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Abstract
Current screening programs that focus on improv-
ing patient health while minimizing screening
costs are tailored for individual diseases. De-
signing unified screening programs for multiple
diseases requires carefully balancing competing
disease risks, which is an open problem. In this
work, we address this problem by casting uni-
fied screening as a referral problem, in which we
choose to activate a subset of screening policies
for individual diseases by accounting for com-
peting risks that influence patient outcomes. We
introduce a novel optimization framework that in-
corporates disease risks, budget constraints, and
diagnostic error limits and characterize the struc-
tural properties of the optimal referral policy. For
the unified screening of two diseases, we show
that the optimal activation threshold for the screen-
ing of one disease depends on the risk of the
other, resulting in decision boundaries with dis-
tinct risk-dependent profiles. We compare our
unified model with independent screening pro-
grams that apply isolated activation thresholds
for screening of each disease. Our approach opti-
mizes screening decisions collectively, improving
overall survival outcomes, particularly for patients
with high disease risks.

1. Introduction
The challenge of designing effective screening programs
for disease detection is central to improving healthcare out-
comes. Traditionally, screening programs are developed
in isolation for individual diseases, ignoring the interac-
tions between diseases and risks for different conditions
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(De Mutsert et al., 2009; Weiner et al., 2006; Thayer et al.,
2010). This limitation reduces the efficiency of healthcare
interventions, as potential synergies between diseases are
overlooked, and resources may be misallocated. Screening
a patient with high risks for two conditions for only one con-
dition might fail to improve their overall health outcomes,
whereas a unified screening approach could yield better re-
sults (Fan et al., 2024; Huang et al., 2023; Yang et al., 2006)
by addressing the competing risks, which refer to events
that interfere with or alter the likelihood of observing the
event of interest (Pintilie, 2011).

For instance, consider a patient who has both cardiovascular
disease and cancer but is only screened for cancer, where the
adverse event from cancer happens to occur after the adverse
event from heart disease. When screening for cancer, if the
patient unexpectedly suffers from heart disease, then the
cancer screening offers no benefit to the patient in terms
of quality-adjusted life years (QALYs). However, if the
patient is screened for both diseases, heart disease will be
identified earlier. In that case, the adverse event due to heart
disease will be prevented, and cancer screening will result
in QALY gain by detecting cancer before the adverse event
associated with it happens. However, screening the patient
for both diseases is costly. Hence, optimal allocation of
screening resources to patients with different risk profiles is
an important task.

In this paper, we propose a novel framework for design-
ing unified screening programs that simultaneously address
multiple diseases. Unlike existing programs, our approach
accounts for the competing risks associated with each dis-
ease when determining whom to screen for which condition
while also considering resource constraints, an important
factor in screening programs (Cevik et al., 2018; Bansal
et al., 2020; Teh et al., 2015). We introduce an optimization
formulation for the screening problem, which incorporates
budget constraints and diagnostic error limits. Using proper-
ties of the Lagrange dual function, we characterize optimal
decision boundaries and validate our findings through ex-
tensive in-silico experiments. In particular, for the case of
unified screening of two diseases, we show that the opti-
mal activation threshold for one disease is not static but a
function of the risk of the other disease. Instead of a sin-
gle threshold per disease, our model introduces multiple
regions that correspond to distinct combinations of screen-
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ing activations. These regions emerge due to the interplay
of competing risks, where the decision to screen for one
disease depends not only on its individual risk but also on
its interaction with the risks of other diseases. This also
results in decision boundaries with a curvy shape, which
reflects the interplay between the risks of the diseases.

Our experimental results demonstrate that the mathematical
characterizations of the optimal policies align closely with
the numerical solution of the convex program (see Figure
1). Importantly, we compare the performance of our unified
screening model against that of independent screening pro-
grams. Independent screening programs operate under the
assumption that diseases are unrelated and apply distinct
threshold policies for each condition. Specifically, they ac-
tivate screening for a disease if the patient’s risk for that
disease exceeds a predetermined threshold, independent of
the risks for other conditions. In contrast, our unified model
accounts for the interplay between diseases and optimizes
the screening policies collectively rather than in isolation.
This approach enhances survival times for patients whose
risk profiles indicate significant interactions between dis-
eases, particularly in scenarios where one disease’s optimal
threshold influences the other’s. For instance, in cases of
competing risks (Wolbers et al., 2014; Pintilie, 2011; Allig-
nol et al., 2011), addressing one condition indirectly benefits
the other, while in cases of individual risks, prioritizing the
most pressing condition ensures optimal resource allocation.
Our results show that, when compared with the indepen-
dent screening model, the unified model prioritizes patients
with higher relative risks for a specific disease, activating
screenings for these individuals in cases where independent
screening would not (as shown by the colored regions in
Figure 1(c)). Conversely, it reduces screenings for patients
with moderate risks for both diseases, resulting in grey re-
gions in Figure 1(c). In essence, the model places greater
emphasis on addressing higher relative risks, which leads to
better health outcomes for these patients (see Figure 2).

Our unified screening framework represents a significant
step forward in improving the design and efficiency of
screening programs, ensuring better health outcomes in
resource-constrained environments. In silico experiments
for the unified screening of two diseases demonstrate that
survival times improve compared to the optimal individ-
ual screening programs, validating the benefit of unified
screening (see Figure 2).

2. Related Work
From a medical perspective, prior research has predom-
inantly focused on optimizing sampling schedules or
decision-making processes for single-disease screenings.
These strategies often aim to determine or evaluate inclu-
sion criteria (Tomaszewski et al., 2022; Bauer et al., 2015;

(a) (b) (c)

Figure 1: Optimal referral policy for N = 2 under uniform risk
distribution for (a) independent screening model, (b) our unified
screening model. Grey: a = 1 (no screening), Pink: a = 2
(screening only the first disease), Purple: a = 3 (screening only
the second disease), Red: a = 4 (screening both diseases). Notice
that unlike in the independent case with constant thresholds, the
activation threshold for the first disease (to the pink and red regions)
is a curve which is in fact a function of x2, the risk of the other
disease. The difference between two policies is given in (c).

Figure 2: Average survival times (in years excess of 50) with
respect to x1 (the first disease risk) for both the unified and inde-
pendent screening programs computed by taking the mean survival
times over all x2 values (the second disease risk), in the case of
screening for two diseases, along with the mean survival times for
both programs indicated by the horizontal dashed lines. Details
are provided in Section 5.

Fernandez et al., 1991; Yu et al., 2021; Xiao et al., 2022;
Idrees et al., 2021; Wang et al., 2024b) and screening policy
frequency (Hemmati et al., 2024; Wu & Suen, 2022; Wang
et al., 2024b; Wu et al., 2024). Most of the existing studies
focus on Markov models and processes (Wu et al., 2024; Wu
& Suen, 2022; Zhang et al., 2012a;b; Maillart et al., 2008).
Kamalzadeh et al. (2021) propose a framework combining
partially observable Markov Decision Processes (POMDP),
Hidden Markov Models (HMM), and Predictive Risk Mod-
eling (PRM) to design individualized diabetes screening
policies. To optimize decision making in healthcare, Bertsi-
mas et al. (2018) propose a framework for prostate cancer
screening that identifies strategies effective across multiple
mathematical models using heuristic search.

Cost-effectiveness analyses have also been a critical com-
ponent of the literature to identify the optimal trade-off be-
tween screening costs and health benefits (Xia et al., 2024;
Qin et al., 2022; 2024; Wang et al., 2024a; Bao et al., 2022).
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Table 1: Comparison of Related Works.

Reference Joint Screening Multiple Diseases Resource Constraints Competing Risks

Yala et al. (2022) No No Yes No
Cevik et al. (2018) No No Yes No
Huang et al. (2023) Yes Yes No No
Wright et al. (2015) No No No Yes
Peng & Xiang (2021) Yes No No Yes
Alaa & Van Der Schaar (2016) No No Yes No
This Work Yes Yes Yes Yes

Resource constraints, such as limited budgets, personnel,
and equipment (Yadla et al., 2024; Khoza-Shangase et al.,
2017), play a fundamental role in these analyses, as they
directly impact the feasibility and scalability of screening
programs (Cevik et al., 2018; Bansal et al., 2020). Cevik
et al. (2018) tackle resource constraints by proposing a
constrained POMDP model to optimally allocate limited
mammography screening resources, and prioritize patients
based on their risk levels and screening capacity. Yala et al.
(2022) present a reinforcement learning-based framework,
which optimizes resource-constrained breast cancer screen-
ing by AI-driven risk models, to enhance early detection
and minimize excessive screening. However, to the best
of our knowledge, none of the existing methods address
both resource constraints and competing risks of multiple
diseases simultaneously, which leaves a gap in optimizing
multi-disease screening programs under such conditions.

A competing risks problem in our approach refers to the
assessment of the likelihood of health benefits from an in-
tervention, considering the presence of other potential out-
comes that may interfere with or prevent the occurrence
of the event of interest (Varadhan et al., 2010). This ap-
proach enables the analysis of both the timing of the first
observed event and its type (Wolbers et al., 2014). Compet-
ing risk analyses have been tackled in the literature (Allignol
et al., 2011; Wolbers et al., 2014; Satagopan et al., 2004;
Pintilie, 2011; Cho et al., 2022), which highlights its im-
portance. Stenling et al. (2020) employ a competing risks
approach to develop lifetime risk models for cardiovascular
events, while Wright et al. (2015) develop a competing
risks model for screening preeclampsia by incorporating
maternal demographic characteristics and medical history.
In a semi-competing risks framework, Peng & Xiang (2021)
propose a joint feature screening method that is based on the
correlation ranking of gene features, to address challenges
in ultrahigh-dimensional breast cancer data analysis.

Several studies highlight the benefits of joint screening pro-
grams. Fan et al. (2024) evaluate joint screening for prostate,
lung, colorectal, and ovarian cancer, and demonstrate that
joint cancer screening reduces all-cause and all-neoplasm
mortality, which makes it a promising strategy. Huang

et al. (2023) discuss that combined cancer screening would
enhance cost-effectiveness, and improve early detection
through shared risk factors. Regarding the screening for
multiple diseases, Yang et al. (2006) evaluate the integration
of colorectal cancer (CRC) screening into a multi-disease
program through a Markov model. Their study projects that
multiple disease screening reduces CRC mortality by 33%,
which outperforms single-disease screening (23% reduc-
tion). Huang et al. (2023) implement a combined cancer
screening program for colorectal, breast, lung, liver, and
stomach cancers with C-BLAST trial, using a multi-stage
design.

Our work on designing disease screening programs, which
is about making decisions based on accumulating evidence
to optimize outcomes under uncertainty, is closely related to
sequential hypothesis testing (Chernoff, 1992; Drugowitsch
et al., 2014; 2012; Shvartsman et al., 2015). With multiple
diseases, the general problem is an instance of sequential hy-
pothesis testing with multiple hypotheses. Prior work, such
as by Alaa & Van Der Schaar (2016) examines resource allo-
cation with a Bayesian model in single-hypothesis (disease)
scenarios but does not extend to the complexities of multi-
disease contexts. However, in our context, multiple diseases
correspond to multiple hypotheses, which transforms our
problem into an active learning challenge, where actions
influence the acquisition of information across diseases.

Different than all of the works listed, the framework de-
veloped in this paper integrates the optimization of referral
decisions with probabilistic decision-making. The proof
techniques illustrate how boundaries in the decision space
can be derived, connecting to geometric approaches found
in threshold-based medical screening policies. By incor-
porating stochastic constraints, our approach generalizes
these methods into a probabilistic framework that adaptively
balances performance metrics, such as survival time and
cost. Table 1 compares our work with the closely related
works. See Appendix A for more detail on related works.
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3. Problem Formulation
3.1. The Unified Screening Problem

Diseases and Adverse Events. We consider the screening
of N diseases. Patients have latent disease states represented
by random variables Θn ∈ {0, 1}, n ∈ [N ]. The disease
state vector is defined as Θ = [Θ1, . . . ,ΘN ]T. If Θn = 1,
the patient experiences an adverse event related to disease
n at a random time Tn ∈ N+.1 If Θn = 0, no such event
occurs, and Tn = ∞. The pmf for Tn conditioned on Θn is
given as

pTn|Θn
(t | θn) =


1, if θn = 0 and t = ∞,

fTn
(t), if θn = 1 and t ∈ N+,

0, otherwise.

Here, fTn
(t) is a probability distribution (e.g., geomet-

ric) defined on N+. The CDF of Tn given Θn = θn is
FTn|Θn

(t|θn) = P(Tn ≤ t|Θn = θn). The random vector
T = [T1, . . . , TN ]T represents the adverse event times for
all diseases.

Risks and Screening Targets. Each patient has a risk vector
X = [X1, . . . , XN ]T ∈ [0, 1]N , where Xi denotes the prior
probability of the patient having disease i.2 For n ∈ [N ]:

P{Θn = θn | X = x} =

{
xn, if θn = 1,

1− xn, if θn = 0.

The distribution of risk vector over patient population is
given by pX(x). There are N screening targets, each of
which is associated with one disease. The nth screening
target Yn : R+ → R is a random function with Yn(t) repre-
senting its value at time t. The conditional distribution of
Yn(t) given Θn is pYn(t)|Θn

(yn|θn).3 The vector of random
target functions is represented as Y = [Y1, . . . , YN ]T.

Probabilistic Dependencies. The random elements in the
system can be represented as a tuple (X,Θ, T, Y ). The prob-
abilistic relationships between these random elements are
encoded in the Bayesian network given in Figure 3, which
implies the following factorization for the joint distribution
of (X,Θ, T, Y ): pX,Θ,T,Y (x, θ, t, y) = pX(x)pΘ|X(θ |
x)pY |Θ(y | θ)pT |Θ,Y (t | θ, y). Moreover, the following
conditional independence statements hold as a result of d-
separation: pΘ|X(θ|x) =

∏N
n=1 pΘn|X(θn|x), pT |Θ(t|θ) =

1A time unit can correspond to a day, month, year, etc.
2One can use off-the-shelf risk prediction models to obtain dis-

ease risks for particular diseases. For instance, the Gail model (for
breast cancer), QRISK3 (for cardiovascular disease), (normalized)
polygenic risk scores, and even AI-based models can be used to
provide risk scores.

3Yn may represent a biomarker value, clinical metric, or sim-
ilar quantity related to disease n. The randomness in Yn can be
attributed to measurement noise or natural biological fluctuations.
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Figure 3: Bayesian network of (X,Θ, T, Y ).

∏N
n=1 pTn|Θn

(tn|θn), pT |X(t|x) =
∏N

n=1 pTn|X(tn|x),
pT |X,Θ(t|x, θ) = pT |Θ(t|θ) =

∏N
n=1 pTn|Θn

(tn|θn),
pYn(t)|X,Θ(yn) = pYn(t)|Θn

(yn). In addition, we assume
that given Θ, screening samples taken at different times are
independent: Y (t) ⊥⊥ Y (t′) | Θ for t′ ̸= t.

Screening and Diagnostic Actions. For each patient, the
decision-maker first observers the risk vector x. Then,
it needs to determine the disease states Θn by observing
costly samples of the screening targets Yn before the adverse
events associated with the diseases occur. At each t, they
take two types of actions. The first is the screening action
δ(x, t) ∈ {0, 1}N . If δn(x, t) = 1, then the decision-maker
observes the nth screening target Yn(t). If δn(x, t) = 0,
then they do not observe the nth screening target. We de-
note with #n(x, T ) = |{t ∈ [0, T ) : δn(x, t) = 1}| the
total number of observations taken from the nth screen-
ing target up to time T . The second is the diagnostic
action θ̂(x, t) ∈ {0, 1}N . The first time point when
θ̂n(x, t) = 1 indicates that the decision-maker has diag-
nosed the patient with the nth disease. We denote with
t∗n(x) = min{t ∈ R+ : θ̂n(x, t) = 1} the diagnosis time
for the nth disease for patient with risk vector x. When the
dependence on x is clear from the context, we will drop the
argument inside the paranthesis from the notation, and use
δn(t), θ̂n(t), t∗n, etc.

Decision-making Policies. The decision-maker takes
screening actions δ and diagnostic actions θ̂ according
to some screening policy δπ and some diagnostic pol-
icy θ̂π respectively, which constitutes a complete pol-
icy π = (δπ, θ̂π). Denote with Iδ(T ) = {X} ∪
{Yn(t)}n∈[N ],t∈[0,T ):δn(t)=1∪{δ(t)}t∈[0,T )∪{θ̂(t)}t∈[0,T )

all of the information available at time T to the
screening policy and Iθ̂(T ) = Iδ(T ) ∪ {δ(T )} ∪
{Yn(T )}n∈[N ]:δn(T )=1 the diagnostic policy. Clearly,
δ(t) = δπ(t) = δπ(t, Iδ(t)) and θ̂(t) = θ̂π(t) =

θ̂π(t, Iθ̂(t)). Let Π represent the set of all joint screening
and diagnostic policies.

Objective. Each sample from the screening target n ∈ [N ]
has a fixed cost of cn ∈ R+. For instance, cn can represent
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the cost of mammography or chest X-ray. We say the nth
disease is diagnosed on time if and only if (iff)

On = {Θn = 1} ∧ {t∗n < Tn}.

Let T ∗ be the time point when the first adverse event that is
not diagnosed on time occurs such that T ∗ = min{Tn : n ∈
[N ],¬On}. Then, the objective of the decision-maker is to
maximize T ∗ up to some survival time T0 ∈ N+ subject to
constraints on budget and diagnostic error rates, which is
formalized as a joint screening and diagnosis problem:

maximize E[min{T0, T
∗}] (1)

s.t. E[
∑

n∈[N ] cn ×#n(min{T0, Tn, t
∗
n})] ≤ B,

P{Θn = 0, θ̂n(t) = 1} ≤ αn,∀t ∈ [T0], n ∈ [N ],

π ∈ Π,

where B is the total screening budget and αn is the maxi-
mum allowed false positive rate for disease n. The expecta-
tions are taken over the randomness induced by interaction
of π with (X,Θ, Y, T ).

3.2. The Referral Problem

The referral problem is about determining the optimal
screening and diagnostic policy to use under each risk vec-
tor given a set of existing policies, rather than creating a
completely new policy from scratch. This is crucial because
the joint optimization approach in (1) can yield complex
policies, which are difficult to implement in real-world clin-
ical practice. Moreover, new policies are hard to justify in
clinical guidelines, especially if they are entirely novel, and
implementing novel clinical guidelines is another challenge
due to many factors, including legislation (Wang et al., 2023;
Francke et al., 2008; Correa et al., 2020). On the other hand,
combining existing policies in an optimal way, as we do by
solving the referral problem, is feasible and easier to support
in practice (Stoll & Norton, 2018). Our approach, which
optimizes the referral process, provides a lower bound on
the performance of (1).

Suppose an individual policy πn = (δπn , θ̂πn) for each
disease n ∈ [N ] is already provided. Each of these policies
only ever diagnose their corresponding diseases such that
θ̂πn

n′ (x, t) = 0 if n′ ̸= n for all x ∈ [0, 1]N and t ∈ R+. To
represent which policies are active for a given risk vector x,
define the referral decision ρ : [0, 1]N → {0, 1}N such that
ρ(x) = [ρ1(x), ρ2(x), . . . , ρN (x)]T, where

ρn(x) =

{
1 if the policy for disease n is active,
0 otherwise.

This leads to the following composite policy:

δn(x, t) =

{
1 if ρn(x) = 1 ∧ δπn

n (x, t) = 1,

0 otherwise.

θ̂n(x, t) =

{
1 if ρn(x) = 1 ∧ θ̂πn

n (x, t) = 1,

0 otherwise.

This composite policy samples the nth target when screen-
ing for disease n is active and the policy for that disease
asks to screen for that target.

Let Πref ⊂ Π represent the set of all referral deci-
sions given individual screening and diagnostic policies
for all diseases. As a subset of the referral decisions,
we define the independent referral decisions as ρ̄(X) =
[ρ̄1(x1), ρ̄2(x2), . . . , ρ̄N (xN )]T, where ρ̄n’s are indepen-
dent from xi,∀i ̸= n. In this case, unlike the general re-
ferral decisions where the activation of a disease screening
depends on the risk vector x, in the independent referral
decision, the activation of the nth disease depends on only
xn. Let Πind ⊂ Πref denote the set of independent referral
decisions.

To represent all possible combinations of screening de-
cisions for N diseases as integers, we define the action
a(ρ) : {0, 1}N → A, where A = {1, 2, . . . , 2N}, mapping
referral decisions ρ to integer indices. In the case of N = 2,
the actions a = 1, 2, 3, 4, correspond to the following re-
ferral decisions respectively: nothing is screened, only the
first disease is screened, only the second disease is screened,
and both diseases are screened. Lastly, we define q(a|x)
as the probability of selecting action a (and consequently
its corresponding referral decision ρ), given a patient’s risk
vector x. Hence for any x, we have q(a|x) ≥ 0, ∀a ∈ A
and

∑
a∈A q(a|x) = 1.

We formalize the problem of finding the optimal referral
decision ρ∗, which provides a lower bound on the optimal
value of (1) as follows:4

maximizeq

∫
x∈X

pX(x)

(∑
a∈A

q(a|x) · ra,x

)
dx (2)

4If the goal were to learn the optimal referral policy directly
from a dataset of patient screening trajectories, the problem could
indeed be framed as a policy learning task with an appropriately
defined cost function. However, our work takes a complementary,
orthogonal approach. We begin with a well-defined optimization
problem and focus on analytically characterizing the structure of
its optimal solution. Rather than learning from data, our emphasis
is on understanding the geometry and properties of the optimal
referral rule under a known probabilistic model.
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s.t.



∫
x∈X

pX(x)

(∑
a∈A

q(a|x) ·ma,x

)
dx ≤ B,

q(a|x) ≥ 0, ∀a ∈ A,∀x ∈ X ,∑
a∈A

q(a|x) = 1, ∀x ∈ X ,

P{Θn = 0, θ̂n(t) = 1} ≤ αn,∀t ∈ [T0], n ∈ [N ]

where ra,x := E [min{T0, T
∗}|a, x], ma,x :=∑

n cnE [#n|a, x] and A is the set of all actions.

4. The Optimal Referral Decision
In order to characterize the structure of the optimal referral
decision, we focus on the case of N = 2, representing
two diseases and two screening targets corresponding to
each disease. This choice is motivated by the fact that
screening for two diseases would be common and easier
to adapt in clinical practice, whereas screening for three
or more diseases simultaneously is much less frequent and
often impractical (Ruhwald et al., 2022; Davis et al., 2015;
Deverka et al., 2022; Castle, 2022). Additionally, the case of
N = 2 allows for a clear visual inspection of the results and
provides insights that can be intuitively generalized to higher
dimensions. On the other hand, characterizing the optimal
referral policy becomes significantly more complex and far
less intuitive when considering more than two diseases. One
would expect the number of boundaries of interest (e.g., as
shown in Figure 1(b)) to grow combinatorial with N , as
one must account for boundaries that separate screening
decisions across different subsets of diseases. We assume
that pX is a uniform distribution over the risk vector domain
[0, 1]2.

We restrict our attention to deterministic screening policies
where the screening frequency remains constant over time.
This includes periodic screening as a special case. This
choice is supported by the literature (Curry et al., 2018;
Wolf et al., 2024; Canadian Task Force on Preventive Health
Care, 2011; Eddy, 1989; Bhatia et al., 2022; Shapiro, 1992),
for example annual screening (Perros et al., 1995; Nagao
& Warnakulasuriya, 2003), which highlights that periodic
screening is (or should be) widely adopted in practice due to
its health outcomes, simplicity and ease of implementation.
Adaptive screening policies, while potentially more flexible,
are often more complex and require continuous monitoring
and adjustments, which may not be feasible or cost-effective
in many clinical settings.

For each disease n ∈ {1, 2}, the screening policy provided
is to take samples from the nth target (one target corre-
sponding to each disease) with a fixed schedule until the
patient is diagnosed with the disease (or an adverse event
occurs, interrupting screening). Let {τn1, . . . , τnSn} denote
the sampling schedule for the nth disease, where τni is the

time point that the ith sample is taken (τn1 = 0), and Sn is
the maximum sampling number. Since we do not assume
an adaptive scheduling, Sn is deterministic. We have:

δπn
n (t) =

{
1 if En(t) ∧ ∀t′ ∈ [0, t), θ̂πn

n (t′) = 0,

0 otherwise
(3)

where En(t) := ∃i ∈ [Sn] : t = τni.

The diagnostic policy is to issue a diagnosis only if the
posterior probability of a patient having the disease exceeds
some threshold γn ∈ (0, 1) such that

θ̂πn
n (t) =

1 if
xn

1− xn
· LRn(t) ≥

γn
1− γn

,

0 otherwise
(4)

where LRn(t) =
∏

i:τni∈[0,t)

pYn(τni)|Θn=1(yn(τni))

pYn(τni)|Θn=0(yn(τni))
. For

this to be well defined, assume pYn|Θn=1 is absolutely con-
tinuous with respect to pYn|Θn=0. In this model, the diag-
nostic decision is based on the disease probability reaching a
certain level. Although it is hard to create a model, given the
difficulty of capturing all the factors clinicians consider, a
probabilistic approach is applicable for a diagnosis decision
(Agency for Healthcare Research and Quality, 2022; Sox
et al., 1989). This model maintains the false positive rate be-
low a specific level, and an essential aspect of this diagnosis
policy is that patients are never diagnosed as “disease-free”
given how there may exist medical conditions that may
remain undiagnosed (National Institutes of Health (NIH),
2023; Tifft & Adams, 2014) due to their difficulty in being
identified (Macnamara et al., 2020; Global Genes, 2023).
Once screening begins, deterministic sampling continues
until either the disease is detected or an adverse event related
to the disease occurs.

First, note that the error constraint in (2) is satisfied for a
suitable choice of γn. We can rewrite (2) as:

maximizeq

∫
x∈X

(
4∑

a=1

q(a|x)ra,x

)
dx (5)

s.t.



∫
x∈X

(
4∑

a=1

q(a|x)ma,x

)
dx ≤ B,

q(a|x) ≥ 0,∀a ∈ [4], x ∈ X ,

4∑
a=1

q(a|x) = 1,∀x ∈ X .

Let p∗ represent the optimal value of this problem. The
Lagrange dual function associated with the above problem
takes the form

g(λ) = max
q

∫
x∈X

(
4∑

a=1

q(a|x)(ra,x − λ(ma,x −B)

)
dx
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s.t. q(a|x) ≥ 0,

4∑
a=1

q(a|x) = 1,∀x ∈ X , a ∈ [4], (6)

where λ ≥ 0. The Lagrange dual function provides an up-
per bound for the problem, i.e., g(λ) ≥ p∗. Given x, we
pay attention to the term

∑4
a=1 q(a|x)κa(x) in (6), where

κa(x) := ra,x − λma,x. This term is maximized when
q(a∗|x) = 1 for some a∗ ∈ argmaxa∈A κa(x). The La-
grange dual problem associated with (5) takes the following
form: minimize g(λ) s.t. λ ≥ 0. Let λ∗ represent the dual
optimum. Since (5) is a feasible LP, strong duality holds.
Therefore, g(λ∗) = p∗. This implies that the optimal policy
for (5) takes the form a∗(x) ∈ argmaxa∈[4] ra,x−λ∗ma,x,
x ∈ X .

To determine the optimal referral decision, we will consider
the referral decision ρ∗1(x) of the first disease. Intuitively,
ρ∗1(x) = 1 for x’s such that κ’s associated with actions
where the first disease is screened (a = 2 or a = 4) exceed
the ones associated with actions where the first disease is
not screened (a = 1 or a = 3). A similar intuition holds
for ρ∗2(x) as well. Define sub-rule ρi,j(x) := 1{κi(x) >
κj(x)}. The following proposition characterizes ρ∗1(x) in
terms of sub-rules ρi,j(x)s.

Proposition 4.1. ρ∗1(x) = ρ2,1(x) ∨ (ρ4,1(x) ∧ ρ4,3(x))
and ρ∗2(x) = ρ3,1(x) ∨ (ρ4,1(x) ∧ ρ4,2(x)).

Proposition 4.1 gives a complete characterization of when to
screen for diseases 1 and 2. Next, we characterize a special
case when each sub-rule in Proposition 4.1 takes an intuitive
form. Given x2 ∈ [0, 1], for any (i, j), let

bi,j(x2) :=


+∞, if κi(x)− κj(x) < 0,∀x1 ∈ [0, 1]

−∞, if κi(x)− κj(x) > 0,∀x1 ∈ [0, 1]

{x1 ∈ [0, 1] : κi(x)− κj(x) = 0}, else.

The following three lemmas characterize the forms of the de-
cision boundaries b⊥, b≡, b⊤ : [0, 1] → [0, 1]∪{−∞,+∞}
that correspond to sub-rules ρ2,1, ρ4,1, and ρ4,3 used to de-
fine ρ∗1(x).

5 The form of the decision boundaries for the
sub-rules of ρ∗2(x) follows from the symmetry.

Lemma 4.2. For each x2 ∈ [0, 1], there is a unique
b⊥(x2) ∈ (0, 1). Thus, ρ2,1(x) = 1{x1 > b⊥(x2)}. More-
over, b⊥ is an increasing function, i.e., b⊥(x2) < b⊥(x

′
2) if

x2 < x′
2.

Lemma 4.3. Assume that if a root of κ4(x)− κ1(x) exists
for a given x2 ∈ [0, 1], then it is unique. b⊥(0) < b≡(0),
b⊥(1) > b≡(1). Thus, ρ4,1(x) = 1{x1 > b≡(x2)}. If
b≡(x2) is decreasing in x2, then, b⊥(x2) and b≡(x2) have
a unique intercept x2⊥ ∈ (0, 1).

Lemma 4.4. For each x2 ∈ [0, 1], there is a unique
b⊤(x2) ∈ (0, 1). Thus, ρ4,3(x) = 1{x1 > b⊤(x2)}. In

5Technical assumptions and proofs are given in the Appendix.

addition, b⊤ satisfy the following properties: (i) b⊥(0) ≤
b⊤(x2) ≤ b⊥(x2) for all x2 ∈ [0, 1]; (ii) b⊥(0) = b⊤(0) =
b⊤(1); (iii) b⊤(0) = b⊤(1) ≤ b⊤(x2) for all x2 ∈ [0, 1].

Combining the lemmata above we characterize the form of
the optimal referral decision as follows.

Proposition 4.5. When b≡(x2) is decreasing, and b≡(x2)
and b⊤(x2) have a unique intercept x2⊤, then the optimal
referral decision ρ∗1(x) has the form ρ∗1(x) = 1{x1 >
ζ1(x2)} where

ζ1(x2) =


b⊥(x2) if x2 ∈ [0, x2⊥]

b≡(x2) if x2 ∈ (x2⊥, x2⊤)

b⊤(x2) if x2 ∈ [x2⊤, 1].

(7)

Moreover, ζ1(0) = ζ1(1), ζ1(0) ≤ ζ1(x2) for all x2 ∈ [0, 1].
Similarly, ρ∗2(x) = 1{x2 > ζ2(x1)} where

ζ2(x1) =


b′⊥(x1) if x1 ∈ [0, x1⊥]

b≡(x1) if x1 ∈ (x1⊥, x1⊤)

b′⊤(x1) if x1 ∈ [x1⊤, 1]

(8)

such that ζ2(0) = ζ2(1), ζ2(0) ≤ ζ2(x2) for all x1 ∈ [0, 1].

As can be seen from Figure 1(b), our characterization in
Proposition 4.5 matches with the empirical observation ob-
tained by solving the LP in (5).

The assumptions that b≡(x2) is decreasing in x2, and
b≡(x2) and b⊤(x2) have a unique intercept are hard to prove
due to the complicated nature of the gaps κi(x)− κj(x) be-
tween actions 4-1 and 4-3 in terms of x. This stems from
the fact that diagnosis depends on the posterior, not just
the likelihood. We provide empirical evidence for these
assumptions. We show monotonicity of b≡(x2) and unique
intersection of b≡(x2) and b⊤(x2) across a wide range of
parameters in Appendix C. If these assumptions are violated,
the decision boundaries may not be as simple as the ones
stated in Proposition 4.5. However, this does not diminish
the practical applicability of our proposed joint screening
program.

Another intriguing task is to understand the unified effect of
the risk vector on the optimal referral decision. To this end,
we also characterize the optimal referral decision when the
screening activation of each disease is restricted to depend
only on the risk of that disease.

Proposition 4.6. Restricted to the set of independent re-
ferral decisions ρn(x) = ρ̄n(xn), the optimal referral de-
cision has the form ρ̄∗1(x1) = 1{x1 > ζ̄1} and ρ̄∗2(x2) =
1{x2 > ζ̄2} for some thresholds ζ̄1, ζ̄2 ∈ [0, 1], where
ζ1(0) = minx2∈[0,1] ζ1(x2) ≤ ζ̄1 ≤ maxx2∈[0,1] ζ1(x2)
and ζn(0) ≤ ζ̄n.

As can be seen from Figure 1(a), our characterization in
Proposition 4.6 matches with the empirical observation for
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the optimal independent referral decision. The differences
between the actions induced by the optimal referral deci-
sions in Propositions 4.5 and 4.6 are illustrated in Figure
1(c). If the prior probability of having the other disease is
zero (e.g., x2 = 0 in the case of N = 2), then the activation
threshold of the current disease in the unified case is less
than the value in independent case (ζn(0) ≤ ζ̄n).

5. In-Silico Experiments
5.1. Setup

We consider N = 2 diseases and assume that the earliest
start time of screening is 50 years of age which is in line
with the most common recommended age for screening pro-
grams in the US, such as for prostate, breast and colorectal
cancer (Smith et al., 2001; Zoorob et al., 2001). As another
example, Ma et al. (2023) calculate life expectancy starting
at age 50 for cardiovascular disease. For each iteration, sur-
vival time T0 (in years) is given as 40, where we round the
value of 36.5-year average life expectancy of people with
high cardiovascular health (CVH) score starting from age
50, as determined by (Ma et al., 2023). Adverse event times
Tn, n ∈ [N ] (in years) are generated from N (µn, σ

2). In
(Ma et al., 2023), the average life expectancy with low and
moderate CVH is estimated as 27.3 and 32.9 years respec-
tively, hence we take the average of these two as µn = 30.1
for the mean adverse event times, and we set σ2 = 1.6

We set pX(x) ∝ fBeta(x1;α, β)fBeta(x2;α, β) where
fBeta(x;α, β) is the pdf of the Beta distribution. Here, we
assume that X1 and X2 are independent, however, they
are distributed with the same coefficients. When experi-
menting with other joint distributions where X1 and X2

are not necessarily independent, we obtain nearly identi-
cal results with similar boundary shapes. This distribu-
tion is chosen for ease of implementation and to see the
effects of varying α and β. The samples Yn(t) are gener-
ated by adding Gaussian noise to true measurement sn(x, t)
which is a uniform distribution between 0 and 1, given that
Θn = 1, and if Θn = 0, we set sn(x, t) = 0. The noise is
sampled from a normal distribution with a standard devia-
tion of σ = 0.5, such that Yn(x, t) = sn(x, t) + en(x, t),
where sn(x, t) ∼ Uniform(0, 1) and en(t) ∼ N (0, σ2).
We sample once and use sn(t) = sn for all t, but the er-
ror en(x, t) is sampled independently for each t, leading to
Y (t) ⊥⊥ Y (t′) | Θ for t′ ̸= t.

We assume that the screening policy for each disease when
active screens periodically every 1 year, until an adverse
event happens or a positive diagnosis is made. We take the
default budget B = 10, α = β = 5 and the individual
screening costs as c1 = c2 = 1.

6Code is available at https://github.com/ynarter/
UniScreen.

(a) (b) (c) (d)

Figure 4: Varying the screening costs (ck) for the diseases with
other parameters fixed, (a) c1 = 6, c2 = 1, (b) c1 = 2, c2 = 1, (c)
c1 = 1, c2 = 2, (d) c1 = 1, c2 = 6.

At each Monte Carlo iteration, we simultaneously run M =
200 independent simulations for each of the N = 10,000 pa-
tient feature vectors x = (x1, x2) to estimate the expected
outcomes under various screening actions. Specifically,
for each x and action a, we compute empirical expecta-
tions of the form E[h(T ∗) | a, x] ≈ 1

M

∑M
i=1 h(T

∗
i (x, a)),

where h(T ∗) ∈ {min{T0, T
∗}, #n(min{T0, T

∗})}, and
T ∗
i (x, a) denotes the ith simulated outcome under action a.

We fix the diagnosis threshold to γn = 0.95 throughout.

5.2. Results

Optimal actions/referral decisions are presented in Figure
1(b) (refer to Figure 11 for a detailed view). In the plot,
the characterizations can be observed, and therefore be ver-
ified. We observe a symmetry for the activation bound-
aries of the first and second disease, the non-increasing or
non-decreasing properties of the sub-referral decisions as
derived, also that ζ1(0) = ζ1(1).

A series of experiments was conducted with systematic
variations in key parameters B, cn, µn = E[Tn], α, β, as
presented in Appendix D.1. As an example, we observe
that when we vary the individual screening costs (cn) for
diseases, an increase in the cost of screening for a particular
disease leads the model to show a preference for referral
decisions targeting only the alternative, lower-cost disease
(see Figure 4). This behavior highlights the model’s sensitiv-
ity to cost constraints, as it prioritizes affordable screening
options under limited resources.

Next, we examined the values of κi across the four policies,
selecting the policy with the highest κi at each point. We
generated decision boundaries by selecting policies with the
largest κ values, and recreated the decision points found
in our mathematical proof by locating intersections where
one κi surpasses the others (see Figure 16b). A comparison
of these boundaries, derived by selecting the maximum κi

(per our theoretical framework) and those from LP solution,
confirms that the boundary shapes are nearly identical (see
Figure 17).

To find the optimal independent referral decision, we modi-
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fied our framework to separately optimize the referral poli-
cies for the two diseases. The budget is distributed equally
to the two diseases such that B1 = B2 = 5, while the bud-
get for our model is B = 10. The independent policies are
then combined into a single referral decision using bitwise
operations. In contrast, our model determines a joint referral
decision by solving a LP that simultaneously considers both
diseases. The resulting plot can be seen in Figure 1(a). As
expected, the thresholds are constant as we had shown in
the proof, and they lie between the minimum and maximum
value of the unified screening thresholds, which leads to
both gray (no screening) and colored (screening) points in
the policy difference plot (Figure 1(c)).

We determine the survival times ra,x for both models (see
Appendix D.3 for details) to compare differences in survival
outcomes (Figure 5). We also plot the average survival times
for each x1 over all x2’s for better visualization, and deter-
mine the overall mean of the survival times for both models,
as displayed in Figure 2. We observe that the overall mean
for the unified model is 37.70, whereas for the independent
model, this is 37.47, which indicates an overall better perfor-
mance. Moreover, as detailed in Appendix E, we verify the
statistical significance of our results through further Monte
Carlo simulations, demonstrating that the observed survival
benefits of the unified approach are robust and do not result
from random variation.

As observed in Figures 2 and 5, our model performs signif-
icantly better than independent screening at points where
the risk of one disease outweighs the other, particularly
around the optimal activation threshold of the disease in
the independent case. This demonstrates the effectiveness
of prioritizing screenings based on individual risks while
allowing for joint screenings when appropriate, as previ-
ously discussed in the introduction. In the middle points
of the grid where the two risks are moderate and close to
each other, independent screening performs better. This is
caused by the emphasis we put on the relatively high risks
of diseases, where we allow for screenings as opposed to
independent screening (see Figure 1(c)). Joint screenings
(a = 4) also occur more often in the unified model (2363 vs.
1847), suggesting more efficient scheduling and improved
survival for high-risk patients.

Our results display the limitations of independent policies
in addressing overlaps and interactions between diseases.
Independent screening programs often miss opportunities to
improve patient care by failing to consider how screening
for one disease can indirectly benefit another. For example,
treating one condition, such as heart disease, can enhance
the effectiveness of screening for another, such as lung
cancer. The unified model overcomes these limitations by
considering these interactions, leading to better resource
allocation and survival/health outcomes.

(a) (b)

Figure 5: (a) Difference of survival times (E [min{T0, T
∗}|a, x])

between unified and independent screening (unified − indepen-
dent) (b) points at which the survival time for unified screening
exceeds independent screening.

6. Conclusion, Limitations, Future Research
We proposed a unified screening model that accounts for
the interactions between multiple diseases, to address limi-
tations of traditional independent screening programs. By
incorporating multiple disease risks into a single optimiza-
tion framework, our approach enables efficient resource
allocation under budget limits. Our experimental results
demonstrate that the mathematical characterizations of opti-
mal policies align with the numerical solution of the convex
program. Additionally, the unified model increases the num-
ber of joint screenings, improving scheduling efficiency and
enhancing survival outcomes, particularly for patients with
higher relative risks for one disease.

A limitation of our work is that it provided the theoretical
characterization of the optimal referral decision under N =
2 and uniform risk profile. Nevertheless, we studied the
effect of non-uniform risk profiles in the experiments. Our
work underscores the importance of considering competing
risks and disease interactions in screening policy design.
For future work, we aim to develop a detailed roadmap for
implementing our model in clinical practice.

Our claims are based on the premise that screening is benefi-
cial, and should be adapted when there are enough resources.
In our case, the only detrimental effect of screening is a false
positive, which can be controlled by adjusting the threshold
for the likelihood ratio test. We agree that screening does not
always offer benefits and sometimes can even be harmful,
as in the case of overdiagnosis. A recent review paper for
cancer screening (Bretthauer et al., 2023) argues that many
common cancer screening programs do not significantly
prolong life. Investigating optimal resource allocation by
considering detrimental effects of screening is left as future
research.
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A. Additional Discussion on Related Work
Prior research has predominantly focused on optimizing sampling schedules or decision-making processes for single-disease
screenings. These strategies often involve fixed thresholds like age and weight (Association, 2018; Handelsman, 2015), to
determine or evaluate inclusion criteria (Tomaszewski et al., 2022; Bauer et al., 2015; Fernandez et al., 1991; Yu et al., 2021;
Xiao et al., 2022; Idrees et al., 2021; Wang et al., 2024b) and screening policy frequency (Hemmati et al., 2024; Wu & Suen,
2022; Wang et al., 2024b; Wu et al., 2024). Most of the existing studies focus on Markov models and processes (Wu et al.,
2024; Wu & Suen, 2022; Alagoz, 2011; Ayer et al., 2012; Zhang et al., 2012a;b; Maillart et al., 2008; Kamalzadeh et al.,
2021; Steimle & Denton, 2017). For example, Maillart et al. (2008) evaluate a partially observed Markov chain model to
balance breast cancer mortality risk and mammogram frequency.

Cost-effectiveness analyses have also been a critical component of the literature (Toumazis et al., 2021; Fritzen et al., 2018;
Cusick et al., 2023; Meng et al., 2024; Sharma et al., 2022; Areia et al., 2022; Huang et al., 2022), particularly for identifying
the optimal trade-off between screening costs and health benefits (Xia et al., 2024; Qin et al., 2022; 2024; Wang et al.,
2024a; Bao et al., 2022). Resource constraints, such as limited budgets, personnel, and equipment (Yadla et al., 2024;
Khoza-Shangase et al., 2017), play a fundamental role in these analyses, as they directly impact the feasibility and scalability
of screening programs (Cevik et al., 2018; Bansal et al., 2020). For instance, constrained budgets may require prioritizing
patients or conditions (Cevik et al., 2018), while limited personnel and equipment can restrict the number of screenings
performed in a given timeframe. Teh et al. (2015) analyze opportunistic mammography screening in resource-constrained
healthcare systems. They demonstrate that their approach is effective, particularly for high-risk individuals, and recommend
population-based screening for women aged 50 and above if resources permit. Bansal et al. (2020) address this by applying
a Markov decision process model to determine optimal breast cancer screening schedules under varying infrastructure
capacities. However, to the best of our knowledge, none of the existing methods address both resource constraints and
competing risks of multiple diseases simultaneously, which leaves a gap in optimizing multi-disease screening programs
under such conditions.

A competing risks problem in our approach refers to the assessment of the likelihood of health benefits from an intervention,
considering the presence of other potential outcomes that may interfere with or prevent the occurrence of the event of
interest (Varadhan et al., 2010). This approach enables the analysis of both the timing of the first observed event and its type
(Wolbers et al., 2014). Competing risk analyses have been tackled in the literature (Allignol et al., 2011; Wolbers et al.,
2014; Satagopan et al., 2004; Pintilie, 2011; Cho et al., 2022), which highlights its importance.

Several studies highlight the benefits of joint screening programs (Fan et al., 2024; Huang et al., 2023). Liang et al. (2016)
assess joint detection using 3D-CPA, HR-HPV, and TCT, which improves accuracy and sensitivity in cervical disease
screening. Regarding the screening for multiple diseases, Wang et al. (2022) propose a novel multi-view attention network
for screening multiple retinal diseases from optical coherence tomography (OCT) images. Alternating from the “single
disease” approach, Hajjar & Alagoz (2023) develop a stochastic modeling framework that personalizes screening decisions
for an index disease by accounting for the dynamic and stochastic nature of chronic conditions. Moreover, for the detection
of multiple diseases, frameworks leveraging deep learning methods exist (Ampavathi & Saradhi, 2021; George et al., 2024;
Satheeskumaran et al., 2024; Arumugam et al., 2023; Men et al., 2021; Khadir et al., 2023; Sudha et al., 2024).

Our work on designing disease screening programs, which is about making decisions based on accumulating evidence
to optimize outcomes under uncertainty, is closely related to sequential hypothesis testing (Chernoff, 1992; Alaa & Van
Der Schaar, 2016; Drugowitsch et al., 2014; 2012; Shvartsman et al., 2015; Shiryaev, 2007; Peskir & Shiryaev, 2006).
With multiple diseases, the general problem is an instance of sequential hypothesis testing with multiple hypotheses. Prior
work, such as by Alaa & Van Der Schaar (2016) examines resource allocation with a Bayesian model in single-hypothesis
(disease) scenarios but does not extend to the complexities of multi-disease contexts. However, in our context, multiple
diseases correspond to multiple hypotheses, which transforms our problem into an active learning challenge, where actions
influence the acquisition of information across diseases.

B. Proofs of the Statements in Section 4
Recall that when xn ≥ γn, disease n is immediately diagnosed (no need for screening). A similar case happens for xn = 0
(no screening necessary). Hence, in practice, whether to screen or not is only a question when xn ∈ (0, γn). Nevertheless,
to characterize differences between the benefits of different screening actions, we will compare their rewards and costs for
all xn ∈ [0, 1]. In comparing the effectiveness of different screening policies, we assume that if a patient is admitted for
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screening, the screening policy collects at least one screening sample before the diagnosis.

B.1. Technical Results Related to Forms of ra,x and ma,x

Let Un := {Θn = 1} ∧ {t∗n ≥ Tn} represent the event that disease n is present and its adverse event occurs before it is
correctly diagnosed. Let ST∗(t, x, a) := P{T ∗ > t|a, x}. We first provide a decomposition lemma for ST∗(t, x, a).
Lemma B.1. For any t ∈ N+, x ∈ [0, 1]N , a ∈ A,

ST∗(t, x, a) =
∏

n∈[N ]

(
P{Tn > t|a, x}︸ ︷︷ ︸

no adverse event occurs
until time t

+ P{Tn ≤ t,On|a, x}︸ ︷︷ ︸
an adverse event has occurred

but is diagnosed on time

)
. (9)

Proof.

ST∗(t, x, a) = P{T ∗ > t|a, x}
= P{min{Tn : n ∈ [N ],1(Un) = 1} > t|a, x}
= P{min{Tn : n ∈ [N ], {1(Un) = 1} ∨ {Θn = 0}} > t|a, x} (10)
= P{min{Tn : n ∈ [N ],1(On) = 0} > t|a, x}
= P{∩n∈[N ]:1(On)=0{Tn > t}|a, x}
= P{∩n∈[N ]{Tn > t− 1(On)t}|a, x} (11)

=
∏

n∈[N ]

P{Tn > t− 1(On)t|a, x} (12)

=
∏

n∈[N ]

(1− P{Tn ≤ t− 1(On)t|a, x})

=
∏

n∈[N ]

(1− P{Tn ≤ t− 1(On)t,On|a, x} − P{Tn ≤ t− 1(On)t,¬On|a, x})

=
∏

n∈[N ]

(1− P{Tn ≤ 0,On|a, x} − P{Tn ≤ t,¬On|a, x})

=
∏

n∈[N ]

(1− P{Tn ≤ t,¬On|a, x}) (13)

=
∏

n∈[N ]

(
P{Tn > t|a, x}+ P{Tn ≤ t,On|a, x}

)
(14)

where (10) is due to Tn = ∞ iff Θn = 0, (12) holds since the random variables Tn + 1(On)t are conditionally independent
of each other given a, x, (11) and (13) is due to the fact that Tn is a positive random variable, lastly, (14) holds given the
partition P{Tn ≤ t,¬On|a, x} + P{Tn ≤ t,On|a, x} + P{Tn > t|a, x} = 1. Note that if a screening is not performed
for a disease with index n based on the given action a, the term P{Tn ≤ t,On|a, x} is simply zero since there will be no
diagnosis, and T ∗ will simply denote the first adverse event that occurs (Tn).

Next, we make some assumptions under which strict monotonicity of functions P{Tn > t|a, x} and P{Tn ≤ t,On|a, x} in
x hold.
Assumption B.2. (i). The support of Tn is [T0], for all n ∈ [N ]; (ii) When action a screens for disease n, for all xn ∈ (0, 1],
P{t∗n < t, Tn = t|a, xn,Θn = 1} > 0.

The next lemma characterizes how P{Tn > t|a, x} in (9) and P{Tn ≤ t|a, x} change with x.
Lemma B.3. Let FTn

(t) := FTn|Θn
(t|1). For any t ∈ N+, x ∈ [0, 1]N , a ∈ A, P{Tn > t|a, x} = 1 − FTn

(t)xn is
non-increasing in xn, P{Tn ≤ t|a, x} = FTn

(t)xn is non-decreasing in xn. Moreover, if the support of Tn is [T0], then
P{Tn > t|a, x} is strictly decreasing in xn, and P{Tn ≤ t|a, x} is strictly increasing in xn for t ∈ [T0 − 1]. Both functions
are constant with respect to xm, m ̸= n.
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Proof. Since P{Tn > t|a, x} is independent of the screening action a, we can drop the conditioning on a. Also, if the
disease n is not present, i.e., Θn = 0, then Tn = ∞. Using this, we obtain:

P{Tn > t|a, x} = P{Tn > t|x} = P{Tn > t,Θn = 0|x}+ P{Tn > t,Θn = 1|x}
= P{Θn = 0|x}P{Tn > t|Θn = 0, x}+ P{Θn = 1|x}P{Tn > t|Θn = 1, x}
= (1− xn) + xnP{Tn > t|Θn = 1, x}
= (1− xn) + xn(1− FTn|Θn

(t|1))
= 1− FTn(t)xn. (15)

Since the CDF FTn(t) ≥ 0,∀t, we conclude that P{Tn > t|x} is non-increasing in xn.

We also have

P{Tn ≤ t|a, x} = 1− P{Tn > t|a, x} = FTn
(t)xn,

which is non-decreasing in xn.

Let Sn := {τn1, . . . , τnSn
} represent the set of all screening times for disease n. Let Sn(i) := {τnj ∈ Sn : τnj < i}

represent the set of screening times of disease n prior to time step i. The next lemma characterizes how P{Tn ≤ t,On|a, x}
in (9) changes with x.

Lemma B.4. For any a ∈ A such that a does not screen for disease n, P{Tn ≤ t,On|a, x} = 0 for all t ∈ N+ and
x ∈ [0, 1]N . For any a ∈ A such that a screens for disease n, for all t ∈ N+, P{Tn ≤ t,On|a, x} is (i) non-decreasing
in xn, (ii) strictly increasing in xn if there exists i ∈ [t] such that P{t∗n < i, Tn = i|a, x,Θn = 1} > 0, (iii) constant with
respect to xm, m ̸= n, and (iv) 0 when xn = 0 and FTn

(t) when xn = 1.

Proof. First, consider the case when action a does not screen for disease n. Note that a referral policy never makes a
diagnosis if screening is not active for disease n. Hence, P{Tn ≤ t,On|a, x} = 0 for all x, since disease n will never be
diagnosed on time by the referral policy if it is present. Next, consider the case when action a screens for disease n. Observe
that

P{Tn ≤ t,On|a, x} = P{Tn ≤ t, t∗n < Tn,Θn = 1|a, x}
= P{Tn ≤ t, t∗n < Tn|a, x,Θn = 1}xn

=

∞∑
i=1

P{Tn ≤ t, t∗n < Tn, Tn = i|a, x,Θn = 1}xn

=

t∑
i=1

P{Tn ≤ t, t∗n < Tn, Tn = i|a, x,Θn = 1}xn

=

t∑
i=1

P{t∗n < i, Tn = i|a, x,Θn = 1}xn. (16)

Next, we will investigate how P{t∗n < i, Tn = i|a, x,Θn = 1} in (16) varies with x. Note that

P{t∗n < i, Tn = i|a, x,Θn = 1} = P{t∗n < i|Tn = i, a, x,Θn = 1}P{Tn = i|a, x,Θn = 1}
= P{t∗n < i|Tn = i, a, x,Θn = 1}P{Tn = i|Θn = 1}. (17)

Next, we further investigate P{t∗n < i|Tn = i, a, x,Θn = 1} in (17).

P{t∗n < i|Tn = i, a,X = x,Θn = 1}

= P{min{t ∈ Sn : θ̂n(x, t) = 1} < i|Tn = i, a,X = x,Θn = 1}

= P{∃t ∈ Sn(i) : θ̂n(x, t) = 1|Tn = i, a,X = x,Θn = 1}

= P
{
∃t ∈ Sn(i) :

Xn

1−Xn
LRn(t) ≥

γn
1− γn

∣∣∣∣Tn = i, a,X = x,Θn = 1

}
17
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= P
{
∃t ∈ Sn(i) :

xn

1− xn
LRn(t) ≥

γn
1− γn

∣∣∣∣Tn = i,Θn = 1

}
(18)

= P
{
∃t ∈ Sn(i) : LRn(t) ≥

(1− xn)γn
xn(1− γn)

∣∣∣∣Tn = i,Θn = 1

}
= P

{
max

t∈Sn(i)
LRn(t) ≥

(1− xn)γn
xn(1− γn)

∣∣∣∣Tn = i,Θn = 1

}
, (19)

where (18) holds due to observations Yn(τni), i ∈ Sn(i) being independent of X given Θn and Tn. From (19), we
conclude that P{t∗n < i|Tn = i, a,X = x,Θn = 1} is non-decreasing in xn. By (17), this property also applies to
P{t∗n < i, Tn = i|a, x,Θn = 1}. By (17), P{Tn ≤ t,On|a, x} is sum of non-negative non-decreasing functions multiplied
by xn, so it is non-decreasing in xn. Moreover, it is increasing in xn if at least one of these functions is positive. Note
that none of the terms above depend on xm, m ̸= n, so P{Tn ≤ t,On|a, x} does not vary with m. When xn = 0,
P{Tn ≤ t,On|a, x} = 0 by (16). When xn = 1,

t∑
i=1

P{t∗n < i, Tn = i|a, x,Θn = 1}xn =

t∑
i=1

P{Tn = i|a, x,Θn = 1}xn

=
t∑

i=1

P{Tn = i|Θn = 1}xn = P{Tn ≤ t|Θn = 1}xn = FTn
(t).

Using Lemmas (B.1), (B.3) and (B.4), ST∗(t, x, a), a ∈ [4] can be written as

ST∗(t, x, 1) = P{T1 > t|x1}P{T2 > t|x2}, (20)
ST∗(t, x, 2) = (P{T1 > t|x1}+ P{T1 ≤ t,O1|2, x1})P{T2 > t|x2}, (21)
ST∗(t, x, 3) = P{T1 > t|x1}(P{T2 > t|x2}+ P{T2 ≤ t,O2|3, x2}), (22)
ST∗(t, x, 4) = (P{T1 > t|x1}+ P{T1 ≤ t,O1|2, x1})(P{T2 > t|x2}+ P{T2 ≤ t,O2|3, x2}). (23)

We define the following gaps:

∆T
2,1(t, x) := ST∗(t, x, 2)− ST∗(t, x, 1) = P{T1 ≤ t,O1|2, x1}P{T2 > t|x2}. (24)

∆T
2,1(t, x) is non-decreasing in x1 and non-increasing in x2. Under Assumption B.2, it is strictly increasing in x1 and strictly

decreasing in x2. Moreover, ∆T
2,1(t, x1 = 0, x2) = 0.

∆T
3,1(t, x) := ST∗(t, x, 3)− ST∗(t, x, 1) = P{T2 ≤ t,O2|3, x2}P{T1 > t|x1}. (25)

∆T
3,1(t, x) is non-increasing in x1 and non-decreasing in x2. Under Assumption B.2, it is strictly decreasing in x1 and

strictly increasing in x2. Moreover, ∆T
3,1(t, x1, x2 = 0) = 0.

∆T
4,2(t, x) := ST∗(t, x, 4)− ST∗(t, x, 2) = (P{T1 > t|x1}+ P{T1 ≤ t,O1|2, x1})P{T2 ≤ t,O2|3, x2}. (26)

∆T
4,2(t, x) is non-decreasing in x2. Under Assumption B.2, it is strictly increasing in x2. Moreover, ∆T

4,2(t, x1, x2 = 0) = 0.

∆T
4,3(t, x) := ST∗(t, x, 4)− ST∗(t, x, 3) = P{T1 ≤ t,O1|2, x1}(P{T2 > t|x2}+ P{T2 ≤ t,O2|3, x2}). (27)

∆T
4,3(t, x) is non-decreasing in x1. Under Assumption B.2, it is strictly increasing in x1. Moreover, ∆T

4,3(t, x1 = 0, x2) = 0.
Define the last gap as

∆T
4,1(t, x) := (P{T1 > t|x1}+ P{T1 ≤ t,O1|2, x1})(P{T2 > t|x2}+ P{T2 ≤ t,O2|3, x2}) (28)

− P{T1 > t|x1}P{T2 > t|x2}
= P{T1 ≤ t,O1|2, x1}(P{T2 > t|x2}+ P{T2 ≤ t,O2|3, x2}) + P{T1 > t|x1}P{T2 ≤ t,O2|3, x2}

18
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= P{T2 ≤ t,O2|3, x2}(P{T1 > t|x1}+ P{T1 ≤ t,O1|2, x1}) + P{T2 > t|x2}P{T1 ≤ t,O1|2, x1}. (29)

The following display lists the relations between these gaps.

∆T
4,1(t, x) ≥ ∆T

4,3(t, x) ≥ ∆T
2,1(t, x), ∆T

4,1(t, x) ≥ ∆T
4,2(t, x) ≥ ∆T

3,1(t, x).

As the next step, we will derive an expression for E[min{T0, T
∗}|a, x]. Since min{T0, T

∗} is non-negative, we write

E[min{T0, T
∗}|a, x] =

∞∑
t=0

P{min{T0, T
∗} > t|a, x} =

∞∑
t=0

P{T0 > t, T ∗ > t|a, x} =

T0−1∑
t=0

P{T ∗ > t|a, x}

=

T0−1∑
t=0

ST∗(t, x, a).

We define the survival gaps as ∆T
i,j(x) := E[min{T0, T

∗}|i, x]− E[min{T0, T
∗}|j, x] = ri,x − rj,x. Note that using the

expression in the above display, these can be written in terms of gaps ∆T
i,j(t, x) as ∆T

i,j(x) =
∑T0−1

t=0 ∆T
i,j(t, x). The

characteristics of ∆T
i,j(t, x)s directly apply to ∆T

i,j(x) due to summation preserving monotonicity.

Lemma B.5. Under Assumption B.2: (i) ∆T
2,1(x) is strictly increasing in x1, strictly decreasing in x2, and ∆T

2,1(x1 =

0, x2) = 0; (ii) ∆T
3,1(x) is strictly decreasing in x1, strictly increasing in x2, and ∆T

3,1(x1, x2 = 0) = 0; (iii) ∆T
4,2(x) is

strictly increasing in x2, and ∆T
4,2(x1, x2 = 0) = 0; (iv) ∆T

4,3(x) is strictly increasing in x1, and ∆T
4,3(x1 = 0, x2) = 0;

(v) The following relations hold.

∆T
4,1(x) ≥ ∆T

4,3(x) ≥ ∆T
2,1(x), ∆T

4,1(x) ≥ ∆T
4,2(x) ≥ ∆T

3,1(x). (30)

Next, we focus on the expected costs of the actions. Recall that ma,x = c1E[#1|a, x] + c2E[#2|a, x]. Under (i) no
screening (a = 1), m1,x = 0; (ii) screening only for disease 1 (a = 2), m2,x = c1E[#1|a = 2, x]; (iii) screening only for
disease 2 (a = 3), m3,x = c2E[#2|a = 3, x], screening for both diseases m4,x = c1E[#1|a = 4, x] + c2E[#2|a = 4, x] =
c1E[#1|a = 2, x] + c2E[#2|a = 3, x], for all x ∈ [0, 1]2.

We analyze E[#n(min{T0, Tn, t
∗
n})|a, x].

Lemma B.6. When action a screens for disease n, E[#n(min{T0, Tn, t
∗
n})|a, x] is non-increasing in xn and constant in

xm, m ̸= n. Otherwise, it is constant in xn. E[#n(min{T0, Tn, t
∗
n})|a, xn = 1] = 1, E[#n(min{T0, Tn, t

∗
n})|a, xn =

0] = Sn.

Proof. Let Sni represent the indicator variable that disease n is screened for the ith time.

E[#n(min{T0, Tn, t
∗
n})|a, x] =

Sn(T0)∑
i=1

P{Sni = 1|a, x} =

Sn(T0)∑
i=1

P{Tn > τni, t
∗
n > τni|a, x}, (31)

where

P{Tn > τni, t
∗
n > τni|a, x} = P{Tn > τni, t

∗
n > τni,Θn = 0|a, x}+ P{Tn > t, t∗n > τni,Θn = 1|a, x}

= P{Tn > τni, t
∗
n > τni|Θn = 0, a, x}(1− xn) + P{Tn > τni, t

∗
n > τni|Θn = 1, a, x}xn

= P{t∗n > τni|Θn = 0, a, x}(1− xn) + P{Tn > τni, t
∗
n > τni|Θn = 1, a, x}xn

= P{t∗n > τni|Θn = 0, a, xn}︸ ︷︷ ︸
f(xn)

(1− xn) + P{Tn > τni, t
∗
n > τni|Θn = 1, a, xn}︸ ︷︷ ︸

g(xn)

xn. (32)

We have

P{t∗n > τni|Θn = 0, a,Xn = xn} = P{min{t ∈ Sn : θ̂n(x, t) = 1} > τni|Θn = 0, a,Xn = xn}

= P
{
∀j ∈ [i] :

Xn

1−Xn
LRn(τnj) <

γn
1− γn

∣∣∣∣Θn = 0, Xn = xn

}
19



Unified Screening for Multiple Diseases

= P
{
max
j∈[i]

LRn(τnj) <
(1− xn)γn
xn(1− γn)

∣∣∣∣Θn = 0

}
,

which is non-increasing in xn. Similarly,

P{t∗n > τni, Tn > τni|Θn = 1, a,Xn = xn}

=

∞∑
i=1

P{t∗n > τni, Tn > τni, Tn = i|Θn = 1, a,Xn = xn}

=
∑

i∈N+:i>τni

P{t∗n > τni, Tn > τni, Tn = i|Θn = 1, a,Xn = xn}

=
∑

i∈N+:i>τni

P{t∗n > τni, Tn = i|Θn = 1, a,Xn = xn}

=
∑

i∈N+:i>τni

P{t∗n > τni|Tn = i,Θn = 1, a,Xn = xn}P{Tn = i|Θn = 1}

=
∑

i∈N+:i>τni

P
{
max
j∈[i]

LRn(τnj) <
(1− xn)γn
xn(1− γn)

∣∣∣∣Tn = i,Θn = 1

}
P{Tn = i|Θn = 1},

which is non-increasing in xn. Also observe that

P
{
max
j∈[i]

LRn(τnj) <
(1− xn)γn
xn(1− γn)

∣∣∣∣Θn = 0

}
≥ P

{
max
j∈[i]

LRn(τnj) <
(1− xn)γn
xn(1− γn)

∣∣∣∣Θn = 1

}
.

Therefore, P{t∗n > τni|Θn = 0, a, xn} ≥ P{t∗n > τni|Θn = 1, a, xn} ≥ P{t∗n > τni, Tn > τni|Θn = 1, a, xn}.

By the above properties and the decomposition in (32), the following holds for xn < x′
n:

f(xn)(1− xn) + g(xn)xn ≥ f(xn)(1− x′
n) + g(xn)x

′
n ≥ f(x′

n)(1− x′
n) + g(x′

n)x
′
n,

by which we conclude that P{Tn > τni, t
∗
n > τni|a, x} is non-increasing in xn. Moreover, it does not depend on xm,

m ̸= n. By (31), E[#n(min{T0, T
∗})|a, x] is also non-increasing in xn (since it is the sum of non-increasing functions)

and constant in xm, m ̸= n.

Let ∆C
i,j(x) := mi,x − mj,x represent the expected cost gaps of the actions. The following lemma characterizes the

dependence of these gaps to x. For the sake of simplicity of the analysis, assume that the costs of the first screening samples
are excluded from the cost calculation. This makes sense when the goal is to manage the excess cost due to multiple
screenings (when a patient is admitted to a screening program, usually many screenings take place over a long time horizon).

Lemma B.7. (i) ∆C
4,3(x) = ∆C

2,1(x) = c1(E[#1(min{T0, T1, t
∗
1})|a, x] − 1) is non-increasing in x1 and constant in

x2; (ii) ∆C
4,2(x) = ∆C

3,1(x) = c2(E[#2(min{T0, T2, t
∗
2})|a, x] − 1) is constant in x1 and non-increasing in x2; (iii)

∆C
4,1(x) = c1(E[#1(min{T0, T1, t

∗
1})|a, x]− 1) + c2(E[#2(min{T0, T2, t

∗
2})|a, x]− 1) is non-increasing in x1 and x2.

Let ∆i,j(x) := κi,x − κj,x. Then, ∆i,j(x) = ∆T
i,j(x)− λ∆C

i,j(x). We assume that the gap functions are continuous in x1,
x2, which will hold under mild assumptions on the distributions of Yn and Tn, n ∈ [2].

Assumption B.8. The functions ∆T
i,j(x) and ∆C

i,j(x), i, j ∈ [4] are continuous in x. Therefore, ∆i,j(x), i, j ∈ [4] is
continuous in x.

B.2. Proof of Lemma 4.2

Consider ρ2,1 = 1(κ2(x) > κ1(x)). Under Assumption B.2, ∆2,1(x) is strictly increasing in x1 and strictly decreasing in
x2.

Fix x2 ∈ [0, 1]. Observe that ∆2,1(x1 = 0, x2) = 0− λ(S1 − 1)c1 < 0 (screening programs are set to screen more than
once) and ∆2,1(x1 = 1, x2) =

∑T0−1
t=0 FTn(t)P{T2 > t|x2} > 0. Since ∆2,1 is strictly increasing in x1, b⊥(x2) is the

unique point where ∆2,1(x1, x2) crosses 0. Thus, we obtain

ρ2,1(x) = 1{κ2(x1, x2) > κ1(x1, x2)} = 1{∆2,1(x1, x2) > 0} = 1{x1 > b⊥(x2)}.
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For any x′
2 > x2, ∆2,1(b⊥(x2), x

′
2) < ∆2,1(b⊥(x2), x2) = 0. ∆2,1(b⊥(x

′
2), x

′
2) = 0 and ∆2,1 is increasing in x1 implies

that b⊥(x′
2) > b⊥(x2).

The analysis of ρ3,1(x) follows similar steps. The only difference is that the role of x1 and x2 are reversed since the gap
terms in ∆3,1(t, x) in (25) involve P{T2 ≤ t,O2|3, x2}P{T1 > t|x1} instead of P{T1 ≤ t,O1|2, x1}P{T2 > t|x2} and
cost is incurred from screening for disease 2. Therefore, we conclude that

ρ3,1(x) = 1{x2 > b′⊥(x1)}, (33)

where b′⊥(x1) is increasing in x1.

B.3. Proof of Lemma 4.3

Recall that

∆4,1(x1, x2) =

T0−1∑
t=0

(P{T2 ≤ t,O2|3, x2}(P{T1 > t|x1}+ P{T1 ≤ t,O1|2, x1}) + P{T2 > t|x2}P{T1 ≤ t,O1|2, x1})

− λc1(E[#1(min{T0, T1, t
∗
1})|a, x1]− 1)− λc2(E[#2(min{T0, T2, t

∗
2})|a, x2]− 1).

Fix x2 ∈ [0, 1]. When x1 = 0,

∆4,1(x1 = 0, x2) =

T0−1∑
t=0

P{T2 ≤ t,O2|3, x2} − λc1(E[#1(min{T0, T1, t
∗
1})|a, x1 = 0]− 1)

− λc2(E[#2(min{T0, T2, t
∗
2})|a, x2]− 1).

When x1 = 1,

∆4,1(x1 = 1, x2) =

T0−1∑
t=0

(P{T2 ≤ t,O2|3, x2}+ P{T2 > t|x2}FT1
(t))− λc2(E[#2(min{T0, T2, t

∗
2})|a, x2]− 1).

Observe that ∆4,1(x1 = 0, x2) < ∆4,1(x1 = 1, x2).

When x2 = 0,

∆4,1(x1, x2 = 0) =

T0−1∑
t=0

P{T1 ≤ t,O1|2, x1}

− λc1(E[#1(min{T0, T1, t
∗
1})|a, x1]− 1)− λc2(S2 − 1),

which is strictly increasing in x1. ∆4,1(x1 = 0, x2 = 0) = −λc2(S2 − 1)− λc2(S2 − 1) < 0, ∆4,1(x1 = 1, x2 = 0) =∑T0−1
t=0 FT1

(t)− λc2(S2 − 1). Therefore, when
∑T0−1

t=0 FT1
(t)− λc2(S2 − 1) ≥ 0, b≡(0) ∈ (0, 1]. Else, b≡(0) = +∞.

Proof of b⊥(0) < b≡(0): Fix x2 = 0. Since ∆T
2,1(x1, x2 = 0) = ∆T

4,1(x1, x2 = 0) and ∆C
4,1(x1, x2 = 0) >

∆C
2,1(x1, x2 = 0), we have ∆4,1(x1, x2 = 0) < ∆2,1(x1, x2 = 0) for all x1. Since ∆2,1 is strictly increasing in x1,

this implies that ∆2,1 will cross zero no later than ∆4,1. Hence, b⊥(0) < b≡(0).

Proof of b⊥(1) > b≡(1): Fix x2 = 1. Since ∆T
2,1(x1, x2 = 1) +

∑T0−1
t=0 FT2(t)(1 − FT1(t)) ≤ ∆T

4,1(x1, x2 = 1) and
∆C

4,1(x1, x2 = 1) = ∆C
2,1(x1, x2 = 1), we have ∆4,1(x1, x2 = 1) > ∆T

2,1(x1, x2 = 1) for all x1. In Lemma B.3, we
showed that b⊥(1) < ∞. Thus, b≡(1) < ∞. Since ∆2,1 is strictly increasing in x1, this implies that ∆2,1 will cross zero no
earlier than ∆4,1. Hence, b⊥(1) > b≡(1).

Proof of b≡(x2) and b⊥(x2) have a unique intercept in x2⊥ ∈ [0, 1]:

Note that ∆4,1(x1 = 0, x2 = 1) =
∑T0−1

t=0 FT2(t) − λc1(S1 − 1) and ∆4,1(x1 = 1, x2 = 1) =
∑T0−1

t=0 FT2(t)(1 −
FT2

(t))FT1
(t) > 0.

(a) Assume that ∆4,1(x1 = 0, x2 = 1) < 0. Then, b≡(1) ∈ (0, 1), and b≡(1) < b⊥(1). Since b≡(x2) is decreasing and
continuous on [0, 1], one of the following two is possible:
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(a.i) There exists 0 ≤ xl < 1 such that b≡(xl) = 1. We also know from Lemma 4.2 that b⊥(xl) ∈ (0, 1). Since b⊥(x2) is
increasing, under the assumption that b≡(x2) is decreasing, since both functions b⊥(x2) and b≡(x2) are continuous (follows
from the continuity of ∆4,1 and ∆4,3), b≡(x2) and b⊥(x2) have a unique intercept in x2 ∈ (xl, 1), say at x2⊥.

(a.ii) b≡(0) ≤ 1. Then, uniqueness holds due to the same reasoning as in (i).

(b) Assume that ∆4,1(x1, x2 = 1) > 0 for all x1 ∈ [0, 1]. Then, b≡(1) = −∞. Assume that b≡(0) < ∞. Since
b≡(0) ∈ (0, 1], and b≡(x2) is decreasing and continuous, there exists xu ∈ (0, 1) such that b≡(xu) = 0. We also know that
b⊥(xu) > 0. Then, using the same argument as in part a, we conclude that b≡(x2) and b⊥(x2) have a unique intercept in
x2 ∈ (0, xu), say at x2⊥.

(c) Assume that b≡(1) = −∞ and b≡(0) = +∞. Then, since b≡(x2) is decreasing and continuous there must be xl and xu

in [0, 1] such that b≡(xl) = 1 and b≡(xu) = 0. Since b⊥(xl) < 1 and b⊥(xu) > 0, we conclude that b≡(x2) and b⊥(x2)
have a unique intercept in x2 ∈ (xl, xu), say at x2⊥.

B.4. Proof of Lemma 4.4

Consider ρ4,3(x) = 1{κ4(x) > κ3(x)}. Under Assumption B.2, ∆4,3(x) is strictly increasing in x1.

Fix x2 ∈ [0, 1]. ∆T
4,3(x1 = 0, x2) = 0, ∆C

4,3(x1 = 0, x2) > 0. Hence, ∆4,3(x1 = 0, x2) < 0. ∆T
4,3(x1 = 1, x2) > 0,

∆C
4,3(x1 = 1, x2) = 0. Hence, ∆4,3(x1 = 1, x2) > 0. Since ∆4,3(x1, x2) is strictly increasing in x1, there is a unique zero

crossing, which is denoted by x1 = b⊤(x2).

Proof of b⊥(0) = b⊤(0) = b⊤(1): Note that

∆T
4,3(x1, x2 = 0) = ∆T

4,3(x1, x2 = 1) = ∆T
2,1(x1, x2 = 0) =

T0−1∑
t=0

P{T1 ≤ t,O1|2, x1}, (34)

∆C
4,3(x1, x2 = 0) = ∆C

4,3(x1, x2 = 1) = ∆C
2,1(x1, x2 = 0),

which implies that ∆4,3(x1, x2 = 0) = ∆4,3(x1, x2 = 1) = ∆2,1(x1, x2 = 0). Therefore, we conclude that they have the
same zero crossing, i.e., b⊥(0) = b⊤(0) = b⊤(1).

Proof of b⊥(0) ≤ b⊤(x2) ≤ b⊥(x2): ∆T
4,3(x1, x2) ≥ ∆T

2,1(x1, x2) and ∆C
4,3(x1, x2) = ∆C

2,1(x1, x2), which implies that
∆4,3(x1, x2) ≥ ∆2,1(x1, x2). Hence, b⊤(x2) ≤ b⊥(x2). From (34), note that ∆T

2,1(x1, x2 = 0) ≥ ∆T
4,3(x1, x2) and

∆C
2,1(x1, x2 = 0) = ∆C

4,3(x1, x2), which implies that ∆2,1(x1, x2 = 0) ≥ ∆4,3(x1, x2). Hence, b⊤(x2) ≥ b⊥(0).

Proof of b⊤(0) = b⊤(1) ≤ b⊤(x2): This again follows from the fact that ∆4,3(x1, x2 = 0) = ∆4,3(x1, x2 = 1) ≥
∆4,3(x1, x2), so the zero crossing of the latter cannot be earlier than the others.

B.5. Proof of Proposition 4.1

To construct ρ∗1(x), we consider all cases separately, noting that the values of κ corresponding to actions where the first
disease is screened (a = 2 or a = 4) should be greater than those corresponding to actions where the first disease is not
screened (a = 1 or a = 3):

κ2(x) > κ1(x) κ4(x) > κ1(x) κ4(x) > κ3(x) ρ∗1(x)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 ×
1 0 1 1
1 1 0 ×
1 1 1 1

For example, in line 2, we have κ2(x) < κ1(x) and κ4(x) < κ1(x), which means that neither of the actions that screen
disease 1 is activated since neither κ2(x) or κ4(x) is the largest, leading to ρ∗1(x) = 0. In line 3, we have κ2(x) < κ1(x)
and κ1(x) < κ4(x), but κ4(x) < κ3(x), again meaning that ρ∗1(x) = 0. But, for instance, in line 6, since we have
κ2(x) > κ1(x), κ1(x) > κ4(x), κ4(x) > κ3(x), this time ρ∗1(x) = 1 since κ2(x) is the largest.
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It should be observed that lines 5 and 7 are inconsistent since ∆T
4,3(x) ≥ ∆T

2,1(x) and ∆C
4,3(x) = ∆C

2,1(x), hence
∆4,3(x) ≥ ∆2,1(x). Therefore, κ2(x) > κ1(x) implies κ4(x) > κ3(x), hence we cannot have κ2(x) > κ1(x) and
κ4(x) < κ3(x) at the same time.

As a result, we can write the relation as:

ρ∗1(x) ≡ ρ2,1(x) ∨ (ρ4,1(x) ∧ ρ4,3(x)). (35)

Then it is enough for the optimal referral decision boundary to satisfy κ2(x) > κ1(x), which will imply that κ4(x) > κ3(x).
This guarantees that either κ2(x) or κ4(x) is larger than both κ1(x) and κ3(x), because it is impossible for κ1(x) and κ3(x)
to be the largest, hence the activation for the first disease is guaranteed. For example, if κ3(x) > κ2(x), then κ4(x) will be
the largest. If κ2(x) > κ1(x) is not true, then we should have both κ4(x) > κ3(x) and κ4(x) > κ1(x), which will make
κ4(x) the largest.

Using symmetry for the second disease, we have,

ρ∗2(x) ≡ ρ3,1(x) ∨ (ρ4,1(x) ∧ ρ4,2(x)), (36)

where

ρ3,1(x) = 1{ κ3(x) > κ1(x) },
ρ4,1(x) = 1{ κ4(x) > κ1(x) },
ρ4,2(x) = 1{ κ4(x) > κ2(x) }.

B.6. Proof of Proposition 4.5

Fix x2 ∈ (0, 1). Note that

∆T
4,1(x1, x2)−∆T

4,3(x1, x2) =

T0−1∑
t=0

P{T1 > t|x1}P{T2 ≤ t,O2|3, x2}, (37)

is strictly decreasing in x1, and ∆C
4,1(x1, x2) − ∆C

4,3(x1, x2) = c2(E[#2(min{T0, T2, t
∗
2})|a, x] − 1) is constant in x1.

Therefore, ∆4,1(x1, x2)−∆4,3(x1, x2) is strictly decreasing in x1.

Fix x2 = 0. Then,

∆T
4,1(x1, x2 = 0) =

T0−1∑
t=0

P{T1 ≤ t,O1|2, x1},

is strictly increasing in x1, ∆C
4,1(x1, x2 = 0) is non-increasing in x1. Therefore, ∆4,1(x1, x2 = 0) is strictly increasing in

x1. Also note that ∆T
4,1(x1, x2 = 0) = ∆T

4,3(x1, x2 = 0) and ∆C
4,1(x1, x2 = 0) −∆C

4,3(x1, x2 = 0) = c2(S2 − 1) > 0.
Therefore, ∆4,1(x1, x2 = 0) < ∆4,3(x1, x2 = 0). Due to this, and strictly increasing nature of ∆4,1(x1, x2 = 0), its zero
crossing (if any) should happen after the zero crossing of ∆4,3(x1, x2 = 0). Hence, it holds that b≡(0) > b⊤(0).

Fix x2 = 1. ∆C
4,1(x1, x2 = 1) = ∆C

4,3(x1, x2 = 1) = c1(E[#1(minT0, T1, t
∗
1)|a, x] − 1), ∆T

4,1(x1, x2 = 1) −
∆T

4,3(x1, x2 = 1) > 0 by (37). Therefore, ∆T
4,1(x1, x2 = 1) > ∆T

4,3(x1, x2 = 1). Since ∆4,3(x1, x2 = 1) is strictly
increasing in x1, its zero crossing should happen later than the zero crossing (if any) of ∆4,1(x1, x2 = 0). Hence, it holds
that b≡(1) < b⊤(1).

Under the assumption that b≡(x2) and b⊤(x2) have a unique intercept, the continuity of these functions (which results from
the continuity of ∆ functions) imply that there exists x2⊤ ∈ [0, 1], where b⊤(x2) ≥ b≡(x2) for x2 ≥ x2⊤. Moreover, since
b⊤(x2) ≤ b⊥(x2) for all x2, this value should be greater than or equal to x2⊥, where b⊥(x2) exceeds b≡(x2).

Based on this, we first combine these two boundaries due to the parentheses between ρ4,1(x) and ρ4,3(x) in Lemma 4.1.
Due to the “and” condition, points must lie within both regions (to satisfy both of them). Thus, we take the larger boundary.
Let us introduce an intermediate boundary as:

b∧(x2) =

{
b≡(x2) if x2 ∈ (0, x2⊤)

b⊤(x2) if x2 ∈ [x2⊤, 1]
(38)
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Now, we can combine this with the boundary of ρ2,1(x) to obtain the boundary ζ1(x2) for the optimal rule ρ∗1(x). Given the
“or” condition between in ρ2,1(x) and ρ4,1(x) ∧ ρ4,3(x) (whose boundary we just defined as b∧(x2)) in Lemma 4.1, we
select the smaller boundary value of the two, as it suffices for any point to lie within at least one of the two regions. Starting
from x2 = 0, we initially use the lower boundary b⊥(x2), since we have shown that b⊥(x2) < b≡(x2) for x2 < x2⊥ in
Lemma 4.3. When b⊥(x2) exceeds b≡(x2) at x2⊥, the boundary switches to b≡(x2), which is now smaller. We have also
shown that b⊤(x2) ≤ b⊥(x2) for all x2 ∈ [0, 1] in Lemma 4.4, thus we conclude that b⊥(x2) ≥ b∧(x2) for x2 ≥ x2⊥,
which leads to our optimal referral decision boundary ζ1(x2) being obtained as:

ζ1(x2) =

{
b⊥(x2) if x2 ∈ [0, x2⊥]

b∧(x2) if x2 ∈ (x2⊥, 1]
(39)

given that x2⊥ ≤ x2⊤ as we have just shown. Finally, by substituting b∧(x2), our optimal referral decision ρ∗1(x) = 1{x1 >
ζ1(x2)} is obtained as:

ζ1(x2) =


b⊥(x2) if x2 ∈ [0, x2⊥]

b≡(x2) if x2 ∈ (x2⊥, x2⊤)

b⊤(x2) if x2 ∈ [x2⊤, 1]

(40)

Moreover, ζ1(0) = ζ1(1) since we have shown that b⊥(0) = b⊤(1) (by Lemma 4.4). Also observe that ζ1(0) = b⊥(0) ≤
b⊤(x2) ≤ b⊥(x2) for all x2 ∈ [0, 1] (by Lemma 4.4), and also ζ1(0) = b⊥(0) = b⊤(1) ≤ b⊤(x2⊤) = b≡(x2⊤) ≤ b≡(x2)
for x2 ≤ x2⊤ ≤ 1 (by Lemma 4.3 and 4.4, using that b≡(x2) is non-increasing). Consequently, ζ1(0) ≤ b≡(x2) for
x2 ∈ (x2⊥, x2⊤). Combining all of these, we finally conclude ζ1(0) ≤ ζ1(x2) for all x2 ∈ [0, 1].

Due to the symmetry of the functions by replacing the index n = 1 with n = 2 and vice-versa, and consequently due to the
symmetry of the boundaries, for the second disease, we also obtain the form ρ∗2(x) = 1{x2 > ζ2(x1)} where

ζ2(x1) =


b′⊥(x1) if x1 ∈ [0, x1⊥]

b≡(x1) if x1 ∈ (x1⊥, x1⊤)

b′⊤(x1) if x1 ∈ [x1⊤, 1]

(41)

B.7. Proof of Proposition 4.6

Recall that, in our case for two diseases, the independent referral decisions will have the form ρ̄(X) = [ρ̄1(x1), ρ̄2(x2)]
T,

where ρ̄n’s are independent from xi,∀i ̸= n. In this case, redefine action space for each disease as b : ρ̄n(xn) −→ {1, 2},
where b = 1 corresponds to the case where disease n is not being screened and b = 2 corresponds to the case where disease
n is screened. Unlike action a in joint screening, action b only depends on the risk xn of disease n.

Consider disease n. The decision to screen for disease n is

ρ̄∗n(xn) = 1{ E[min{T0, T
∗
n}|b = 2, xn]− λcnE[#1|b = 2, xn] > E[min{T0, T

∗
n}|b = 1, xn]− λcnE[#1|b = 1, xn] },

where λ > 0. Basically, disease n will be screened when κ2 (corresponding to screening) exceeds κ1 (corresponding to not
screening).

Let us redefine the survival functions as if we are screening for only disease n:

ST∗
n
(t, xn, b = 2) = P{Tn > t|xn}+ P{Tn ≤ t,On|b = 2, xn}, ST∗

n
(t, xn, b = 1) = P{Tn > t|xn}.

Then, ST∗
n
(t, xn, b = 2) − ST∗

n
(t, xn, b = 1) = P{Tn ≤ t,On|b = 2, xn} ≥ 0. Since E[min{T0, T

∗
n}|b, x] =∑T0−1

t=0 P{Tn ≤ t,On|b = 2, xn}, it is increasing in xn. Moreover, E[#n|b = 2, xn] is non-increasing in xn and
E[#n|b = 1, xn] = 0. Therefore, κ2(xn)− κ1(xn) is increasing in xn.

For xn = 0, E[min{T0, T
∗
n}|b = 2, xn] = E[min{T0, T

∗
n}|b = 1, xn] and E[#1|b = 2, xn] > 0. Therefore, κ2(xn = 0) <

κ1(xn = 0). For xn = 1, E[min{T0, T
∗
n}|b = 2, xn] > E[min{T0, T

∗
n}|b = 1, xn] and E[#1|b = 2, xn] = 0. Therefore,

κ2(xn = 1) > κ1(xn = 1).
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Since κ2(xn) − κ1(xn) is increasing in xn, there exists a unique point ζ̄n ∈ (0, 1) such that κ2(xn) − κ1(xn) ≤ 0 for
xn ≤ ζ̄n and κ2(xn)− κ1(xn) ≥ 0 for xn ≥ ζ̄n. Assuming that the functions κ2(xn) and κ1(xn) are continuous in (0, 1),
κ2(ζ̄n)− κ1(ζ̄n) = 0.

Hence we obtain the form ρ̄∗1(x1) = 1{x1 > ζ̄1} and ρ̄∗2(x2) = 1{x2 > ζ̄2}, where ζ̄1 ∈ (0, 1) and ζ̄2 ∈ (0, 1) are
constants.

We analyze the behavior of the policies/referral decisions under constant thresholds. First, observe the following fundamental
relationship under these independent referral decisions:

• Higher thresholds result in fewer screenings, reducing the overall cost.

• Lower thresholds result in more screenings, improving survival times.

Given these observations, the optimal constant-threshold referral decision corresponds to the threshold ζ̄1 that exactly
satisfies the budget constraint. Thresholds below this value violate the budget as they involve higher screening costs, while
thresholds above it underutilize the budget, leading to suboptimal survival times.

Now, consider the extreme cases of constant thresholds:

• At ζ1(0) = minx2∈[0,1] ζ1(x2), the threshold is low, implying that this referral decision screens strictly more people
compared to the overall optimal referral decision of ζ̄1. As a result, ζ1(0) violates the budget due to excessive cost.

• At maxx2∈[0,1] ζ1(x2), the threshold is high, resulting in strictly fewer screenings. Since this referral decision has a
lower cost than ζ̄1, it is under budget.

The key insight is that ζ̄1, the overall optimal referral decision, balances survival time and cost such that it satisfies the
budget exactly. By continuity of the cost function with respect to the threshold, and since one extreme (ζ1(0)) exceeds the
budget while the other (maxx2∈[0,1] ζ1(x2)) remains under budget, it follows from the Intermediate Value Theorem that ζ̄1
must lie between these two extremes. This establishes the result:

ζ1(0) = min
x2∈[0,1]

ζ1(x2) ≤ ζ̄1 ≤ max
x2∈[0,1]

ζ1(x2).

C. Empirical Justification of Theoretical Assumptions
The assumptions that b≡(x2) is decreasing in x2, and that b≡(x2) and b⊤(x2) have a unique intercept, are difficult to
prove analytically. This complexity arises from the dependence of the decision boundaries on the prior risk profiles in
addition to the likelihood. To provide empirical support for these assumptions, we conduct comprehensive simulations under
varying diagnosis thresholds γ, different values λ to model the tradeoff between survival and cost, and alternative sampling
distributions for the observations y, including both Bernoulli and Gaussian noise models. Screening costs and screening
periods are set to 1 for both diseases.

In Figures 6, 7, and 8, we plot b≡ and b⊤ for different values of λ under Gaussian and Bernoulli likelihoods. The adverse
event times T1 and T2 are assumed to be equal and deterministic. Under Gaussian likelihood, the mean is zero when no
disease is present and 1 when the disease is present. The noise variance is 1. Under Bernoulli likelihood, the probability of
observing 1 when a disease is present is p, while when not present, it is q. These plots demonstrate that under reasonable
conditions, the assumptions hold approximately in practice, and the observed boundaries intersect uniquely.

To investigate the effects of the randomness of adverse event times on the decision boundaries, we also performed simulations
under Poisson distributed and uniformly distributed adverse event times (Figures 9 and 10).

These results suggest that although analytical guarantees may be elusive, the structure of the optimal boundaries observed in
practice largely adheres to the assumptions stated in Proposition 4.5. When violations do occur, they appear minimal and do
not disrupt the overall interpretability of the policies.
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(a) γ = 0.6, σ = 1, Tn = 10, T0 = 20 (b) γ = 0.8, σ = 1, Tn = 10, T0 = 20

Figure 6: Decision boundaries for Gaussian activations (Set 1)

(a) γ = 0.9, σ = 1, Tn = 15, T0 = 20 (b) γ = 0.95, σ = 1, Tn = 10, T0 = 20

Figure 7: Decision boundaries under Gaussian likelihood.

(a) γ = 0.6, p = 0.7, q = 0.3, Tn = 10, T0 = 20 (b) γ = 0.6, p = 0.5, q = 0.3, Tn = 10, T0 = 20

Figure 8: Decision boundaries under Bernoulli likelihood.
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(a) γ = 0.9, Poisson parameters λn = 10, T0 =
20

(b) γ = 0.9, Poisson parameters λn = 5, T0 =
20

Figure 9: Decision boundaries for Poisson distributed adverse event times and Gaussian likelihood.

(a) γ = 0.9, Tn ∼ Unif[1, 20], T0 = 20 (b) γ = 0.9, Tn ∼ Unif[10, 20], T0 = 20

Figure 10: Decision boundaries for uniformly distributed adverse event times and Gaussian likelihood.

D. Supplementary Experiments
Figure 11 presents a plot of the actions/referral decisions based on the solution provided by CVXPY, alongside the boundaries
derived in Section 4, for better visualization.

(a) (b)

Figure 11: (a) Optimal boundaries for the actions, as provided by CVXPY for B = 10, (b) Matching with the boundaries derived in
Section 4.
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D.1. Varying Key Parameters (B, cn, µn, α, β)

A series of simulations was conducted to evaluate the policy framework’s performance and accuracy, with systematic
variations in key parameters. Findings across different configurations include the following:

Increasing the Budget B: An increase in the budget B allowed for more frequent screening, effectively reducing the “grey
region” (where no specific action was taken due to cost limitations, see Figure 12). As a result, the regions implementing
active screening policies (a = 2, 3, 4) expanded, illustrating that higher budgets enable more comprehensive screening and
reduce the risk of undiagnosed conditions.

(a) (b) (c) (d)

Figure 12: Varying the budget (B) with other parameters fixed, (a) B = 2, (b) B = 4, (c) B = 7, (d) B = 15.

Varying Mean Adverse Event Times (µn = E[Tn]) for Diseases: When the mean time to adverse events was shorter for a
specific disease, the model showed a tendency to prioritize screening for that disease, aligning with the objective of early
detection. Diseases with longer expected event times were deprioritized, as immediate screening was less urgent (see Figure
13).

(a) (b) (c) (d)

Figure 13: Varying the mean adverse event times (Tn) for the diseases (where they are distributed with Gaussian distribution) with other
parameters fixed, (a) µ1 = 37, µ2 = 30.1, (b) µ1 = 34, µ2 = 30.1, (c) µ1 = 30.1, µ2 = 34, (d) µ1 = 30.1, µ2 = 37.

Modifying Feature Distribution Parameters (α and β): As α is decreased and β is increased, the probabilities p(x)
associated with higher-risk regions requiring screening decrease. This reduction enables more extensive screening, as a
greater number of points satisfy the cost constraint. Consequently, the grey regions in the plot, which represent unscreened
areas, shrink in size (see Figure 14).
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(a) (b) (c) (d)

Figure 14: Varying the coefficients α and β in the PDF of the feature distribution x with other parameters fixed, (a) α = 5, β = 1, (b)
α = 5, β = 3, (c) α = 3, β = 3, (d) α = 1, β = 5.

D.2. Decision Boundaries Based on κi’s and Comparison

After conducting simulations with the proposed optimizations, we plotted κi’s for each action to assess its behavior across
the feature dimensions x1 and x2. To approximate the expected value, we employed Monte Carlo integration. We then
compared the values of κi across the four actions, and selected the action associated with the highest κi at each point
(x1, x2). This allowed us to delineate decision boundaries by identifying the action that maximizes κi as a function of
patient features x. In the mathematical proof, we also derived the optimal referral decisions ρn(x) by determining the
boundaries at which one parameter κi surpasses the others. This approach is based on the principle that the optimal policy
corresponds to the parameter κi that achieves the maximum value.

Plots of κi for each action (see Figure 15), with λ = 0.25, demonstrate patterns consistent with our analytical results.
Specifically: (a) without screening, κ1 decreases with both x1 and x2, peaking at (x1 = 0, x2 = 0); (b) when screening the
first disease, κ2 decreases with x2 but increases with x1, peaking at (x1 = 1, x2 = 0); (c) when screening only the second
disease, κ3 decreases with x1 but increases with x2, peaking at (x1 = 0, x2 = 1); and (d) when both diseases are screened,
κ4 increases with both x1 and x2, peaking at (x1 = 1, x2 = 1). These observations show peak values at boundary points
where xi is either 1 or 0, indicating that high-risk values minimize cost, while zero-risk values maximize survival time.

(a) a = 1 (b) a = 2 (c) a = 3 (d) a = 4

Figure 15: Plots of κi for each action with λ = 0.25, observe the behaviors which match our mathematical results. (a) When no screening
is made, κ1 is decreasing in both x1 and x2, with the peak value occurring at (x1 = 0, x2 = 0). (b) When the first disease is screened, κ2

is decreasing in x2 but increasing in x1, with the peak value occurring at (x1 = 1, x2 = 0). (c) When the second disease is screened, κ3

is decreasing in x1 but increasing in x2, with the peak value occurring at (x1 = 0, x2 = 1). (d) When both diseases are screened, κ4 is
increasing in both x1 and x2, with the peak value occurring at (x1 = 1, x2 = 1).

Next, we examined the values of κi across the four actions, selecting the action with the highest κi at each point. We
generated decision boundaries by selecting actions with the largest κ values, and recreated the decision points found in
our mathematical proof by locating intersections where one κi surpasses the others (see Figure 16b). A comparison of
these boundaries, derived by selecting the maximum κi (per our theoretical framework) and those from CVXPY’s linear
programming solution, confirms that the boundary shapes are nearly identical. This validates our proof’s credibility and
alignment with the convex optimization results (see Figure 17).
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(a) (b)

Figure 16: (a) Maximum κi values among the four actions a = 1, 2, 3, 4. The maximum values of κi is plotted by comparing the four
values for each (x1, x2). The peak values occur at the corners where xi’s are either 1 or 0, since having the risk as 1 minimizes the cost
while having no risk maximizes the survival time. (b) The decision boundary obtained by choosing the action with the largest κ value.
This is essentially what we did in the proof, we formed the boundaries by finding the intersection points at which one of the κi’s exceeds
the other.

D.3. Supplementary Material for Comparison with Independent Screening

We present the plots of chosen actions for independent screening and unified screening in Figure 18 for better visualization.
We determine the survival times (E [min{T0, T

∗}|a, x]) for the first and second diseases separately, and by choosing the
minimum of these two survival times (as the adverse event that occurs first is considered, like in our joint model), we obtain
the plot of survival times for the independent model (see Figure 19a). We also created a survival time plot for our joint
screening model (see Figure 19b).

(a) (b)

Figure 17: Comparison of boundaries (a) obtained by choosing the action/referral with the largest value of κi (as we did in the
mathematical proof) and (b) by solving as linear programming by CVXPY. Observe that the boundary shapes are almost identical,
verifying the credibility of our proof and how it aligns with the convex optimization solution provided by CVXPY.

(a) (b)

Figure 18: Comparison of chosen actions (a) for independent screening (B1 = B2 = 5) (b) for unified screening (B = 10).
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(a) (b)

Figure 19: Survival times (E [min{T0, T
∗}|a, x]) in (a) independent screening (b) unified screening.

E. Additional Experimental Details
To assess the robustness of our results, we conduct our Monte Carlo simulation across 50 independent outer iterations. For
each iteration, we store the resulting gain and cost estimates and solve a separate instance of the linear program described
in Equation (5) using CVXPY to obtain an optimal screening policy. The resulting policies yield average survival times
whose standard deviations are 0.0089 for the unified approach and 0.0117 for the independent approach. Given that the
mean difference in survival time between the two methods is approximately 0.2, the 95% confidence intervals (mean ±
2 × std) for each method do not overlap. This provides strong empirical evidence that the observed advantage of unified
screening is statistically significant and not due to random variation.
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F. Table of Notations

Table 2: Table of Notations

Symbol Description

N Number of diseases

Θn Latent disease state for the nth disease, Θn ∈ {0, 1}

Tn Time of adverse event for the nth disease, Tn ∈ N+

X Patient risk vector, X ∈ [0, 1]N , X = [X1, X2, ..., XN ]T

Xi Prior probability of having disease i, Xi ∈ [0, 1]

Yn(t) Value of the nth screening target at time t, Yn(t) ∈ R

δn(t) Screening action for the nth target at time t, δn(t) ∈ {0, 1}

θ̂n(t) Diagnostic action for the nth disease at time t, θ̂n(t) ∈ {0, 1}

t∗n Diagnosis time for the nth disease

On The event that diagnosis is on time of the nth disease, such that On = {Θn = 1}∧{t∗n < Tn}.

γn Diagnosis threshold for the nth disease

cn Cost per sample from the nth screening target

B Budget for screening costs

αn Maximum allowed false positive rate for the nth disease

Iδ(T ) Information available to the screening policy at time T

Iθ̂(T ) Information available to the diagnostic policy at time T

T ∗ Time of the first adverse event that is not diagnosed on time

T0 Survival time limit

ρ(X) Referral decision vector based on risk vector X , ρ(X) = [ρ1(X), ρ2(X), ..., ρN (X)]T

ρ̄(X) Independent referral decision vector such that ρ̄(X) = [ρ̄1(x1), ρ̄2(x2), ..., ρ̄N (xn)]
T

a Action index representing referral decisions, a ∈ {1, . . . , 2N}

q(a|x) Probability of selecting action a given risk vector x

ra,x Expected survival time given action a and risk x (E[min{T0, T
∗}|a, x]).

{τn1, . . . , τnSn
} The sampling schedule for the nth disease, where τni is the time point that the ith sample is

taken.

cnE [#n|a, x] Expected total screening cost for the nth disease.

ma,x The total screening cost given action a and x (
∑

n cnE[#n|a, x]).

λ Lagrange multiplier for cost constraint.

κi(x) Parameter defined as κi(x) := E[min{T0, T
∗}|a = i, x]− λE[#|a = i, x] for the ith action

and given the vector x.

ρ∗n(x) Optimal referral decision for disease n based on risk vector x.

ρ∗(x) Optimal referral decision based on risk vector x, ρ∗(x) = [ρ∗1(X), ρ∗2(X), ..., ρ∗N (X)]T.

32



Unified Screening for Multiple Diseases

Table 3: Table of Notations (cont.d)

Symbol Description

ρi,j(x) Referral sub-rule to determine ρ∗n(x) for N = 2.

ST∗(t, x, a) Survival function based on T ∗, such that ST∗(t, x, a) = P{T ∗ > t|a, x}

FTn
(t) The CDF of the adverse event times Tn.

b⊥(x2) Boundary function for the first disease’s screening sub-rule ρ2,1(x) such that ρ2,1(x) = 1{x1 >
b⊥(x2)}

b≡(x2) Boundary function for the first disease’s screening sub-rule ρ4,1(x) such that ρ4,1(x) = 1{x1 >
b≡(x2)}

b⊤(x2) Boundary function for the first disease’s screening sub-rule ρ4,3(x) such that ρ4,3(x) = 1{x1 >
b⊤(x2)}

ζ1(x2) Optimal referral decision boundary for the first disease dependent on x2, such that ρ∗1(x) = 1{x1 >
ζ1(x2)}.

ζ2(x1) Optimal referral decision boundary for the second disease dependent on x1, such that ρ∗2(x) =
1{x2 > ζ2(x1)}.

ρ̄∗n(xn) Optimal independent referral decision for the nth disease that is not dependent on xi,∀i ̸= n, when
the referral decisions are restricted to the set of the independent referral decisions ρ̄n(xn).

ζ̄1 Optimal independent referral decision boundary for the first disease that is not dependent on x2, such
that ρ̄∗1(x1) = 1{x1 > ζ̄1}.

ζ̄2 Optimal independent referral decision boundary for the second disease that is not dependent on x1,
such that ρ̄∗2(x2) = 1{x2 > ζ̄2}.
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