey. Discrete event, continuous time rnns.
arXiv preprint arXiv:1710.04110, 2017.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network
training for long or event-based sequences. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/
2016/file/5bce843dd76db8c939d5323dd3e54ec9-Paper.pdf.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, Jinkyoo Park, and Stefano
Ermon. Torchdyn: Implicit models and neural numerical methods in pytorch.

Christopher Rackauckas and Qing Nie. Differentialequations.jl–a performant and feature-rich
ecosystem for solving differential equations in julia. Journal of Open Research Software, 5(1):15,
2017.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://
doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Matthew Reyna, Christopher Josef, Russell Jeter, Supreeth Shashikumar, M Brandon Westover,
Shamim Nemati, Gari Clifford, and Ashish Sharma. Early prediction of sepsis from clinical data:
The physionet/computing in cardiology challenge 2019. Critical Care Medicine, 48:1, 12 2019.
doi: 10.1097/CCM.0000000000004145.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, Oct 1986. ISSN 1476-4687. doi: 10.1038/
323533a0. URL https://doi.org/10.1038/323533a0.

M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on Signal
Processing, 45(11):2673–2681, 1997. doi: 10.1109/78.650093.

S.L Sobolev. Partial Differential Equation in Mathematical Physics. Dover Publications.

Alexander Strauss. Partial Differential Equations: An Introduction. John Wiley Sons.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

E Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5:1–11, 02 2017. doi: 10.1007/s40304-017-0103-z.

David Vernon Widder. The heat equation, volume 67. Academic Press, 1976.

Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio,
Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, et al. Neuralpde: Au-
tomating physics-informed neural networks (pinns) with error approximations. arXiv e-prints, pp.
arXiv:2107, 2021.

13

https://proceedings.neurips.cc/paper_files/paper/2016/file/5bce843dd76db8c939d5323dd3e54ec9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/5bce843dd76db8c939d5323dd3e54ec9-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://doi.org/10.1038/323533a0
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

Most of the derivations regarding wave and heat equation can be found in more detail in Sobolev,
Strauss and Evans (2010)

A.1 SOLUTION OF WAVE EQUATION

utt = c2uxx + F (t, x) where
u(0, x) = f(x) and ut(0, x) = g(x)

We break it into two separate problems.

vtt = c2vxx where
v(0, x) = f(x) and vt(0, x) = g(x)

and

wtt = c2wxx + F (t, x) where
w(0, x) = 0 and wt(0, x) = 0

In such a case, the sum of the solutions of the above equations will give us the solution of the wave
equation. To solve the first part Introduce new variables ξ and η:

ξ = x− ct, η = x+ ct. (12)

Then, the partial derivatives transform as follows:
∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
=

∂

∂ξ
+

∂

∂η
, (13)

∂

∂t
=
∂ξ

∂t

∂

∂ξ
+
∂η

∂t

∂

∂η
= −c ∂

∂ξ
+ c

∂

∂η
. (14)

The second derivatives are:
∂2

∂x2
=

(
∂

∂ξ
+

∂

∂η

)2

=
∂2

∂ξ2
+ 2

∂2

∂ξ∂η
+

∂2

∂η2
, (15)

∂2

∂t2
=

(
−c ∂

∂ξ
+ c

∂

∂η

)2

= c2
(
∂2

∂ξ2
− 2

∂2

∂ξ∂η
+

∂2

∂η2

)
. (16)

Substitute into the Wave Equation

Substitute these into the wave equation:

c2
(
∂2v

∂ξ2
− 2

∂2v

∂ξ∂η
+
∂2v

∂η2

)
= c2

(
∂2v

∂ξ2
+ 2

∂2v

∂ξ∂η
+
∂2v

∂η2

)
. (17)

Simplify this to:

0 = 4c2
∂2v

∂ξ∂η
. (18)

This implies:
∂2v

∂ξ∂η
= 0. (19)

The solution of the above equation can be found by integrating twice. So, we know that the solution
will be of the form

v(x, t) = A(x− ct) +B(x+ ct) (20)
Now, A(x) = 1

2f(x)−
1
2c

∫ x

0
g(s)ds and B(x) = 1

2f(x) +
1
2c

∫ x

0
g(s)ds solves the first part of the

wave equation. The solution then can be written down as

v(x, t) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct

g(s)ds (21)

To solve the second part, let us consider another initial value formulation of the wave equation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

rtt = c2rxx where r(τ, x; τ) = 0 and rt(τ, x; τ) = F (τ, x)

In this case, w(t, x) =
∫ t

0
r(τ, x; τ)dτ solves the second part of the wave equation. Using the

Leibnitz rule for differentiation under integral sign, we can write,

wt = r(t, x; t) +
∫ t

0
rt(t, x; τ)dτ =

∫ t

0
rt(t, x; τ)dτ

wtt = rt(x, t; t) +
∫ t

0
rtt(t, x; τ)dτ = F (t, x) +

∫ t

0
rtt(t, x; τ)dτ

and we have

wxx =
∫ t

0
rxx(t, x; τ)dτ = 1

c2

∫ t

0
rtt(t, x; τ)dτ

putting the values of wxx and wtt in the equation, we get

wtt − c2wxx = F (t, x) (22)

By D’Alemberds formula, the solution of this initial value problem is

r(t, x; τ) =
1

2c

∫ x+c(t−τ)

x−c(t−τ)

F (τ, η)dη (23)

and

w(t, x) =
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

F (τ, η)dη (24)

Adding the solutions of both the parts, we get the solutions of wave equations as

u(t, x) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct

g(s)ds+
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

F (τ, η)dη (25)

A.2 FDM DISCRETIZATION OF WAVE EQUATION

∂2ht,d
∂d2

− ∂2ht,d
∂t2

= 0 (26)

Discretization of the 1D Wave equation is as follows:

(h(t,d+∆d)− 2h(t,t) + ht,d−∆d)

∆2
d

− (ht−∆t,d − 2ht,d + ht+∆t,d)

∆2
t

= 0 (27)

(h(t,d+∆d)

∆2
d

=
(2 ∗ ht,d − h(t,d−∆d)

∆2
d

− (ht−∆t,d − 2ht,d + ht+∆t,d)

∆2
t

(28)

ht,d+∆d
= 2ht,d − ht,d−∆d

+
∆2

d

∆2
t

[ht+∆t,d − 2ht,d + ht−∆t,d] (29)

A.3 SOLUTION OF HEAT EQUATION

ut = kuxx +Q(x, t) where u(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x)

Using separation of variables (assuming that the solution is of the form u(x, t) = X(x)T (t)) leads
to an eigenvalue problem

ϕ′′ + λϕ = 0, ϕ(0) = 0, ϕ(L) = 0

The eigenfunctions and eigenvalues are given by

ϕn(x) = sinnπx
L , λn = (nπL)2

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Leds assume that the solution is off the form

u(x, t) =

∞∑
n=11

an(t)ϕn(x) (30)

We write

f(x) = u(x, 0) =

∞∑
1

an(0)ϕn(x) (31)

Q(x, t) =

∞∑
1

qn(t)ϕn(x) (32)

The coefficients of the above equations are solved using the Fourier series. We expand

ut(x, t) =
∑∞

1 a′n(t)ϕn(x), uxx(x, t) = −
∑∞

1 an(t)λnϕn(x)

Inserting into the heat equation we get,

ut = kuxx +Q(x, t)∑∞
1 a′n(t)ϕn(x) = −k

∑∞
1 an(t)λnϕn(x) +

∑∞
1 qn(t)ϕn(x)

a′n(t) + kλnan(t) = qn(t) (33)
Solving the above ODE, we get

an(t) exp
kλnt = an(0) +

∫ t

0

qn(τ) exp
kλnt (34)

an(t) = an(0)e
−kλnt +

∫ t

0

qn(τ)e
−kλn(t−τ)dτ (35)

So, we write the solution as follows -

u(x, t) =

∞∑
1

an(t)ϕn(x) =

∞∑
1

[an(0)e
−kλnt +

∫ t

0

qn(τ)e
−kλn(t−τ)dτ]ϕn(x) (36)

A.4 SOLVING A 2ND ORDER EQUATION AS A SYSTEM OF 1ST ORDER EQUATIONS

In this case, since the entire sequence is fed at once as input, we know the values of yxx So, we can
write the 2nd-order wave equation as a system of 1st-order odes.

Y =

[
y
yt

]
(37)

Yt =

[
0 1
0 0

]
Y +

[
0

c2yxx + F (x, t)

]
(38)

A.5 EXAMPLE OF SOLUTION PROBLEM IN SOLVER

ytt = yxx
y(0, t) = y(L, t) = 0, y(x, 0) = f(x), yt(x, 0) = g(x)

By D’alemberds formula, we know the solution is

y(x, t) =
f(x− ct) + f(x+ ct

2
+

1

2c

∫ x+ct

x−ct

g(s)ds (39)

In the question, f(x) = sin(πx) and g(x) = sin(πx) So, the solution is

y(x, t) =
sinπ(x− t) + sinπ(x+ t)

2
+

1

2

∫ x+t

x−t

sin(πx)dx = sin(πx)[cos(πt)+
sin(πt)

π
] (40)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 4: The leftmost figure is analytical solution over a grid,the middle figure is numerical solution,
the last figure is the error between the analytical and numerical solution. We notice that the error
between analytical and numerical solution is of the order 1e− 3 which was used as the relative error
tolerance.
A.6 FAST IMPLEMENTATION

ODESolvers are not suited to handle a sequence of vector data. The initial value condition in neural
wave equation, h:,0 is an N ×M matrix where N is the sequence length and M is the number of
input features. While training with batches, B being the batch size, the initial value condition
becomes a B ×N ×M matrix. To efficiently utilize GPUs during training, we collapse the batch
and the sequence length into a single dimension resulting in a (BN)×M matrix. During training,
the input sequence is a tuple of (batchsizeXsequencelengthXinputfeatures). However, neural
ODE solvers can’t handle such data directly. One way to overcome this problem is to loop over batch.
However, it is not GPU efficient. The elegant solution is to collapse batch size and sequence length
into a single dimension and convert the 3d input array into a 2d array. The input matrix looks like -

[
X1

t1X
2
t1 ..X

b
t1X

1
t2X

2
t2 ..X

b
t2 ..X

1
tnX

2
tn ..X

b
tn

]
T

Xi
tj is the input vector corresponding to ith batch at time sequence j. We append this matrix at the

start and at the end by repeating the first and last time sequence of every batch. For example if we
assume the batch size to be 3, and sequence length to be 3, we will have the following matrix

[
X1

t1X
2
t1X

3
t1X

1
t1X

2
t1X

3
t1X

1
t2X

2
t2X

3
t2X

1
t3X

2
t3X

3
t3X

1
t3X

2
t3X

3
t3

]
T

Let this matrix be called h. Note that shifting this matrix lets us calculate the finite difference terms
easily. For example

h[2b :]− 2h[b : −b] + h[: −2b] =



X1
t2

X2
t2

X3
t2

X1
t3

X2
t3

X3
t3

X1
t3

X2
t3

X3
t3


− 2



X1
t1

X2
t1

X3
t1

X1
t2

X2
t2

X3
t2

X1
t3

X2
t3

X3
t3


+



X1
t1

X2
t1

X3
t1

X1
t1

X2
t1

X3
t1

X1
t2

X2
t2

X3
t2


(41)

We can then append the necessary boundary conditions to the calculated matrix and pass it into the
solver again. However, the shifting of matrix for calculating finite difference and source terms must
be done carefully so that the batches does not mix amongst themselves.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.7 COMPUTATIONAL COMPLEXITY

We also analysed the computational complexity of neural wave equation with other baselines. Our
implementation indeed uses more memory but is much faster compared to the exisiting methods.

Model Memory (in MB) Speed (epoch/s)
CTRNN 321 259

ODE-LSTM 348 82.39
CTGRU 662 11.45

GRUODE 161 11.93
Avreage 373 90.445
BIRNN 162 30.66
GRUD 48 13.22

PHASED 38 9.4
Average 82.67 17.76

Neural Wave 1972 8.66

Table 3: Computational Complexity Analysis of Neural Wave Equation with other models

It is important to emphasize that the observed speed-memory tradeoff arises from our implementation
technique rather than being an inherent property of the model. Specifically, in most RNN variants
with ODE solvers, it is necessary to loop over the sequence dimension because ODE solvers typically
cannot handle 3-dimensional data directly.To address this limitation, we collapsed the batch and
sequence dimensions into a single dimension. This approach enabled us to utilize the GPU more
efficiently, significantly improving speed by eliminating the need for looping. However, this opti-
mization leads to a higher peak memory allocation, as the entire collapsed batch-sequence matrix
must fit in memory during computation.

A.8 LOSS FUNCTION AND TRAINING

The loss function used to train the model depends on the problem. We use a cross-entropy loss for
classification problems and mean-squared error for regression problems. The loss is a function of
the MLP parameters θMLP = (θpre, θpost) and source function parameters θs. Since we use the
neural ODE framework during training, we prefer the adjoint sensitivity method over the traditional
backpropagation as it offers memory efficiency Chen et al. (2018)Choon et al. (2019). Even though
we mention ODESolvers to solve the wave equation, there are two practical problems one may face
during training. The ODESolvers normally have an ODEFunc argument which is ∂h(t,d)

∂d in the
wave equation. However, the wave equation is a 2nd-order PDE, and hence ∂h(t,d)

∂d is not known.
It is required to convert the wave equation to a system of linear 1st-order equations. We define
H(d) = [ht,d,

∂ht,d

∂d], and consider a first-order system H(d) = G(θs, H(d), d). Note that here, G is
a function of both ht,d and ∂ht,d

∂d . Following this, we define the adjoint state as a(d) = dL
dH(d) , and an

ODE which satisfies,
dH

dd
= −a(d)∂G(θs, H(d), d)

∂H(d)
(42)

we find H(d) by making an extra call to the ODESolver with dL
dH(D) as the initial condition.

A.9 COMPARISON

D’ALEMBERT SOLUTION OF THE WAVE EQUATION

The wave equation with a source term is given by

h(t, d) =
1

2
(f(t+ cd) + f(t− cd)) +

1

2c

∫ d

0

∫ t+c(t−τ)

t−c(t−τ)

F (s, τ)dsdτ (43)

where h(t, 0) = f(t) and F (.) is the source term.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

COMPARISON WITH RNN TYPE ARCHITECTURES

In a normal RNN architecture, the evolution of the hidden state dynamics is as follows:

ht,d = F (Wtht−1,d +Wd−1ht,d−1) (44)

So, the hidden state at point (t, d) depends only on ht−1,d and ht,d−1. In the wave equation, the
presence of the integral over the source term from 0 to d ensures that each ht,d is modeled as a
function of several hidden states. The trainable parameter c determines the number of the hidden
states with depth < d that contributes to the evolution of ht,d.

COMPARISON WITH HEAT EQUATION

It has been shown that heat equation can also be used to model sequence data. The discretization of
the heat equation is:

h(t, d+∆d) =
∆d

∆t
[h(t−∆t, d)− 2h(t,d) + h(t+∆t,d] + h(t,d) (45)

Straight up comparing with the discretization of the wave equation, we notice that the h(t,d−δd) term
is absent in the heat equation. The analytical solution of the heat equation is:

h(t, d) =

∞∑
n=1

(an(0) exp
(−kλnd) +

∫ d

0

qn(τ) exp
(−kλn(t−τ) dτ)ϕn(t) (46)

where ϕn = sin (nπt)
T ,qn =

∫ T

0
F (t, d)ϕn(t)dt.

Figure 5: The rate of exponential decay in heat equation corresponding to different depth and heat
diffusivity.
The presence of the negative exponential term in the solution of the heat equation means that the
effect of the hidden states located at lower depths is diminished while calculating the hidden states
located at higher depths. The wave equation does not have this problem. In the case of the depth of
the model being shallow, heat and wave equations show similar performance.

A.10 NEURAL WAVE EQUATION ALGORITHM

The algorithm for neural wave equation is provided. The architecture diagram of the encoder-decoder
version is also provided.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 1 Neural Wave Equation
function PRE-NN(input data)

Compute the initial condition using a neural network
h(t, 0)← MLP(input data)
return h(t, 0)

end function
function ODEFUNC(source function, current state)

Compute the second-order time derivative:
second derivative← Finite Difference Formula + source function
Store the current state as it will be required to calculate the FDM for next state.
return second derivative

end function
function NEURALWAVE(initial condition)

Initialize a second-order ODE solver
Solve the wave equation using the solver
return the solution at final time D

end function
function POST-NN(solution at D)

Apply a neural network for post-processing
output← MLP(solution at D)
return output

end function

A.11 ADAPTIVE STEP SIZE SOLVERS

y′(t) = f(t, y(t)), y(a) = ya (47)
The exact solution at nth point is yn and the numerical approximation is ȳn. Approximation of yn
using RK-4 method yields

yRK4
n = ȳn +O(∆5

t) (48)
while RK-5 yields,

yRK5
n = ȳn +O(∆6

t) (49)

ϵ = |yRK5
n − yRK4

n | = O(∆5
t) (50)

Given a relative error tolerance, we can calculate the required step size ∆τ by solving:

ϵ

tol
=

∆5
t

∆5
τ

(51)

∆τ = (
tol

ϵ
)

1
5∆t (52)

A.12 BOUNDARY CONDITIONS

For numerically solving a partial differential equation or an ODE, we need boundary conditions or
initial value conditions. Since, we are using a numerical solver, we also need a list of initial value
conditions. Here, we aim to discuss in detail how the initial value conditions can be initialized in case
of the neural wave equation. First let us take a look at the update equation again. For simplification,
we look at the discretization equation of homogenous wave equation.

ht,d+∆d
= 2ht,d − ht,d−∆d

+
∆2

d

∆2
t

c2[ht+∆t,d − 2ht,d + ht−∆t,d]

We have a sequence of data at different time points (t) to begin with. ht,0 corresponds to these data.
(please note that instead of the raw data, we often pass them through a MLP to get the initial values
at ht,0. This is mainly to reduce or increase the dimension of the data.) Now, let us see how h0,0+∆d

gets calculated. The update equation will read as follows

ht,0+∆d
= 2ht,0 − ht,0−∆d

+
∆2

d

∆2
t

c2[ht+∆t,0 − 2ht,0 + ht−∆t,0]

The ht,0−∆d
value is not available to us and we can use a value of our choice as the boundary

condition. Please note that this is same as specifying the partial derivative of h wrt t’ at point 0. If

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

we write our own custom implementation of a solver, we can follow one of the common scheme for
initializing boundary values like dirichlet, neumann or robins. However, in our implementation, we
used the torchdyn solver which takes the derivative at time 0 as 0. Now, we look at the second set of
points where we need boundary conditions. Let’s take a look at the update rule for h0,d+∆d

h0,d+∆d
= 2h0,d − h0,d−∆d

+
∆2

d

∆2
t

c2[h0+∆t,d − 2ht,d + h0−∆t,d]

Here, h0−∆t,d is again not known to us and we need to tackle it just like the above case. Again note
that this is same as specifying the derivative wrt t at 0 and we use 0 in our implementation. However,
one can come up with custom boundary condition according to the problem in hand.

Figure 6: Visualization of the boundary conditions for solving the PDE. The red cells represent the
boundary conditions that must be defined to compute the values at the blue cells (h0,1 and h0,2).
These boundary conditions correspond to unknown values, such as h−1,1, h−1,0, and h0,−1, which
are set based on the problem or solver design (e.g., Dirichlet or Neumann boundary conditions). The
black cells denote the values that are either given (e.g., initial conditions) or computed as part of the
numerical solution process.

A.13 EXPERIMENTS

Table 4 outlines the numerical methods selected for each model. The Neural Wave model employs
the Dopri5/Tsit5 method, setting the absolute and relative tolerance levels to 1e−3. A scheduled
learning rate decay strategy is implemented, with a decay coefficient γ = 0.1, activated at the 100th
epoch.

Table 4: ODE solvers used for different RNODE models. For the Neural Wave model using Dopri5,
the absolute and relative tolerance values are 1e−3 and 1e−3 respectively.

Model ODE-Solver Time-step Ratio
CT-RNN ichi Funahashi & Nakamura (1993) 4-th order Runge-Kutta 1/3
ODE-RNN Rubanova et al. (2019) 4-th order Runge-Kutta 1/3
GRU-ODEDe Brouwer et al. (2019) Explicit Euler 1/4
ODE-LSTM Lechner & Hasani (2020) Explicit Euler 1/4
Neural-CDE Kidger et al. (2020) Dopri5 -
CDR-NDE Anumasa et al. (2023) Explicit Euler 1/2
CDR-NDE-heat Anumasa et al. (2023) Dopri5 -
Neural Wave Dopri5/Tsit5 -

WALKER V2 KINEMATICS

The output is a 17-dimensional vector at each time point, we visualize the comparison between the
ground truth and the predicted values across several randomly selected time points over test samples.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 5 10 15
Observation Space

2

0

2

Va
lu

es

Sample ID 329, Sequence 5
Original
Predicted

0 5 10 15
Observation Space

0.0

0.5

1.0

Va
lu

es

Sample ID 292, Sequence 4
Original
Predicted

0 5 10 15
Observation Space

0

5

10

Va
lu

es

Sample ID 407, Sequence 43
Original
Predicted

0 5 10 15
Observation Space

0.0

0.5

1.0

Va
lu

es

Sample ID 292, Sequence 4
Original
Predicted

0 5 10 15
Observation Space

0

5

10

Va
lu

es

Sample ID 678, Sequence 19
Original
Predicted

0 5 10 15
Observation Space

2

0

2

Va
lu

es

Sample ID 252, Sequence 62

Original
Predicted

0 5 10 15
Observation Space

0

5

10

Va
lu

es

Sample ID 407, Sequence 43
Original
Predicted

0 5 10 15
Observation Space

1

0

1

2

Va
lu

es

Sample ID 856, Sequence 44
Original
Predicted

0 5 10 15
Observation Space

0

5

10

Va
lu

es

Sample ID 678, Sequence 19
Original
Predicted

0 5 10 15
Observation Space

1

0

1

2

Va
lu

es

Sample ID 856, Sequence 44
Original
Predicted

0 5 10 15
Observation Space

10

5

0

Va
lu

es

Sample ID 1696, Sequence 1

Original
Predicted

0 5 10 15
Observation Space

2

0

2

Va
lu

es

Sample ID 1014, Sequence 42

Original
Predicted

0 5 10 15
Observation Space

1

0

1

2

Va
lu

es

Sample ID 858, Sequence 12
Original
Predicted

0 5 10 15
Observation Space

2

0

2

Va
lu

es

Sample ID 328, Sequence 21
Original
Predicted

0 5 10 15
Observation Space

2

0

2

Va
lu

es

Sample ID 326, Sequence 53
Original
Predicted

0 5 10 15
Observation Space

10

5

0

Va
lu

es

Sample ID 1694, Sequence 33

Original
Predicted

0 5 10 15
Observation Space

10

5

0

Va
lu

es

Sample ID 465, Sequence 1

Original
Predicted

0 5 10 15
Observation Space

2

0

2

Va
lu

es

Sample ID 253, Sequence 46

Original
Predicted

0 5 10 15
Observation Space

0

5

10

Va
lu

es

Sample ID 679, Sequence 3
Original
Predicted

0 5 10 15
Observation Space

2

0

2

Va
lu

es

Sample ID 1016, Sequence 10

Original
Predicted

Figure 7: Comparison between ground truth and predicted position of the observation space of the
walker2d kinematics model.

STANCE CLASSIFICATION

Table 5: Test AUC Performance for Models on Seen Events
Model AUC (Sydneysiege event) AUC (Charliehebdo event)
CT-RNN 0.57 ± 0.00 0.63 ± 0.01
ODE-RNN 0.55 ± 0.01 0.59 ± 0.02
ODE-LSTM 0.56 ± 0.01 0.61 ± 0.01
CT-GRU 0.64 ± 0.01 0.67 ± 0.01
RNN-Decay 0.63 ± 0.01 0.67 ± 0.02
Bidirectional-RNN 0.62 ± 0.01 0.67 ± 0.00
GRU-D 0.64 ± 0.01 0.69 ± 0.01
Phased-LSTM 0.61 ± 0.01 0.64 ± 0.01
GRU-ODE 0.56 ± 0.00 0.63 ± 0.01
CT-LSTM 0.64 ± 0.01 0.66 ± 0.04
Augmented-LSTM 0.64 ± 0.01 0.68 ± 0.00
CDR-NDE 0.57 ± 0.01 0.60 ± 0.01
CDR-NDE-heat(Euler) 0.64 ± 0.01 0.66 ± 0.01
CDR-NDE-heat(Dopri5) 0.63 ± 0.01 0.65 ± 0.01
Neural Wave - Single GRU 0.59 ± 0.01 0.62 ± 0.01
Neural Wave - Single MLP 0.60 ± 0.02 0.65 ± 0.01
Neural Wave - Double Gating 0.60 ± 0.01 0.60 ± 0.01
Neural Wave - MLP+GRU 0.61 ± 0.02 0.64 ± 0.01

22

	Introduction
	Related Work
	Background
	Problem Setting
	Implicit Depth in Deep Learning
	Recurrent Neural ODE
	Wave Equation

	Neural Wave Equations
	Source Functions
	Forward Pass
	Discussion

	Experiments
	Recognizing person activity from irregularly sampled time-series
	Walker2d-v2 kinematic simulation.
	Sepsis prediction using PhysioNet 2019 data
	Stance Classification
	Ablation Studies

	Conclusion, Limitations and Future Work
	Appendix / supplemental material
	Solution of Wave Equation
	FDM discretization of Wave Equation
	Solution of Heat Equation
	Solving a 2nd Order Equation as a system of 1st Order Equations
	Example of Solution Problem in Solver
	Fast Implementation
	Computational Complexity
	Loss Function and Training
	Comparison
	Neural Wave Equation Algorithm
	Adaptive Step Size Solvers
	Boundary Conditions
	Experiments

