
TEXTEE: Benchmark, Reevaluation, Reflections, and
Future Challenges in Event Extraction

Anonymous ACL submission

Abstract

Event extraction has gained considerable inter-001
est due to its wide-ranging applications. How-002
ever, recent studies draw attention to evalua-003
tion issues, suggesting that reported scores may004
not accurately reflect the true performance. In005
this work, we identify and address evaluation006
challenges, including inconsistency due to vary-007
ing data assumptions or preprocessing steps,008
the insufficiency of current evaluation frame-009
works that may introduce dataset or data split010
bias, and the low reproducibility of some pre-011
vious approaches. To address these challenges,012
we present TEXTEE, a standardized, fair, and013
reproducible benchmark for event extraction.014
TEXTEE comprises standardized data prepro-015
cessing scripts and splits for 14 datasets span-016
ning seven diverse domains and includes 14017
recent methodologies, conducting a compre-018
hensive benchmark reevaluation. We also eval-019
uate five varied large language models on our020
TEXTEE benchmark and demonstrate how they021
struggle to achieve satisfactory performance.022
Inspired by our reevaluation results and find-023
ings, we discuss the role of event extraction024
in the current NLP era, as well as future chal-025
lenges and insights derived from TEXTEE. We026
believe TEXTEE, the first standardized compre-027
hensive benchmarking tool, will significantly028
facilitate future event extraction research.1029

1 Introduction030

Event extraction (Ji and Grishman, 2008) has been031

always a challenging task in the field of natural032

language processing (NLP) due to its demand for033

a high-level comprehension of texts. Since event034

extraction benefits many applications (Zhang et al.,035

2020; Han et al., 2021), it has attracted increasing036

attention in recent years (Luan et al., 2019; Lin037

et al., 2020; Nguyen et al., 2021; Hsu et al., 2022;038

Ma et al., 2022). However, due to the complicated039

nature of event extraction datasets and systems,040

1We will open-source TEXTEE after paper acceptance.

fairly evaluating and comparing different event ex- 041

traction approaches is not straightforward. Recent 042

attempts (Zheng et al., 2021; Peng et al., 2023a,b) 043

point out that the reported scores in previous work 044

might not reflect the true performance in real-world 045

applications because of various shortcomings and 046

issues during the evaluation process. This poses 047

a potential obstacle to the development of robust 048

techniques for research in event extraction. 049

Motivated by the evaluation concern, this work 050

aims to establish a standardized, fair, and repro- 051

ducible benchmark for assessing event extraction 052

approaches. We start by identifying and discussing 053

several significant issues in the current evaluation 054

process. First, we discuss the inconsistency issue 055

caused by discrepant assumptions about data, dif- 056

ferent preprocessing steps, and additional exter- 057

nal resources. Next, we highlight the insufficiency 058

problem of existing evaluation pipelines that cover 059

limited datasets and rely on a fixed data split, which 060

potentially introduces bias when evaluating perfor- 061

mance. Finally, we emphasize the importance of 062

reproducibility, which indirectly causes the afore- 063

mentioned inconsistency and insufficiency issues. 064

To address these evaluation concerns, we pro- 065

pose TEXTEE, an evaluation platform that covers 066

14 datasets spanning diverse domains. To ensure 067

fairness in comparisons, we standardize data pre- 068

processing procedures and introduce five standard- 069

ized data splits. Furthermore, we aggregate and 070

re-implement 14 event extraction approaches pub- 071

lished in recent years and conduct a comprehen- 072

sive reevaluation. TEXTEE offers the benefits of 073

consistency, sufficiency, reproducibility in evalu- 074

ation. Additionally, we benchmark several large 075

language models (LLMs) (Touvron et al., 2023; 076

Tunstall et al., 2023; Jiang et al., 2024) for event 077

extraction with TEXTEE and show the unsatisfac- 078

tory performance of LLMs for this task. 079

Based on our reevaluation results and findings, 080

we discuss the role of event extraction in the current 081
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era of LLMs, along with challenges and insights082

gleaned from TEXTEE. Specifically, we discuss083

how event extraction systems can be optional tools084

for LLMs to utilize, as well as highlight future085

challenges, including enhancing generalization, ex-086

panding event coverage, and improving efficiency.087

In summary, our contributions are as follows:088

(1) We highlight and overcome the difficulties of089

fair evaluation for event extraction tasks. (2) We090

present TEXTEE as a benchmark platform for event091

extraction research and conduct a thorough reeval-092

uation of recent approaches as well as LLMs. (3)093

Based on our results and findings, we discuss limi-094

tations and future challenges in event extraction.095

2 Background and Related Work096

2.1 Event Extraction097

Event extraction (EE) aims to identify structured098

information from texts. Each event consists of an099

event type, a trigger span, and several arguments100

as well as their roles.2 Figure 1 shows an exam-101

ple of a Justice-Execution event extracted from the102

text. This event is triggered by the text span exe-103

cution and contains two argument roles, including104

Indonesia (Agent) and convicts (Person).105

Previous work can be categorized into two types.106

(1) End-to-end (E2E) approaches extract event107

types, triggers, and argument roles in an end-to-108

end manner. (2) Pipeline approaches first solve the109

event detection (ED) task, which detects trigger110

spans and the corresponding event types, then deal111

with the event argument extraction (EAE) task,112

which extracts arguments and the corresponding113

roles given an event type and a trigger span.114

2.2 Related Work115

Event extraction. Most end-to-end approaches116

construct graphs to model the relations between117

entities and extract triggers and argument roles ac-118

cordingly (Luan et al., 2019; Wadden et al., 2019;119

Lin et al., 2020; Nguyen et al., 2021; Zhang and Ji,120

2021). There is a recent focus on employing gener-121

ative models to generate summaries for extracting122

events (Lu et al., 2021; Hsu et al., 2022). Unlike123

end-to-end approaches, pipeline methods train two124

separate models for event detection and event ar-125

gument extraction. Different techniques are intro-126

duced, such as question answering (Du and Cardie,127

2In this work, we only cover closed domain EE with a
given ontology. We consider event mentions as events and do
not consider event coreference resolution.

Figure 1: An example of a Justice-Execution event.
One trigger span (execution) and two argument roles,
Indonesia (Agent) and convicts (Person), are identified.

2020; Liu et al., 2020; Li et al., 2020a; Lu et al., 128

2023), language generation (Paolini et al., 2021; 129

Hsu et al., 2022), querying and extracting (Wang 130

et al., 2022), pre-training (Wang et al., 2021), and 131

multi-tasking (Lu et al., 2022; Wang et al., 2023b). 132

Some works focus on zero-shot or few-shot settings 133

(Huang et al., 2018; Hsu et al., 2022). 134

Event detection. There are many prior studies 135

focusing on extracting triggers only. Most works 136

pay attention to the standard supervised setting (Liu 137

et al., 2018; Lai et al., 2020; Veyseh et al., 2021; Li 138

et al., 2021a; Huang et al., 2022a; Liu et al., 2022a; 139

Li et al., 2023b). Some others study the few-shot 140

setting (Deng et al., 2021; Zhao et al., 2022; Zhang 141

et al., 2022; Ma et al., 2023; Wang et al., 2023a) 142

Event argument extraction. Event argument ex- 143

traction has caught much attention in recent years 144

(Veyseh et al., 2022b; Li et al., 2021b; Hsu et al., 145

2023a; Zeng et al., 2022; Ma et al., 2022; Huang 146

et al., 2022b; Xu et al., 2022; Hsu et al., 2023b; 147

Nguyen et al., 2023; He et al., 2023; Huang et al., 148

2023; Parekh et al., 2023a). Some works focus on 149

training models with only a few examples (Sainz 150

et al., 2022a; Yang et al., 2023; Wang et al., 2023c). 151

Event extraction datasets. Most of event extrac- 152

tion datasets come from Wikipedia and the news 153

domain (Doddington et al., 2004; Song et al., 2015; 154

Ebner et al., 2020; Li et al., 2020b, 2021b; Veyseh 155

et al., 2022a; Li et al., 2022). To increase the event 156

type coverage, some works focus on general do- 157

main datasets (Wang et al., 2020; Deng et al., 2020; 158

Parekh et al., 2023b; Li et al., 2023b). Recently, 159

datasets in specific domains have been proposed, 160

including cybersecurity (Satyapanich et al., 2020; 161

Trong et al., 2020), pharmacovigilance (Sun et al., 162

2022), and historical text (Lai et al., 2021). 163

Event extraction evaluation and analysis. Re- 164

cently, some works point out several pitfalls when 165

training event extraction models and attempt to 166

provide solutions (Zheng et al., 2021; Peng et al., 167

2023a,b). Our observation partially echos their find- 168

ings, while our proposed TEXTEE covers more di- 169

verse datasets and includes more recent approaches. 170

On the other hand, some studies discuss ChatGPT’s 171
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performance on event extraction but only for one172

dataset (Li et al., 2023a; Gao et al., 2023).173

3 Issues in Past Evaluation174

Despite a wide range of works in EE, we identify175

several major issues of the past evaluation. We176

classify those issues into three categories: inconsis-177

tency, insufficiency, and low reproducibility.178

Inconsistency. Due to the lack of a standardized179

evaluation framework, we notice that many studies180

utilize varied experimental setups while comparing181

their results with reported numbers in the literature.182

This leads to unfair comparisons and makes the183

evaluation less reliable and persuasive. We identify184

and summarize the underlying reasons as follows:185

• Different assumptions about data. In the186

past, different approaches tend to have their187

own assumptions of data. For instance, some188

works allow trigger spans consisting of multiple189

words (Lin et al., 2020; Hsu et al., 2022, 2023a),190

whereas others consider only single-word trig-191

gers (Liu et al., 2020; Du and Cardie, 2020;192

Wang et al., 2022); some studies assume that193

there are no overlapping argument spans (Zhang194

and Ji, 2021), while others can handle overlap-195

ping spans (Wadden et al., 2019; Huang et al.,196

2022b); some methods filter out testing data197

when the texts are too long (Liu et al., 2022a) but198

others do not (Hsu et al., 2023b; Ma et al., 2022).199

Due to these discrepancies in assumptions, the200

reported numbers from the original papers are201

actually not directly comparable.202

• Different data preprocessing steps. Many pre-203

vious works benchmark on the ACE05 (Dod-204

dington et al., 2004) and RichERE (Song et al.,205

2015) datasets. Since these datasets are behind206

the paywall and not publicly accessible, people207

can only share the data preprocessing scripts.208

Unfortunately, we observe that some popular209

preprocessing scripts can generate very differ-210

ent data. For instance, the processed ACE05211

datasets from Wadden et al. (2019), Li et al.212

(2020a), and Veyseh et al. (2022b) have varying213

numbers of role types (22, 36, and 35 respec-214

tively). In addition, it is crucial to note that215

variations in Python package versions can lead216

to different generated data even when using the217

same script. For example, different versions of218

nltk packages may have discrepancies in sen-219

tence tokenization and word tokenization, result-220

ing in different processed data. Such differences221

in preprocessing largely affect model evaluation, 222

leading to significant discrepancies (e.g., over 223

4 F1 score), thereby reducing persuasiveness 224

(Peng et al., 2023b). 225

• Different external resources. We notice that 226

many approaches utilize additional resources 227

without clearly describing the experimental set- 228

ting difference. For example, Wang et al. 229

(2023a) employs part-of-speech tags for event 230

detection; Sainz et al. (2022b) and Wang et al. 231

(2022) consider gold entity annotations for event 232

argument extraction. The setting difference can 233

lead to potential unfair comparisons. 234

Insufficiency. We argue that the existing evalu- 235

ation process used by the majority of approaches 236

cannot thoroughly evaluate the capabilities of event 237

extraction models due to the following aspects: 238

• Limited dataset coverage. Early works usu- 239

ally utilize ACE05 (Doddington et al., 2004) 240

and RichERE (Song et al., 2015) as the evalu- 241

ation datasets. Consequently, most follow-up 242

works adopt the same two datasets for compari- 243

son regardless that several new datasets across 244

diverse domains are proposed (Li et al., 2021b; 245

Sun et al., 2022; Tong et al., 2022; Parekh et al., 246

2023b). The limited dataset coverage may intro- 247

duce domain bias and lead to biased evaluations. 248

• Data split bias. Although many works address 249

model randomness by averaging multiple exper- 250

imental runs (Zhang and Ji, 2021; Hsu et al., 251

2022; Wang et al., 2022), they often overlook 252

randomness in data splits and report numbers 253

only for a single and fixed split for train, dev, 254

and test sets. This can lead to a notable bias, 255

especially for event extraction where there is a 256

high variance of annotation density across sen- 257

tences or documents. For example, following the 258

preprocessing step of Wadden et al. (2019) ap- 259

plied to ACE05, the resulting processed dataset 260

has 33 event types in the train set, 21 event types 261

in the dev set, and 31 event types in the test set. 262

Accordingly, it is likely to have a significant per- 263

formance discrepancy between the dev and the 264

test set, making the reported numbers biased. 265

Low reproducibility. Because of the complex na- 266

ture of the event extraction tasks, the event extrac- 267

tion models have become increasingly complicated. 268

Releasing code and checkpoints for reproducing 269

results has become essential as many details and 270

tricks need to be taken into account during the re- 271

implementation process. However, many promis- 272
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Dataset Task #Docs #Inst #ET #Evt #RT #Arg Event Entity Relation Domain

ACE05 (Doddington et al., 2004) E2E, ED, EAE 599 20920 33 5348 22 8097 ✓ ✓ ✓ News
RichERE (Song et al., 2015) E2E, ED, EAE 288 11241 38 5709 21 8254 ✓ ✓ ✓ News
MLEE (Pyysalo et al., 2012) E2E, ED, EAE 262 286 29 6575 14 5958 ✓ ✓ ✓ Biomedical
Genia2011 (Kim et al., 2011) E2E, ED, EAE 960 1375 9 13537 10 11865 ✓ ✓ Biomedical
Genia2013 (Kim et al., 2013) E2E, ED, EAE 20 664 13 6001 7 5660 ✓ ✓ ✓ Biomedical
M2E2 (Li et al., 2020b) E2E, ED, EAE 6013 6013 8 1105 15 1659 ✓ ✓ Multimedia
CASIE (Satyapanich et al., 2020) E2E, ED, EAE 999 1483 5 8469 26 22575 ✓ Cybersecurity
PHEE (Sun et al., 2022) E2E, ED, EAE 4827 4827 2 5019 16 25760 ✓ Pharmacovigilance
MAVEN (Wang et al., 2020) ED 3623 40473 168 96897 – – ✓ General
FewEvent (Deng et al., 2020) ED 12573 12573 100 12573 – – ✓ General
MEE (Veyseh et al., 2022a) ED 13000 13000 16 17257 – – ✓ ✓ Wikipedia
WikiEvents (Li et al., 2021b) EAE 245 565 50 3932 58 5501 ✓ ✓ Wikipedia
RAMS (Ebner et al., 2020) EAE 9647 9647 139 9647 65 21206 ✓ ✓ News
GENEVA (Parekh et al., 2023b) EAE 262 3684 115 7505 220 12314 ✓ ✓ General

Table 1: TEXTEE supports fourteen datasets across various domains. #Docs, #Inst, #ET, #EvT, #RT, and #Arg
represent the number of documents, instances, event types, events, roles, and arguments, respectively. Event, Entity,
and Relation indicate if the dataset contains the corresponding annotations.

ing approaches do not provide an official codebase273

(Li et al., 2020a; Nguyen et al., 2021; Wei et al.,274

2021; Liu et al., 2022b), which potentially impedes275

the progress of research in event extraction.276

4 Benchmark and Reevaluation277

To address the issues listed in Section 3, we present278

TEXTEE, a framework aiming to standardize and279

benchmark the evaluation process of event extrac-280

tion. TEXTEE has several advantages as follows.281

Better Consistency. We propose a standardized282

experimental setup for fair comparisons.283

• Normalizing assumptions about data. We284

adopt the loosest assumption about data to align285

with real-world cases effectively. This includes286

allowing multiple-word triggers, considering287

overlapping argument spans, and retaining all288

instances without filtering.289

• Standardizing data preprocessing steps. We290

provide a standard script for data preprocessing,291

including tokenization and label offset mapping.292

To avoid the difference caused by variations293

in Python package versions, we use stanza294

1.5.0 for tokenization and save all the offsets.295

Our script will load the saved offsets during pre-296

processing, ensuring that everyone can generate297

exactly the same data.298

• Specifying additional resources. We clearly299

specify the resources utilized by all baselines300

(Table 2). For the approaches that require addi-301

tional gold annotations (such as POS tags, AMR,302

and gold entities), considering the purpose of303

fair comparisons, we either train a new predictor304

from training annotations (for entities) or use a305

pre-trained model (for POS tags and AMR), and306

consider the predicted labels as a substitute for 307

the gold annotations. 308

Improved Sufficiency. We improve the sufficiency 309

of the evaluation process as follows. 310

• Increasing dataset coverage. As listed in Ta- 311

ble 1, we increase the dataset coverage by in- 312

cluding fourteen event extraction datasets that 313

cover various domains. 314

• Providing standard data splits. For each 315

dataset, we merge all the labeled data and re- 316

generate data splits. To mitigate the data split 317

bias, we offer five split for each dataset and re- 318

port the average results. To reduce the distribu- 319

tion gap among the train, dev, and test sets, we 320

select splits that these sets share the most simi- 321

lar statistics, such as the number of event types 322

and role types, as well as the number of events 323

and arguments. Table 8 in Appendix A lists the 324

detailed statistics of each split for each dataset. 325

• New evaluation metrics. Most prior works 326

follow Lin et al. (2020) and consider Trigger 327

F1-score and Argument F1-score as the evalu- 328

ation metrics. Specifically, they calculate F1- 329

scores regarding the following: (1) TI: if the 330

(start_idx, end_idx) of a predicted trigger match 331

the gold ones. (2) TC: if the (start_idx, end_idx, 332

event_type) of a predicted trigger match the 333

gold ones. (3) AI: if the (start_idx, end_idx, 334

event_type) of a predicted argument match the 335

gold ones. (4) AC: if the (start_idx, end_idx, 336

event_type, role_type) of a predicted argument 337

match the gold ones. However, we notice that AI 338

and AC cannot precisely evaluate the quality of 339

predicted arguments. There can be multiple trig- 340

gers sharing the same event type in an instance, 341
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Model Task Event Entity Relation POS Tags AMR Verbalization Template

Classification-Based Models

DyGIE++ (Wadden et al., 2019) E2E ✓ ✓ ✓

OneIE (Lin et al., 2020) E2E ✓ ✓ ✓

AMR-IE (Zhang and Ji, 2021) E2E ✓ ✓ ✓ ✓

EEQA (Du and Cardie, 2020) ED, EAE ✓ ✓

RCEE (Liu et al., 2020) ED, EAE ✓ ✓

Query&Extract (Wang et al., 2022) ED, EAE ✓ ✓ ✓

TagPrime-C (Hsu et al., 2023a) ED, EAE ✓ ✓

TagPrime-CR (Hsu et al., 2023a) EAE ✓ ✓

UniST (Huang et al., 2022a) ED ✓ ✓

CEDAR (Li et al., 2023b) ED ✓ ✓

Generation-Based Models

DEGREE (Hsu et al., 2022) E2E, ED, EAE ✓ ✓ ✓

BART-Gen (Li et al., 2021b) EAE ✓ ✓

X-Gear (Huang et al., 2022b) EAE ✓

PAIE (Ma et al., 2022) EAE ✓ ✓ ✓

AMPERE (Hsu et al., 2023b) EAE ✓ ✓ ✓ ✓

Table 2: TEXTEE supports various models with different assumptions. Event, Entity, Relation, POS Tags, and AMR
indicate if the model considers the corresponding annotations. Verbalization: if the model requires verbalized type
strings. Template: if the model needs a human-written template to connect the semantics of triggers and arguments.

but the current score does not evaluate if the pre-342

dicted argument attaches to the correct trigger.343

Accordingly, we propose two new scores to eval-344

uate this attachment: (5) AI+: if the (start_idx,345

end_idx, event_type, attached_trigger_offsets)346

of a predicted argument match the gold ones. (6)347

AC+: if the (start_idx, end_idx, event_type, at-348

tached_trigger_offsets, role_type) of a predicted349

argument match the gold ones.350

Reproducibility. We open-source the proposed351

TEXTEE framework for better reproducibility. Ad-352

ditionally, we encourage the community to con-353

tribute their datasets and codebases to further the354

research in event extraction.355

4.1 TEXTEE Benchmark356

TEXTEE supports 14 datasets across various do-357

mains and 14 models proposed in recent years.358

Dataset. In addition to the two most common359

datasets, ACE05 (Doddington et al., 2004) and360

RichERE (Song et al., 2015), which particularly361

focus on the news domain, we consider as many362

other event extraction datasets across diverse do-363

mains as possible, including MLEE (Pyysalo et al.,364

2012), Genia2011 (Kim et al., 2011), and Ge-365

nia2013 (Kim et al., 2013) from the biomedical366

domain, CASIE (Satyapanich et al., 2020) from367

the cybersecurity domain, PHEE (Sun et al., 2022)368

from the pharmacovigilance domain, M2E2 (Li369

et al., 2020b) and RAMS (Ebner et al., 2020) from370

the news domain, MEE (Veyseh et al., 2022a) and371

WikiEvents (Li et al., 2021b) from Wikipedia,372

MAVEN (Wang et al., 2020), FewEvent (Deng 373

et al., 2020), and GENEVA (Parekh et al., 2023b) 374

from the general domain. We also notice that there 375

are other valuable datasets, such as GLEN (Li et al., 376

2023b) and VOANews (Li et al., 2022), but we do 377

not include them as their training examples are not 378

all annotated by humans. Table 1 summarizes the 379

statistics for each dataset after our preprocessing 380

steps. Appendix A describes the details of the pre- 381

processing steps and our assumptions. 382

Models. We do our best to aggregate as many mod- 383

els as possible into TEXTEE. For those works hav- 384

ing public codebases, we adapt their code to fit our 385

evaluation framework. We also re-implement some 386

models based on the description from the original 387

papers. Currently, TEXTEE supports the follow- 388

ing models: (1) Joint training models that train 389

ED and EAE together in an end-to-end manner, 390

including DyGIE (Wadden et al., 2019), OneIE 391

(Lin et al., 2020), and AMR-IE (Zhang and Ji, 392

2021). (2) Classification-based models that formu- 393

late the event extraction task as a token classifi- 394

cation problem, a sequential labeling problem, or 395

a question answering problem, including EEQA 396

(Du and Cardie, 2020), RCEE (Liu et al., 2020), 397

Query&Extract (Wang et al., 2022), TagPrime 398

(Hsu et al., 2023a), UniST (Huang et al., 2022a), 399

and CEDAR (Li et al., 2023b). (3) Generation- 400

based models that convert the event extraction task 401

to a conditional generation problem, including DE- 402

GREE (Hsu et al., 2022), BART-Gen (Li et al., 403

2021b), X-Gear (Huang et al., 2022b), PAIE (Ma 404
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Model
ACE05 RichERE MLEE Genia2011 Genia2013 M2E2 ACE05 CASIE

TC AC+ TC AC+ TC AC+ TC AC+ TC AC+ TC AC+ TC AC+ TC AC+

DyGIE++ 71.3 51.8 59.8 38.3 78.2 54.4 70.3 52.1 72.9 57.2 51.0 30.8 44.7 29.5 70.4 45.7
OneIE 71.1 54.7 62.5 45.2 78.5 13.1 72.1 33.6 74.3 32.9 50.6 32.1 70.6 22.1 70.0 29.8
AMR-IE 71.1 54.6 62.3 44.7 78.2 4.7 72.4 29.0 74.5 23.1 50.5 31.9 70.8 3.1 69.4 34.1
EEQA 70.0 50.4 60.2 41.9 76.9 38.1 71.3 38.4 69.4 35.7 51.0 30.2 42.8 26.2 70.3 32.0
RCEE 70.5 51.0 60.0 42.1 77.2 35.4 70.1 37.2 68.0 31.6 48.1 28.0 42.1 23.7 70.9 33.1
Query&Extract 65.1 49.0 59.8 44.5 – – – – – – 49.4 28.8 – – 55.5 31.8
TagPrime 69.9 54.6 63.5 48.4 79.0 60.3 72.2 57.8 73.0 57.4 50.2 32.4 69.3 49.1 71.1 40.6
DEGREE-E2E 66.8 49.1 60.5 43.7 70.2 23.3 59.2 25.4 62.6 24.8 49.5 30.0 60.7 14.6 69.1 36.5
DEGREE-PIPE 68.4 50.7 61.7 44.8 70.4 42.7 60.5 39.8 61.0 41.9 48.3 30.1 57.1 33.7 69.1 36.7

Table 3: Reevaluation results for end-to-end event extraction (E2E). All the numbers are the average score of 5 data
splits. Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.

Model
ACE05 Rich- MLEE Genia Genia M2E2 CASIE PHEE MAVEN Few- MEEERE 2011 2013 Event

TC TC TC TC TC TC TC TC TC TC TC

DyGIE++ 71.3 59.8 78.2 70.3 72.9 51.0 44.7 70.4 65.3 65.2 79.8
OneIE 71.1 62.5 78.5 72.1 74.3 50.6 70.6 70.0 65.5 65.4 78.8
AMR-IE 71.1 62.3 78.2 72.4 74.5 50.5 70.8 69.4 – 65.2 –
EEQA 70.0 60.2 77.4 69.6 71.1 51.0 43.2 70.3 64.4 65.1 79.5
RCEE 70.5 60.0 77.3 69.3 70.8 48.1 43.3 70.9 64.6 65.0 79.1
Query&Extract 65.1 59.8 74.9 68.9 70.1 49.4 51.5 55.5 – 63.8 78.1
TagPrime-C 69.9 63.5 79.0 72.2 73.0 50.2 69.3 71.1 66.1 65.6 79.8
UniST 69.8 60.7 74.9 70.3 69.9 49.0 68.1 69.6 63.4 63.1 78.3
CEDAR 62.6 52.3 65.5 66.8 67.1 48.0 67.6 70.3 54.5 52.1 78.6
DEGREE 68.4 61.7 70.4 60.5 61.0 48.3 61.3 69.1 65.5 65.5 78.2

Table 4: Reevaluation results for event detection (ED). All the numbers are the average score of 5 data splits. Darker
cells imply higher scores. We use “–” to denote the cases that models are not runnable.

et al., 2022), and AMPERE (Hsu et al., 2023b).405

Table 2 presents the different assumptions and re-406

quirements for each model. It is worth noting that407

some models need additional annotations or infor-408

mation, as indicated in the table. Appendix B lists409

more details about implementations.410

Reevalutation results. For a fair comparison, we411

utilize RoBERTa-large (Liu et al., 2019) for all the412

classification-based models and use BART-large413

(Lewis et al., 2020) for all the generation-based414

models. Table 3, 4, and 5 present the reevaluation415

results of end-to-end EE, ED, and EAE, respec-416

tively. Appendix C lists more detailed results. We417

first notice that for end-to-end EE and ED, there418

is no obvious dominant approach. It suggests that419

the reported improvements from previous studies420

may be influenced by dataset bias, data split bias,421

or data processing. This verifies the importance of422

a comprehensive evaluation framework that cov-423

ers various domains of datasets and standardized424

data splits. TagPrime (Hsu et al., 2023a) and PAIE425

(Ma et al., 2022) seem to be the two dominant426

approaches across different types of datasets for427

EAE. These results validate the effectiveness of428

those two models, aligning with our expectations429

for guiding reliable and reproducible research in430

event extraction with TEXTEE. 431

In addition, we observe a gap between the es- 432

tablished evaluation metrics (AI and AC) and the 433

proposed ones (AI+ and AC+). This implies a po- 434

tential mismatch between the earlier metrics and 435

the predictive quality. We strongly recommend 436

reporting the attaching score (AI+ and AC+) for fu- 437

ture research in event extraction to provide a more 438

accurate assessment of performance. 439

5 Have LLMs Solved Event Extraction? 440

Given the demonstrated potential of large language 441

models (LLMs) across various NLP tasks, we dis- 442

cuss the capability of LLMs in solving event extrac- 443

tion tasks. In contrast to previous studies (Li et al., 444

2023a; Gao et al., 2023), which evaluate a single 445

LLM on a single EE dataset, we investigate mul- 446

tiple popular LLMs across multiple datasets pro- 447

vided by TEXTEE. We consider GPT-3.5-Turbo as 448

well as some open-source LLMs that achieve strong 449

performance on Chatbot Arena (Zheng et al., 2023), 450

including Llama-2-13b-chat-hf and Llama-2-70b- 451

chat-hf (Touvron et al., 2023), Zephyr-7b-alpha 452

(Tunstall et al., 2023), and Mixtral-8x7B-Instruct 453

(Jiang et al., 2024), with vLLM framework (Kwon 454

et al., 2023). We evaluate them on the pipelined 455
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Model
ACE05 RichERE MLEE Genia2011 Genia2013 M2E2

AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+

DyGIE++ 66.9 61.5 60.0 58.5 49.4 47.3 67.9 64.8 62.4 66.1 63.7 61.0 71.7 69.3 66.9 41.7 38.9 38.5
OneIE 75.4 71.5 70.2 71.6 65.8 63.7 31.0 28.9 15.7 62.9 60.3 38.9 57.2 55.7 38.7 59.0 55.2 53.3
AMR-IE 76.2 72.6 70.9 72.8 65.8 63.0 23.2 16.6 6.1 49.1 47.6 35.3 38.9 38.1 26.4 56.0 51.3 50.4
EEQA 73.8 71.4 69.6 73.3 67.3 64.9 64.8 62.1 49.5 63.2 60.8 49.4 64.7 61.1 47.5 57.6 55.9 55.3
RCEE 73.7 71.2 69.4 72.8 67.0 64.5 61.1 58.2 45.1 62.3 59.9 49.6 60.7 57.4 42.7 57.9 56.4 55.8
Query&Extract 77.3 73.6 72.0 76.4 70.9 69.2 – – – – – – – – – 59.9 56.2 54.2
TagPrime-C 80.0 76.0 74.5 78.8 73.3 71.4 78.9 76.6 74.5 79.6 77.4 75.8 79.8 77.4 74.9 63.4 60.1 59.0
TagPrime-CR 80.1 77.8 76.2 78.7 74.3 72.5 79.2 77.3 74.6 78.0 76.2 74.5 76.6 74.5 72.3 63.2 60.8 59.9
DEGREE 76.4 73.3 71.8 75.1 70.2 68.8 67.6 65.3 61.5 68.2 65.7 62.4 68.4 66.0 62.5 62.3 59.8 59.2
BART-Gen 76.0 72.6 71.2 74.4 68.8 67.7 73.1 69.8 68.7 73.4 70.9 69.5 76.4 73.6 72.2 62.5 60.0 59.6
X-Gear 76.1 72.4 70.8 75.0 68.7 67.2 64.8 63.3 59.4 68.4 66.2 63.1 64.1 61.9 58.6 62.7 59.8 59.0
PAIE 77.2 74.0 72.9 76.6 71.1 70.0 76.0 73.5 72.4 76.8 74.6 73.4 77.8 75.2 74.2 62.9 60.6 60.4
Ampere 75.5 72.0 70.6 73.8 69.2 67.7 69.2 67.1 62.6 69.5 67.1 63.8 73.2 71.0 67.7 62.1 59.1 58.4

Model
CASIE PHEE WikiEvents RAMS GENEVA –

AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+ –

DyGIE++ 58.0 56.0 51.5 63.4 54.6 54.2 39.8 35.3 34.7 44.3 35.3 35.3 66.0 62.5 62.3
OneIE 58.3 55.3 27.7 55.9 40.6 40.4 17.5 15.0 7.9 48.0 40.7 40.7 38.9 37.1 36.9
AMR-IE 35.5 11.0 4.0 60.4 45.3 44.9 17.8 16.0 10.4 49.6 42.3 42.3 23.7 16.6 16.4
EEQA 56.1 54.0 49.0 53.7 45.6 45.4 54.3 51.7 46.1 48.9 44.7 44.7 69.7 67.3 67.0
RCEE 47.6 45.3 39.5 54.1 45.8 45.6 53.7 50.9 44.0 45.4 41.5 41.5 66.2 63.8 63.4
Query&Extract – – – 64.6 54.8 54.4 – – – – – – 52.2 50.3 50.0
TagPrime-C 71.9 69.1 66.1 66.0 55.6 55.3 70.4 65.7 64.0 54.4 48.3 48.3 83.0 79.2 79.0
TagPrime-CR 71.1 69.2 66.1 65.8 56.0 55.7 70.3 67.2 65.5 54.1 49.7 49.7 82.8 80.4 80.1
DEGREE 61.0 59.0 54.7 61.7 52.5 52.3 60.4 57.3 53.9 50.5 45.5 45.5 67.2 64.1 63.9
BART-Gen 63.7 60.0 58.3 57.1 47.7 47.5 68.5 64.2 63.9 50.4 45.4 45.4 67.3 64.4 64.3
X-Gear 65.7 63.4 59.3 67.6 58.3 58.2 58.7 55.6 52.4 52.1 46.2 46.2 78.9 75.1 74.9
PAIE 68.1 65.7 64.0 74.9 73.3 73.1 69.8 65.5 65.2 55.2 50.5 50.5 73.5 70.4 70.3
Ampere 61.1 58.4 53.9 61.4 51.7 51.6 59.9 56.7 53.3 52.0 46.8 46.8 67.8 65.0 64.8

Table 5: Reevaluation results for event argument extraction (EAE). All the numbers are the average score of 5 data
splits. Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.

tasks of event detection (ED) and event argument456

extraction (EAE). As part of the prompt, we pro-457

vide LLMs with the task instructions, a few demon-458

stration examples (positive and negative), and the459

query text. It is worth noting that the number of460

demonstration examples will be limited by the max-461

imum length supported by LLMs. Appendix D462

illustrates the best prompt we use.463

Results. Due to the cost and time of running LLMs,464

we evaluate only on sampled 250 documents for465

each dataset. Table 6 and 7 list the average results466

of LLMs as well as some well-performed models467

selected from TEXTEE. Unlike other NLP tasks468

such as named entity recognition and common-469

sense knowledge, where LLMs can achieve com-470

petitive performance with fine-tuning models using471

only a few in-context demonstrations (Wei et al.,472

2022; Qin et al., 2023), it is noteworthy that there473

is a large gap between LLMs and the baselines474

for both the ED and EAE tasks. Our hypothesis475

is that event extraction requires more recognition476

of abstract concepts and relations, which is harder477

compared to other NLP tasks (Li et al., 2023a).478

We also manually examine the cases where479

LLMs make mistakes. For ED, we notice that480

LLMs usually can recognize trigger spans but fail481

to predict correct event types, therefore causing 482

many false positives. In contrast, LLMs demon- 483

strate relatively improved performance for EAE. 484

However, they struggle with predicting accurate 485

text spans. Sometimes, LLMs capture the right en- 486

tities but fail to predict exact offsets as the ground 487

truths. The results suggest that there is still room 488

for improving LLMs’ performance. 489

6 Future Challenges and Opportunities 490

In this section, we discuss the role of event ex- 491

traction in the current NLP era, as well as some 492

challenges and insights derived from TEXTEE. 493

How should we position event extraction in the 494

era of LLMs? Based on the findings in Section 5, 495

LLMs struggle with extracting and comprehending 496

complicated structured semantic concepts. This 497

indicates the need for a dedicated system with spe- 498

cialized design to effectively recognize and extract 499

abstract concepts and relations from texts. We be- 500

lieve that a good event extractor, capable of iden- 501

tifying a wide range of events, could serve as a 502

tool that provides grounded structured information 503

about texts for LLMs. Accordingly, LLMs can flex- 504

ibly decide whether they require this information 505
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Model TI TC

OneIE (Lin et al., 2020) 73.5 69.5
TagPrime-C (Hsu et al., 2023a) 72.5 69.5

Llama-2-13b-chat-hf (2-shot) 23.5 9.3
Llama-2-13b-chat-hf (6-shot) 28.0 10.4

Llama-2-70b-chat-hf (2-shot) 30.6 11.3
Llama-2-70b-chat-hf (6-shot) 32.2 12.4

Zephyr-7b-alpha (2-shot) 25.0 6.6
Zephyr-7b-alpha (6-shot) 26.1 8.0
Zephyr-7b-alpha (16-shot) 26.1 9.1
Zephyr-7b-alpha (32-shot) 25.2 10.1
Zephyr-7b-alpha (64-shot) 23.8 9.7

Mixtral-8x7B-Instruct-v0.1 (2-shot) 30.4 10.2
Mixtral-8x7B-Instruct-v0.1 (6-shot) 34.4 10.6
Mixtral-8x7B-Instruct-v0.1 (16-shot) 35.4 12.1
Mixtral-8x7B-Instruct-v0.1 (32-shot) 36.7 13.8
Mixtral-8x7B-Instruct-v0.1 (64-shot) 37.5 14.6

gpt-3.5-turbo-1106 (2-shot) 33.9 11.8
gpt-3.5-turbo-1106 (16-shot) 35.2 12.3

Table 6: Average results over all datasets for event de-
tection (ED) on sampled 250 documents.

for the following reasoning steps or inference pro-506

cess. To achieve this goal, we expect event extrac-507

tors to be universal, efficient, and accurate, which508

introduces the following research challenges.509

Broader event coverage and generalizablity. We510

anticipate that a strong event extractor can recog-511

nize a wide range of events and even identify new512

event concepts that may not have appeared dur-513

ing training. This requires two efforts: (1) Ex-514

panding domain coverage in datasets. Most ex-515

isting event extraction datasets suffer from a re-516

stricted coverage of event types. For instance, all517

the datasets incorporated by TEXTEE have no more518

than 200 event types, which is significantly below519

the amount of human concepts encountered in daily520

life. Although some recent studies have attempted521

to tackle this issue (Li et al., 2023b), their data often522

contains label noise and lacks detailed role annota-523

tions. We believe that efficiently collecting or syn-524

thesizing high-quality data that covers a wild range525

of events is crucial for enhancing the emerging abil-526

ity to generalize event recognition. (2) Better model527

design for generalization. Most existing event ex-528

traction models focus on in-domain performance.529

Therefore, their design can fail when encountering530

novel events. While exploring prompting in LLMs531

shows promise, as discussed in Section 5, the re-532

sults remain unsatisfactory. Some recent works (Lu533

et al., 2022; Ping et al., 2023) explore learning a534

unified model across multiple information extrac-535

Model AI AC AI+ AC+

TagPrime-CR (Hsu et al., 2023a) 73.3 69.5 71.9 68.1
PAIE (Ma et al., 2022) 72.0 68.9 71.3 68.1

Llama-2-13b-chat-hf (2-shot) 26.5 19.0 24.1 17.1
Llama-2-13b-chat-hf (4-shot) 25.0 18.7 22.8 17.0

Llama-2-70b-chat-hf (2-shot) 30.6 24.4 28.5 22.8
Llama-2-70b-chat-hf (4-shot) 30.1 23.6 28.3 22.3

Zephyr-7b-alpha (2-shot) 28.9 22.6 27.0 21.3
Zephyr-7b-alpha (4-shot) 29.3 23.9 27.0 22.4
Zephyr-7b-alpha (8-shot) 29.7 25.2 27.7 23.5
Zephyr-7b-alpha (16-shot) 27.2 22.5 26.3 21.8
Zephyr-7b-alpha (32-shot) 24.3 19.7 23.7 19.3

Mixtral-8x7B-Instruct-v0.1 (2-shot) 28.5 23.6 26.7 22.2
Mixtral-8x7B-Instruct-v0.1 (4-shot) 30.5 24.7 28.4 23.4
Mixtral-8x7B-Instruct-v0.1 (8-shot) 32.9 27.2 30.4 25.4
Mixtral-8x7B-Instruct-v0.1 (16-shot) 34.1 28.1 31.4 25.8
Mixtral-8x7B-Instruct-v0.1 (32-shot) 35.1 29.2 32.0 26.5

gpt-3.5-turbo-1106 (2-shot) 33.2 25.9 30.5 23.8
gpt-3.5-turbo-1106 (8-shot) 34.9 26.9 31.8 24.7

Table 7: Average results over all datasets for event argu-
ment extraction (EAE) on sampled 250 documents.

tion tasks for improved generalization, but their 536

integration is constrained by limited domains. We 537

expect that TEXTEE can serve as a starting point 538

for aggregating diverse datasets and training more 539

robust unified models. 540

Enhanced model efficiency. Inference time can 541

pose a bottleneck for effective event extraction, 542

especially when the number of event (role) types 543

increases. For instance, well-performing methods 544

in TEXTEE (e.g., TagPrime and PAIE) require enu- 545

merating all the event (role) types, resulting in mul- 546

tiple times of model inference, which significantly 547

slows down as more events (roles) are considered. 548

Similar challenges arise with LLMs, as we have 549

to prompt them per event. Therefore, there is a 550

critical necessity for model designs that not only 551

prioritize performance but also optimize efficiency. 552

7 Conclusion 553

In this work, we identify and discuss several evalu- 554

ation issues for event extraction, including incon- 555

sistent comparisons, insufficiency, and low repro- 556

ducibility. To address these challenges, we propose 557

TEXTEE, a consistent, sufficient, and reproducible 558

benchmark for event extraction. We also study and 559

benchmark the capability of five large language 560

models in event extraction. Additionally, we dis- 561

cuss the role of event extraction in the current NLP 562

era, as well as challenges and insights derived from 563

TEXTEE. We expect TEXTEE and our reevalua- 564

tion results will serve as a reliable benchmark for 565

research in event extraction. 566
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Limitations567

In this work, we make efforts to incorporate as568

many event extraction datasets as possible. How-569

ever, for some datasets, it is hard for us to obtain570

the raw files. Moreover, there is a possibility that571

we may overlook some datasets. Similarly, we aim572

to include a broad range of event extraction ap-573

proaches, but we acknowledge that it is not feasible574

to cover all works in the field. We do our best to575

consider representative methods that published in576

recent years. Additionally, for works without re-577

leased codebases, we make efforts to reimplement578

their proposed methods based on the descriptions579

in the original papers. There can be discrepancies580

between our implementation and theirs due to dif-581

ferences in packages and undisclosed techniques.582

We will continue to maintain our proposed library583

and welcome contributions and updates from the584

community.585
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A Details of Dataset Preprocessing1071

We describe the detailed preprocessing steps for1072

each dataset in the following.1073

ACE05-en (Doddington et al., 2004). We down-1074

load the ACE05 dataset from LDC3 and consider1075

the data in English. The original text in ACE051076

dataset is document-based. We follow most prior1077

usage of the dataset (Lin et al., 2020; Wadden et al.,1078

2019) to split each document into sentences and1079

making it a sentence-level benchmark on event ex-1080

traction. We use Stanza (Qi et al., 2020) to perform1081

sentence splitting and discard any label (entity men-1082

tion, relation mention, event arguments, etc.) where1083

its span is not within a single sentence. Similar to1084

prior works (Lin et al., 2020; Wadden et al., 2019),1085

we consider using head span to represent entity1086

mentions and only include event arguments that are1087

entities (i.e., remove time and values in the ACE051088

annotation). The original annotation of the dataset1089

is character-level. However, to make the dataset1090

consistent with others, we perform tokenization1091

through Stanza and map the character-level annota-1092

tion into token-level. We merge the original train,1093

dev, and test sets, and split them into the new train,1094

dev, and test sets based on documents with the ratio1095

80%, 10%, and 10%.1096

RichERE (Song et al., 2015). Considering the1097

unavailability of the RichERE dataset used in prior1098

works (Lin et al., 2020; Hsu et al., 2022), we down-1099

load the latest RichERE dataset from LDC4 and1100

only consider the 288 documents labeled with Rich1101

ERE annotations. Similar to the pre-processing1102

step in ACE05-en, we use Stanza (Qi et al., 2020) to1103

perform sentence splitting and making it a sentence-1104

level benchmark. Following the strategy in (Lin1105

et al., 2020), we use head span to represent en-1106

tity mentions and only consider named entities,1107

weapons and vehicles as event argument candi-1108

dates. Again, the original annotation of the dataset1109

is character-level, and we perform tokenization1110

through Stanza and map the annotation into token-1111

level, forming the final RichERE dataset we use.1112

We merge the original train, dev, and test sets, and1113

split them into the new train, dev, and test sets1114

based on documents with the ratio 80%, 10%, and1115

10%.1116

3https://catalog.ldc.upenn.edu/
LDC2006T06

4https://catalog.ldc.upenn.edu/
LDC2023T04

MLEE (Pyysalo et al., 2012). The original 1117

MLEE dataset is document-level.5 We use Stanza 1118

(Qi et al., 2020) to do the sentence tokenization and 1119

the word tokenization. For the purpose of evaluat- 1120

ing most baselines, we divide the documents into 1121

several segment-level instances with a sub-token 1122

window size being 480 based on the RoBERTa- 1123

large tokenizer (Liu et al., 2019). We split the train, 1124

dev, and test sets based on documents with the ratio 1125

70%, 15%, and 15%. 1126

Genia2011 (Kim et al., 2011). The original Ge- 1127

nia2011 dataset is document-level.6 We use Stanza 1128

(Qi et al., 2020) to do the sentence tokenization and 1129

the word tokenization. For the purpose of evaluat- 1130

ing most baselines, we divide the documents into 1131

several segment-level instances with a sub-token 1132

window size being 480 based on the RoBERTa- 1133

large tokenizer (Liu et al., 2019). We split the train, 1134

dev, and test sets based on documents with the ratio 1135

60%, 20%, and 20%. 1136

Genia2013 (Kim et al., 2013). The original Ge- 1137

nia2013 dataset is document-level.7 We use Stanza 1138

(Qi et al., 2020) to do the sentence tokenization and 1139

the word tokenization. For the purpose of evaluat- 1140

ing most baselines, we divide the documents into 1141

several segment-level instances with a sub-token 1142

window size being 480 based on the RoBERTa- 1143

large tokenizer (Liu et al., 2019). We split the train, 1144

dev, and test sets based on documents with the ratio 1145

60%, 20%, and 20%. 1146

M2E2 (Li et al., 2020b). The M2E2 dataset con- 1147

tains event argument annotations from both texts 1148

and images.8 We consider only the text annotations 1149

in our benchmark. We directly use the tokenized 1150

words without any modifications. We merge the 1151

original train, dev, and test sets, and split them into 1152

the new train, dev, and test sets based on documents 1153

with the ratio 70%, 15%, and 15%. 1154

CASIE (Satyapanich et al., 2020). The original 1155

CASIE dataset is document-level.9 We use Stanza 1156

(Qi et al., 2020) to do the sentence tokenization and 1157

the word tokenization. For the purpose of evaluat- 1158

ing most baselines, we divide the documents into 1159

5https://www.nactem.ac.uk/MLEE/
6https://bionlp-st.dbcls.jp/GE/2011/

downloads/
7https://2013.bionlp-st.org/tasks/
8https://blender.cs.illinois.edu/

software/m2e2
9https://github.com/Ebiquity/CASIE
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several segment-level instances with a sub-token1160

window size being 480 based on the RoBERTa-1161

large tokenizer (Liu et al., 2019). We split the train,1162

dev, and test sets based on documents with the ratio1163

70%, 15%, and 15%.1164

PHEE (Sun et al., 2022). We download the1165

PHEE dataset from the official webpage.10 We1166

directly use the tokenized words without any modi-1167

fications. We merge the original train, dev, and test1168

sets, and split them into the new train, dev, and test1169

sets based on documents with the ratio 60%, 20%,1170

and 20%.1171

MAVEN (Wang et al., 2020). We consider the1172

sentence-level annotations from the original data.111173

We directly use the tokenized words without any1174

modifications. Because the labels of the original1175

test set are not publicly accessible, we merge the1176

original train and dev sets and split it into new train,1177

dev, and test sets by documents with the ratio 70%,1178

15%, and 15%.1179

MEE-en (Veyseh et al., 2022a). We download1180

the MEE dataset12 and consider the English anno-1181

tations. We use the annotations for event detection1182

only because we observe that the quality of the1183

annotations for event argument extraction is not1184

good and many important arguments are actually1185

missing. We directly use the tokenized words with-1186

out any modifications. We merge the original train,1187

dev, and test sets, and split them into the new train,1188

dev, and test sets based on documents with the ratio1189

80%, 10%, and 10%.1190

FewEvent (Deng et al., 2020). We download the1191

FewEvent dataset from the official webpage.13 No-1192

tice that we consider FewEvent as a normal super-1193

vised event detection dataset. We use Stanza (Qi1194

et al., 2020) to do the word tokenization. For the1195

purpose of evaluating most baselines, we discard1196

the instances with the length longer than 300. We1197

split the train, dev, and test sets based on documents1198

with the ratio 60%, 20%, and 20%.1199

RAMS (Ebner et al., 2020). We use the latest1200

version of the RAMS dataset.14 We directly use the1201

10https://github.com/ZhaoyueSun/PHEE
11https://github.com/THU-KEG/

MAVEN-dataset
12http://nlp.uoregon.edu/download/MEE/

MEE.zip
13https://github.com/231sm/Low_

Resource_KBP
14https://nlp.jhu.edu/rams/RAMS_1.0c.

tar.gz

tokenized words without any modifications. For the 1202

purpose of evaluating most baselines, we discard 1203

the instances with the sub-token length larger than 1204

500 based on the RoBERTa-large tokenizer (Liu 1205

et al., 2019). We merge the original train, dev, and 1206

test sets, and split them into the new train, dev, and 1207

test sets based on documents with the ratio 80%, 1208

10%, and 10%. 1209

WikiEvents (Li et al., 2021b). We download the 1210

WikiEvents dataset from the official webpage.15 1211

We directly use the tokenized words without any 1212

modifications. For the purpose of evaluating most 1213

baselines, we divide the documents into several 1214

segment-level instances with a sub-token window 1215

size being 480 based on the RoBERTa-large tok- 1216

enizer (Liu et al., 2019). We split the train, dev, and 1217

test sets based on documents with the ratio 80%, 1218

10%, and 10%. 1219

GENEVA (Parekh et al., 2023b). We download 1220

the GENEVA dataset from the officail webpage.16 1221

We directly use the tokenized words without any 1222

modifications. We split the train, dev, and test sets 1223

based on documents with the ratio 70%, 15%, and 1224

15%. 1225

B Details of Model Implementations 1226

We utilize RoBERTa-large (Liu et al., 2019) for 1227

all the classification-based models and use BART- 1228

large (Lewis et al., 2020) for all the generation- 1229

based models to have a consistent comparison. 1230

DyGIE++ (Wadden et al., 2019). We re- 1231

implement the model based on the original code- 1232

base.17 1233

OneIE (Lin et al., 2020). We adapt the code from 1234

the original codebase.18 1235

AMR-IE (Zhang and Ji, 2021). We adapt the 1236

code from the original codebase.19 1237

EEQA (Du and Cardie, 2020). We re- 1238

implement the model based on the original 1239

codebase.20 Notice that EEQA requires some 1240

human-written queries for making predictions. For 1241

15s3://gen-arg-data/wikievents/
16https://github.com/PlusLabNLP/GENEVA
17https://github.com/dwadden/dygiepp
18https://blender.cs.illinois.edu/

software/oneie/
19https://github.com/zhangzx-uiuc/

AMR-IE
20https://github.com/xinyadu/eeqa
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Dataset Task Split
Train Dev Test

#Docs #Inst #ET #Evt #RT #Arg #Docs #Inst #ET #Evt #RT #Arg #Docs #Inst #ET #Evt #RT #Arg

ACE05-en
E2E
ED

EAE

1 481 16531 33 4309 22 6503 59 1870 30 476 22 766 59 2519 30 563 22 828
2 481 17423 33 4348 22 6544 59 1880 29 555 22 894 59 1617 30 445 22 659
3 481 17285 33 4331 22 6484 59 2123 30 515 22 799 59 1512 30 502 22 814
4 481 16842 33 4437 22 6711 59 1979 30 460 22 728 59 2099 29 451 22 658
5 481 16355 33 4198 22 6392 59 1933 30 509 22 772 59 2632 31 641 22 933

RichERE
E2E
ED

EAE

1 232 9198 38 4549 21 6581 28 876 35 488 21 737 28 1167 34 672 21 936
2 232 8886 38 4444 21 6520 28 1299 36 688 21 978 28 1056 37 577 21 756
3 232 9094 38 4490 21 6517 28 1081 36 678 21 942 28 1066 35 541 21 795
4 232 9105 38 4541 21 6647 28 973 34 571 21 804 28 1163 37 597 21 803
5 232 9169 38 4682 21 6756 28 1135 34 487 21 692 28 937 35 540 21 806

MLEE
E2E
ED

EAE

1 184 199 29 4705 14 4237 39 45 21 1003 9 895 39 42 21 867 12 826
2 184 202 29 4733 14 4258 39 42 19 898 10 854 39 42 21 944 11 846
3 184 200 29 4627 14 4165 39 42 20 1029 10 944 39 44 20 919 10 849
4 184 203 29 4629 14 4236 39 40 20 980 11 872 39 43 20 966 11 850
5 184 201 29 4653 14 4200 39 42 21 887 11 843 39 43 20 1035 11 915

Genia2011
E2E
ED

EAE

1 576 773 9 7396 10 6495 192 348 9 3773 9 3352 192 254 9 2368 8 2018
2 576 843 9 8455 10 7397 192 266 9 2713 9 2358 192 266 9 2369 9 2110
3 576 901 9 8638 10 7687 192 233 9 2042 8 1743 192 241 9 2857 9 2435
4 576 808 9 7836 10 7037 192 277 9 2842 9 2319 192 290 9 2859 9 2509
5 576 853 9 8460 10 7464 192 240 9 2368 9 2061 192 282 9 2709 9 2340

Genia2013
E2E
ED

EAE

1 12 420 13 4077 7 3921 4 105 10 950 7 858 4 139 11 974 7 881
2 12 388 13 3578 7 3561 4 128 11 1284 6 1134 4 148 10 1149 6 965
3 12 381 13 3816 7 3674 4 143 10 1174 7 1079 4 140 11 1011 6 907
4 12 441 13 3971 7 3993 4 111 9 785 7 616 4 112 11 1245 6 1051
5 12 427 13 4225 7 4112 4 120 10 809 6 717 4 117 10 967 7 831

M2E2
E2E
ED

EAE

1 4211 4211 8 748 15 1120 901 901 8 183 15 280 901 901 8 174 15 259
2 4211 4211 8 794 15 1171 901 901 8 148 14 232 901 901 8 163 15 256
3 4211 4211 8 760 15 1138 901 901 8 160 15 252 901 901 8 185 15 269
4 4211 4211 8 770 15 1137 901 901 8 178 15 276 901 901 8 157 15 246
5 4211 4211 8 747 15 1122 901 901 8 164 14 258 901 901 8 194 15 279

CASIE
E2E
ED

EAE

1 701 1047 5 5980 26 15869 149 218 5 1221 26 3175 149 218 5 1268 26 3531
2 701 1046 5 6010 26 15986 149 223 5 1294 26 3492 149 214 5 1165 26 3097
3 701 1044 5 6009 26 16090 149 210 5 1286 26 3344 149 229 5 1174 26 3141
4 701 1040 5 6034 26 15962 149 229 5 1172 26 3211 149 214 5 1263 26 3402
5 701 1043 5 5831 26 15544 149 218 5 1288 26 3369 149 222 5 1350 26 3662

PHEE
E2E
ED

EAE

1 2897 2897 2 3003 16 15482 965 965 2 1011 16 5123 965 965 2 1005 16 5155
2 2897 2897 2 3014 16 15576 965 965 2 1002 16 5090 965 965 2 1003 16 5094
3 2897 2897 2 3009 16 15230 965 965 2 1001 16 5200 965 965 2 1009 16 5330
4 2897 2897 2 3020 16 15496 965 965 2 996 16 5124 965 965 2 1003 16 5140
5 2897 2897 2 3011 16 15498 965 965 2 1000 16 5049 965 965 2 1008 16 5213

MAVEN ED

1 2537 28734 168 69069 – – 543 5814 167 13638 – – 543 5925 168 14190 – –
2 2537 28341 168 68162 – – 543 5982 167 14233 – – 543 6150 168 14502 – –
3 2537 28348 168 67832 – – 543 6049 167 14185 – – 543 6076 168 14880 – –
4 2537 28172 168 67450 – – 543 6190 167 14637 – – 543 6111 167 14810 – –
5 2537 28261 168 67826 – – 543 6190 167 14493 – – 543 6022 168 14578 – –

MEE-en ED

1 10400 10400 16 13748 – – 1300 1300 16 1764 – – 1300 1300 16 1745 – –
2 10400 10400 16 13801 – – 1300 1300 16 1731 – – 1300 1300 16 1725 – –
3 10400 10400 16 13847 – – 1300 1300 16 1722 – – 1300 1300 16 1688 – –
4 10400 10400 16 13855 – – 1300 1300 16 1701 – – 1300 1300 16 1701 – –
5 10400 10400 16 13802 – – 1300 1300 16 1734 – – 1300 1300 16 1721 – –

FewEvent ED

1 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –
2 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –
3 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –
4 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –
5 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –

RAMS EAE

1 7827 7827 139 7287 65 16951 910 910 136 910 64 2132 910 910 135 910 63 2123
2 7827 7827 139 7287 65 16946 910 910 135 910 65 2113 910 910 137 910 65 2147
3 7827 7827 139 7287 65 16937 910 910 135 910 64 2168 910 910 135 910 64 2101
4 7827 7827 139 7287 65 17014 910 910 136 910 62 2093 910 910 137 910 63 2099
5 7827 7827 139 7287 65 17003 910 910 135 910 63 2130 910 910 137 910 65 2073

WikiEvents EAE

1 197 450 50 3131 57 4393 24 53 39 422 43 592 24 62 38 379 46 516
2 197 439 50 2990 57 4234 24 57 39 405 42 571 24 69 37 537 38 696
3 197 435 50 3014 56 4228 24 78 36 471 43 623 24 52 37 447 47 650
4 197 454 50 3143 57 4391 24 46 36 431 43 606 24 65 40 358 47 504
5 197 441 50 3142 57 4370 24 57 38 394 43 562 24 67 40 396 45 569

GENEVA EAE

1 96 2582 115 5290 220 8618 82 509 115 1016 159 1683 84 593 115 1199 171 2013
2 97 2583 115 5268 220 8660 85 509 114 1014 158 1615 85 592 115 1223 164 1994
3 97 2582 115 5294 220 8638 85 509 115 1010 156 1642 81 593 115 1201 170 1989
4 96 2582 115 5293 220 8705 79 509 115 1003 164 1636 88 593 115 1209 166 1928
5 97 2582 115 5337 220 8673 88 509 115 1004 161 1680 86 593 115 1164 161 1916

Table 8: Detailed statistics of each data split for each dataset. #Docs, #Inst, #ET, #EvT, #RT, and #Arg represent the
number of documents, instances, event types, events, roles, and arguments, respectively.
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those datasets that EEQA provides queries, we1242

directly use those queries. For other datasets, we1243

follow the suggestion from the paper and use “arg”1244

style queries like “{role_name} in [Trigger]”.1245

RCEE (Liu et al., 2020). We re-implement the1246

model based on the description in the original paper.1247

Notice that RCEE requires a question generator to1248

generate queries for making predictions. Alterna-1249

tively, we re-use the queries from EEQA as the1250

generated queries.1251

Query&Extract (Wang et al., 2022). We adapt1252

the code from the original codebase.21 We use the1253

event type names as the verbalized string for each1254

event. Since the origin model supports event ar-1255

gument role labeling rather than event argument1256

extraction, we learn an additional NER sequential1257

labeling model during training and use the pre-1258

dicted entities for event argument role labeling dur-1259

ing testing.1260

TagPrime (Hsu et al., 2023a). We adapt the code1261

from the original codebase.221262

PAIE (Ma et al., 2022). We adapt the code1263

from the original codebase.23 Notice that PAIE1264

requires some human-written templates for mak-1265

ing predictions. For those datasets that PAIE1266

provides templates, we directly use them. For1267

other datasets, we create automated templates like1268

“{role_1_name} [argument_1] {role_2_name} [ar-1269

gument_2] ... {role_k_name} [argument_k] ”.1270

DEGREE (Hsu et al., 2022). We adapt the code1271

from the original codebase.24 Notice that DEGREE1272

requires some human-written templates for mak-1273

ing predictions. For those datasets that DEGREE1274

provides templates, we directly use them. For1275

other datasets, we re-use the templates generated1276

by PAIE.1277

BART-Gen (Li et al., 2021b). We re-implement1278

the model from the original codebase.25 We re-1279

place the original pure copy mechanism with a1280

copy-generator since we observe this works bet-1281

ter. Notice that BART-Gen requires some human-1282

written templates for making predictions. For those1283

21https://github.com/VT-NLP/Event_
Query_Extract

22https://github.com/PlusLabNLP/
TagPrime

23https://github.com/mayubo2333/PAIE
24https://github.com/PlusLabNLP/DEGREE
25https://github.com/raspberryice/

gen-arg

datasets that BART-Gen provides templates, we 1284

directly use them. For other datasets, we re-use the 1285

templates generated by PAIE. 1286

X-Gear (Huang et al., 2022b). We adapt the 1287

code from the original codebase.26 1288

AMPERE (Hsu et al., 2023b). We adapt the 1289

code from the original codebase.27 Notice that AM- 1290

PERE requires some human-written templates for 1291

making predictions. For those datasets that AM- 1292

PERE provides templates, we directly use them. 1293

For other datasets, we re-use the templates gener- 1294

ated by PAIE. 1295

UniST (Huang et al., 2022a). We re-implement 1296

the model from the original codebase.28 Since the 1297

origin model supports semantic typing only, we 1298

learn an additional span recognition model during 1299

training and use the predicted trigger spans for 1300

trigger span typing during testing. 1301

CEDAR (Li et al., 2023b). We re-implement the 1302

model from the original codebase.29 Notice that 1303

in the original paper, they consider self-labeling 1304

during training as the dataset they consider is 1305

noisy. Our implementation currently ignore the 1306

self-labeling part. 1307

C Detailed Results 1308

Table 9, 10, 11 demonstrate the detailed reevalua- 1309

tion results for end-to-end event extraction, event 1310

detection, and event argument extraction, respec- 1311

tively. 1312

D Prompts for LLMs 1313

Table 12 illustrates the prompts we use for testing 1314

the ability of LLMs in event detection and event 1315

argument extraction. 1316

26https://github.com/PlusLabNLP/X-Gear
27https://github.com/PlusLabNLP/AMPERE
28https://github.com/luka-group/unist
29https://github.com/ZQS1943/GLEN
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Model
ACE05 RichERE MLEE

TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+

DyGIE++ 74.7 71.3 59.1 56.0 54.5 51.8 69.7 59.8 47.1 42.0 43.1 38.3 82.6 78.2 60.4 57.8 56.6 54.4
OneIE 75.0 71.1 62.4 59.9 56.9 54.7 71.0 62.5 53.9 50.0 48.4 45.2 82.7 78.5 28.7 26.9 13.6 13.1
AMR-IE 74.6 71.1 63.1 60.6 56.9 54.6 70.5 62.3 53.7 49.5 48.1 44.7 82.4 78.2 21.3 15.2 6.0 4.7
EEQA 73.8 70.0 57.0 55.3 51.9 50.4 69.3 60.2 49.2 45.8 44.7 41.9 81.4 76.9 52.9 51.1 39.0 38.1
RCEE 74.0 70.5 57.2 55.5 52.5 51.0 68.6 60.0 49.8 46.2 45.1 42.1 81.3 77.2 52.0 49.3 36.9 35.4
Query&Extract 68.6 65.1 57.4 55.0 51.2 49.0 67.5 59.8 52.3 48.9 47.5 44.5 – – – – – –
TagPrime 73.2 69.9 61.6 59.8 56.1 54.6 69.6 63.5 56.0 52.8 51.1 48.4 81.8 79.0 66.6 65.2 61.4 60.3
DEGREE-E2E 70.3 66.8 57.6 55.1 51.3 49.1 67.7 60.5 52.2 48.7 46.6 43.7 74.7 70.2 38.6 33.8 25.9 23.3
DEGREE-PIPE 72.0 68.4 58.6 56.3 52.9 50.7 68.3 61.7 52.5 48.9 47.8 44.8 74.0 70.4 50.9 49.6 43.6 42.7

Model
Genia2011 Genia2013 M2E2

TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+

DyGIE++ 74.2 70.3 58.9 56.9 53.7 52.1 76.3 72.9 62.7 60.5 58.8 57.2 53.1 51.0 34.6 33.4 31.7 30.8
OneIE 76.1 72.1 59.0 57.0 34.2 33.6 78.0 74.3 52.3 51.0 33.7 32.9 52.4 50.6 37.8 36.1 33.4 32.1
AMR-IE 76.4 72.4 44.1 42.8 29.8 29.0 78.0 74.5 35.4 34.8 23.3 23.1 52.4 50.5 37.1 35.5 33.1 31.9
EEQA 74.4 71.3 52.6 50.6 39.5 38.4 72.4 69.4 50.7 48.1 37.6 35.7 53.6 51.0 33.7 32.6 31.1 30.2
RCEE 73.3 70.1 50.9 49.0 38.2 37.2 71.4 68.0 48.0 45.8 33.0 31.6 50.1 48.1 32.0 31.0 28.8 28.0
Query&Extract – – – – – – – – – – – – 51.4 49.4 35.5 33.9 30.2 28.8
TagPrime 74.9 72.2 64.1 62.8 58.8 57.8 75.7 73.0 61.8 60.8 58.2 57.4 52.2 50.2 36.5 35.5 33.2 32.4
DEGREE-E2E 61.6 59.2 40.0 35.6 27.7 25.4 66.4 62.6 37.1 33.3 27.0 24.8 50.9 49.5 33.7 32.5 30.9 30.0
DEGREE-PIPE 63.7 60.5 51.1 49.3 40.8 39.8 64.9 61.0 51.0 49.4 43.0 41.9 50.4 48.3 34.0 33.1 30.9 30.1

Model
CASIE PHEE –

TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+ –

DyGIE++ 44.9 44.7 37.5 36.4 30.4 29.5 71.4 70.4 69.9 60.8 52.4 45.7
OneIE 70.8 70.6 57.2 54.2 23.1 22.1 70.9 70.0 51.5 37.5 40.1 29.8
AMR-IE 71.1 70.8 34.5 10.7 10.0 3.1 70.2 69.4 57.1 45.7 42.2 34.1
EEQA 43.2 42.8 36.2 35.1 27.0 26.2 70.9 70.3 48.5 40.4 38.1 32.0
RCEE 42.3 42.1 34.1 32.8 24.6 23.7 71.6 70.9 49.1 41.6 38.7 33.1
Query&Extract – – – – – – 66.2 55.5 48.1 41.4 36.7 31.8
TagPrime 69.5 69.3 63.3 61.0 50.9 49.1 71.7 71.1 60.9 51.7 47.4 40.6
DEGREE-E2E 60.9 60.7 36.0 27.0 18.5 14.6 70.0 69.1 57.5 49.3 42.4 36.5
DEGREE-PIPE 57.4 57.1 49.7 48.0 34.8 33.7 69.8 69.1 59.0 50.2 42.8 36.7

Table 9: Reevaluation results for end-to-end event extraction (E2E). All the numbers are the average score of 5 data
splits. Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.

Model
ACE05 RichERE MLEE Genia2011 Genia2013 M2E2

TI TC TI TC TI TC TI TC TI TC TI TC

DyGIE++ 74.7 71.3 69.7 59.8 82.6 78.2 74.2 70.3 76.3 72.9 53.1 51.0
OneIE 75.0 71.1 71.0 62.5 82.7 78.5 76.1 72.1 78.0 74.3 52.4 50.6
AMR-IE 74.6 71.1 70.5 62.3 82.4 78.2 76.4 72.4 78.0 74.5 52.4 50.5
EEQA 73.8 70.0 69.3 60.2 82.0 77.4 73.3 69.6 74.7 71.1 53.6 51.0
RCEE 74.0 70.5 68.6 60.0 82.0 77.3 73.1 69.3 74.6 70.8 50.1 48.1
Query&Extract 68.6 65.1 67.5 59.8 78.0 74.9 71.6 68.9 73.0 70.1 51.4 49.4
TagPrime-C 73.2 69.9 69.6 63.5 81.8 79.0 74.9 72.2 75.7 73.0 52.2 50.2
UniST 73.9 69.8 69.6 60.7 80.2 74.9 73.8 70.3 73.7 69.9 51.1 49.0
CEDAR 71.9 62.6 67.3 52.3 71.0 65.5 70.2 66.8 73.6 67.1 50.9 48.0
DEGREE 72.0 68.4 68.3 61.7 74.0 70.4 63.7 60.5 64.9 61.0 50.4 48.3

Model
CASIE PHEE MAVEN FewEvent MEE-en –

TI TC TI TC TI TC TI TC TI TC –

DyGIE++ 44.9 44.7 71.4 70.4 75.9 65.3 67.7 65.2 81.7 79.8
OneIE 70.8 70.6 70.9 70.0 76.4 65.5 67.5 65.4 80.7 78.8
AMR-IE 71.1 70.8 70.2 69.4 – – 67.4 65.2 – –
EEQA 43.4 43.2 70.9 70.3 75.2 64.4 67.0 65.1 81.4 79.5
RCEE 43.5 43.3 71.6 70.9 75.2 64.6 67.0 65.0 81.1 79.1
Query&Extract 51.6 51.5 66.2 55.5 – – 66.3 63.8 80.2 78.1
TagPrime-C 69.5 69.3 71.7 71.1 74.7 66.1 67.2 65.6 81.5 79.8
UniST 68.4 68.1 70.7 69.6 76.7 63.4 67.5 63.1 80.5 78.3
CEDAR 68.7 67.6 71.2 70.3 76.5 54.5 66.9 52.1 81.5 78.6
DEGREE 61.5 61.3 69.8 69.1 76.2 65.5 67.9 65.5 80.2 78.2

Table 10: Reevaluation results for event detection (ED). All the numbers are the average score of 5 data splits.
Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.
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Model
ACE05 RichERE MLEE Genia2011

AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+

DyGIE++ 66.9 61.5 65.2 60.0 58.5 49.4 56.2 47.3 67.9 64.8 65.2 62.4 66.1 63.7 63.0 61.0
OneIE 75.4 71.5 74.0 70.2 71.6 65.8 69.3 63.7 31.0 28.9 16.4 15.7 62.9 60.3 40.1 38.9
AMR-IE 76.2 72.6 74.5 70.9 72.8 65.8 69.6 63.0 23.2 16.6 8.0 6.1 49.1 47.6 36.1 35.3
EEQA 73.8 71.4 71.9 69.6 73.3 67.3 70.8 64.9 64.8 62.1 51.4 49.5 63.2 60.8 51.2 49.4
RCEE 73.7 71.2 71.8 69.4 72.8 67.0 70.2 64.5 61.1 58.2 47.3 45.1 62.3 59.9 51.4 49.6
Query&Extract 77.3 73.6 75.7 72.0 76.4 70.9 74.7 69.2 – – – – – – – –
TagPrime-C 80.0 76.0 78.5 74.5 78.8 73.3 76.7 71.4 78.9 76.6 76.5 74.5 79.6 77.4 77.7 75.8
TagPrime-CR 80.1 77.8 78.5 76.2 78.7 74.3 76.6 72.5 79.2 77.3 76.4 74.6 78.0 76.2 76.2 74.5
DEGREE 76.4 73.3 74.9 71.8 75.1 70.2 73.6 68.8 67.6 65.3 63.4 61.5 68.2 65.7 64.5 62.4
BART-Gen 76.0 72.6 74.8 71.2 74.4 68.8 73.1 67.7 73.1 69.8 71.8 68.7 73.4 70.9 71.8 69.5
X-Gear 76.1 72.4 74.4 70.8 75.0 68.7 73.4 67.2 64.8 63.3 60.7 59.4 68.4 66.2 65.0 63.1
PAIE 77.2 74.0 76.0 72.9 76.6 71.1 75.3 70.0 76.0 73.5 74.7 72.4 76.8 74.6 75.5 73.4
Ampere 75.5 72.0 73.9 70.6 73.8 69.2 72.2 67.7 69.2 67.1 64.4 62.6 69.5 67.1 66.0 63.8

Model
Genia2013 M2E2 CASIE PHEE

AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+

DyGIE++ 71.7 69.3 68.7 66.9 41.7 38.9 41.0 38.5 58.0 56.0 53.4 51.5 63.4 54.6 63.0 54.2
OneIE 57.2 55.7 39.4 38.7 59.0 55.2 57.2 53.3 58.3 55.3 29.0 27.7 55.9 40.6 55.5 40.4
AMR-IE 38.9 38.1 26.7 26.4 56.0 51.3 55.3 50.4 35.5 11.0 12.8 4.0 60.4 45.3 59.9 44.9
EEQA 64.7 61.1 50.3 47.5 57.6 55.9 57.0 55.3 56.1 54.0 50.9 49.0 53.7 45.6 53.4 45.4
RCEE 60.7 57.4 45.1 42.7 57.9 56.4 57.3 55.8 47.6 45.3 41.5 39.5 54.1 45.8 53.8 45.6
Query&Extract – – – – 59.9 56.2 58.0 54.2 – – – – 64.6 54.8 64.2 54.4
TagPrime-C 79.8 77.4 77.1 74.9 63.4 60.1 62.3 59.0 71.9 69.1 68.8 66.1 66.0 55.6 65.6 55.3
TagPrime-CR 76.6 74.5 74.3 72.3 63.2 60.8 62.3 59.9 71.1 69.2 67.9 66.1 65.8 56.0 65.5 55.7
DEGREE 68.4 66.0 64.6 62.5 62.3 59.8 61.7 59.2 61.0 59.0 56.5 54.7 61.7 52.5 61.4 52.3
BART-Gen 76.4 73.6 74.8 72.2 62.5 60.0 62.1 59.6 63.7 60.0 61.8 58.3 57.1 47.7 56.9 47.5
X-Gear 64.1 61.9 60.5 58.6 62.7 59.8 61.9 59.0 65.7 63.4 61.4 59.3 67.6 58.3 67.4 58.2
PAIE 77.8 75.2 76.6 74.2 62.9 60.6 62.7 60.4 68.1 65.7 66.4 64.0 74.9 73.3 74.7 73.1
Ampere 73.2 71.0 69.6 67.7 62.1 59.1 61.4 58.4 61.1 58.4 56.4 53.9 61.4 51.7 61.1 51.6

Model
WikiEvnts RAMS GENEVA –

AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+ –

DyGIE++ 39.8 35.3 39.0 34.7 44.3 35.3 44.3 35.3 66.0 62.5 65.8 62.3
OneIE 17.5 15.0 9.2 7.9 48.0 40.7 48.0 40.7 38.9 37.1 38.6 36.9
AMR-IE 17.8 16.0 11.7 10.4 49.6 42.3 49.6 42.3 23.7 16.6 23.4 16.4
EEQA 54.3 51.7 48.4 46.1 48.9 44.7 48.9 44.7 69.7 67.3 69.4 67.0
RCEE 53.7 50.9 46.4 44.0 45.4 41.5 45.4 41.5 66.2 63.8 65.8 63.4
Query&Extract – – – – – – – – 52.2 50.3 51.8 50.0
TagPrime-C 70.4 65.7 68.6 64.0 54.4 48.3 54.4 48.3 83.0 79.2 82.7 79.0
TagPrime-CR 70.3 67.2 68.4 65.5 54.1 49.7 54.1 49.7 82.8 80.4 82.5 80.1
DEGREE 60.4 57.3 56.8 53.9 50.5 45.5 50.5 45.5 67.2 64.1 67.0 63.9
BART-Gen 68.5 64.2 68.1 63.9 50.4 45.4 50.4 45.4 67.3 64.4 67.2 64.3
X-Gear 58.7 55.6 55.4 52.4 52.1 46.2 52.1 46.2 78.9 75.1 78.7 74.9
PAIE 69.8 65.5 69.5 65.2 55.2 50.5 55.2 50.5 73.5 70.4 73.4 70.3
Ampere 59.9 56.7 56.2 53.3 52.0 46.8 52.0 46.8 67.8 65.0 67.6 64.8

Table 11: Reevaluation results for event argument extraction (EAE). All the numbers are the average score of 5 data
splits. Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.
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Prompt Used for Event Detection

Instruction

You are an event extractor designed to check for the presence of a specific event in a sentence and to
locate the corresponding event trigger.
Task Description: Identify all triggers related to the event of interest in the sentence. A trigger is
the key word in the sentence that most explicitly conveys the occurrence of the event. If yes, please
answer ‘Yes, the event trigger is [trigger] in the text.’; otherwise, answer ‘No.’
The event of interest is Business.Collaboration. This event is related to business collaboration.

Example 1

Examples 1
Text: It is a way of coordinating different ideas from numerous people to generate a wide variety of
knowledge.
Answer: Yes, the event trigger is coordinating in the text.

Example 2

Examples 2
Text: What’s going on is that union members became outraged after learning about the airline’s
executive compensation plan where we would have paid huge bonuses even in bankruptcy
Answer: No.

... ...

Query

Question
Text: Social networks permeate business culture where collaborative uses include file sharing and
knowledge transfer.
Answer:

Output Yes, the event trigger is sharing in the text.

Prompt Used for Event Argument Extraction

Instruction

You are an argument extractor designed to check for the presence of arguments regarding specific
roles for an event in a sentence.
Task Description: Identify all arguments related to the role Agent, Person, Place in the sentence.
These arguments should have the semantic role corresponding to the given event trigger by the word
span between [t] and [/t]. Follow the the format of below examples. Your answer should only
contain the answer string and nothing else.
The event of interest is Justice:Arrest-Jail. The event is related to a person getting arrested or a
person being sent to jail. Roles of interest: Agent, Person, Place

Example 1

Examples 1
Text: Currently in California , 7000 people [t] serving [/t] 25 to year life sentences under the three
strikes law.
Agent:
Person: people
Place: California

Example 2

Examples 2
Text: We’ve been playing warnings to people to stay in their houses , and we’ve only [t] lifted [/t]
those people we’ve got very good intelligence on.
Agent: we
Person: people
Place:

... ...

Query
Question
Text: A pizza delivery helped police [t] nab [/t] the suspect in the kidnapping of a 9-year-old
California girl.

Output
Agent: police
Person: suspect
Place:

Table 12: Prompts use for testing the ability of LLMs in event extraction.
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