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1Institute of Computer Science, University Göttingen
2Institute for Acoustics and Dynamics, TU Braunschweig
Correspondence: jan.vandelden@uni-goettingen.de

ABSTRACT

Structural vibrations are a source of unwanted noise in everyday products like
cars, trains or airplanes. For example, the motor of a car causes the chassis to vi-
brate, which radiates sound into the interior of the car and is eventually perceived
by the passenger as noise. Because of this, engineers try to minimize the amount
of vibration to reduce noise. This work introduces a method for reducing vibra-
tions by optimally placing beadings (indentations) in plate-like structures with a
guided diffusion design optimization approach. Our approach integrates a dif-
fusion model for realistic design generation and the gradient information from a
surrogate model trained to predict the vibration patterns of a design to guide the
design towards low-vibration energy. Results demonstrate that our method gener-
ates plates with lower vibration energy than any sample within the training dataset.
To enhance broader applicability, further development is needed in incorporating
constraints in the outcome plate design. Code and example notebook: https:
//github.com/ecker-lab/diffusion_minimizing_vibrations

1 INTRODUCTION

Mechanical structures emit unwanted noise in everyday situations, which causes discomfort and
health problems (Basner et al., 2014). To address this, engineers work on reducing the noise emitted
by mechanical structures. In this work, we approach this issue by focusing on reducing structural
vibrations. Vibrating structures cause the surrounding air to vibrate, producing sound. In vehicles
or machinery, vibrations transmit sound from a source like engines to passenger areas.

How can engineers reduce structural vibrations? Applying damping material is effective, but adds
weight and bulk. Altering the form or material of the design of a mechanical may compromise its
primary function. To address this, we focus on beadings: local indentations in plate-like structures
that increase the stiffness. We consider the design optimization task of placing beadings on plates
of a fixed size based on a benchmark dataset (van Delden et al., 2023).

How can an engineer tackle the optimization task? Sampling a large number of design permutations
and numerically solving the system via e.g. the finite element method could identify the ’most quiet’
within the tested designs. This brute-force approach quickly becomes computationally prohibitive
in large design spaces. Alternatively, there exist methods relying on numerically calculated phys-
ical quantities, like the shear stress or strains, that place beadings based on this information. This
approach offers some vibration reduction but is limited in its effectiveness (Rothe, 2022).

In this work, we present a generative deep learning method for vibration reduction. Our approach
combines input space optimization (e.g. Gatys et al., 2015; Olah et al., 2017) with diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020) to arrive at a method similar to classifier guided dif-
fusion (Dhariwal & Nichol, 2021). Iteratively refining plate geometries within this framework, we
achieve designs with vibration velocities well below any plates in our training dataset. This outcome
highlights the potential of generative deep learning methods for design optimization in acoustics.
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2 DATA AND PHYSICAL MODEL

In this work, we adopt the physical model and dataset in the V-5000 setting introduced by van Delden
et al. (2023). This dataset focuses on the vibrational behavior of rectangular plates in response to
an external force. The plates are modeled based on an established differential equation and the
vibrational behavior is numerically computed. In the following, we provide a technical description
of the physical model and dataset.

The considered physical model is a simply supported rectangular plate, excited by a point force
with a harmonic excitation frequency. We are interested in the dynamic response of the plate in the
frequency domain. The plate theory by Mindlin is employed, which is a valid differential equation
for moderately thin plates (Mindlin, 1951). A shell formulation is derived which combines the
plate theory with a disc formulation for in-plane loads and enables arbitrarily formed moderately
thin structures. The Finite Element Method (FEM) is applied to numerically solve the differential
equation. To this end, the plate is discretized by a regular grid of 121 x 81 nodes and meshed with
triangular shell elements using linear ansatz functions. The choice of triangular elements is a robust
approach to incorporate arbitrary beading patterns. After discretization, the system matrices are
assembled and the discrete dynamical system in the frequency domain is obtained as

(−Ω2M+K(g))u = f .

Here Ω, denotes the excitation frequency, M, K the mass and stiffness matrix and f and u the load
and solution vector. The stiffness matrix K depends on the beading pattern geometry g. The impor-
tant quantity for sound radiation is the velocity component orthogonal to the plate (z-direction). By
uz ⊂ u we denote the z-displacement, which is a subset of all degrees of freedom u. The z-velocity
is obtained by vz = iΩuz . To arrive at a more compact spatially averaged quantity, we consider the
absolute mean squared velocity:

v̄z =
1

n

n∑
j=1

|v(j)z |2

As this quantity is proportional to the kinetic energy, it is closely related to how much sound is
radiated. The quantity is represented in a dB scale and therefore log-transformed according to van
Delden et al. (2023). It is represented as a function of the frequency Ω 7→ v̄z(Ω). The frequency
averaged mean squared velocity vΣ defines an integral quantity for a frequency interval by

vΣ =
1

Ω1 − Ω0

∫ Ω1

Ω0

v̄z(Ω)dΩ

In the dataset, 6000 samples for training and evaluation are available. Each sample includes a
beading pattern g(i), the corresponding velocity fields v

(i)
z and the discretized frequency response

function v̄(i). The beading patterns consist of up to three randomly placed lines and up to two
ellipses. Solutions for excitation frequencies from 1 - 300 Hz are included.

3 GUIDED DIFFUSION FOR DESIGN OPTIMIZATION

Gradient-based input-space optimization methods operate by defining a loss function and perform-
ing gradient-descent on the input to the neural network based on the loss (e.g. Gatys et al., 2015;
Olah et al., 2017). This method was for example employed for image style transfer and generating
images that lead to maximum activation of outputs of the neural network. The resulting images often
diverge from the training data distribution the neural network was trained on, since no mechanism
enforces faithfulness. For design tasks in engineering, more control over the outcome is necessary.

Generative modeling methods that model a data distribution address this issue. They allow for
generating new samples from a distribution that can be defined by a training dataset. Recently, the
closely related score-based and denoising-diffusion based generative models have been prominent
(Sohl-Dickstein et al., 2015; Ho et al., 2020). In those methods, a neural network is trained to
estimate the score function of a distribution X defined by a dataset (Song et al., 2020). The score
function s of a distribution is defined as s(x) = ∇xlog(p(x)). By iteratively updating a random
initial input x0 with xi+1 = xi + s(xi) for a large number of steps, new samples from X can be
generated.
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Figure 1: Randomly selected plate geometries along with their frequency response and the predic-
tions from our regression model.

Diffusion models can be combined with guidance strategies, that enable sampling from condi-
tional probability distributions P (X|C) such as classifier-guidance (Dhariwal & Nichol, 2021),
or classifier-free-guidance (Ho & Salimans, 2022). Classifier guidance adds a second term to the
iterative update step:

xi+1 = xi + αis(xi) + βis(c|xi)

s(xi) is predicted by a diffusion model. s(c|xi) is the gradient in xi computed through backprop-
agation from a pretrained classifier. Additional scaling parameters α and β allow controlling the
influence of the respective terms. By selecting an appropriate condition c, samples with desired
properties can be generated. To apply this principle to minimizing vibrations, we have to replace the
s(c|xi) by a loss function, since minimal noise is not a discrete condition. This approach of replacing
the score function by a more general function has been applied in previous work (e.g. Pierzchlewicz
et al., 2023; Mazé & Ahmed, 2023) and described as either regressor-guidance or energy-guidance.

3.1 FRAMEWORK

For generating plates with optimized vibrational properties, we adopt the previously described de-
noising diffusion generative modeling paradigm and train two neural networks. One denoising dif-
fusion generative model θ is trained to generate beading patterns as 2d images. θ is based on a
standard UNet architecture with 10 Mio. weights and trained for 10000 iterations on batches of 512
continuously newly sampled beading patterns as described in Section 2. 500 denoising steps are set.

A second neural network η is trained to predict the velocity fields vz and frequency response func-
tion v̄z given a plate geometry g and is called regression model in the following. The UNet network
architecture and training settings from van Delden et al. (2023) are adopted. The UNet has 7 Mio.
weights and takes as input a frequency query together with the plate geometry. Example predic-
tions are shown in Figure 1. Accurate modeling of the score function even for noisy plate designs is
required (Song et al., 2020). Because of this, we train the regression model with noised plate geome-
tries by adding random pixelwise noise. The noise is sampled from a standard normal distribution
scaled by 50 % of the input pixel range. Pixel values are clamped to stay in the original value range.

Guided Diffusion. To perform guided diffusion, we employ both the already trained diffusion
model θ and the already trained regression model η. To perform one denoising step, we employ
the DDPM scheduler function d(·) from Ho et al. (2020), which in each step injects new noise in
addition to denoising the input. For η, L(η(x)) is defined, a loss function that sums up the frequency
response prediction given a plate geometry x. Then, the gradient of the loss function with respect
to the plate geometry ∇xL(η(x)) is obtained. As the diffusion model θ operates on Gaussian noise
and the regression model η operates on images in the range [0,1], x is converted to the correct scale
and squared before being passed to η, which empirically enhances results, possibly by aligning the
noisy plates closer to the training data distribution. To arrive at a new plate design, noise is sampled
from a normal distribution as x0 and then the following update step is iteratively performed:

xi+1 = d(xi, αi, θ(xi))− βi∇xi
L(η(xi))

In total 500 update steps are performed to match the training of the diffusion model. The denoising
parameter α is set to a cosine schedule with an initial value of 0.02 and a final value of 0.0001. β is
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Figure 2: Exemplary generation results with lowest mean response out of 64 generations (left). First
row is optimized for low responses between 100 - 200 Hz, second row for 1 - 300 Hz. Responses in
dB scale. Further visualizations in Appendix.

set to a cosine schedule with an initial value of 0.01 and a final value of 0.0001. In consequence, the
changes are larger for small i, when the geometry still contains a lot of noise and become smaller
towards the end of the generation process. These settings proved to generate new plate geometries
that remain close to the training data distribution of the diffusion model and could in principle be
manufactured.

4 EXPERIMENTS

To assess the capabilities of the method to generate plate geometries with desired vibrational proper-
ties, we employ the diffusion model in conjunction with the regression model and alternate between
performing one denoising diffusion and one gradient descent step. We design two experiments:
(Targeted, 1) The loss is set to the sum of the frequency response for the frequency range 100 - 200
Hz. This setting of reducing the vibrations for a targeted range of excitation frequencies is common
in engineering design. (Full range, 2) The loss is set to the sum of the predicted frequency response
for all frequencies (1 - 300 Hz). After having performed diverse experiments with the second setting
(full range, 2), 415 additional plates along with numerical solutions were available. These generated
plates are more diverse than the plates available in the original training dataset and were used to
fine-tune the regression model to achieve better prediction accuracy for more diverse plate geome-
tries. We report generated results with the base model as well as with the fine-tuned model and
compute 32 plates per condition. The frequency response of the generated designs was obtained via
numerical simulation.

For both loss conditions, our method is able to produce better results than any sample within the 5000
training data points (Figure 2, further generated plates in Appendix). The generated plate geometries
look distinctly different to the training data and have more variety in their shapes. Comparing
the two loss conditions, the produced patterns for the targeted setting (100 - 200 Hz) exhibit less
thick beadings and in total less beaded area. The produced patterns for the full range setting (1 -
300 Hz) contain distinct thick beadings from top to bottom. The associated frequency responses
differ, especially in the positioning of the first eigenfrequency. For the full range setting, the first
eigenfrequency is shifted upwards to around 150 Hz for many plates. A second possible position
of the first eigenfrequency seems to be around 110 Hz. In contrast, for the targeted setting the first
eigenfrequency is shifted downwards well below 100 Hz.

Due to the differences between the generated plates and the plates within the training data, the
predicted responses from the regression model differ more strongly from the numerically computed
responses than test results for the regression model would suggest (see Table 1, visualizations in
Appendix). Fine-tuning with in-domain plates generated from our method reduced the prediction
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error slightly for the full range, but lead to worse predictions for the targeted setting. A reason for
this could be that the additional plates were mainly generated for the full range setting.

Table 1: Mean frequency responses in dB from 32 generated plates per condition. Values in paren-
theses are predicted mean frequency responses from the regression model.

Optimization range Base model Fine-tuned model

100 - 200 Hz 27.5 (26.8) 30.3 (28.2)
1 - 300 Hz 28.0 (26.7) 26.8 (26.0)

5 CONCLUSION

In this work, we presented a guided diffusion based method to generate novel plate designs with
optimized vibrational properties. Our method is able to generate plate designs with a lower response
than any plate within the training data for two different frequency ranges. This could help in reducing
noise produced by mechanical structures. The plate designs are novel compared to the training data,
but do not deviate very far from the design space, which balances between novelty of the designs
and actual manufacturability of the plates. The resulting beading patterns differ substantially based
on the optimization target.

Limitations. To directly apply this method to design tasks, several limitations still need to be
addressed. The efficiency of the method is questionable, since it requires a gradient-based regres-
sion model that is usually trained with previously simulated training data for a specific design task.
Including additional constraints into the design task would be necessary, e.g. the placement of re-
gions where no beadings may be placed. Better convergence of the gradient based optimization or
alternatively more flexibility in the number of optimization steps would be beneficial.

Acknowledgements. This research is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), Project number 501927736, within the DFG Priority Programme
’SPP 2353: Daring More Intelligence - Design Assistants in Mechanics and Dynamics’. This sup-
port is highly appreciated.

REPRODUCIBILITY STATEMENT

The training data used in this work is publically available from a dataset repository as described in
van Delden et al. (2023). All deep learning model can be trained on a single A100 GPU in a day
at maximum. A new design can be generated in less than a minute. The code and trained mod-
els are available from https://github.com/ecker-lab/diffusion_minimizing_
vibrations. To numerically compute the vibration patterns, commercially available simulation
software is necessary.
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A APPENDIX

A.1 RESULTS FOR FULL FREQUENCY RANGE - BASE MODEL

25.57 25.59 25.83 25.86

26.37 26.58 26.77 26.87

27.02 27.08 27.11 27.15

27.39 27.62 27.81 28.08

Figure 3: 16 best generation results out of 32. Optimization target: Minimize frequency response in
full frequency range. Base model. The number above the plate designs gives the mean frequency
response.
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Figure 4: Statistics of the generated plates. (a) shows the actual frequency response function as
computed by the numerical solver. (b) shows the predicted frequency response function from the
regression model. (a) and (b) show the 16 best generated plates. (c) shows the achieved mean
responses in comparison to the distribution in the training dataset for all 32 plates.
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A.2 RESULTS FOR FULL FREQUENCY RANGE - FINE-TUNED MODEL
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Figure 5: 16 best generation results out of 32. Optimization target: Minimize frequency response
in full frequency range. Fine-tuned model. The number above the plate designs gives the mean
frequency response.
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Figure 6: Statistics of the generated plates. (a) shows the actual frequency response function as
computed by the numerical solver. (b) shows the predicted frequency response function from the
regression model. (a) and (b) show the 16 best generated plates. (c) shows the achieved mean
responses in comparison to the distribution in the training dataset for all 32 plates.
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A.3 RESULTS FOR 100 - 200 HZ - BASE MODEL
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Figure 7: 16 best generation results out of 32. Optimization target: Minimize full frequency range.
Base model. The number above the plate designs gives the mean frequency response.
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Figure 8: Statistics of the generated plates. (a) shows the actual frequency response function as
computed by the numerical solver. (b) shows the predicted frequency response function from the
regression model. (a) and (b) show the 16 best generated plates. (c) shows the achieved mean
responses in comparison to the distribution in the training dataset for all 32 plates.
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A.4 RESULTS FOR 100 - 200 HZ - FINE-TUNED MODEL
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Figure 9: 16 best generation results out of 32. Optimization target: Minimize full frequency range.
Fine-tuned model. The number above the plate designs gives the mean frequency response.
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Figure 10: Statistics of the generated plates. (a) shows the actual frequency response function as
computed by the numerical solver. (b) shows the predicted frequency response function from the
regression model. (a) and (b) show the 16 best generated plates. (c) shows the achieved mean
responses in comparison to the distribution in the training dataset for all 32 plates.
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