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ABSTRACT

In-context learning (ICL) has emerged as a particularly remarkable characteristic
of Large Language Models (LLM). Numerous works have postulated ICL as
approximately Bayesian inference, rendering this a natural hypothesis. In this work,
we analyse this hypothesis from a new angle through the martingale property, a
fundamental requirement of a Bayesian learning system on exchangeable data.
We show that the martingale property is a necessary condition for unambiguous
predictions in such scenarios, and enables a principled, decomposed notion of
uncertainty vital in trustworthy, safety-critical systems. We derive actionable checks
with corresponding theory and test statistics which must hold if the martingale
property is satisfied. We also examine if uncertainty in LLMs decreases as expected
in Bayesian learning when more data is observed. In three experiments, we provide
evidence for violations of the martingale property, and deviations from a Bayesian
scaling behaviour of uncertainty, falsifying the hypothesis that ICL is Bayesian.

1 INTRODUCTION

A particularly remarkable characteristic of Large Language Models (LLMs) is so-called in-context
learning (ICL) (Brown et al., 2020; Dong et al., 2022): Given a pretrained LLM pM and an observed
dataset D := {(x1, y1), . . . , (xn, yn)} = z1:n, LLMs capture the distribution of the underlying
random variables X and Y . This allows them produce a new sample (xn+1, yn+1) using the
predictive distribution pM (Xn+1, Yn+1|Z1:n = z1:n), or if xn+1 is observed infer the predictive
distribution pM (Yn+1|Xn+1 = xn+1, Z1:n = z1:n), without retraining or fine-tuning pM .

In spite of the remarkable empirical success of ICL, we lack a unified understanding of the algorithm
and the properties of conditioning LLMs on in-context data. In this work, we are interested in
characterising the type of learning that occurs in ICL. Specifically, we aim to answer the question: is
in-context learning for LLMs (approximately) Bayesian? – In contrast to prior work, our analysis
focuses on one fundamental property of Bayesian learning: the martingale property. In a nutshell,
the martingale property describes the invariance of a model’s predictive distribution with respect
to missing data from a population. We will formally define and extensively explain the martingale
property in §2. We refer to App. B.1 for a motivating example which intuitively describes two
important and desirable consequences of the martingale property, which we formally discuss in §2.

This work states the hypothesis that ICL in LLMs is Bayesian. Numerous works have argued that
ICL approximates a form of Bayesian inference (Xie et al., 2021; Hahn & Goyal, 2023; Jiang, 2023)
which we will carefully review in App. D, rendering this hypothesis natural. Our work introduces
a novel perspective which contradicts their conclusion: we show that the martingale property, a
fundamental property of Bayesian learning systems, is violated for state-of-the-art LLMs such as
Llama2, Mistral and GPT 3.5. We on purpose focus our analysis on three synthetic experiments
where the ground-truth data generating process is simple and known, and which provide a useful test
bed without the convolution of unknown latent effects as is typical in natural language.

More specifically, our contributions are: (a) We motivate the martingale property as a fundamental
property of Bayesian learning, crucial for unambiguous predictions of an LLM in exchangeable set-
tings, and interpretation of uncertainty (§2). (b) We derive actionable diagnostics with corresponding
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Figure 1: In-context learning in Large Language Models is not Bayesian. [Left] The martingale
property, a necessary condition of Bayesian learning systems, is satisfied for short sample paths.
[Centre] This allows us to approximate the martingale posterior (see §2) which, however, indicates
deviation from a reference Bayesian model. [Right] For longer sample paths, we observe a drift
which violates the martingale property, together rendering the ICL system non-Bayesian.

theory and test statistics of the martingale property. (c) We provide novel evidence for violations of
the martingale property through LLMs in certain settings, and a deviation of the sample efficiency
of ICL relative to Bayesian systems, falsifying our hypothesis that ICL in LLMs is Bayesian and
cautioning against the use of LLMs in exchangeable and safety-critical applications (§4).

2 WHAT CHARACTERISES BAYESIAN ICL? A MARTINGALE PERSPECTIVE

The martingale property. In this section we rigorously formalise properties of an ICL system
that follows Bayesian principles. Theoretical details and technical proofs are presented in App. A.
Definition 1. The predictive distributions for {Zi} satisfy the martingale property if for all integers
n, k > 0 and realisations {z, z1:n} we have

pM (Zn+1=z|Z1:n=z1:n)=pM (Zn+k=z|Z1:n=z1:n). (1)

As we will explain below, this renders distributions {pM (Zn+1 = ·|Z1:n)} to form a martingale,
hence the name ‘martingale property’. The following identity follows from Eq. (1):

pM (Yn+1 = y|Xn+1 = x, Z1:n = z1:n) = pM (Yn+k = y|Xn+k = x, Z1:n = z1:n)

= EZn+1:n+k−1∼pM (·|Z1:n=z1:n)pM (Yn+k = y|Xn+k = x, Z1:n+k−1), (2)

which holds for all n, k > 0, {z1:n, y}, and (almost every) x ∼ pM (Xn+1|Z1:n = z1:n). Eq. (2)
states that the model’s predictions are invariant to imputations (on average).

The martingale property is necessary for unambiguous predictions. To understand the intuition
behind the martingale property, consider two scenarios for ICL, illustrated in Fig. 3 (App B.1). In
both scenarios, the LLM is given the observed data (D,xn+1). In scenario 1, the LLM directly infers
the predictive distribution pM (Yn+1|Z1:n = z1:n, Xn+1 = xn+1). In scenario 2, before making a
prediction, the LLM generates (imputes) m − 1 missing samples ẑn+2:n+m from the population
autoregressively; given the observed data and the imputed samples as a prompt, we then sample from
the LLM’s predictive distribution pM (Yn+1|Z1:n = z1:n, Xn+1 = xn+1, Zn+2:n+m = ẑn+2:n+m).
We repeat this imputation procedure and average the obtained predictive distributions to receive
a Monte Carlo estimate of the right-hand side of Eq. (2). Scenario 2 is of practical interest when
estimating aggregated statistics of a population as illustrated in our RCT example in App. B.1. –
The martingale property then states that the predictive distribution from scenario 1, pM (Yn+1|Zn =
zn, Xn+1 = xn+1), and that from scenario 2, pM (Yn+1|Zn = zn, xn+1, Zn+2:n+m = ẑn+2:n+m),
when averaged over all possible imputations of ẑn+2:n+m are equivalent.

Why is the martingale property natural for any probabilistic system, and LLMs in particular? It is
important to observe that to the model, all information about the data distribution (in addition to its
prior belief; Zellner, 1988) lies in the observed data (D,xn+1). Imputing the samples ẑn+2:n+m

should hence not change the predictive distribution for yn+1 when averaged over all possible im-
putations. This is precisely the idea of Eq. (2). If the predictive distribution for yn+1 changes on
average, the model is ‘creating new knowledge’ when there is none: it is ‘hallucinating’. We call this
phenomenon introspective hallucinations: by querying itself, the model changes its predictions (on
average), which as we shall see in below violates how Bayesian systems learn. App. B.2 discusses
another important way in which predictions are rendered unambiguous under exchangeable data.

The martingale property enables a principled notion of uncertainty. An appealing aspect
of Bayesian modelling is that it enables a principled decomposition of the predictive uncertainty
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(Kendall & Gal, 2017): the predictive distribution always has the representation

pM (Zn+1 = · | Z1:n) =

∫
p(θ|Z1:n)p(Z = ·|θ)dθ, (3)

where θ denotes the (latent) model parameter, p(θ|Z1:n) denotes the Bayesian posterior and p(Z =
·|θ) denotes the likelihood. Eq. (3) shows that the variation or uncertainty in the predictive distribution
has two sources: epistemic uncertainty, which is about the latent θ and can be reduced if more
data is available; and aleatoric uncertainty, which is irreducible given a fixed set of features even
if infinite samples are observed. It is then possible to diagnose the model e.g. by checking if the
epistemic uncertainty is decreasing as we receive more observations.

As we review in App. B.3, under mild regularity conditions, the martingale property (1) is sufficient
to guarantee that the predictive distribution pM (Zn+1 = ·|Z1:n) has the same representation as
Eq. (3) (Fong et al., 2021). Moreover, it is possible to recover the equivalent to the Bayesian posterior
p(θ|Z1:n)—the martingale posterior—using only path samples Zn+1,...|Z1:n from the model, thereby
implementing the decomposition. This allows us to interpret the predictive uncertainty from any
model that satisfies the martingale property through the same foundation as Bayesian modelling.
Importantly, this methodology covers black-box models such as LLMs.

On the link between the martingale property and Bayesian learning systems. So far, we
asserted that the martingale property is fundamental to a Bayesian ICL system. We will now show
that for ICL on i.i.d. data, exchangeability (see App. B.2 for a definition), for which the martingale
property is a necessary condition, and Bayesian inference are closely connected, equivalent conditions.

ICL typically involves i.i.d. observations Z1:n, which is our primary focus in this work. Therefore,
a correctly specified Bayesian model should lead to pM (Z1:n = z1:n) =

∫
π(dθ)

∏n
i=1 pM (Z =

zi|θ) ∀n ∈ N, where θ denotes the model parameter, π denotes the prior and pM (Z = ·|θ) denotes
the likelihood. It then follows that {Zi} are exchangeable (see App. B.2). The converse is also
true by de Finetti’s representation theorem (De Finetti, 1929): Under mild regularity conditions
any pM that defines exchangeable {Zi} must have the aforementioned representation. Hence, the
distribution pM (Zn+1|Z1:n) must have the form of Eq. (3), and can thus be viewed as implicit
Bayesian inference over θ (Huszár, 2022). In aggregate, ICL on i.i.d. data is Bayesian if and only if it
defines an exchangeable sample sequence. Since the martingale property is a necessary condition for
exchangeability, an ICL system not satisfying the martingale property is not Bayesian.

3 PROBING BAYESIAN LEARNING SYSTEMS THROUGH MARTINGALES

Diagnostics for the martingale property. As we showed in §2, the martingale property is
fundamental to a Bayesian learning system. In this work, we probe the martingale property in LLMs
via two properties implied by it. If these implied properties are strongly violated, so is the martingale
property. More specifically, we will derive implications involving conditional expectations of the
form E(f(Zn+1:n+m)|Z1:n), which can be estimated by generating sample paths with an LLM and
use these samples to form Monte Carlo estimates of the conditional expectations. We begin with an
equivalent characterisation of the (conditional) martingale property.
Proposition 1. Any {Zn+1:n+m} ∼ pM (·|Z1:n) satisfies Eq. (1) if and only if the following holds:

for all n′, k ∈ N and functions g, h, E((g(Zn′+k)− g(Zn′+1))h(Zn+1:n′)|Z1:n) = 0. (4)

We now state two implications of Proposition 1, our two diagnostics of the martingale property (1).
Corollary 1. Let {Zi : i ∈ N} be a sequence of random variables satisfying the martingale property.
Then for all integers n, n′, k > 0 and n′ > n it holds that: (i) E(g(Zn+1)|Z1:n) = E(g(Zn+k)|Z1:n)
for all integrable functions g, and (ii) E((Zn′+k+1 − Zn′+1)Z

⊤
n′ |Z1:n) = 0.

Properties (i) and (ii) are derived from Proposition 1 by making different choices of the functions
(g, h). We refer to App. B.5 for a detailed discussion on how we derive these properties, how we
instantiate them in our experiments in §4, and an illustrative example highlighting how certain choices
of (g, h) can ensure consistency expression for important aspects of the posterior.

In App. C we present aggregated statistics T1,g and T2,k to compute and empirically measure
properties (i) and (ii) from sample paths generated by an LLM. In our experiments, we check if these
statistics lie within bootstrapped confidence intervals obtained by a reference Bayesian predictive
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Figure 2: Checking the martingale property on Bernoulli data. Each data point represents a test
statistic evaluated for an LLM (§3). Shade indicates 95% CIs from a reference Bayesian model.

model, which is readily available in synthetic settings, through the same sampling procedure. If T1,g

and T2,k lie outside the confidence interval, properties (i) and (ii) and hence the martingale property
are violated. We refer to App. B.7 for a discussion to which degree these violations are expected or
even acceptable, which we considered in the interpretation of our experimental results. Lastly, we
refer to App. B.6 where we derive a third diagnostic based on the scaling of epistemic uncertainty.

4 EXPERIMENTAL ANALYSIS ON LLMS

In this section, we experimentally probe whether ICL in state-of-the-art LLMs is Bayesian using the
diagnostics discussed in §3 and corresponding test statistics T1,g, T2,k, T3.

Experiment setup. We consider three types of synthetic datasets z1:n: Bernoulli: Zi ∼ Bern(θ),
where θ ∈ {0.3, 0.5, 0.7}; Gaussian: Zi ∼ N (θ, 1), where θ ∈ {−1, 0, 1}; A synthetic natural
language experiment representing a prototypical clinical diagnostic task, where Zi = (Xi, Yi)
indicate the presence or absence of a symptom and disease as a text string for the i-th patient,
respectively. Further, Xi ∼ Bern(0.5), Yi|Xi ∼ Bern(0.3 + 0.4Xi). On purpose, we reduce our
experimental setup to these minimum viable test beds where the ground-truth latent parameters
are known. We use the following four LLMs: llama-2-7B with 7B parameters (Touvron et al.,
2023), mistral-7B (Jiang et al., 2023), gpt-3.5 (Brown et al., 2020) and gpt-4 (OpenAI,
2023). We refer to App. C for additional experimental results, in particular the Gaussian and natural
language experiment, and checking epistemic uncertainty of LLMs with our third diagnostic, as well
as experimental details.

Checking the martingale property: Bernoulli data We first check if the LLMs satisfy the
martingale property. As we discussed in §2, this is a necessary condition for a Bayesian ICL system.
Fig. 2 reports the results of the Bernoulli experiments with n = 50 observed samples, LLM sample
paths of length m ∈ {n/2, 2n}, and datasets with ground-truth mean θ ∈ {.3, .5, .7}. As discussed
in §3, we compute the test statistics T1,g and T2,k on J sample paths generated by an LLM, and
compare them with bootstrap confidence intervals (CIs) obtained from a reference Bayesian model.
A deviation of the test statistics from the CIs indicates that the LLM is highly unlikely to be a good
approximation of the reference Bayesian model. Moreover, when n becomes moderately large so that
asymptotic normality results apply, such deviations further imply the deviation from all “reasonable
Bayesian models” in the Bernstein von-Mises sense (Van der Vaart, 2000).

For short sample paths of length m = n/2 (subplots (a) and (b)), the LLMs’ test statistics generally lie
within the CIs, with the main exception being gpt-4 (θ ∈ {0.3, 0.5}), indicating a mostly adherence
to the martingale property. However, for longer sample paths with m = 2n (subplots (c) and (d)),
all models fail the first check (left), and most models except mistral-7b fail the second check
(right). In App. C we present further results for different choices of n ({20, 50, 100, 200}), which
are consistent with Fig. 2. In summary, in the Bernoulli experiments the LLMs generally adhere to
the martingale property in short sampling horizons, but in longer horizons demonstrate a significant
deviation from the martingale property, and hence the Bayesian principle.
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5 CONCLUSION

This work falsifies the hypothesis that in-context learning in large language models is Bayesian. Our
work has several limitations: 1) We considered three LLMs of different computational scales, with
two being relatively small (7 B parameters). 2) We analysed a limited number of diagnostics of the
martingale property. While this work analysed the intrinsic behaviour of LLMs, future work should
consider the use of tools which can greatly enhance the performance of such joint systems, or using
fine-tuning to penalise deviations from the martingale property.
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Perttu Hämäläinen, Mikke Tavast, and Anton Kunnari. Evaluating large language models in generating
synthetic hci research data: a case study. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1–19, 2023.
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Appendix for Are Large Language Models Bayesian? A Martingale
Perspective on In-Context Learning

A PROOFS OF THEORETICAL STATEMENTS IN THE MAIN TEXT

Fact 1. Any exchangeable random sequence {Zi} must be conditionally identically distributed.

Proof. See, e.g., Berti et al. (2004, p. 2030).

Proposition 1. Any {Zn+1:n+m} ∼ pM (·|Z1:n) satisfies Eq. (1) if and only if the following holds:

for all n′, k ∈ N and functions g, h, E((g(Zn′+k)− g(Zn′+1))h(Zn+1:n′)|Z1:n) = 0. (4)

Proof. It suffices to show the equivalence between the following three statements:

(i) Zn+1:n+m|Z1:n satisfies Eq. (1)

(ii) for all n′ ≥ n, k ≥ 1 and integrable function g we have E(g(Zn′+k) −
g(Zn′+1)|Z1:n, Zn+1:n′) = 0

(iii) for all n′ ≥ n, k ≥ 1 and integrable (g, h) we have 0 = E((g(Zn′+k) −
g(Zn′+1))h(Zn+1:n′)|Z1:n).

(i) ⇒ (ii) and (ii) ⇒ (iii) follow immediately by properties of the conditional expectation. For (iii)
⇒ (ii) and (ii) ⇒ (i), let h and g range over the indicator functions for all measurable sets of the
respective variables.

Corollary 1. Let {Zi : i ∈ N} be a sequence of random variables satisfying the martingale property.
Then for all integers n, n′, k > 0 and n′ > n it holds that: (i) E(g(Zn+1)|Z1:n) = E(g(Zn+k)|Z1:n)
for all integrable functions g, and (ii) E((Zn′+k+1 − Zn′+1)Z

⊤
n′ |Z1:n) = 0.

Proof. (i) follows by setting h(zn+1:n′) ≡ 1 in (4). (ii) follows by setting g(z) = z, h(zn+1:n′) =
zn′ .

B FURTHER DISCUSSION OF THEORY AND METHODOLOGY

B.1 MOTIVATING EXAMPLE: CONSEQUENCES OF THE MARTINGALE PROPERTY

Consider a drug company exploring the efficacy of a new medication for headaches. The company
runs a two-arm Randomised Control Trial (RCT) with 100 patients, 50 in each arm, comparing the
new treatment with the current standard of care (in this case ibuprofen), and records the outcome
Y ∈ {0, 1} whether patients are symptom-free four hours after treatment. It is important to note
that in this setting, the distribution of outcomes is independent of the order in which the patients
are observed, a property known as exchangeability (see §2 for a formal definition). Half-way
into the trial, the company conducts an interim analysis. Define the interim observations D =
{(x1, y1), . . . , (x50, y50)} where yk indicates outcome, and xk the treatment arm and other patient
covariates. Given these observations, the company wants to decide whether to stop the trial early.
The company uses an LLM, which was trained on potentially useful background information from
the internet (e.g. on clinical trials, or the efficacy of ibuprofen), to generate the missing patients via
ICL conditioning on x1:n+k−1 for the (n+ k)-th patient, and determines if the RCT is successful
combining the observed and synthetic data. It repeats this imputation procedure J times, and decides
to keep going with the trial if the fraction of symptom-free patients in the treatment over the control
arm is above a certain threshold on average over these J hypothetical trials. Should we trust the
LLM’s prediction using ICL under this procedure?

In preview of our experimental results in §4, the answer is ‘No’. Our experiments present evidence that
state-of-the-art LLMs violate the martingale property in certain settings (see Fig. 1). The martingale
property is a necessary condition for exchangeability, and in turn a fundamental property of Bayesian
learning. If the martingale property is violated by an LLM performing ICL it implies that the model’s
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Scenario 1: Predict
given observed data

Scenario 2: Predict given observed
data and imputed missing observations

LLM LLM LLM

Figure 3: The martingale property, a fundamental requirement of a Bayesian learning system, requires
invariance with respect to missing samples from a population.

predictions are not exchangeable, and hence that ICL with this LLM is not following any reasonable
notion of probabilistic conditioning. This renders the LLM’s predictive distribution incoherent: the
model can make different predictions depending on the order in which the patients are imputed. This
is problematic because by the design of an RCT, we know that there is no outcome dependence on
the order of observations. It is incoherent and ambiguous to receive a different marginal predictions
if we for example impute patient # 51 or patient # 100 first. Note that independent and identically
distributed (i.i.d.) is a stricter condition implying exchangeability, and hence our work also applies
to any i.i.d. data setting. This should caution the practitioner of the use of LLMs in exchangeable
applications and data settings.

But there is a second reason why the martingale property is crucial: it enables a principled interpreta-
tion of the uncertainty of LLMs, allowing us to decompose inference into epistemic and aleatoric
uncertainty (see §2 for a detailed introduction). Revisiting the RCT example above, if we acquire
data from the 50 remaining patients, a costly decision, can this substantially decrease (epistemic)
uncertainty? What is the effect of acquiring additional features for each patient, e.g. a genetic predis-
position, on the (aleatoric) uncertainty? – Without satisfying the martingale property, we have no
understanding of the effect on reducing uncertainty in applications where additional data acquisition
is feasible, for instance active learning or reinforcement learning. We cannot study the question ‘why
is the point prediction of my LLM imprecise’ in a principled way, and the uncertainty of an LLM’s
predictive distribution remains opaque. This finding has important implications for safety-critical,
high-stakes applications of LLMs where trustworthy systems with a principled uncertainty estimate
are vital.

B.2 UNAMBIGUOUS PREDICTIONS UNDER EXCHANGEABLE DATA

There is another way in which predictions are rendered unambiguous: under exchangeability for
which the martingale property is a necessary condition (see App. A) the model is invariant to the
order of the observed and missing data. This requirement is vital if we know that the order of the
underlying distributions is irrelevant, for instance because—as in the RCT example in App. B.1—we
have designed the experiment such that we can exclude a dependency on the order. Formally, this
concept is known as exchangeability. A sequence of random variables {Zi} ∼ pM is exchangeable if
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for all ℓ ∈ N and ℓ-permutations σ,

pM (Z1, . . . , Zℓ) = pM (Zσ(1), . . . , Zσ(ℓ)). (5)

Exchangeability guarantees the invariance of predictions to the ordering of the observations Z1:n,
but also with respect to the order of future imputations Zn+1,...|Z1:n. To understand the importance
of this, consider the RCT example in App. B.1, where {Z1:100} are (by experimental design)
exchangeable. A model pM should hence satisfy

pM (Yn+k|Xn+k=x, Z1:n, Xn+1:n+k−1= x̂n+1:n+k−1)

= pM (Yn+k|Xn+k=x, Z1:n, Xn+1:n+k−1= x̂σ(n+1:n+k−1)),

meaning that the prediction for Yn+k|D,Xn+k is independent of the order of the imputed inputs
x̂n+1:n+k−1. If a model pM violates the above equality, there may be ambiguities in the prediction
of the next sample (Yn+k, Xn+k) as it may depend on and vary by ordering. Such ambiguities would
substantially undermine the credibility of predictions, as well as the downstream decision-making
based on such procedures. The martingale property is connected to the above notions of invariance
as a necessary condition for exchangeability. Furthermore, it can even ensure exchangeability of
imputed samples as the observed sample size n becomes large, because Eq. (1) implies asymptotic
exchangeability of Zn+1,...|Z1:n (Berti et al., 2004, Thm. 2.5).

B.3 BACKGROUND ON MARTINGALE POSTERIORS

We will show how the martingale property allows for a principled decomposition for the predictive
uncertainty from the model.

Let us first suppose for simplicity that the variables Zi are discrete and have A < ∞ realisations,
so that any distribution pθ(Z = ·) can be identified by a vector θ ∈ RA. Let θn denote the random
vector that indexes pM (Zn+1 | Z1:n). Then, the martingale property is equivalent to stating that {θn}
form a martingale w.r.t. the filtration defined by {Zn}. Now Doob’s theorem (Doob, 1949) states that
θn converges almost surely to a random vector θ∞, and we have θn = Eθ∞|Z1:n

θ∞, or equivalently,

pM (Zn+1= · |Z1:n)=

∫
p(θ∞|Z1:n)pθ∞(Z= ·)dθ∞. (6)

The random vector θ∞ plays the same role as the parameter θ in a Bayesian model, as both determine
a predictive distribution. Indeed, the Bayesian posterior predictive distribution, Eq. (3), has the same
representation as (6). We will also explain shortly when pM is defined through Bayesian inference
over θ, θ∞ will be equivalent to the model parameter θ, and p(θ∞|Z1:n) equivalent to the Bayesian
posterior. For these reasons we refer to the distribution θ∞|Z1:n as the martingale posterior.

We note that we can construct the martingale posterior solely using samples from pM . This is because
we can construct the martingale posterior by sampling Zn+1:n+m|Z1:n, which will determine a sample
θn+m|Z1:n as the parameter that indexes the predictive distribution p(Zn+m+1 = ·|Z1:n+m) =
pθn+m(·); and since θn+m → θ∞ as m → ∞, we can truncate the process at a large m ≫ n to
obtain a good approximation for θ∞.

The restriction to finite support is largely for expository simplicity as it allows us to avoid measure-
theoretic considerations. More generally, it is always possible to view the distribution p(Zn+1 =
·|Z1:n) =: θn as a random element in a suitable Banach space of measures and the condition (1) as
requiring {p(Zn+1 = ·|Z1:n) : n ∈ N} to define a martingale in that space. When Doob’s theorem
applies, the above construction provides a distribution over predictive distributions that quantifies the
epistemic uncertainty. However, for tractability and comparability to Bayesian parametric posteriors,
it is also useful to consider the following alternative procedure which is also closer to Fong et al.
(2021):

1. Sample Zn+1:n+m ∼ pM (·|Z1:n).

2. Compute θ̂m := argmaxθ∈Θ

∑m
j=1 log p(Zn+j |θ).

3. Return θ̂m as an approximate sample from the martingale posterior, defined as the conditional
distribution of the pointwise limit limm→∞ θ̂m given Z1:n.
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In the above, p(Zi|θ) is the likelihood in the Bayesian parametric model. If
{pM (Zn+j |Z1:n+j−1)}∞j=1 corresponds to a certain posterior predictive defined by the same likeli-
hood, and the model is such that maximum likelihood estimation is consistent, it follows from de
Finetti’s theorem (applied to Zn+1:|Z1:n) and consistency that as m → ∞, θ̂m will converge to a
random variable θ̂∞ (w.r.t. the norm and notion of convergence in consistency), and the distribution
θ̂∞|Z1:n must equal the Bayesian posterior. Applying the same procedure to a more general pM that
satisfies (1) leads to the methodology in Fong et al. (2021).

We adopted this ‘model-based’ approach in our third diagnostic (§B.6). Compared with the former
approach, it is easier to implement on ICL tasks where each sample Zi is represented with multiple
tokens and a correctly specified likelihood for the true observations is available; the latter is always
true in our synthetic experiments. More importantly, when m is finite, only with this approach can we
compare the sampling distribution of θ̂m|Z1:n across different pM , as we explain in Appendix B.8
below. This is important in our experiments where we find the LLMs (at best) follow the martingale
property within a horizon of m ≍ n.

B.4 UTILITY OF THE UNCERTAINTY DECOMPOSITION

The interpretable decomposition of uncertainty further provides actionable guidance on how the
combined uncertainty can be reduced: We can collect more samples to reduce epistemic uncertainty
in scenarios where this is possible such as active learning, reinforcement learning or healthcare;
particularly in regions of the input space where the uncertainty is high. In §B.6 we propose diagnostics
to check if epistemic uncertainty decreases w.r.t. training sample size. On the contrary, if the aleatoric
uncertainty is high and ought to be reduced, we cannot do so without ‘changing the problem’, for
instance by collecting more features for each data point. This principled notion of uncertainty in a
model is crucial in safety-critical, high-stakes scenarios for building trustworthy systems.

We present the following example for further intuition:
Example 1. Suppose Zi ∈ {0, 1}. Then θ∞ ∈ R2, and pθ∞ = Bern((θ∞)2) is determined by
its second dimension. Thus, in both Eq. (6) and Eq. (3) the epistemic uncertainty is represented
by a distribution over the Bernoulli parameter, revealing their inherent connection. The epistemic
uncertainty is especially important in scenarios where we use a model pM to impute the missing
samples {Zn+i} from a population —as in the RCT example in §B.1— and want to quantify a
model’s lack of knowledge about the population. Note this distribution is not identifiable if we only
have samples from a single-step predictive distribution pM (Zn+1|Z1:n), but becomes identifiable
given sample paths.

B.5 DIAGNOSTICS FOR THE MARTINGALE PROPERTY: FURTHER DISCUSSION

We here provide further discussion of Corollary 1. Property (i) follows by setting h(Zn+1:n′) ≡ 1
and examines the marginal predictive distributions pM (Zn+k|Z1:n). We instantiate (i) using (at most)
two choices of g: In preview of §4, we will perform our checks on unconditional experiments where
Zi—or equivalently Yi because of the unconditional setting—are Bernoulli or Gaussian distributed
random variables. In the Bernoulli experiment it suffices to choose the identity function g(z) = z,
as the mean E(Zn+k|Z1:n) provides full information about the distribution pM (Zn+k|Z1:n). In
the Gaussian experiment, we will observe that choosing g(z) = z and g(z) = z2 is in most cases
sufficient to reveal substantial violations from the martingale property.

Property (ii) is equivalent to requiring Eq. (4) to hold for all linear functions (g, h), which follows by
linearity of the functions and the conditional expectation. We will again see in our experiments that
this choice is usually sufficient to reveal deviations from the martingale property.

Let us further consider choices for h and g in Corollary 1 with an example.
Example 2. Suppose pM is defined through a Bayesian model for i.i.d. observations. Let θ denote
the latent model parameter, and suppose the likelihood p(Z|θ) satisfies EZ∼p(Z|θ)Z = θ. Then by
Corollary 1, for all (k, n′) we have

• E(Zn+k|Z1:n) = E(θ|Z1:n), and
• E(Zn′+k+1Z

⊤
n′+1|Z1:n) = E(θθ⊤|Z1:n) (see e.g. Ghosal & Van der Vaart, 2017, p. 454).
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In this setting, condition (i) (with g(z) = z) and (ii) thus guarantee that the conditional mean and
covariance equal the posterior mean and covariance, respectively, independent of (n′, k). These two
important aspects of the posterior are hence consistently expressed by the model.

B.6 DIAGNOSTICS FOR EPISTEMIC UNCERTAINTY

As discussed in §2, the martingale property allows us to identify epistemic uncertainty, which should
decrease with more observed samples. Here, we derive a third diagnostic for Bayesian ICL systems
which probes this. We begin by presenting a theoretical fact which provides important intuition on
the role of epistemic uncertainty.

Fact 2. Let π(θ) and pM (Z|θ) be the prior and likelihood of a Bayesian model, θ̄n := Eθ∼π(θ|z1:n)θ
the posterior mean given data z1:n, and ∥ · ∥ be any vector norm. Then,

Eθ0∼π,z1:n∼π(z|θ0)Eθ∼π(θ|z1:n)∥θ − θ̄n∥2 = Eθ0∼π,z1:n∼π(z|θ0)∥θ0 − θ̄n∥2. (7)

Proof. This holds because θ and θ0 are conditionally independent and identically distributed given
z1:n, and θ̄n equals the conditional expectation of both random variables.

The left-hand side in Eq. (7) is the trace of the posterior covariance (variance) and thus measures
epistemic uncertainty. The right-hand side is the estimation error for the true parameter. Thus, Fact 2
states that epistemic uncertainty provides a quantification for the average-case estimation error. Note
that Eq. (7) only applies to data from the prior predictive distribution, and thus not necessarily to the
real observations. Nonetheless, a significant deviation of a model from the known scaling behaviour
of the estimation error will indicate non-conformance with any reasonable Bayesian models. This is
precisely our starting point to derive another diagnostic for Bayesian ICL systems.

As discussed in §2, we use sample paths generated by an LLM to approximate a martingale pos-
terior and estimate its epistemic uncertainty. Here, we characterise epistemic uncertainty through
the trace of the posterior covariance of the martingale posterior, the ‘spread’ of the distribution.
Because the sample paths we use are finite (see App. B.7) we cannot study the exact martin-
gale posterior directly, which can only be recovered with infinite samples. Instead, we study
the sampling distribution of the maximum likelihood estimate (MLE) on the first m samples:
θ̂m := argmaxθ∈Θ

∑m
i=1 log pθ(Zn+i), where pθ is the known parametric likelihood. We mea-

sure the spread of this distribution using its inter-quartile range

T3 = Q0.75({θ̂(j)m }Jj=1)−Q0.25({θ̂(j)m }Jj=1), (8)

where θ̂(j)m denotes the MLE using the j-th sample path {z(j)n+i}mi=1, and Q0.25 and Q0.75 are the 0.25-
and 0.75-quantiles. In our experiments in §4 we consider scenarios where the true data distribution is
defined by regular parametric models. In such cases the optimal (squared) estimation error for the
true parameter scales O(d/n) where n is the ICL dataset size and d is the dimension of the parameter,
which is also the minimax lower bound (Van der Vaart, 2000, Ch. 8). When choosing m = Θ(n), a
reference Bayesian model will also have the O(d/n) scaling behaviour following classical posterior
contraction results in statistics; see App. B.8. Therefore, we can compare the asymptotic scaling of
T3 between an LLM and a reference Bayesian parametric model through the same sampling-based
procedure. If the scaling behaviour of T3 from our LLM deviates from that of the reference Bayesian
model, we can conclude that the LLM either exhibits a marked loss of estimation efficiency, or
does not maintain a correct notion of epistemic uncertainty at all. Both characteristics contradict a
Bayesian ICL system and are undesirable.

B.7 ARE ALL DEVIATIONS FROM BAYES BAD? – EXPECTED AND ACCEPTABLE DEVIATIONS
FROM BAYESIAN REASONING

Numerous properties are implied if a learning system satisfies the martingale property, a distributional
characteristic, and it is both infeasible and unnecessary as often practically irrelevant to check all of
them in order to provide evidence for or against our hypothesis. For example, the martingale property
implies that all conditional moments should be equivalent, i.e. E(Zl

n′+1|Z1:n) = E(Zl
n′+k|Z1:n) for

all integers n, n′, k, l > 0 and n′ > n, yet higher-order moments are not vital in most applications
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and hence are acceptable deviations, if existent. Therefore, we will restrict our attention to two key
implications of the martingale property which—if present—have important practical consequences.

Pretrained LLMs are general-purpose models and can at best approximate Bayesian learning via
ICL. The martingale property is an invariance that is not hard-coded in their transformer-based
architecture, and can only be approximately (rather than exactly) satisfied. Let us assume that an
LLM internally maintains a ‘hierarchy of states’ Wang et al. (2023), say a hierarchical Bayesian
model, capturing different tasks (e.g. Bayesian ICL from i.i.d. data, or acting in a dialogue system),
and at each sampling step first updates its belief about this state. Say there is a probability p that the
LLM deviates from Bayesian ICL or simply fails to approximate. Even if p is small, the probability
of a deviation 1−(1−p)m becomes substantial when accumulated over a long sampling path of length
m. This would trivially falsify the martingale property and our hypothesis.

In our experiments in §4, we hence restrict the sampling paths to a short, finite length where we check
the martingale property. We also design our checks to be robust against such behaviour, for example
by removing outliers before computing a test statistic. Furthermore, we are particularly interested in
stark and unequivocal evidence of the model violating the martingale property beyond an expected
error of any approximating model. We will analyse and quantify violations of the martingale property
with diagnostics, which we introduce in §3, in order to check our hypothesis experimentally. In
App. B.9 we derive the order of ‘acceptable violations’ for the test statistics we will introduce.

B.8 APPROXIMATE MARTINGALE POSTERIORS WITH FINITE PATHS

We have claimed that with a finite m, the spread of the approximate martingale posterior θ̂m defined
as the MLE on m samples (see §B.6, or §B.3) is comparable between different choices of pM . We
now substantiate on this claim.

Let us first restrict to exchangeable (i.e., Bayesian) choices of pM . Consider de Finetti’s representation
for the posterior predictive measure: Zn+1,...|Z1:n can be represented through

θ∞ ∼ π(·|Z1:n), Zn+1,...
iid∼ p(·|θ∞)

where the measure π(·|Z1:n) equals the Bayesian posterior, which as discussed in §B.3 equals the
exact martingale posterior. Combining the above representation and the fact that θ̂m is a function of
Zn+1:n+m lead to θ̂m ⊥ Z1:n|θ∞, and

Cov(θ̂m|Z1:n)

= E(Cov(θ̂m|θ∞)|Z1:n) + Cov(E(θ̂m|θ∞)|Z1:n)

≈ E(Cov(θ̂m|θ∞)|Z1:n) + Cov(θ∞|Z1:n),

where we dropped the term E(θ̂m|θ∞)− θ∞ which is the bias of MLE and thus a higher-order term
for regular models. Therefore, that the (co)variance overhead Cov(θ̂m|Z1:n) − Cov(θ∞|Z1:n) is,
up to the first order, the average-case error of MLE on m i.i.d. samples when the true parameter
is sampled from the posterior π(·|Z1:n). For regular models this is always Θ(d/m), where the
coefficient hidden in the Θ notation is also comparable across different pM as long as the Fisher
information matrix evaluated at θ ∼ π(·|Z1:n) has a comparable value (e.g., across all choices of pM
that satisfy consistency). As the martingale posterior covariance Cov(θ∞|Z1:n) has the same Θ(d/n)
scaling across all regular Bayesian models to which the Bernstein von-Mises theorem applies, with a
choice of m ≍ n, any deviation in the scaling of Cov(θ̂m) – from that of any regular Bayesian model
– must be attributable to a different scaling of the exact MP covariance, and thus a deviation from all
regular Bayesian models.

Finally, we note that while we focus on ICL models that are approximately Bayesian, the above
discussion may also apply to general models that only satisfy the martingale property, since for those
models Zn+1,...|Z1:n remains asymptotically exchangeable (Berti et al., 2004). Moreover, the above
discussion applies to inter-quantile range (IQR) as well, because for asymptotically normal posteriors
the IQR is proportional to the posterior standard deviation; and even for non-normal posteriors, the
IQR should still have the same order as the posterior contraction rate, by definition of the latter.
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B.9 ACCEPTABLE APPROXIMATION ERRORS OF PROPERTIES (I) AND (II) IN COROLLARY 1

Even as we restrict to a finite horizon m, there can still be expected deviations from the equality
(1), and thus those in Corollary 1, simply because (1) represents invariance conditions that are not
“hard-wired” in the LLM’s architectures. yet it is logical that small violation of these equalities should
not have practical consequences. We now derive the order of their acceptable violations in the setting
of Example 2.

As discussed therein, the equalities in Corollary 1 guarantee the expressions for posterior mean and
covariance for the parameter θ have consistently defined values, regardless of the choices of (n′, k).
The posterior mean has the order of Θ(1) and requires the violation of Corollary 1 (i) to be o(1). The
posterior covariance is generally Ω(1/n) and can be expressed through Example 2 as

Cov(θ|Z1:n) = E(Zn′Zn′+k|Z1:n)− E(Zn′ |Z1:n)
2.

Therefore, it can has an approximately consistent value if the equalities in Corollary 1 hold approxi-
mately up to an error of o(1/n). Posterior mean and covariance are key quantities in the interpretation
of predictive uncertainty, which in turn is a major benefit from the martingale property. Thus, we
consider the above deviation to be acceptable as it already guarantees the approximately consistent
interpretation of predictive uncertainty through the martingale property.

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

C.1 ADDITIONAL EXPERIMENTAL DETAILS

Test statistics of properties implied by the martingale property. We summarise and empirically
measure properties (i) and (ii) in Corollary 1 using the aggregated statistics

T1,g :=
2

Jm

J∑
j=1

m/2∑
i=1

(g(z
(j)
n+i)− g(z

(j)
n+i+m/2)), (9)

T2,k :=
1

Jm

J∑
j=1

m−k−1∑
i=1

(z
(j)
n+i+1 − z

(j)
n+i+k)z

(j)
n+i. (10)

The statistics T1,g and T2,k are defined using samples {z(j)n+i} from J paths generated by an LLM via
ICL and correspond to Monte-Carlo estimates of the expectations in properties (i) and (ii). To be
robust against the possible outlier paths (App. B.7), we remove sample paths with anomalous mean
absolute values using the standard 1.5×IQR rule.

Experimental setup. For the first two experiments we vary n ∈ {20, 50, 100}, m ∈ {n/2, 2n}
and sample J = 200 paths from the LLMs. For the natural language experiments we fix n =
100,m = 50, J = 80. As non-exchangeable models may demonstrate different behaviour on
different permutations of the same dataset, for our experiments we permute the observations when
generating each sample path, so that we can produce a single test statistic that summarises each
experiment configuration. For the epistemic uncertainty experiments (third diagnostic) in App. C.2,
however, we use a fixed ordering for the observations for all path samples within each run, and report
the median inter-quartile range across 9 runs for each configuration. This change is made to avoid
(possibly small) deviations from exchangeability from inflating the estimated spread of the posterior.

We discuss prompt design and format in detail below. Here we emphasise that across all tasks, the
prompt always includes sufficient information about the true likelihood.

Due to resource limitations we only employ gpt-4 for the Bernoulli experiments with n ≤ 50.

Prompt design and format. We use the following prompt format <instruction>
<observed data> <sampled data>. <instruction> describes the distribution of the
observed data and importantly states that the observed samples were drawn i.i.d., i.e. from exchange-
able random variables. <observed data> and <sampled data> lists the observed z1:n, and
sampled data ẑn+k (if there exists any), respectively. Samples are represented depending on the
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experiment: as int values as 1-digit characters (e.g. ‘1’), float values with 1-digit of precision
(e.g. ‘2.2’) or words for synthetic natural language. As a sanity check, we also consider replacing
integers with random words (e.g. ‘tiger’ for ‘1’, ‘hedgehog’ for ‘0’), but did not notice important
differences between the LLMs’ behaviour. Each sample is delineated by a separator (e.g. ‘;’).

We present exemplary prompts for each dataset below:

• A Bernoulli experiment with n = 5 and m = 2: Provided are independent, identically distributed
tosses of a coin, which flips 1 with probability p where p is unknown: 1;0,0,1,0,0;1.

• A Gaussian experiment with n = 1 and m = 2: Provided are independent, identically distributed
draws from a Gaussian, with fixed but unknown mean and unit variance: 1.1,0.8,1.3,1.0,0.9,1.2,0.8.

• The the natural language experiment: You will make predictions for a novel disease. The observed
dataset contains records for multiple subjects which are assumed to be independent and identically
distributed. For each subject there are two binary variables, indicating fever and disease diagnosis,
respectively. Output your prediction for the disease diagnosis of the next subject.\n Id: 0\n Fever:
Y\n Diagnosis: N . . .

Other work represents both int and float numbers as a space-separated string of digits with
fixed precision, where each number is separated by a semi-colon. This guarantees a per-digit
tokenisation that was observed to be beneficial in the context of time series forecasting and further
minimises the required number of tokens per number as the decimal point is redundant Gruver et al.
(2023). We did not opt for this representation and corresponding tokenisation for two reasons: First,
initial experiments with GPT-2 showed deteriorating sampling performance, where the model often
hallucinated unrelated content. Second, and related to the first point, this representation is somewhat
‘out-of-distribution’ and probably unseen in the training distribution, which could limit and constrain
any conclusions made in our experiments. Note that because of the tokenisation, in §4, the Gaussian
experiment is more difficult than the Bernoulli experiment (or any dataset with single-token samples)
as the LLM is required to learn the correlation structure between consecutive tokens representing a
real-valued number.

Additional details for the natural language experiment. For the natural language experiment,
we modify the scheme as follows: we split the ICL dataset and the imputations into two sequences
({Yi0,k}n1+m1

k=1 , {Yi1,k}n0+m0

k=1 ) based on the value of Xi. Subsequently, either sequence contains
i.i.d. Bernoulli random variables with a different mean, and any Bayesian ICL model with a correctly
specified likelihood must produce imputations following a separate Bayesian posterior for Bernoulli
data. Thus, we can apply our Bernoulli diagnostics separately to both sequence. This modification
allows us to focus on LLMs’ conditional predictive distributions of the form pM (Yi+1|Xi+1, Z1:i),
which is more relevant in practice.

C.2 FURTHER EXPERIMENTAL RESULTS

Gaussian experiment. In Fig. 7 we present results on the Gaussian experiment with θ = −1, n =
100,m = n/2, again performing both checks of the martingale property and using a reference
Bayesian model with the non-informative prior N (0, 100). We observe that llama-2-7b and
mistral-7b demonstrate clear deviation from the martingale property, whereas gpt-3.5 passes
both checks. Additional results for gpt-3.5 in App. C present our diagnostics with other choices of
(n,m, θ), demonstrating a deviation to the predictive distribution of the reference Bayesian posterior.
We will also further investigate gpt-3.5 in the natural language experiment. In conclusion, the
presented evidence on the Gaussian experiment falsifies our hypothesis of Bayesian behaviour with
the tested LLMs.

Synthetic natural language experiment. In Fig. 8 [Left] we present our results for the natural
language experiment with n = 100,m = 50, g(z) = z and gpt-3.5. For both checks of the
martingale property, we observe clear deviations from a reference Bayesian posterior for all values of
Xi (see App. C for details). This provides further evidence of violations of the martingale property in
settings where natural language (instead of numbers) are used.

Checking epistemic uncertainty of LLMs. In this subsection we analyse the scaling behaviour
of an LLM’s uncertainty. In Fig. 8 [Right] we measure T3 (y-axis on a log-scale) and compare
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Figure 4: Checking the martingale property: full results for the Bernoulli experiments in the setting
of Fig. 2.
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Figure 5: Checking the martingale property: results for the Gaussian experiments with θ = 0. See
Fig. 7 for details.
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Figure 6: Checking the martingale property: results for the Gaussian experiments with θ = −1. See
Fig. 7 for details.
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Figure 7: Checking the martingale property on Gaussian experiments. We present runs with θ =
−1, n = 100,m = 50 from different LLMs (x-axis) with test functions g(z) = z and g(z) = z2.
See Fig. 2 for further details.

the approximate martingale posterior of an LLM with a reference Bayesian model when increasing
the number of observed samples n (x-axis). We consider a Bernoulli experiment with θ = 0.5 as
it is the only experimental setting where, with a short sampling horizon of m = n/2, all LLMs
approximately adhere to the martingale property. In addition to the standard reference Bayesian
model, we also consider two α-fractional Bayesian posteriors (Bhattacharya et al., 2019), which are
generalisations of the Bayesian posterior that exhibit a O(d/αn) scaling for its epistemic uncertainty.
They allow us to check the weaker hypothesis whether an LLM’s epistemic uncertainty scales at least
up to the correct order of magnitude. We observe that the asymptotic rate of of llama-2-7b and
gpt-3.5 is slower than that of a Bayesian model, which suggests inefficiency as discussed in §B.6.
Furthermore, gpt-3.5 demonstrates over-confidence in the small-sample regime. mistral-7b
appears to scale at least on a correct order of magnitude, even though not exactly matching the
Bayesian model. This finding is interesting as on the Bernoulli experiments, mistral-7b also
demonstrates the best adherence to the martingale property.

Checking the martingale property. Fig. 4 reports the full results for the Bernoulli experiment in
the setting of Fig. 2 (m ∈ {n/2, 2n}), where we also visualises the o(1/n) ‘acceptable deviation’
(§B.9) using a light shade with width 0.1/n. Consistent with the results in Fig. 2, the martingale
property is generally satisfied in the short-horizon scheme (m = n/2), but increasingly violated as
we move to m = 2n. We further provide the results for m = 10n in Fig. 9, where we drop gpt-3.5
due to limitations with its API. As we can see, in this setting where the sampling horizon becomes
even longer, deviation from the martingale property also becomes more severe. The consistently large
negative value of T1,g indicates a continual upward bias towards 1, which demonstrates the ‘creation
of new knowledge’ phenomenon discussed in §2.
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Figure 8: [Left] Checking the martingale property on the natural language experiment. We present
both checks with test statistics computed separately for each value of Xi (x-axis). See Fig. 2 for
further details. [Right] Scaling of epistemic uncertainty on the Bernoulli experiment: the test statistic
T3 (see §B.6) computed on LLMs, compared with Bayesian and fractional Bayesian models.

We report additional results for the Gaussian experiment in Fig. 6 (θ = −1) and Fig. 5 (θ = 0). As we
can see that, all models generally demonstrate a deviation from the martingale property when θ = −1,
but with θ = 0 they may often appear to satisfy the property within a shorter horizon (m = n/2).
Results for θ = 1 are similar to the θ = −1 case and thus omitted. We note that in many cases the
predictive distribution cannot be matched to any Bayesian posterior with the correct likelihood: for
the latter the sample variance should be greater than 1, the likelihood variance, but this is often not
true for the LLMs. For example, for gpt-3.5 in the setting of Fig. 7 we find the sample variance to
be 0.711 < 1 (95% CI: [0.680, 0.742]).
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Figure 9: Checking the martingale property on Bernoulli experiments: additional result with n =
100,m = 10n. See Fig. 2 for details.

Scaling of epistemic uncertainty. As noted in the text, the behaviour of gpt-3.5 and
llama-2-7b cannot correspond to any ‘reasonable’ Bayesian models in the Bernstein von-Mises
sense. Here we note that the same figure also suggests that they are unlikely to correspond to any ‘un-
reasonable’ Bayesian model (e.g., one with an approximately degenerate prior), either. For gpt-3.5,
its small-sample behaviour can only be explained as a Bayesian model with a very strong prior that
has the bulk of its mass near the true parameter; yet this would contradict its larger-than-regular
posterior spread when n is large. For llama-2-7b, its large-sample behaviour could only be
explained with the exact opposite (e.g., a Beta(100, 100) prior); yet that should have led to a much
larger IQR when n is small.

D RELATED WORK

In-context learning as Bayesian inference. Numerous papers have explained ICL as performing
a form of Bayesian Inference. Xie et al. (2021) assume the pretraining distribution is a Hidden
Markov Model (HMM). Under this and other assumptions pertaining transition probabilities and the
distribution shift between the start of the prompt and all hidden transition distributions, they prove
that the LLM infers a latent concept of the prompt which allows it to generate the next token, i.e.
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infer its predictive distribution, implicitly performing Bayesian inference. Huszár (2022) connected
their contribution to exchangeability. Hahn & Goyal (2023)[Section 1.4] relates to (Xie et al., 2021)
as it can similarly be understood in terms of Bayesian inference, with the difference that they view
the training tasks to be open-ended and compositional, in contrast to the finite nature of an HMM.
Wang et al. (2023) likewise takes a Bayesian viewpoint, which they utilise to select the ICL dataset
optimally. Jiang (2023) explains various phenomena of the ‘emergent abilities’ of LLMs, such as
in-context learning and chain-of-thought prompting, through through Bayesian inference on the
common distribution underlying natural languages. Zhang et al. (2023b) show that ICL implicitly
uses a Bayesian model averaging. Griffiths & Tenenbaum (2006) recover the prior distributions in
LLMs for everyday observations, such as the time of movies.

Theories for in-context learning. Numerous theoretical models and frameworks beyond Bayesian
inference exist which aim at understanding and formalising ICL. We refer to Dong et al. (2022)
for a detailed survey on in-context learning. Akyürek et al. (2022) prove that transformer-based
architectures can implement classical learning algorithms such as linear models and ridge regression.
Bai et al. (2023) extend this work by demonstrating that ICL via transformers can implement and
even braoder set of algorithms, including convex risk minimisation algorithms and gradient descent,
where the model intrinsically selects a different learning algorithm based on the task at hand. Singh
et al. (2023) shows that the ability of performing ICL algorithms such as Bayesian inference may be a
transient phenomenon which produces highest accuracy during certain stages of pretraining an LLM.
Raventós et al. (2023) show that the ability of in-context learning to tasks unseen during training by
picking the right learning algorithm depends on the task diversity during training.

Input order dependence of Large language models. Previous work has found a dependence
of LLMs on the order in which an input sequence is presented. Lu et al. (2021) demonstrate that
input order can significantly change the performance of an LLM in text classification tasks from
“state-of-the-art” to “random guess”. In the context of few-shot learning, Zhao et al. (2021) show the
prediction of an LLM can depend on many seemingly irrelevant items, such as the prompt format or
the order in which input examples are presented in a prompt, again with a sensititivity of performance
to these factors. Zhang et al. (2023a) note that the topic structure of a document may be exchangeable,
which motivates them to use Bayesian models, namely a Latent Dirichlet Allocation, to analyse
the representations of an LLM. Our discussion on exchangeability relates to this line of work, but
has a novel perspective on it through our focus on the martingale property, a necessary condition
for exchangeability, among other implications of the martingale property. Furthermore, in contrast
to the related work, which shuffles the input data Z1:n, we analysing the effect of shuffling the
imputed, generated sequence Zn+1, . . . where we find non-exchangeable behaviour, deviating from
any reasonable Bayesian model.

Miscellaneous. Our work also relates a number of applications of LLMs. As we are generating
samples from an LLM with ICL, which as we demonstrate deviate from the distribution of the ICL
dataset, this work relates to and has implications for a line of work on LLMs for synthetic data
generation Borisov et al. (2022); Hämäläinen et al. (2023); Tang et al. (2023); Veselovsky et al.
(2023); Li et al. (2023). Furthermore, we show that the martingale property is violated for long
sampling paths, which may have implications for time series prediction with LLMs Gruver et al.
(2023); Jin et al. (2023), particularly over long horizons. We also demonstrate a dependence on the
order in which missing values are imputed, which has direct implications for the concrete purpose of
missing value imputations with LLMs Mei et al. (2021). Shumailov et al. (2023) demonstrate that
models (including LLMs) which are recursively trained on data which they have previously generated
shift in their distribution, where long tails disappear. While this work ‘conditions’ on data synthetic
data by retraining, our work analyses the conditioning via ICL. Lastly, as LLMs violate the martingale
property in certain empirical regimes, they hence do not allow for an decomposed interpretation of
their predictive uncertainty, which has important implications for uncertainty quantification with
LLMs Xiao et al. (2022).

E NEGATIVE SOCIETAL IMPACT

This paper analyses and attempts to characterise the behaviour of LLMs. We try to understand whether
ICL in LLM follows Bayesian principles. As we outlined in §2 this has important consequences for
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their potential use as trustworthy systems, which can deployed in safety-critical, high-stakes appli-
cations such as healthcare. These systems often crucially rely on a principled notion of uncertainty.
The evidence presented in this work cautions against the use of LLMs in such settings without further
checks as they—under certain experimental settings—do not possess such a principled interpretation
of uncertainty, rendering their uncertainty ‘black-box’. Furthermore, while LLMs have typically been
trained in non-exchangeable scenarios (e.g. natural language where the order of words or tokens
changes meaning), as we showed in §2, we caution against their use in exchangeable settings (e.g.
i.i.d. data) as their predictions can be rendered inconsistent.

Both points noted above are potential negative societal impacts if Bayesian behaviour cannot be guar-
anteed by a model, as we argue in this work. While we do not see any direct negative consequences
from the analysis in this work, we believe this work provides ample pointers and reason for further
investigation of these concerns, and shall warn against potentially intended misuse of LLMs.

F CODE, COMPUTATIONAL RESOURCES, DATASETS, EXISTING ASSETS USED

Code. We do not provide code as part of this workshop paper, noting that we will release a full paper
with our code base in due course.

Datasets. We used three synthetic datasets for our experiments: a coin flip experiment, sampling
from univariate Bernoulli distributions, a Gaussian experiment, sampling from univariate Gaussian
distributions, and a synthetic natural language experiment, sampling (conditionally) from Bernoulli
distributions. We refer to §4 and App. C where they are introduced and discussed further details.

Computational resources and APIs used. Referring to §4, we implemented llama-2-7B
and mistral-7B with the Huggingface Transformer library Wolf et al. (2020), and implemented
gpt-3.5 and gpt-4 using the OpenAI API OpenAI (2023). For all Huggingface models, we
generated the sampling paths by performing inference on a single A100 Nvidia GPU for each run.

Existing assets used. Our work uses the following main software libraries and corresponding
licenses: PyTorch Paszke et al. (2019) (custom license), numpy Harris et al. (2020) (BSD 3-Clause
License), Weights&Biases Biewald (2020) (MIT License), Huggingface transformers library Wolf
et al. (2020) (Apache License 2.0; model licenses see below), matplotlib Hunter (2007) (PSF
License), tqdm tqdm contributors (2022) (MPLv2.0 MIT License), scikit-learn and sklearn
Pedregosa et al. (2011) (BSD 3-Clause License), pandas Wes McKinney (2010) (BSD 3-Clause
License), openai (Apache 2.0 License), tiktoken (MIT License), and pickle Van Rossum
(2020) (License N/A). We use Github Copilot and ChatGPT OpenAI (2023) for code development
and occasionally as a writing aid.

We used three pretrained large language models (see §4): llama-2-7B Touvron et al. (2023)
(custom license), mistral-7B Jiang et al. (2023) (Apache 2.0 License), and gpt-3.5 Brown
et al. (2020) (API; no code license).
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