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ABSTRACT

Optimizing user engagement is a key goal for modern recommendation systems,
but blindly pushing users towards consumption entails risks. To promote digital
well-being, most platforms now offer a service that periodically prompts users to
take breaks. These, however, must be set up manually, and so may be suboptimal
for both users and the system. In this paper, we study the role of breaks in recom-
mendation, and propose a framework for learning optimal breaking policies that
promote and sustain long-term engagement. Based on the notion that user-system
dynamics incorporate both positive and negative feedback, we cast recommenda-
tion as Lotka-Volterra dynamics.We give an efficient learning algorithm, provide
theoretical guarantees, and evaluate our approach on semi-synthetic data.

1 INTRODUCTION

Recommendation systems are built with the primary goal of maximizing user engagement; this is
typically achieved by recommending on the basis of learned predictive models, trained to predict for
each user the potential relevance of new items. Ideally, improved predictive models should lead to
increased engagement due to better and more useful recommendations. Nevertheless, the growing
engagement of social media platforms has raised concerns about their tendency to drive people
towards excessive consumption (Elhai et al., 2017; Lee et al., 2014), resulting in negative mental
effects and ultimately leading to a decline in engagement.

To preserve user well-being, it has become common for major platforms to periodically suggest tak-
ing breaks (Constine, 2018; Perez, 2018). The idea behind breaks is that occasional disruptions curb
the inertial urge for perpetual consumption, and can therefore aid in reducing ‘mindless scrolling’
(Rauch, 2018), or even addiction (Ding et al., 2016). As a general means for promoting well-being,
breaking is psychologically well-grounded (e.g., Danziger et al., 2011; Sievertsen et al., 2016).

But from a system designer’s perspective, this observation is puzzling: given the extensive efforts
invested in maximizing engagement, why should the system intentionally suggest the opposite? In
this work, we provide grounding for the role of suggested breaks in recommendation by modeling
user-system interactions as a complex system. While recent theoretical models of interaction have
been successful in explaining the emergence of societal phenomena such as filter bubbles and polar-
ization of opinion (Jiang et al., 2019; Kalimeris et al., 2021), these models fall short of explaining
the effects of suggested breaks due to their unboundedness.

‘We model user-system interaction as a discrete-time process, in which the user selects the interaction
times, and the system decides whether to show content or suggest a break. To address the limitations
of existing models, we propose a simple and minimal extension to modeling approach mentioned
above. In the continuous limit, the user engagement model approaches a continuous-time Lotka-
Volterra (LV) predator-prey system with control, allowing us to analyze the system using the rich
tool-set developed in the field of population dynamics (Hofbauer et al., 1998).

In the continuous-time model, long-term engagement is associated with global equilibria of the
Lotka-Volterra system, and optimization of break suggestion schedules turns into a problem of op-
timal control. We show how to efficiently solve for the optimal equilibrium; this provides us with
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Figure 1: Interaction between the system and a user u over time. Once u decides to query the system
at time ¢; € R, she is recommended an item x; by the policy 7. In response, she provides rating
feedback r;, and decides when to interact next (¢;11).

a useful breaking schedule that can be utilized in the original problem space. Interestingly, opti-
mal policies predicted by the LV model exhibit a second-order phase change with respect to system
parameters, providing additional interpretation for the observed heterogeneity across users.

Building upon the insights gained in the analysis, we design an efficient learning algorithm which
optimizes breaking policies using past experimental data. Our method uses by reducing policy
optimization into a small number of supervised prediction tasks, and carefully aggregates them to
fit the behavioral model parameters. We prove agnostic generalization bounds, showing that the
performance of our method approaches the best policy in class, and remains stable under bounded
model mis-specification, prediction errors, and residual noise. We empirically evaluate the model
using semi-synthetic simulation studies, and show improvement over policy optimization baselines.

2 PROBLEM SETTING

We consider a sequential recommendation setting in which users interact with a stream of recom-
mended items over time. New users v € U are sampled iid from some unknown distribution D, and
begin interacting with the system. In each interaction, the system recommends an item x from the
set of available items X', and users respond by reporting as feedback their rating » € R for z. We
assume recommendations are governed by an existing and fixed recommendation policy my, which
we refer to as the ‘base’ policy.

Engagement. The overall goal of the system is to maximize engagement, which we define as the
number of interactions until some chosen time horizon 7'. Setting ¢ = 0 as the (relative) time of
joining for each user, the interaction sequence of user v under a recommendation policy 7 is:

Su = {(ts,xi,r) | ts <T} ~ S(m;u) (1)

where t; € R is the time of the ¢-th event, x; is the recommended item, and 7; is the reported rating.
S(m;u) is some unknown distribution over sequences, which permits dependence between tuples
(ti, s, 7;) over time." Defining % |Sw| as the engagement rate of u, the system seeks to maximize:

LTER(7) = Eup Es,~s(mu) [% |Su|] )
which we refer to as expected long-term engagement rate.

Breaking policies. We are interested in understanding how breaks affect engagement when applied
on top of an existing recommendation policy. Formally, we consider compound policies m = 1) o,
where 7 is the (fixed) base policy, and ¢ — {0,1} is a learned breaking policy that can either
override the base policy by prompting the user to break (1) = 1), or pass on the recommended item
x ~ mo (¢ = 0). Thus, our learning objective is:

argmax,,cq LTER(¢) o 7o) 3)

where VU is a class of breaking policies. For simplicity, we assume that 7y does not include breaks.

"Formally, S is a temporal point process (TPP) with markings.
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3 ENGAGEMENT DYNAMICS

To discuss engagement optimization, S,, must be precisely defined. Broadly, we think of S, as
constructed sequentially by the user, where at each time ¢;, the user decides on her next time of
interaction ¢;41 based on her experience with the recommended z; ~ m. In what follows, we
discuss dynamics focusing on a single user u, and hence for clarity drop notational dependence.
We return to discussing multiple users in appendix C. Our first step to defining S, considers rates:
Maximizing the number of events |.S,,| is analogous to minimizing gaps between consecutive user
queries, At; = t; 1 — t;; this, in turn, is akin to maximizing instantaneous rates:?

o= At 4)

Our next step is to associate \; with recommendations. As a basis, the qualitative characteristics
of existing models (Jiang et al., 2019; Kalimeris et al., 2021) are captured by a momentum model,
which considers the \; as latent user states, and allows \; to depend on the previous \;_; as:

Ai=Xici(l—a+86) )

where a € [0,1 + ;] is a constant, and 5(-) is some latent mapping from ratings r;, interpreted
here as the utility for u from consuming x;, to temporal behavior. 3(-) is monotonically increasing
in 7;, so that more relevant content triggers more frequent visits to the platform. Eq. (5) asserts that
engagement rate \; increases if the utility 3; is larger than some natural decay parameter «, and
decreases otherwise; When recommendation quality is low and 8; < «, engagement rate drops to
zero, and users leave the system. But the converse setting—in which recommendations are effective
and f3; is always larger than a—implies that engagement increases indefinitely, which is unrealistic.

To remedy this gap, we introduce an additional latent variable, z; € [0, 1], which we think of as
‘interest’, and whose role is to stabilize consumption via:?

Ai = A1 (T —a+ Biz) (6)
We model z; as also varying with time, and w.r.t. \;_1, as:

zi =z (L+y(1 = 2-1) —6Xi1) @)

for some constants v, § > 0. Note that Egs. (6, 7) are functionally similar, differing only in the sign
of the constants (as per their opposing roles), and in the term (1—z;_;) which ensures that z; remains
in [0,1]. We refer to Eq. (6) as positive feedback and to Eq. (7) as negative feedback. Breaks are
expressed in the dynamic model by setting 8 = 0 and § = 0: this causes \; to temporarily decrease
(due to —av), but allows z; to replenish (thanks to +7). To learn effective breaking schedules,
our general strategy will be to optimize for ‘sustainable habits’, which we think of as the limiting
behavior of = |, | as T—oc.

3.1 THE CONTINUOUS LIMIT

In the continuous limit, the discrete model approaches a continuous-time Lotka-Volterra predator-
prey system with control, allowing us to analyze the system using the rich tool-set developed in the
field of population dynamics. To map Egs. (6, 7) to continuous time, we define A(¢) and z(t) as the
continuous analogs of \; and z;, and define 5 = E[3;] as the ‘average effect’ of recommendations
on behavior. Lastly, we account for breaks: Consider some breaking policy v, and denote by p the
expected breaking rate, namely p = P[¢) = 1]. Under v, the expected values of S and J become
(1 —p)B and (1 — p)d, respectively. This gives our final continuous model:*

% = —a\+ BzA(1 —p) ®)
L =vz(1-2)—6zA(1—p)

characterized by the set of parameters § = («, 8,7, 6), and p.
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Figure 2: Schematic illustration of results: (Left) Equilibrium curves \*(p) and optimal policies p*
(markers) for user types (6,,) that: benefit from breaks (green), do not require breaks (orange), and
will inevitably churn (blue). Curves are given by lemma B.1. (Center) The optimal policy p* for all
B/, as given by lemma B.2. The optimal policy exhibits a second-order phase change at 8/« = 2
(see corollary B.3). (Right) Schematic diagram of the learning method described in appendix C.
An illustration of the true counterfactual engagement curve (cyan), an ideal LV fit (pink), and an
empirical LV fit (red) from observations (circles), showing similar optima (stars).

4 SUMMARY OF RESULTS

Optimal equilibria.  Associating each user with a personal set of LV parameters 6, =
(qu, Bu, Yu, 0u ), We begin by analyzing the equilibrium of eq. (8), deriving a closed-form formula
for the equilibrium as a function of 6,, and p. Optimizing for p yields an optimal breaking policy in
the continuous space, and which is then translated to the original problem space (see Lemma B.2,
Appendix B.3). The second-order phase change in p* can be interpreted as dividing the latent user
space to users who benefit from breaks, and users that don’t (see Corollary B.3 and Figure 2).

Learning to suggest breaks. Given these insights, our second goal is to introduce and study the
novel task of learning to suggest a break. Current breaking solutions are entirely heuristic, and
effectively provide no guarantees. As an alternative, we propose an algorithm for learning optimal
breaking policies from data: for any recommendation policy, our algorithm finds a breaking schedule
that optimizes long-term engagement by proactively overriding the base policy when this is deemed
necessary. Our approach works by embedding users in ‘LV-space’—the set of all possible LV tra-
jectories, which effectively serves us as a parameterized hypothesis class (See Appendix C). Our
learning algorithm enjoys the following useful property: given predictions of user engagement, the
policy optimization problem decomposes over users, and can be solved independently for each one.

Theoretical guarantees. Our main theoretical result (Theorem D.1) is an agnostic bound on the
expected long-term engagement of our learned breaking policy, relative to the optimal policy in the
class. We show that for any recommendation policy, the gap decomposes into three distinct additive
terms: (i) predictive error, (ii) modeling error (i.e., embedding distortion), and (iii) variance around
the (theoretical) steady state. These provide an intuitive interpretation of the bound, as well as
means to understand the effects of different modeling choices on outcomes. The proof relies on
carefully weaving LV equilibrium analysis within conventional concentration bounds for learning.

Simulation study. Finally, we provide an empirical evaluation of our approach on semi-synthetic
data (Appendix E). Using two real datasets, we generate simulated user interaction sequences in
a way that captures the essence of our model, but is different from the actual continuous-time dy-
namics we optimize over. Results show that despite this gap, our approach improves significantly
over myopic baselines, and often closely matches an optimal oracle. Taken together, these results
demonstrate the potential utility of our approach.

ZAs % |Sw| is a rate of events with instantaneous frequency \;, maximizing the empirical rate is asymptoti-
cally equivalent to maximizing the harmonic mean of \;.

3Similar notions have been considered in Legi et al. (2021) who model satiation, and Kleinberg & Immorlica
(2018) who model fatigue; these, too, model variation in affinity, rather than time.

4Eqs. (6, 7) can be obtained from Eq. (10) via the Euler method.
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Figure 3: Temporal relations between rate \(t), interest z(t), and equilibrium A* in the continuous
limit (Eq. (10)). Note how A(t) drops only some time after z has depleted.

A RELATED WORK

Recommendation ecosystems. Our work pertains to a growing literature that studies recommen-
dation systems as complex systems in which learning plays a distinctive role. Some works aim
to connect micro-level actions to emerging macro-level phenomena, such as homogenization via
confounding (Chaney et al., 2018), heterogenization via social learning (Schmit & Riquelme, 2018),
diversity via strategic behavior (Hron et al., 2022), feedback amplification (Mansoury et al., 2020),
accessibility and stereotyping (Guo et al., 2021), and the relation between online and offline metrics
(Krauth et al., 2020). To the best of our knowledge, our work is novel in considering breaks. Due
to the counterfactual nature of recommendation, most works in this field provide either theoretical
analysis, or simulation studies (Ie et al., 2019; Chaney, 2021). We follow suit, and aim for both.

User dynamics and feedback. Several recent works aim to capture time-varying user behavior by
modeling users as acting based on dynamic latent states. These differ from ours in two important
ways. First, they model changes in the affinity of users towards items, and over discrete time steps;
this makes them inappropriate for expressing temporal variations in user behavior, which is needed
for discussing engagement. Second, most works consider either positive-only feedback (Jiang et al.,
2019; Kalimeris et al., 2021; Sanna Passino et al., 2021; Dean & Morgenstern, 2022), or negative-
only feedback (Wang & Lin, 2003; Warlop et al., 2018; Kleinberg & Immorlica, 2018; Cao et al.,
2020; Leqi et al., 2021); we simultaneously consider both types of feedback, which we believe
is more realistic—as well as necessary for explaining breaks. Closest to ours is Kleinberg et al.
(2022), who also model bi-directional feedback, but in a very different setup (a stylized model of
short-term user churn in discrete time) and towards different aims (characterizing equilibira, rather
than learning).

Lotka-Volterra dynamics. The study of ecosystem dynamics and their conservation has a long
and rich history, in which LV analysis is integral (see Hofbauer et al. (1998); Takeuchi (1996)).
LV systems are used primarily for modeling biological ecosystems, but are also used in economics
(Weibull, 1997; Samuelson, 1998), finance (Farmer, 2002; Scholl et al., 2021), and behavioral
modeling (e.g., drug addiction and relapse (Duncan et al., 2019)). We believe our work is novel in
its use of LV modeling in recommendation. In terms of learning, Gorbach et al. (2017) and Ryder
et al. (2018) propose variational techniques for dynamical systems, but do not consider control.
Our work aims to directly learn optimal policies, for which we draw on recent advances in turnpike
optimal control (Trélat & Zuazua, 2015).

B ENGAGEMENT IN CONTINUOUS TIME

One challenge in optimizing Eq. (2) is that empirical rates % |Sw | exhibit variation that may be diffi-
cult to account for using observed data. As an alternative, we will aim for optimizing individualized
limiting rates, defined as:

This abstracts away ‘everyday’ variation in behavior, and focuses instead on habits—which are
easier to anticipate. When empirical rates are ‘well behaved’ in the sense that they concentrate
around the limiting behavior, then we can expect A}, to be a good proxy for engagement. In
appendix D we make this notion precise. To understand the possible effects of breaks on limiting
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Figure 4: Discrete engagement dynamics for varying levels of dispersion in the distribution of ;.
(Left) When the variance of (; is low, the instantaneous engagement \; approaches smooth LV
dynamics. (Right) Cumulative engagement rates % |Sy| converge towards the equilibrium A} even
under strong stochasticity.

behavior, we will analyze a continuous-time analog of our dynamic model in Sec. 3. This will allow
us to employ powerful tools from dynamical systems and control theory, and establish preliminary
results that will form the basis of our learning approach.

B.1 CONTINUOUS ENGAGEMENT DYNAMICS

Mapping Egs. (6, 7) to continuous time requires three steps. First, we define A(¢) and z(t) as
the continuous analogs of ); and z;. Next, we define 5 = E.[3;] as the ‘average effect’ of
recommendations on behavior. Lastly, we account for breaks: Consider some breaking policy v,
and denote by p the expected breaking rate, namely p = P[¢) = 1]. Under ¢, the expected values of
3 and § become (1 — p)/3 and (1 — p)d, respectively. This gives our final continuous model:’

2 = —aX+ BzA(1—p) 10)
&= qz(1-2)—62A(1—p)

Eq. (10) describes a system of Lokta-Volterra (LV) differential equations, characterized by the set of
parameters 0 = («, 3,7, ), and p. LV systems, also known as predator-prey dynamics, have been
popularized by and studied extensively in the fields of theoretical ecology and population dynamics
(Hofbauer et al., 1998; Takeuchi, 1996). We now proceed to overview some useful properties of LV
systems.

Cycling behavior. Eq. (10) describes user behavior as a cycle: when interest z(t) is high, en-
gagement rate A(t) increases, resulting in positive feedback; conversely, when A(¢) is high, z(?)
decreases, which expresses negative feedback. In general, A grows until interest is too low to sustain
consumption, at which point consumption drops sharply, allowing interest to recover—and the cycle
repeats. The cycling behavior exhibits oscillations in A and z, with one lagging after the other. A
typical trajectory is illustrated in fig. 3. Note how the drop in A occurs only some time after z is
depleted; hence, anticipating (and preventing) the collapse of A requires conservation of z. Thus, z
serves as a resource: necessary for engagement, and of limited supply.

Equilibrium. Over time, and if no interventions are applied, the magnitude of oscillations de-
creases, and the system naturally approaches a stable equilibrium, denoted (A}, z;), determined by
system parameters . Our first result shows that A} has a convenient closed form.

Lemma B.1. Let 0 = (o, 3,7,9) define a controlled LV system as in Eq. (10). Then for any

p € [0, 1], we have:
. v 1 a 1
Ap(p) = max{(S - (1 31 p) ,O} (11)

Proof in appendix H.1, and illustration in fig. 2 (Left). Eq. (11) is useful as it depicts A* as a simple
function of p, parameterized by 6. This will prove useful for optimization.

5Eqs. (6, 7) can be obtained from Eq. (10) via the Euler method.
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B.2 BREAKING AS OPTIMAL CONTROL

Eq. (10) suggests a natural approach for optimizing breaks: given 6, find p that maximizes the
limiting rate \*. Essentially, this casts p as a control variable, and learning to break becomes a
problem of optimal control. Note how p mediates the relations between A(¢) and z(¢): when p > 0,
it decelerates engagement rate A\, and at the same time, lets z recover.

Our goal is now to solve the optimal control problem:

p*(0) = argmax,co,1) Ag(p) (12)
Towards, this, our next result derives a closed form solution for the optimal p*. Note that Eq. (11)
shows \}(p) is piece-wise polynomial in ¢ = 1/(1 — p). Solving for ¢, we get:
Lemma B.2. Let 0 = («, 3,7, 0) define an LV system as in Eq. (10). Then the optimal p* is given
by:

»*(0) :max{1—2g,o} (13)
Proof in appendix H.1. See illustration in Figure 2 (Center).

B.3 LEARNING TO BREAK, REVISITED

In continuous space, breaking manifests as a control variable p € [0, 1], continuous and fixed in time.
To apply this idea back in our original discrete problem setting, we can interpret p as determining
the probability to break on any given input. This defines a class of stationary breaking policies:

U = {4, (p) = break w.p. p : p € [0,1],u € U} (14)

Using this, our general approach for learning to break will be to: (i) associate with each user u a
set of LV parameters ¢,,, and then (i) compute p;, which maximizes \j (p), and apply breaks using
the individualized policy v, = ¥ (pZ).

One useful property of optimal LV policies is that they suggest breaks only when this is deemed
necessary. Note that by Eq. (13), p* (@) exhibits a phase transition at %:%, below which p* >0, and
above which p*=0. When considering individualized 6,,, we get the following result:

Corollary B.3. In LV space, users are partitioned by their 0, to those who benefit from breaks, and
those who don’’t.

We further explore this idea in our experiments in appendix E.

C LEARNING OPTIMAL BREAKING POLICIES

We now turn to presenting our learning algorithm. As noted, the algorithm consists of two steps: (i)
embedding, which fits for each user some 6,, from data, and (ii) optimization, which computes an

optimal p,, from 6,,. One benefit of our approach is that it operates entirely on predictions of future
engagement. Our procedure is illustrated in fig. 2 (Right).

C.1 EMBEDDING USERS IN LV SPACE

Our first task is to choose a suitable 6, for u, which we think of as embedding users in ‘LV space’.
A natural first attempt would be to fit 6, to Aj; in Eq. (11) from data. However, the crux is that the
observed S, come from the default policy 7, which does not include breaks, i.e., has p = 0. But
our ultimate goal is to optimize over all p—for this, data that is representative of a single p (e.g.,
p = 0) will likely be biased.

Equilibrium curves. Ideally, what we would like to do is fit 8,, to the entire equilibrium curve of
A;(p). Let A, (p) be the expected empirical engagement rate, defined as:

Aa(p) = Es, () [7]Sul] (15

10
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As a function of p, A(p) gives the rrue engagement rate for any choice of p. Using this notation, we
seek @ for which A} (p) closely aligns with that of A, (p) across all p € [0, 1]:

0, = argming ||\, — Al (16)

for some function norm || - ||, and for which /\Z— and )\, have similar maximizing p. Unfortunately,

A is a theoretical object, and solving Eq. (16) requires access to all p-s (whereas our original data
offers just one). Our solution will be to make due with a small set of p-s, in the form of predictions.

The role of prediction. As any policy problem, learning to break requires some form of exploration
or experimentation. Here we aim for experimentation to be simple and minimal. Specifically, we
will allow the system to collect some additional data: for a small set of /V distinct breaking rates
p;>0, we assume the system can allocate some bandwidth to experiment using compound policies

m; = m(pj) = ¥(p;) o ™o, and obtain data DY) = {(uy, Sy, )}, for small m;.

Denoting by D(®) the original data for the base policy 7y = 7(0), our approach will be use the
gathered D, ..., D) 1o learn individualized policy-specific predictors, f;(u) = f,, (u), trained
to predict for each user w her engagement rate y = %|Su| under the policy ;. For example, if
we train f; to minimize the squared error >, (f;(ux) — yx)? on pairs (ug, yx) € DY, then f;(u)

should be a reasonable estimator of the expected A, (p;). Hence, for a given w, a finite set of pairs
{(pj, f;(u))}}_, gives points to which we can fit @ to Aj. Our final criterion for choosing 0., is:

0, = angming Y (£(w) = Xi(py)’ (7

where f(u) = (fi(u),...,fn(u)) € RY,, and given here with the /> vector norm. From
lemma B.2, optimizing over p requires only the ratios /3 and ~/d, which appear as polynomial
coefficients. Hence, Eq. (17) can be efficiently solved using a polynomial Non-Negative Least
Squares (NNLS) regression solver (Chen & Plemmons, 2010).

The role of experimentation. In the realizable case, Eq. (16) has a zero-norm minimizer, and the
goodness of fit for 4., is controlled by two parameters: the number of experimental datasets, IV, and
their sizes, m; for j € [N]. In general, increasing /N provides more data points for solving Eq. (17),
and increasing each m,; reduces noise for that point (i.e., f,(p) should be closer to ). However,
in reality experimentation is costly, and so N and the m; may be small. As motivation, we next
show that under realizability and for accurate predictions, N = 1 suffices. Our result applies to
more general base policies o = 7(po) using any pg > 0.

Proposition C.1. Fix N = 1, and let po,p1 € [0,1 — a/B]. For a user u, if (i) exists 0, s.t.
Au = Ay, and (ii) filu) = Ay(p;) for i = 1,2, then solving Eq. (17) recovers the true expected

rate, i.e., 0, = 0., and is therefore optimal.

Proof provided in appendix H.1, and relies on lemma B.1. Next, we discuss how to obtain 1(u)
from 6,,.

C.2 FROM PREDICTIONS TO OPTIMAL POLICIES

One useful property of our approach is that it circumvents the need to learn a global policy: Once the
{f;(w)}; have been learned, the policy problem decomposes over users, and optimal individualized
policies v, are determined independently for each user. L.e., by relying on predictions, the solution
to Eq. (2) is immediately obtained, and at test time we simply use predictions to compute ,, for
new users .

Our final procedure is as follows: given some user u, we (i) compute predictions f(u); (ii) find éu
by solving Eq. (17); (iii) obtain p,, by solving Eq. (13); and (iv) apply the policy:
Yu=(pu),  where p, = p*(0.) (18)

Notably, for N = 1, ¥ (u) has a closed-form formulation as a function of predictions (Ap-
pendix H.2). In this case:

Corollary C.2. In the realizable case of proposition C.1, 1¥(p,,) idempotently improves over the
myopic 7(0).

11



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Thus, the optimal policy can be interpreted as suggesting breaks only when it deems them necessary.
fig. 2 (Left, Center) illustrates A*(p) curves and policies for various user types.

D THEORETICAL GUARANTEES

Our main theoretical result bounds the expected long-term engagement obtained by our global
learned policy, zﬁ = ¢ (p). Our bound shows that the gap between L/; and the optimal policy, °Pt,
is governed by three additive terms, each relating to a different aspect of our approach: modeling
error (ey), predictive error (€preq), and deviation from expected behavior (gq4cv). A description and
interpretation of each term follows shortly. For simplicity, we focus on NV = 1.

Theorem D.1 (Informal). For any mg, let pg,p1 € [0,1], and denote by 1)°°* € ¥ be the optimal

stationary policy. Then for the learned breaking policy 1), we have:

LTER(4°"") — LTER(¢) < %(sw + Epred + Edev)
P1 — Do

where npp is an S-specific constant scale factor.

Formal statement, precise definitions, and proof are given in Appendix H.3. The proof consists of
three main steps: Starting with a clean LV system at 7" = oo, we quantify the downstream effects
of perturbing the optimal policy. Then, we plug in the learned policy, and bound the gap due to
predictive errors and finite 7'. The final step makes the transition from continuous dynamics to our
discrete dynamic model.

We now proceed to detail the role of each of the five terms in the bound, and how they may be
controlled.

Predictive error: Since targets y = %|Su| are predicted, ep,,6q 1s simply the expected regression
error over users, measured in RMSE. As is standard, p,;eq can be reduced by increasing the number
of samples m, or by learning more expressive predictors f (e.g., larger neural nets).

Modeling error: LV dynamics permit tractable learning; but as any hypothesis class, this trades off
with model capacity. Here, €,y quantifies the error due limited expressive power. Further reducing
€Ly can be achieved by considering richer dynamic models—a challenge left for future work.

Deviation from expectation: The learned p,, rely on predicted equilibrium, but are trained on
finite-horizon data. In expectation, €4, captures how finite sequences deviate from their mean. As
a rule of thumb, we expect larger 7" to reduce this form of noise, but this cannot be guaranteed.

Sensitivity : For N = 2, the term |[p; — po| quantifies the added value of exploring beyond the
default breaking policy of py. Intuitively, when the points are farther away, fitting the equilibrium
curve is easier. Thus, for py = 0, p; should be chosen to balance between performance gain and
overexposure of experimental subjects to breaks.

E EXPERIMENTS

We conclude with an empirical evaluation of our approach on semi-synthetic data. Here we include
results for the MovieLens 1M dataset. See appendix I for additional details, appendix 1.6 for similar
results on the Goodreads dataset, and appendix J for additional experiments.

E.1 EXPERIMENTAL SETUP

Data. The MovieLens 1M dataset (Harper & Konstan, 2015) includes 1,000,209 ratings provided
by 6,040 users and for 3,706 items, which we use to obtain features, determine the dynamics, and
emulate ¢. We sample and hold out 30% of all ratings r,, via user-stratified sampling, to which
we apply Collaborative Filtering (CF) to get user features v and item features x that approximate
AR R o (d = 8, RMSE = 0.917, r € [1,5]). This mimics a process where ¢ is based on items
recommended by 7 and rated by users. We then take the remaining data points and randomly assign
1,000 users to the test set, on which we evaluate policies. The remaining users are assigned to the
train sets { D)} ;.

12
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Figure 5: Results on the MovieLens 1M dataset. (Left) Performance gain of different approaches
(relative to default policy). (Center) Performance of LV by user group, partitioned by learned
policies p,,. (Right) Sensitivity to an increasingly aggressive experimental p; (N = 2, pg = 0).

Recommendation policy and user behavior. As defined in Sec. 2, 7y is set to recommend as
softmax, (7, ), and user behavior as simulated in accordance to the discrete dynamics in Sec. 3.
This enables us to evaluate and compare counterfactual outcomes under different policies. Note
this entails variation in the (3,;, meaning there is no single (3,, that underlies the dynamics: even
in the limit (At — 0,7 — ©0), user behavior cannot be described by a continuous LV system,
which implies ery > 0 (see Fig. 7). Since the baseline RMSE is high, we set (,; x ffm, where
Fux; = KTux, + (1 — k)u'x, so that & interpolates between predicted ratings (x = 0) and true
ratings (x = 1). This allows us to (indirectly) control ep,,cq. For all experiments we use 7' = 100,
and so expect a roughly fixed £4ev > 0.

Methods. We compare our approach (LV) to several baselines: (i) a default policy which my-
opically optimizes for immediate engagement (and so does not break); (ii) a ‘safety switch’ policy
(safety@r) that breaks once consumption surpasses a threshold 7; (iii) a prediction-based pol-
icy (best-of) that chooses the best observed p, = argmax,, f;(u) (rather than optimizing over
pu € [0,1]); and (iv) an oracle benchmark which directly optimizes the (generally unknown) true
underlying dynamics. We measure mean long-term engagement rate (LTE) for each approach,
and report averages and standard errors computed over 10 random splits. Performance is measured

relative to the default baseline as it represents no change in policy (typical absolute values are
LTE ~ 10).

E.2 RESULTS AND ANALYSIS

Main results. Figure 5 (left) compares the performance of our method to other policies. Here we
set po = 0, use N = 3 with p; € {0.05,0.1,0.15}, and consider x = 0.5 (note « affects all poli-
cies). As can be seen, our approach significantly improves over default (+5.98%). For safety@r,
improvement over the optimal 7 = 16 (+5.74%; chosen in hindsight) shows the importance of being
preemptive; for the slightly smaller 7 = 14, breaks are harmful. The gap from best-of (+2.05%)
quantifies the gain from the optimization step in Eq. (13), and the close performance to oracle
(-0.797%) suggests that optimizing the empirical curve (Eq. (17)) works well as as proxy.

User types. Figure 5 (center) shows for our approach how gain in LTE varies across learned break-
ing policies p,, > 0. For increasingly-accurate predictions (x € {0,0.5,1}), the main plot shows
performance gains for each group of users, partitioned by their p,, values (binned; plot shows average
and unit standard deviation per bin). Gains until p,, < 0.15 are mild, but for p,, > 0.15, the general
trend is positive: users who are deemed to require more frequent breaks, benefit more from breaking.
Gains until p,, < 0.3 increase for all «, but for p,, > 0.3, extrapolation becomes difficult: note the
higher variation within each «, as well as significant differences across «. This highlights the impor-
tance of accurate predictions for inferring optimal p,, when the experimental p; are small. The in-
laied plot shows that, in line with our theory, p,, exhibits an empirical phase shift in the estimated éu.

Treatments. Figure 5 (right) shows the effects of experimental treatments on performance. Fo-
cusing on NV = 2, we fix po = 0, and consider increasingly aggressive experimentation by varying
p1 € (0,0.4]. For our approach, increasing p; helps, which is anticipated by our theoretical bound.

13
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For the best-of approach, larger p; also helps, but exhibits population-level optimum (p; ~ 0.24),
which is easy to ‘overshoot’. Note that when prediction accuracy is low (x = 0), experimentation is
essential: if p; is not sufficiently large, then performance can sharply deteriorate.

F DISCUSSION

Our paper studies the novel problem of learning optimal breaking policies for recommendation.
We posit a tight connection between long-term engagement and user well-being, and argue that
optimizing the former requires careful consideration of the latter. Viewing user interest as a limited
we study the role of breaks in facilitating sustainable habits, and propose an efficient algorithm for
learning breaking policies that optimize long-term engagement. Our approach relies on LV models
at its core, but incorporating more elaborate dynamic models is appealing as future work.

The recommendation setting we study is simple, but offers what we believe is a plausible perspective
on the dynamics of user behavior—with emphasis on the importance of bi-directional feedback
in shaping outcomes for the system, and for its users. Nonetheless, further work is necessary to
establish the degree to which our stylized model is valid in reality. Our hopes are that our work takes
one step towards establishing recommendation system as ecosystems—requiring active, planned,
and regulated conservation.

G BROADER PERSPECTIVE

G.1 ETHICS STATEMENT

As any policy task that involves humans, care must be taken regarding potential risks. While our
experiments show that optimizing engagement also improves well-being, this need not always be
the case; in fact, merely measuring well-being in reality is challenging. Breaks, as interventions, are
presumably ‘safe’, in the sense that at worst they may lead to suboptimal performance (for system)
or satisfaction (for users). But breaks can also be used nefariously, e.g., by enabling temporally-
varying rewards (Eyal, 2019). As such, break suggestion decision should be made transparently.

G.2 RECOMMENDATION AS CONSERVATION

At a high level, our work argues for viewing recommendation as a task of sustainable resource man-
agement. As other cognitive tasks, engaging with digital content requires the availability of certain
cognitive resources—attentional, executive, or emotional. These resources are inherently limited,
and prolonged engagement depletes them (Kahneman, 1973; Muraven & Baumeister, 2000); this, in
turn, can reduce the capacity of key cognitive processes (e.g., perception, attention, memory, self-
control, and decision-making), and in the extreme—cause ego depletion (Baumeister et al., 1998) or
cognitive fatigue (Mullette-Gillman et al., 2015). As a means to allow resources to replenish, ‘men-
tal breaks’ have been shown to be highly effective (Bergum & Lehr, 1962; Hennfng et al., 1989;
Gilboa et al., 2008; Ross et al., 2014; Helton & Russell, 2017).

Nevertheless, traditional approaches to recommendation remain agnostic to the idea that recom-
mending takes a cognitive toll: they simply recommend at each point in time the item predicted to
be most engaging (Robertson, 1977). As an alternative, our approach explicitly models recommen-
dation as a process which draws on these resources, and therefore—must also conserve them. The
subclass of ‘Predator-Prey’ LV dynamics which we draw on are used extensively in ecology for mod-
eling the dynamics of interacting populations, and demonstrate how over-predation can ultimately
lead to self-extinction by eliminating the prey population—but also show how enabling resources
to naturally replenish ensures sustainable relations. As such, here we advocate for studying recom-
mendation systems as human-centric ecosystems, and take one step towards their sustainable design.

H DEFERRED PROOFS

In this section, we formalize the model presented in section 2, and prove the claims presented in
appendix B. The section ends with a formal proof of theorem D.1.

14
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H.1 PROPERTIES OF LOTKA-VOLTERRA SYSTEMS

Definition H.1 (Static policy equilibrium). Let A(¢), ¢(¢) denote a Lokta-Volterra model character-
ized by parameters 6 = (a, 3,7,6) € R%, as defined in Eq. (10). Let p € [0,1], and denote by
7, the static policy corresponding to p. For A(0), ¢(0) > 0, the static equilibrium of the system is
defined as:

A (p; ) = lim A(t)

t—oo
¢ (p;0) = lim q(t)
We denote \*(p) = A*(p;0) when 6 is clear from the context. We denote \*(p;u) = A*(p; 64,)
when a user u € U characterized by parameters 6,, is given and clear from the context.
Proposition H.2 (Global stability). \*(p; 0) exists and uniquely defined for all € R, p € [0,1]
and for all initial conditions A(0), ¢(0) > 0.

Proof. See (Takeuchi, 1996, Section 3.2). O

Lemma H.3 (Equilibrium of LV behavioral model. Formal proof of lemma B.1). Assume a Lokta-
Volterra model characterized by 0 = («, 8,7,0) € ]Ri, and let p € [0, 1] denote the proportion
of interactions in which a forced break is served. The static equilibrium of the model under static
policy m, is given by:

/\*(p){gllp <1_%ﬁ) pe [O’l_%}

0 otherwise
a 1 «
* 31 € [07 1- *}
‘()= 7T PR T
1 otherwise

Proof. The LV dynamical system is given by Eq. (10):

d\

2= _a) 1—p)A
< aX + B(1—p)Ag
dq

2 Ng(1—q) — 6(1 —p)A
% vq(1 —q) = (1 —p)Ag

when p € [O, 1-— %} we equate % =0, % = 0 and obtain the result. The solution is guaranteed
to be valid, as both A\*(p) > 0 and ¢*(p) € [0, 1].

Conversely, when p ¢ [0, 1-— %}, there exists € > 0 such that % logA < —e < Oforall A > 0,

q € [0,1]. From this we obtain that log \(¢) tends towards —oo, and therefore A(¢) tends towards

0, and A\*(p) = 0 as required. When A(t) is close to zero, the interaction terms vanish in the %
equation, and ¢(t) grows logistically towards 1.

Proposition H.4 (Equilibrium bounds). For a Lotka-Volterra model, the static equilibrium \*(p) is
bounded by:
<

0= A(p) < 4ad

Proof. Denote = ——. From lemma H.3, for = € [1, g} the equilibrium consumption \*(x) is

1-p
@)= Yo (1- %%
V=35 (1 ﬁ)

and is zero otherwise. The equilibrium is a quadratic function of x with roots x &€ {0, %}, and

given by:

therefore attains its maximum at x = % Plugging back the maximizing = into A* we obtain
the upper bound. Lower bound is attained as the equilibrium in lemma H.3 is clipped by 0 from
below. O
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Lemma H.5 (Optimal static policy. Formal proof of lemma B.2). The optimal static policy for a
Lotka-Volterra system is given by:

1-22 o<l
Popt = {0 A g %
g
And the optimal equilibrium engagement rate is given by:
By 1
v Jaas 553
opt 1
1(-5) 5>3
Proof. Denote x = 1% From proposition H.4, the global maximum of \*(z) is attained at z = 2ﬁ
Y4 o

%, we obtain that zop; = % > 1, and therefore popy = 1 — L €

[0,1]. From this we obtain that in this case the global maximum is attained on the simplex, and
given by the formula from proposition H.4. Conversely, when § > 3, we obtainp = 1 — 3 < 0,

and therefore z,p translates to a negative value of p. As \*(p) is uni-modal, the optimal policy
restricted to the simplex [0, 1] in this case is attained on the closest boundary point p = 0.

Consider two cases: When % <

fig. 2 (Left, Center) provides graphical intuition for this proof. O

Proposition H.6 (Inference of o/ 3 from two-treatment equilibrium data. Formal proof of proposi-
tion C.1). Let A(t), q(t) be a Lokta-Volterra model, let p1, py € [0, 1]. Denote by \*(p1), \*(p2) the
static equilibrium rates corresponding to static policies Ty, , Tp,, and assume X*(p1), \*(p2) > 0.
The parameter ratio % is given by the following formula:

a _ (1—pa)A(p2) — (1 —p1)A (p1)
1—p1 1—p2

B

Proof. From lemma H.3, the equilibrium consumption A*(p) is given by:

R S S PR
A(”)‘61—p<l 51—p>

71 ey (1Y
C61l—-p Bo\l1-p

When \*(p;) is observed for different policies p1,...,pm € {0, 1-— %}, we obtain a polynomial

regression problem for the parameters % and %%, which can be solved e.g using Non-Negative Least
Squares.

When m = 2, we obtain a system of two linear equations. Apply Cramer’s rule to obtain:

A" (p2) A" (p1)

T 1-p1)? ~ U—p2)? (L =p2)* N (p2) = (1 = p1)*X(p1) (19)
= : - =
=l STy ey P2
A" (p2) A" (p1) * *
gl — (1*1721) ) _ (1 —p1)(1 —pg) (1 7p2)/\ (p2) — (1 7p1)/\ (pl)
i 1
Ao R T T P2 N 0
(20)
And therefore % is given by:
A (p2) _ A(p1) N N
a_ (1—;021) (1—[)12) — (1= p))(1 = pa) (1 —=p2)A*(p2) = (1 = p1)X*(p1)
B e Ay (1= p2)?A*(p2) — (1 = p1)*X*(p1)
(1-p1) (1-p2)
[
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H.2 MODEL FITTING FROM ENGAGEMENT PREDICTIONS

Notations. In this section only, we use the common notation ¢ = 1 — p to denote complementary
probabilities.

Definition H.7 (Empirical value of o/ ). For single-channel experiments with forced-break proba-
bilities py, pa, denote A; = A*(p;), fi = fp,(u), ¢; = 1—p;. The empirical value of the § parameter
is given by the following formula:

& qge(nfi —qf)
s G — 4 fa

Proposition H.8 (/3 estimation error from prediction errors). Given a single-channel Lokta-
Volterra system with parameter % > 1. Let p1,p2 € [1, %} denote \¥ = N\*(p;) € Ry, and
let f; = X + ¢; be the predicted engagement rates corresponding to py, pa. When |1, |e2] < e <

1 1 lpa Pbel 2l the estimation error is bounded by:

PR
|P1 —p2| ary

Proof. denote q; = 1 — p;. The value of % is given by proposition H.6:

@ @2 (@A) — 2A5)
B GAT — a3A3

And the estimator for % is obtained by replacing the true value with their predictions:

g a1g2 (1.f1 — q2f2)

B aifr— @ f
@ (@A 1) — (N5 +€2))
GO Fe) — (N +e)

The estimation error is given by:

_ ’ a1q5(q1 — q2)(e2A] — £13) ‘
(GiA] — BA3)(aiA] — 3 A5 — (qfe1 — g3e2))

91— g2 X x 1
= (q1q2)2 2)\* )\* |€2)\1 - 81)\2‘ 2)\* A* 2 2
e [N A [ [N 7 9 (qie1 — gje2)
=34 \—/—-’ =(iii

=(ii) =(iv)

We now proceed to bound each factor:

* For (i), the term (q1q2)2 is bounded by 1 since q1, g2 € [0, 1].

q1—q2

.. . -1
e For (ii), the term x| 18 equal to (%) by Eq. (19).

* For (iii), from proposition H.4 we obtain the bound 0 < A} < 57 and therefore the term

406’
|ea AT — 13| is bounded by 2 (405) €= 2@55
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 For (iv), the term is equal to:

AT —a3 A5 —(aier—d3e2)
1
GAT — @33 — (qfer — g3e2)
_ 1 @M - @A — (gfer —dder) |
B Ip1 — pal P1 — P2

>iv) =

-1
L |dM - @3N gie — i
|P1 —102\ P1— D2 pP1— P2
—_—————
Eq. (19)

-1

_ 1|y dfer—gge
Ipr — p2l |0

P1—D2
2 2
Note that ql;i :Zzgz < ‘p12fp2| . When ¢ is small enough, and specifically when the bound

e < %% holds, we obtain:

. e R U
”VW _‘1‘ <9d
o pL—p2 vIhoo2
and therefore:

2 )

(iv) < 7

Ip1 — pa| v

Aggregating results (i)-(iv) above, we obtain the overall bound:
a1 —q2 1

|€2/\1< — 61/\;‘

B~
< 2006 €

55| war
38 = 4192

GiAT — @3 N5 — (qie1 — g3e2)

GAT — G35
—_——

<& ”
Ip1 — p2| ay

<_2 3
= Tp1—pal ¥

2o

O
Proposition H.9 (Cost of o/ estimation error). Let % be the engagement ratio parameter of a

one-channel Lotka-Volterra system, and let (%) be an estimate of these parameters. Let A}, be the

s-(3)| <

engagement rate of the optimal static policy, and denote \*(x) = \* (p(x)). When
min {%, 1} The price of estimation error is bounded by:

e ((5)) = e 65) 5= ()} () )

Proof. Denote rr = %, Tr = ( %) , and assume without loss of generality that % =1landr < 1. The

optimal equilibrium engagement rate is given by:
1

~ [ re(03]
opt 1—r re (%, 1]
The chosen policy p(x) is given by:
. 1—-2¢ z€l0,
ple) = { 0. 5

0 otherwise
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Cost of estimation error for different values of 5, and the corresponding upper bounds

T T T T T T T T
-0.8 —0.6 —0.4 -0.2 0.0 0.2 0.4 0.6

@ estimati _(a o
7 estimation error (A% = (3) — g)

Figure 6: Graphical illustration of proposition H.9. Cost of estimation error for different values of
%, and their corresponding upper bounds given by the claim.
Assume without loss of generality that z € [0, %] , as values of x outside the interval can be clipped
to its edges without affecting the result. The equilibrium engagement rate of the selected policy is
given by:

R 0 z€[0,%]
W) =3 ) ={% oy TS
5 (1= 5) w€ (53]
Denote A(z) = \j,, — A*(z). We obtain:
2 re(o.4].ze o)
(z=r)* 1 ro1
A(w) = N — N"(2) = { 38 r€@alec(
(1—-r) 1 re(?,l},xe[o,%]
(1-n=-g50-5) re@@1],ze (s3]
Observe that ﬁ > 1 —rforall r € (0,1], and therefore we obtain for all z, r:
1
Alr) < — 21
() < ¢ an
From the convexity of A(z) in the region around = = r we obtain:
1
Az) < ﬁp@ — 7| (22)

Finally, combining the two bounds yields the final result. A geometric interpretation of this claim is
illustrated in fig. 6. O

H.3 OPTIMAL STATIONARY POLICY FROM ENGAGEMENT PREDICTIONS

Definition H.10 (Expected observable rate). Let u € U, p € [0,1], and T > 0. Let p € [0,1],
denote the corresponding static policy by m,. The expected observable rate A, (p; T') is defined as:

< 1
Au(piu) = Ex {T|sﬂp<u; T)@
where expectation is taken over the stochastic decisions of .

Definition H.11 (Lokta-Volterra approximation of S). Let w € U, and T" > 0. Denote by p* the
maximizer of expected observable rate:

p* = argmax A, (p; u)
p€(0,1]
The LV approximation of S(u; T) is defined as:

0 = argmin max |\, (p;u) — A*(p; 0)|
0 p€(0,1]

such that argmax,, A* (p; 8) = p*. The corresponding approximation error is defined as:

w= Au(p;u) — X (p; 03
€LV, pren[%ﬁ]| (p;u) (p u)|
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Notations. When u is clear from the context, we denote 0* = 6, ety = ey . Weuse a*, 3, ...
to refer to the corresponding parts of the Lokta-Volterra parameters vector 6*.
We are now ready to state and prove the main theorem for this section:

Theorem H.12 (Regret bound for learned static policy. Formal version of theorem D.1). Let
p1,p2 € [0,1] denote two static forced-break policies, and denote by U the set of users, and as-
sume they remain engaged under the stationary policies 7(p1) and W(pg) Assume Sy (p;T) ~

Sr o (u; T), and let = (maxueu ;—’—“) . (maxu reu ‘_S ) V= maxXycy

Let fy,, fp, : U — Ry be functions predicting +|Sy, (p1;T)|, %|Su (p2; T)|, respectively. Denote

the learned policy by p, and the optimal policy by p*.
If (i) the expected RMSE of fp,, fp, is bounded by €preq, (ii) the average absolute deviation of

F|S(u; T)| is bounded by €q4ev, and (iii) the expected LV approximation error of the system is
bounded by cry, then the learned policy p has bounded regret:

Bur | 1180 075 7)) = 18w (D[] < 22

where expectation is taken over stochastic choices of policies, and ns = g(u,v) € poly(u, v).

| (eprcd + €dev + €LV)
2

Proof. By assumption (i), the functions f,, , fp, have bounded expected RMSE:
Eu[ (f(0) = 3180 0 D)) < e 23)
Applying Jensen’s inequality with the convex function ¢(z) = 22 yields:

2
(Eu[1fps () = F1Su s DI[])” < Bu| (Fp () = £1Su (0 7))’
Combining with Eq. (23) and taking the square root, we obtain an upper bound on the expected
absolute error:
Eu[| fp, (1) = F[Su (0i; T[] < €prea (24)
Let Ay = | fp, (u) — A*(p;)| apply the triangle inequality to obtain:
Ay = [fp,(uw) = X (p)]
< i () = 18w (W )| + [ F1Su (ws T)| = Apis w)| + [Mpisu) — X (p))]

Denote € ¢ = €pred + €dev + €Lv. Applying the triangle inequality and using the bounds in Eq. (24)
together with assumptions (ii), (iii), we obtain:

Eum[Af} SEqum(u) - %|Su (u,T)H]
+ Eur [| 5180 (w; T)| = A(pis )]
+Ey [|Apisu) = A (05 63)]]
<€pred + Edev T ELV = €7 (25)
Denote 67 = («, 5,7, 0). The empirical value < ) of ( ) is given by definition H.7. Denote the

estimation error by A% = ‘(g) — (a)‘

B
141 . . . . ‘ _ |.
By proposition H.8, the following pointwise upper bound on A% applies when Ay < % P 4p2 .
A 0
A <=5 B 26)
[p1 — pa| ay
Plugging in the bound on the expected value of A into Eq. (26) we obtain in expectation:
— A _
Eu,w[AwAfs”lpﬂ SE[ LN Rl
’ g 4 1 — pz\ ay 5 4
1)
T S () o

T p1—p2| v ay
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Next, we apply proposition H.9. Denote A+ = A*(p*) —A*(p), and define the following probability

event: | | )
Y 1P1 — P2

A=A < —— = Aa<—

(ar=3g) ma (85 <5)

Note that the bound in proposition H.9 is represented as a minimum between two functions, one
linear in € and one constant. To leverage this property, apply the law of total expectation:

Eur[Axs] = Eun[Ax- | AJP[A] + Eur [Ax | AJP[A] (28)

Under A, the first term in Eq. (28) can be bounded by the linear term in proposition H.9. Taking
P[A] < 1 and combining with equation Eq. (26):

Eu,ﬂ[A)\* A}P[A] < ]Eu,Tr[A)\* A]
S Eu,w |: B i A | :|

SEM[B] L A]
2026 [p1 — p2| ary
I/3
<-— ¢ (29)
2|p1 — p2 /

The expectation factor in the second term of Eq. (28) can be bounded by the constant term in propo-
sition H.9: 1
Eu)ﬂ[A,\* | A] < - 1 muaxﬁ—g < - 1 muaxg (30)

Decompose the probability factor P[A] using the law of total probability:

7|p1—p2| 7|p1—p2\
Ar< —— 2 PIA, < =22
[Ar= 57 ][f—a 4

v |p1 — pa|
< == - =
[Ar< 57 ]

1 7|p1—p2|
P[4] :P[Af > 54} +[P>{Ag > o
v |p1 — pal 1
< . o
P[Af>5 1 }+P{Aﬂ>2y

E[X]]

Apply Markov’s inequality P[| X | > a] < on the probabilities to obtain:

v |p1 — p2| vl —p2|\
PlA, > LEL 210 @ A (L EL 21
|: f> 5 4 :|— Uaﬂ'[ f](5 4
5

4
< g max - (31
byEq.(25) ° |[P1 — P2

1 v |p1 — p2| v |p1 — p2|
PlAa > — |Ar < - ———2 <IETFA3A<77
{f* AR B S A
é
PR L
by Eq. (27) |P1 —pz\ uoary
< Lym&x (32)
|p1 P2| Y

Plugging back equations Eq. (29), Eq. (30),Eq. (31),Eq. (32) into equation Eq. (28), we obtain
bounds for each term:

Eun[Ax] = Eur[Ax | AJPIA] + B [As | A] P[A] (33
——
by eq. 29 by eq. 30 by egs. 31,32

we obtain: . )
Ef 14 1%

uTrA T e = *

)< g (o (v ) ) =
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To obtain the regret bound on the empirical rates, we apply assumptions (ii), (iii) once again to
bound the expected difference between A*(p) and | S, (p; T')|, and apply the triangle inequality:

B [| 5190 (03 T)| — 7180 (5; T[] < exx + 2(edev + e1v)

B

Note that m > 1, as £ > 1 since all the users are assumed to remain engaged in the

long term, and |p; —p2| < 1 as p1,p2 € [0,1]. Therefore, the function ns = g(u,v) =
(L; + (1/ + l’;) n-+ 21/) satisfies:

* ~ ns
EUJT H%|SU (p )T)‘ - %|Su (pv T)||] < |p1 — p2| (5pred + Edev + ELV)

I EXPERIMENTAL DETAILS

I.1 DAtA

MovieLens-1M We base our main experimental environment on the MovieLens-1M dataset, which
is a standard benchmark dataset used widely in recommendation system research (Harper & Kon-
stan, 2015). The dataset includes 1,000,209 ratings provided by 6,040 users and for 3,706 movies.
Ratings are in the range {1, ..., 5}, and all users in the dataset have at least 20 reported ratings. The
dataset is publicly available at: https://grouplens.org/datasets/movielens/1m/.

Goodreads. We validate our results using the Goodreads book recommendations dataset, which is
a common benchmark dataset used in recommendation systems research (Wan & McAuley, 2018;
Wan et al., 2019). Ratings are in the range {1, ..., 5}, and the dataset is filtered to only include users
with at least 20 reported ratings. We use the official comic-books genre subset of the dataset, which
includes 3,679,076 ratings provided by 41,932 users and for 87,565 books after pre-processing. The
dataset is publicly available at: https://sites.google.com/eng.ucsd.edu/ucsdbo
okgraph/. Pre-processing code is available in the repository: https://github.com/ede
nsaig/take—-a-break. We follow an identical experimental procedure for all datasets.

Data partitioning. To learn latent user and item features, 30% of all ratings were drawn at random.
Stratified sampling was applied to ensure that all users and items were covered, and so that each users
have roughly the same proportion of ratings used for this step. These ratings were only used only for
learning a CF model, and were discarded afterwards. The remaining 70% data points were used for
training and testing. For these, we first randomly sampled 1,000 users to form the test set. Then, the
remaining users were partitioned into the main train set S, which included 70% (~3,528 for ML1M,
~28,652 for Goodreads) of these users, and the experimental treatment sets DU ), each including
10% (=504 for ML1M, ~4,093 for Goodreads) users for N = 3. This procedure was repeated
10 times with different random seeds. We report average results, together with 95% t-distribution
confidence intervals representing variation between runs.

1.2 IMPLEMENTATION DETAILS

* Hardware: All experiments were run on a single laptop, with 16GB of RAM, M1 Pro
processor, and with no GPU support.

* Runtime: A single run consisting the entire pipeline (data loading and partitioning, collab-
orative filtering, training classifiers, simulating dynamics, learning policies, measuring and
comparing performance) takes roughly 33 minutes. The main bottleneck is the discrete LV
simulation, taking roughly 70% of runtime to compute, mostly due to bookkeeping neces-
sary for the non-stationary baselines. Simulation code was optimized using the NUMBA jit
compiler, which improves runtime.

* Optimization packages:

— Collaborative filtering (CF): We use the SURPRISE package (Hug, 2020), which in-
cludes an implementation of the SVD algorithm for CF. All parameters were set to
default values.
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— Regression: We use the SCIKIT-LEARN implementation of linear regression for pre-
dicting long-term engagement from user features (i.e the prediction models f;(u) in
Eq. (17)). All parameters were set to default values.

— Non-Negative Least Squares (NNLS): We use the SCIPY.OPTIMIZE implementation
of NNLS. The algorithm was used with its default parameters.

* Code: Code for reproducing all of our figures and experiments is available in the following
repository: https://github.com/edensaig/take-a-break.

1.3 OTHER BASELINES

* Safety: In each step of the TPP simulation, look % step back, and calculate the empirical
rate \; = T If this rate exceeds the threshold \; > 7, the policy enters a ‘cool-down’

policy state, serving only forced breaks until the next time period. In our experiments, we
used thresholds 7 € {14, 16}, k = 10 look-behind steps, and defined the cool-down period
as 0.5 time units.

* Oracle: To estimate the effect of perfect predictions, we implement an oracle predictor
f;’radc(u) which has access to the latent user parameters. For a given v and for each p, the

predictor outputs the infinite-horizon LV equilibrium for u, namely f5'°(u) = A*(p; 0.).

We define 6, = (s Bu, Yu, O ), Where vy, 7y, 0,, are the unobserved parameters for the
given user, and 3, is the expected value of (3, induced by the distribution over recom-

mended items « induced by the recommendation policy ¥. We view 0, as a useful proxy
for the otherwise unattainable 6,,.

1.4 HYPERPARAMETERS

* Collaborative filtering: We used d = 8 latent factors and enabled bias terms, which en-
sured performance is close to the benchmark of RMSE = 0.873 reported in the SURPRISE
documentation. We used the vanilla SVD solver, with all hyperparameters set to their de-
fault values.

* Recommendation policy: Softmax temperature was set to 0.5.

* Prediction: We trained regressors f(u) on input feature vectors consisting of three com-
ponents:
= (Tu, bu; pu) € RTF? (34)

The three components are: (i) SVD latent user factors v,, € R<, (ii) SVD user bias term
b, € R, (iii) an additional feature consisting of the average predicted ratings for unseen
items 7, weighted by recommendation probability, which we found to slightly improve
predictive performance:

pu= D> Tug-softmax,(fy) (35)

z€holdout(u)

Where holdout(u) is the set of unseen items corresponding to user u, 7, € [1,5] are the
predicted ratings, and 7, € [1,5]"9°" ) i the vector of all predicted ratings used for
softmax recommendation as described in appendix E. We chose to focus on linear models
since the treatment datasets are relatively small (each |S()| ~ 500), and since other model

classes (including boosted trees and MLPs) did not perform significantly better.

* Engagement dynamics: I Interaction sequences for each user were generated accord-
ing to the interaction dynamics described in section 3. We denote this process by
S (p;u), and describe it in detail in the next section. Latent sates were initialized ran-
domly with relative uniform noise around the theoretical LV equilibrium point (Ao, go) =
(1 + &)X, (1 + &4)g*), where &y, & ~ Uniform(—0.1,0.1). Latent states were up-
dated each B = 10 recommendations to stabilize noise (see fig. 7). When z is rec-
ommended to w at time ¢, latent states and At are set according to (3, (t), which de-
pends on ratings 7, (true or mixed with predictions u 'z via x). Specifically, we use
Bu(t) = r2,/100 € {0.01,0.04,0.09,0.16,0.25}, which is convex, to accentuate the role
of low ratings since they are underrepresented in the data. For B > 1, we take the effective
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Discrete simulation (B = 1) Discrete simulation (B = 10) Discrete simulation (B = 100)
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Figure 7: Example discrete sequence S, ~ SV (p;u), for varying batch sizes. SV captures the
general properties of our proposed behavioral model: note how cumulative averaging behavior (or-
ange dashes) exhibits ‘habit formation’, which our equilibrium approach targets (blue dots). For the
same initial conditions A(0), z(0), the figure shows how varying the number of recommended items
per step (B) ‘smooths’ the discrete behavior (left: B = 1, center: B = 10, right: B = 100). As B
is increased, S™V sequences approach a continuous LV trajectory; in general, and particularly when
B (t) varies by step and per recommended items—this is not the case.

Bu(t) to be the average over the B items recommended in that step. We set & = 0.065,
and chose v = 0.02, = 0.001 (which together determine scale) so that typical values for
engagement rate % | Sy | are on the order of = 10 for the chosen 7' = 100.

1.5 DISCRETE TPP FOR LOKTA-VOLTERRA SIMULATION

The Temporal Point Process (TPP) we use for simulating user interaction sequences .S, is based on a
discretization of the LV system described in Eq. (10), using the forward Euler method with variable
step sizes. We denote this process by S™V (u; T'), and present the sampling procedure in algorithm 1.

Each user is associated with discrete latent states \;, g;, and parameters v, 7., d,. Initial states
Ao, qo are set randomly. At each step, and in time ¢;, the system recommends x; = x(t;), which
triggers updates in latent states, and determines the next time of interaction ¢;,1. As noted, these
update depend on item-specific parameters (3, , .

Under stationary policy 7(p), the system recommends an item with probability (1 — p), and suggests
a break with probability p. The simulator considers B recommendation opportunities at each step.
For each k € {1,...,B}, denote by I;; € {0,1} the break indicator, equal to 0 when a break
is recommended at the k-th slot in the batch. Denote by x ~ 1 the item recommended by the
underlying policy ¢, and by () the corresponding LV hyperparameter as defined above.

1.6 GOODREADS EVALUATION RESULTS

fig. 8 shows results for the Goodreads experiment, in the same format as fig. 5. Results exhibit
performance and trends that are qualitatively similar to the MovieLens experiment in appendix E.
The LV policy optimization method achieved better performance on this dataset (right pane): The
performance of the LV is closer to oracle (-0.541% in Goodreads compared to -0.797% in ML1M),
and the gap from the best-of method is slightly larger (+5.14% in Goodreads compared to +2.05%
in ML1M). Varying user types (center pane) shows less variation across values of x, indicating that
predictors achieve satisfactory performance even when the x is low and prediction is harder (see
appendix E.1). Varying treatments (right pane) also coincides with the observations: LV policy
optimization on the Goodreads dataset exhibits less performance degradation as p; — 0, suggesting
that less data may be sufficient for optimization. We attribute these results to the larger size of
the dataset (approximately 3.6M interactions, compared to 1M interactions in ML1M), and to the
possibility that a stronger structure may exist in this recommendation modality compared to general
movie recommendation.
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Algorithm 1 Sample from S™V (p; u)

Output: y = 2"
Input: Break probability p € [0, 1]
Stationary content recommendation policy g
Lotka-Volterra parameters 6,, = («, 3,7, 9)
Time horizon T' > 0
Output: Interaction sequence S, ~ S™V (1 (p) o mo; 0,,)
10
tg < 0
Su —{}
while ¢; < T do
forallk € {1,...,B} do
I, ~ Bernoulli(1 — p)

Tl ~ w

B < B(ruzy)
end for
At; )\;1

B
Ait1 A (1—044_%%)
B

qi+1 < q; ('y(l —q) — M&)

tiy1 < t; + Aty
Sy — S, U {(ti, (ml, - ,xB), (Il, .. .,IB))}

141+1
end while
Engagement for different policies (x = 0.5) Engagement per LV breaking schedule Engagement for varying p; (po = 0)
= T = 25% 4 LV decision rule = 10% 4
& 10%1 3 K -
3 5 20% o 5 8% e
¢ 8% ¢ § D e
= y 1% A= v = 6% 1 /’,;/ tx'h:(l)r
5 5% g ¥ S ol Lo L R=05
E £ 10% Bla R e — W, k=0
g g ¢
S 3% o o 2% === best-of, k=1
5 _ 5 50 5
£ £ — x-1 e - bestof, 5 = 05
= 0% ‘. """ e SR K=05 e defaule | = % — =~ bestof, k=0
T T T T T T T T -2% T T T T
o @XQ’ @Xb‘ Vo‘\ o e 0.0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
o 6,‘5& gag‘éd o o Learned LV policy () Assigned treatment (p;)

Figure 8: Results on the Goodreads comic-books dataset (compare to Figure 5). (Left) Performance
gain of different approaches (relative to default policy). (Center) Performance of LV by user
group, partitioned by learned policies p,,. (Right) Sensitivity to an increasingly aggressive experi-
mental p; (N = 2,pg = 0). See appendix 1.6 for analysis of resutls.
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J ADDITIONAL EMPIRICAL EVALUATION

In this section, we provide additional empirical evidence:

 appendix J.1 presents an example use case where richer feedback can be utilized. The
experiment shows that utilizing additional feedback improves the breaking policy and in-
creases engagement. We demonstrate how to leverage additional problem structure com-
monly available in practice, and develop adaptive breaking policies which improve over
time.

* In appendix J.2, we evaluate our learning approach under a stateless engagement model.
The model is unrelated to Lotka-Volterra and does not promote breaks. The experiment
demonstrates how our approach is “safe”, in the sense that it does not recommend breaks
needlessly, thus extending corollary C.2 beyond the realizable case.

J.1 LEVERAGING ADDITIONAL STRUCTURE USING ADAPTIVE POLICIES

One benefit of our approach in appendix C is that it requires only predictions of long-term engage-
ment. In reality, however, other sources of information may also be available to the learner, which
may be useful for improving decisions regarding when to recommend breaks. Here we consider
additional information in the form of explicit user feedback, collected by the system over the course
of interaction. We model users as providing to the system feedback regarding item quality, namely
true ratings r,,,, for some of the recommended items x they consume. For simplicity, we assume
users report ratings with probability p, € [0, 1], independently for each item, where we vary p,
across experimental conditions. Intuitively, we would expect that, over time, user-reported ratings
help improve our learned breaking policy; however, over-relying on few data and at and early stage
my hinder performance. Here we examine when and how such feedback should be utilized.

Adaptive policy optimization. To extend our approach to incorporate ratings-based feedback,
we propose an adaptive explore-then-exploit approach which can leverage sparse explicit feedback.
Fixing an adaptation time Ty € [0, T] (a hyperparameter), the method applies the standard learned
breaking policy 7 (Eq. (13)) in the time frame ¢ < T}, during which it also collects and stores user-
reported ratings. Then, at time ¢ = T}, the method updates the learning policy on the basis of the
new ratings data, and applies this policy until the eventual time 7. In particular, ratings are used to
improve the estimated component p,, in the user feature vector u’ (described in Eq. (35)). In this
way, the method uses the existing engagement predictors fj,(«) without requiring any retraining.

A formal description of this method is provided in algorithm 2. Here we denote the set of ratings col-
lected until time ¢ by r(o ;) € {1,...,5}"; the average rating at time ¢ by p(o ) = |17| > )
70, ¢]

) 7'67‘[035]
and the set of long-term engagement predictions for a feature vector u by f(u) = {(p;, fp, (u))} (as
in appendix C.1).

Algorithm 2 Adaptive policy optimization using sparse rating signals

Input: Initial break probability p € [0, 1]

Time horizon T" > 0

Adaptation time Ty € [0, 7]

User feature vector u = (0, b, p)

Collect ratings data 7o 1, with breaking policy 7 (p) until time Tj

Construct updated feature vector u’ = (9, b, pyo,,]) using the average rating pjo 7]
Compute updated long-term engagement predictions f(u’)

Use the LV policy optimization method to obtain updated policy p’ = p* (f(u’))
Use breaking policy 7(p’) for the remaining time ¢ € [Ty, T

AR

Evaluation. We evaluate the adaptive policies using the MovieLens-1M experimental setup, as
described in appendix E and appendix I. We make use of the same linear regression predictors f;, (w)
from the main part of the experiment, and maintain the same time horizon 7' = 100. We vary the
ratings density parameter p, in the range [0, 1], and vary the adaptation time T} across three distinct
values Ty € {0.5,5,50}.
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Performance of LV-adaptive policy (x = 0.0,7 = 100)
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Figure 9: Adaptive policy evaluation for varying rating density p, € [0, 1]. Solid blue line represents
the adaptive policy described in algorithm 2, with adaptation time Ty = 5. Dashed lines represent
the performance of adaptive policies under different choices of Tp. Cyan horizontal line represents
LV-true-ratings, a non-adaptive method with oracle access to the true average rating. The re-
maining horizontal lines represent the performance of selected non-adaptive policies, as presented
in fig. 5 (left pane).

Results. Results are presented in fig. 9. In the results, we observe that LV-adaptive with T = 5
represents an optimal point within the hyperparameter space. For this choice, results show signif-
icant gains over the non-adaptive LV method even under moderate rating densities, and quick con-
vergence towards the LV-true-ratings upper bound. In contrast, LV-adaptive with Ty = 0.5
represents a “premature optimization” scenario, attempting to adapt the policy without allowing the
estimated average pjo,7;,] enough time to converge to its expected value. Similarly, To = 50 repre-
sents the result of “late optimization”, which has accurate estimation of pjy ) but not enough time
to benefit from the updated policy.

J.2 DISTINCT BEHAVIORAL MODEL

In this work, we propose the LV model as a behavioral hypothesis class for counterfactual prediction
of long-term engagement. As such, using the LV model within the learning-to-break optimization
framework is a design choice, to be made at the discretion of the learner; our LV model would be a
good choice if it fits the data better than alternative model classes, given the amount of available data.
This relation is made precise in our error bound (theorem D.1), which bounds the error when using
the LV model for any underlying TPP (i.e., we make no assumptions about the true underlying data
generation process).

Our main experiments evaluate our approach on data that is not LV dynamics, but nonetheless, bear
some resemblance. To complement these results, here we run an additional experiment in which
we empirically evaluate our LV-based approach on data that is generated by a behavioral model
that is entirely distinct. In particular, we consider a user model in which consumption decisions
only depend on the quality of recommended items, without any dependence on internal states—i.e.,
it is stateless. This conforms to behavioral models which are implicitly assumed in conventional
recommendation methods such as collaborative filtering.

Stateless content consumption. The data generation process is formalized in algorithm 3. As a
means of capturing stateless behavior, we define a “close-range” temporal point process SR (p; u)
which generates sequences of user interactions based solely on the average rating of recommended
items in a batch. Here we relate rating with utility, and assume that items having higher utility (and
therefore higher ratings) induce more frequent interactions; in the same way, we consider break
prompts as items having zero utility, and hence zero rating. At time ¢;, and given a batch of size
B with £ < B recommended items and B — k > 0 breaks prompts, users acting according to the
stateless behavioral will consume the next batch of content at time:

—1

11
tiv1 =t + i Zl Tuz; (36)
iz
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LV fit with unbiased prediction LV fit with over-prediction
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Figure 10: Fitting an LV equilibrium curve on the empirical consumption rates of SC®(p; u). The
plots are a realization of the schematic diagram in fig. 2 (Right) using data from the MovieLens-1M
experiment. (Left) Prediction with unbiased engagement predictions. (Right) User with extremely
low engagement, for which the system tends to over-predict. In both cases, the LV policy optimiza-
tion method selects the optimal policy p = 0.

where (ryzy, .- Tuze) € {1,..., 5}’“c are the ratings of the items recommended at time &, and
7 > 0 is a constant latent parameter to be learned from data. The breaking policy 7 decides on
the number of items & to recommend on each step. Since r,, > 1 for all user-item pairs, the time
difference At; = t;11 — t; in Eq. (36) is minimized by taking k = B. This shows that the optimal
breaking policy under this behavioral model is the default one, which does not prompt the user to
break.

Algorithm 3 Sample from SCF (p; u)

Input: Break probability p € [0, 1]
Stationary content recommendation probability 1)
Scalar parameter ,, = 7 > 0
Time horizon T' > 0
Output: Interaction sequence S, ~ St (p;u)
140
to <0
Su = {}
while ¢; < T do
forallk € {1,...,B} do
Ij, ~ Bernoulli(1 — p)
T ~ P
end for
tig1 <t + % (% Zszl IkTugck)
Su — Su U {(tia (xla v ,.1'3), (Ila ceey IB))}
i i+1
end while

-1

Evaluation. We evaluate the stateless behavioral model using the MovieLens-1M experimental
setup, as described in appendix E. We set 7 = 4 for all users, utilize linear regression for engagement
prediction, and maintain all hyperparameters without change. Data processing steps are performed
as described in appendix I, and the chosen breaking policies are evaluated.

Results. Despite the difference between the true TPP and our choice of model class, the LV policy
optimization method successfully learned the optimal no-breaks—which in this case, is the policy
p = 0 for all users. Further detail is provided by fig. 10, which illustrates the policy optimization
steps under SC® (p; u) for typical users with unbiased and biased engagement predictions. In both
examples, the optimal points of both curves coincide, and the optimal policy is selected despite poor
point-wise fit. Combined, these results show that our approach is “safe”, in the sense that when
breaking is sub-optimal, the learned breaking policy does not override the default policy.
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