
Unveiling the Hidden:
Online Vectorized HD Map Construction with
Clip-Level Token Interaction and Propagation

Nayeon Kim∗ Hongje Seong∗ Daehyun Ji Sujin Jang†

Samsung Advanced Institute of Technology (SAIT)
{nayeon.kim, hongje.seong, derek.ji, s.steve.jang}@samsung.com

Abstract

Predicting and constructing road geometric information (e.g., lane lines, road
markers) is a crucial task for safe autonomous driving, while such static map
elements can be repeatedly occluded by various dynamic objects on the road. Recent
studies have shown significantly improved vectorized high-definition (HD) map
construction performance, but there has been insufficient investigation of temporal
information across adjacent input frames (i.e., clips), which may lead to inconsistent
and suboptimal prediction results. To tackle this, we introduce a novel paradigm
of clip-level vectorized HD map construction, MapUnveiler, which explicitly
unveils the occluded map elements within a clip input by relating dense image
representations with efficient clip tokens. Additionally, MapUnveiler associates
inter-clip information through clip token propagation, effectively utilizing long-
term temporal map information. MapUnveiler runs efficiently with the proposed
clip-level pipeline by avoiding redundant computation with temporal stride while
building a global map relationship. Our extensive experiments demonstrate that
MapUnveiler achieves state-of-the-art performance on both the nuScenes and
Argoverse2 benchmark datasets. We also showcase that MapUnveiler significantly
outperforms state-of-the-art approaches in a challenging setting, achieving +10.7%
mAP improvement in heavily occluded driving road scenes. The project page can
be found at https://mapunveiler.github.io.

1 Introduction

Vectorized HD map construction (VHC) is a task of predicting instance-wise vectorized representa-
tions of map elements (e.g., pedestrian crossings, lane dividers, road boundaries). Such static map ele-
ments are crucial information for self-driving vehicles, including applications like lane keeping [1, 6],
path planning [29, 24, 15], and trajectory prediction [30, 40, 11]. Prior approaches to constructing
dense and high-quality HD maps typically rely on SLAM-based offline methods (e.g., [48, 37, 38]).
Such an offline method generally involves a series of steps including feature extraction and selection
(e.g., edge, plane), odometry estimation via feature matching, and mapping. However, these processes
involve complicated and computationally burdensome tasks, limiting their use to offline applications.

More recently, camera-based multi-view VHC has been actively investigated as a cost-efficient and
real-time alternative to existing expensive offline approaches. Current works on camera-based VHC
typically aim to extract unified 3D Bird’s Eye View (BEV) features that cover the surrounding
environment of the ego-vehicle [20, 22, 23], relying on various Perspective View (PV) to BEV
transformation methods [50, 32, 21, 5]. Subsequently, a task-specific head follows to decode and

∗Equal contribution.
†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://mapunveiler.github.io

Clip Tokens

(c) clip-level inference (ours)

GRU
Pred.

BEV (t)BEV (t-1)BEV (t-2)

(a) single-frame inference (b) streaming inference

BE
V

Fe
at

.
Vi

sib
ili

ty

Pred. Pred.
Pred.

BEV (t)BEV (t-1)BEV (t-2)

Pred. Pred.

GRU GRU∙∙∙ ∙∙∙

BEV (t)BEV (t-1)BEV (t-2)

Pred. Pred. Pred.

∙∙∙ ∙∙∙

Figure 1: (a) Existing approaches relying on single-frame inference cannot capture the entire map
information in the BEV features [26, 22, 23]. (b) Recent alternatives explore temporal information
via streaming, but they cannot address the inherent nature of maps and propagate noise from previous
timestamps. (c) We directly unveil hidden maps in BEV features by interacting with clip tokens that
contain high-level map information. We visualize BEV features by 1D PCA projection. The BEV
features are extracted from (a) MapTRv2 [23], (b) StreamMapNet [46], and (c) our MapUnveiler.

predict map elements from the extracted BEV features. Despite significant progress, prior works still
suffer from frequently occluded map elements caused by dynamic foreground objects such as vehicles
and pedestrians, as described in Fig. 1-(a). Moreover, the prediction performance degrades when
applied to a larger perception range. To address such issues, prior works try to leverage temporal
information extracted from a stream of preceding feature frames [46, 41]. While such approaches
have achieved improved online prediction performance, they still do not fully leverage the potential
of temporal information across a longer range of frames. In particular, prior works do not consider the
cumulative impacts of occluded map elements, leading to noisy BEV feature generation, as shown in
Fig. 1-(b) and Tab. 3. Moreover, such cumulative flaws can ultimately lead to degraded performance
in longer perception ranges (see Tab. 1), which is crucial for safety-critical autonomous driving. On
the other hand, the key idea of conventional SLAM-based offline methods is to stack and associate
static features collected over a longer window of frames (i.e., mapping features). This offline mapping
strategy effectively addresses occlusion issues by leveraging diverse views of the map elements across
multiple frames, while it requires manual human annotation and complex pipelines.

Based on these insights, we introduce a novel clip-level construction framework, MapUnveiler, which
incorporates the effective offline mapping strategy into state-of-the-art online VHC approaches. In
contrast to the direct global feature mapping used in offline methods, our MapUnveiler collects clip-
level temporal map information and learns differentiable associations for efficient online inference.
We generate compact clip tokens consisting of temporal map information within a clip input and
update BEV features with these tokens to unveil hidden map elements that are visible in certain
frames, as shown in Fig. 1-(c). Subsequently, we transfer the inter-clip tokens to the next clip’s BEV
features to facilitate establishment the long-term intra-clip associations among map elements.

As a result, MapUnveiler outperforms state-of-the-art methods on two widely recognized benchmarks:
+1.3% mAP on nuScenes [3] and +0.9% mAP on Argoverse2 [44]. We also observe a marginal
increase in computational burden, as we exploit the benefits of the clip-level inference strategy, which
allows an efficient inference of multi-frame inputs. In summary, our contributions include:

• We propose MapUnveiler, an online VHC model that incorporates the offline mapping strategy
and unveils the hidden maps by interacting multiple dense BEV features with compact tokens.

• We introduce the clip-level pipeline to infer MapUnveiler online by mapping within a clip set of
BEV features and propagating the map information to subsequent timestamps, thereby building
a global map efficiently.

• Our method significantly improves a frame-level model on longer perception range settings
(58.6% → 68.7%) and heavy occlusion splits (53.1% → 63.8%), and achieves state-of-
the-art performance on two standard VHC benchmarks with marginal extra computations
(15.6 FPS → 12.7 FPS).

2

Clip Token
G

enerator

Intra-clip Unveiler

MapUnveiler

BEV
U

pdater

M
ap

G
enerator

K, V

Q K, V

Q

Read

Write

PV to BEV

Backbone

Map Decoder

Q

K, V

Clip set of
multi-view images

T

K, V

Q

Vectorized Map
BEV Features
T

×L
x L M

ap Tokens
Updated BEV Feat.

Clip Tokens

Map Queries

T

Frame-level MapNet Clip Queries

Inter-clip
Unveiler

Inter-clip
Unveiler

Memory Memory ∙∙∙

×L

Figure 2: Our framework takes clip-level multi-view images and outputs clip-level vectorized HD
maps. All components in the frame-level MapNet (i.e., Backbone, PV to BEV, Map Decoder) are
adopted from MapTRv2 [23]. The frame-level MapNet extracts map queries and BEV features
independently at each frame. MapUnveiler generates compact clip tokens that contain clip-level
temporal map information and directly interact with dense BEV features. With the updated BEV
features, we construct high-quality clip-level vectorized maps. The generated map tokens and clip
tokens are then written to memory.

2 Related Work

Multi-View HD Map Construction. SLAM (Simultaneous Localization and Mapping) [10] has
been a central technique for constructing accurate HD maps [48, 37, 38]. However, these meth-
ods require memory-intensive, complex pipelines for global mapping of geometric features, and
are therefore typically executed offline. Recently, deep learning approaches have emerged as an
appealing alternative to those expensive offline methods, enabling online HD map construction
using cost-efficient multi-view camera sensors. The perspective-view (PV) to bird’s-eye-view (BEV)
transformation methods [50, 32, 21, 5] enable the generation of 3D features from the surrounding
environment of the ego-vehicles using camera sensors, even in the absence of precise spatial cues.
BEVFormer [21] utilizes the deformable attention mechanism [52] to extract BEV features and
predict rasterized semantic maps. However, it cannot generate instance-wise representation of map
elements. To address this, HDMapNet [20] introduces a heuristic method to group pixel-level se-
mantic maps into a vectorized representation. Similarly, VectorMapNet [26] proposes an end-to-end
learning approach to predicting vectorized map representations. Although such methods have demon-
strated notable prediction performance in single-frame inference, they do not consider the temporal
information from multi-frame inputs. More recently, StreamMapNet [46] and SQD-MapNet [41]
have proposed a streaming feature paradigm [42], which aims to leverage temporal information for
improved temporal consistency across predictions. However, these methods propagate dense BEV
features directly, incorporating map information from previous frames that may have been occluded
and undetected, resulting in the accumulation of noise, as shown in Fig. 1-(b). To address this issue,
we propose an end-to-end clip token learning approach that combines offline mapping techniques
with online strategies, aiming for high performance and computational efficiency.

Temporal Token Learning. With the rapid development of transformers [39], there has been
significant interest in efficient token learning alongside dense features, e.g., CNN representations.
In particular, temporal token learning has emerged as an attractive alternative to memory-intensive
spatio-temporal dense CNN representations [45, 31]. VisTR [43] extends DETR [4] into the 3D
domain to extract spatio-temporal instance tokens that can be directly used for instance segmentation.
IFC [17] proposes an efficient spatio-temporal token communication method, which replaces the
heavy interactions within dense CNN features. VITA [13] learns efficient video tokens from frame-
level instance tokens without dense CNN features. Cutie [7] updates CNN representations with
tokens to avoid spatio-temporal dense matching. TTM [36] introduces an efficient long-term memory
mechanism by summarizing tokens into memory rather than stacking [2, 18, 34] or recurrence [14, 8].
While all the aforementioned approaches were designed to handle foreground instances, we discover
the potential of token learning to construct background maps. By learning compact tokens and
interacting with dense BEV features, we impose traditional mapping into online VHC model and
enable online running.

3

Map Queries 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 Map Tokens 𝑈𝑈𝑙𝑙
𝑚𝑚𝑚𝑚𝑚𝑚

BEV Features 𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵

Memory Read 𝑈𝑈𝑅𝑅𝑅𝑅𝑚𝑚𝑅𝑅

Updated BEV Features 𝑈𝑈𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵

Clip Tokens 𝑈𝑈𝑙𝑙
𝑐𝑐𝑙𝑙𝑐𝑐𝑚𝑚

Clip Token Generator

Cross
Attention

Self
Attention

Feed
Forw

ard

𝑃𝑃𝐶𝐶

𝑃𝑃𝐶𝐶

Q

K

V

Q

K

V

𝑃𝑃𝑀𝑀

BEV Updater

Cross
Attention

Feed
Forw

ard

Q

K

V
𝑈𝑈𝑙𝑙−1
𝑐𝑐𝑙𝑙𝑐𝑐𝑚𝑚

𝑃𝑃𝐵𝐵

Map Generator

Deform
able

Attention

Feed
Forw

ard

Q

K

VV

𝑃𝑃𝐶𝐶

𝑃𝑃𝑀𝑀 𝑃𝑃𝑀𝑀

𝑃𝑃𝑀𝑀

×L Intra-clip Unveiler

𝑃𝑃𝐶𝐶

Q

𝑈𝑈𝑙𝑙−1𝐵𝐵𝐵𝐵𝐵𝐵

𝑈𝑈𝑙𝑙−1
𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑀𝑀 Map token positional embedding
𝑃𝑃𝐵𝐵 BEV feature positional embedding
𝑃𝑃𝐶𝐶 Clip token positional embedding

Decoupled
Self Attention

Figure 3: A detailed implementation of Intra-clip Unveiler. We use blue, red, and green arrows to
indicate the flows of map tokens, BEV features, and clip tokens, respectively. In each attention and
feed forward layer, standard layer normalization, dropout, and residual connections are followed.

3 Method

3.1 Overview

We present the overall architecture of MapUnveiler in Fig. 2. Given a set of synchronized multi-view
images (i.e., clip inputs), our model sequentially construct clip-level vectorized HD maps. We first
extract frame-level BEV features and map queries, which are then used as inputs to MapUnveiler
module. We employ memory tokens, which are written from the previous clip and facilitate the
establishment of long-term temporal relationships. From the memory tokens and map queries, we
generate clip tokens that embed temporal map element cues in a compact feature space. This is the
first step to understand clip-level map information. We then update BEV features with clip tokens,
which is the core step of unveiling hidden maps. Using the updated (unveiled) BEV features, we
extract map tokens and construct clip-level vectorized HD maps. After a clip-level inference, we
generate new memory tokens using clip tokens, map tokens, and the current memory tokens. The new
memory tokens are used for providing temporal cues for the subsequent clip-level inference. Since
we opt for a clip-level pipeline, MapUnveiler efficiently infers with a temporal stride S, performing
clip-level inference only NT /S times for a sequence of NT frames. In the following subsections, we
detail each module in the proposed framework.

3.2 Frame-level MapNet

We adopt MapTRv2 [23] as our frame-level MapNet architecture to extract a clip set of BEV features
and map queries from synchronized multi-view images. We extract perspective view (PV) image
features using a backbone network, then these PV image features are transformed into BEV features
through a PV-to-BEV module. Following the setup of MapTRv2, we adopt ResNet50 [12] and Lift,
splat, shoot (LSS) [32]-based BEV feature pooling [16] for our backbone and PV-to-BEV module,
respectively. These BEV features are utilized for querying maps in the map decoder. With their
BEV features, the map decoder outputs frame-level map queries which can be directly used for
constructing vectorized HD maps. Finally, the frame-level MapNet outputs BEV features and map
queries, which are the results from the PV-to-BEV module and the map decoder, respectively. BEV
features represent rasterized map features, whereas map queries embed vectorized map information;
thus, we can directly construct vectorized HD maps using the map queries.

3.3 MapUnveiler

MapUnveiler is a novel framework designed to unveil invisible map information that cannot be
captured by frame-level BEV features alone. To avoid heavy computations, we adopted a clip-level
inference scheme with temporal window (clip length) T and stride S. A detailed explanation of the
inference scheme with the temporal window T and stride S is provided in Appendix (see Sec. A.1).
Our MapUnveiler consists of two main components: (1) Intra-clip Unveiler and (2) Inter-clip Unveiler.
For each clip-level pipeline, our Intra-clip Unveiler generates vectorized maps for T frames. The
Inter-clip Unveiler then writes memory tokens with the tokens generated in Intra-clip Unveiler to
build global relationships.

4

3.3.1 Intra-clip Unveiler

Intra-clip Unveiler is composed of a sequence of L layers. It initially takes a clip set of frame-level
map queries Qmap, BEV features FBEV , and memory read URead (read at Inter-clip Unveiler,
detailed in Sec. 3.3.2). In the first step, compact clip tokens are created by the clip token generator.
The BEV updater then unveils hidden maps in the BEV features with the clip tokens. Finally, map
generator outputs clip-level map tokens from the updated BEV features. The map tokens are directly
used for constructing vectorized HD maps with perception heads. We illustrate the Intra-clip Unveiler
in Fig. 3. In the followings, we describe the detailed implementation of each module.

Clip Token Generator. Clip token generator yields clip tokens U clip
l ∈ RNc×C from frame-level

map queries Qmap ∈ RT×Ni×Np×C , where Nc, Ni, and Np denote the clip token size, number
of predicted map element, and number of points per map element, respectively. To globally gather
intra-clip map features, we opt for a naive cross-attention [39]. Through this step, we obtain compact
clip-level map representations, enabling efficient intra-clip communication with small-scale features.

BEV Updater. The second step is the BEV Updater, which updates bev features FBEV ∈
RT×H×W×C with the clip tokens U clip

l to unveil the hidden map element information. In cross-
attention, query is derived from the bev features FBEV , and the key and value are derived from the
clip token U clip

l . The output of this step is robustly updated bev features UBEV
l ∈ RT×H×W×C

enhanced via clip tokens for hidden areas relative to the original bev features. The main idea of BEV
Updater is to avoid heavy computation in spatio-temporal cross attention. To achieve this, we do not
directly communicate intra-clip BEV features, but instead decouple the spatial BEV features and the
temporal clip tokens. We then update the spatial BEV features with compact temporal clip tokens,
effectively communicating spatio-temporal information with reasonable computational costs. The
updated bev features UBEV

l are used as value features in the next step.

Map Generator. The last step is the Map Generator, which generates map tokens Umap
l ∈

RT×Ni×Np×C using the updated BEV features UBEV
l created in the previous step. The objec-

tive of this step is to generate a refined version of frame-level map queries. As illustrated in Fig. 3,
the map generator uses deformable attention [52] and decoupled self-attention [22] mechanisms,
following [22]. In deformable attention, query is derived from the map queries Qmap, and the value is
derived from the updated BEV features UBEV

l . Since the updated BEV features are spatio-temporally
communicated, we directly extract map tokens. Each map token represents a vectorized map element
through a 2-layer Multi-Layer Perceptron (MLP). The map tokens Umap

l are written to the memory of
the Inter-clip Unveiler, and when the map tokens Umap

l of the L-th layer pass through the prediction
head, vectorized maps are generated.

3.3.2 Inter-clip Unveiler

Inter-clip Unveiler propagates the tokens from previous clip input to the next one, thereby preserving
the dense temporal information from the prior frames. As shown in Fig. 2, Inter-clip Unveiler writes
map tokens Umap

l and clip tokens U clip
l from the Intra-clip Unveiler to the memory. Here, we adopt

token turning machine (TTM) [36] to efficiently manage the long-term map information. In the
followings, we describe the detailed implementation of read and write.

Read. We generate compact tokens that contain a global map information by reading from memory
tokens and map queries. Following TTM [36], we read with the token summarizer [35] which
efficiently selects informative tokens from inputs as follows:

Uread = Read(Umemory
t−2S:t−S , Q

map) = SNc([U
memory
t−2S:t−S ||Q

map]), (1)

where [Umemory
t−2S:t−S ||Qmap] denotes the concatenation of two elements, and Umemory

t−2S:t−S denotes mem-
ory tokens for a clip. We employ the location-based memory addressing used in [36] utilizing the
positional embedding (detailed in Section 3.3.3). Note that the memory is not available in the first
clip-level pipeline. Therefore, we initially write the memory token from learnable clip embeddings.

Write. We employ the write operation with the same token summarizer [35] that is used in [36].
The new memory Umemory

t−S:t ∈ RM×C is generated by summarizing the clip tokens U clip
L , map

5

tokens Umap
L , and old memory Umemory

t−2S:t−S as follows:

Umemory
t−S:t = Write(U clip

L , Umap
L , Umemory

t−2S:t−S) = SM ([U clip
L ||Umap

L ||Umemory
t−2S:t−S]), (2)

where M denotes the memory token size. The newly generated memory through the write operation
is used in the read operation of the first layer of the Intra-clip Unveiler in the subsequential per-clip
process. If the tokens within the memory are not re-selected in the subsequent steps, it will be removed
from the memory, and the selection mechanism will be determined through the learning. We employ
the same memory addressing method used in the read operation. The write operation is applied in the
last layer of the Intra-clip Unveiler, generating new memory that preserves the information of the clip
tokens and map tokens.

3.3.3 Positional Embedding

While the standard transformer structure is permutation-invariant, we require position information
added with temporal information to predict map elements at the clip-level. For the BEV features (PB),
we use a fixed 3D sinusoidal positional embedding, following [43]. For the map tokens (PM), we
use learnable positional embeddings used in frame-level MapNet [23] with newly defined learnable
temporal positional embeddings. For the clip tokens (PC), we define new learnable positional
embeddings. Similarly, learnable positional embeddings are defined for the memory tokens that are
used in read and write of the Inter-clip Unveiler.

3.3.4 Loss

Since our model is built on top of the frame-level MapNet (MapTRv2 [23]), we basically follow
the loss functions used in MapTR [22] and MapTRv2 [23]. Specifically, we employ the overall loss
functions as

LMapUnveiler = λM
c LM

cls + λM
p LM

p2p + λM
d LM

dir + λM
s LM

PV Seg, (3)

LFrame_MapNet = Lone2one + Lone2many + Ldense, (4)

Lone2one = λF
c LF

cls + λF
p LF

p2p + λF
d LF

dir, (5)

Ldense = λF
t Ldepth + λF

b LBEV Seg + λF
s LPV Seg, (6)

where LMapUnveiler and LFrame_MapNet indicate the loss functions for training MapUnveiler and
frame-level mapnet, respectively. Lcls, Lp2p, Ldir, and LPV Seg denote classification loss [22], point-
to-point loss [22], edge direction loss [22], and PV segmentation loss [23], respectively. Lone2one,
Lone2many , and Ldense are used for training frame-level MapNet and denote one-to-one loss [22], one-
to-many loss [23], and auxiliary dense prediction loss [23], respectively. Ldepth and LBEV Seg denote
depth prediction loss [23] and BEV segmentation loss [23], respectively. We set hyperparameters
to λM

c = 2, λM
p = 5, λM

d = 0.005, λM
s = 2, λF

c = 2, λF
p = 5, λF

d = 0.005, λF
t = 3, λF

b = 1, and
λF
s = 2. Note that we did not use one2many loss [23] to save GPU memory during the main training.

4 Experiments

4.1 Dataset and Metric

We construct experiments on two standard VHC benchmarks: nuScenes [3] and Argoverse2 [44]
datasets. nuScenes offers synchronized six-view images with high-quality HD maps. It provides
1,000 scenes and each scene consists of about 20 seconds. In this dataset, we follow the official scene
split of 700, 150, and 150 for training, validation, and testing, respectively. Similarly Argoverse2
provides synchronized seven-view images with high-quality HD maps. It contains 1,000 scenarios
and each scenario consists of about 15 seconds. Argoverse2 dataset provides the official scene split of
700, 150, and 150 for training, validation, and testing, respectively, which we follow.

For each dataset, we construct maps in two perception ranges: a standard range of 60×30m and a
longer range of 100×50m. Additionally, we create challenging validation splits to demonstrate the
efficacy of our model under heavy occlusions. Specifically, we collect the occluded frames if any
dynamic objects exists within 2.5m around the ego vehicle. Thankfully, nuScenes provides 3D cuboid
annotations for vehicles and pedestrians, allowing us to automatically create the new challenging
split, and the result with this split is given in Sec. 4.4.

6

Table 1: Comparisons on nuScenes and Argoverse2 val sets. APp, APd, APb indicate the average
precision for pedestrian crossing, divider, and boundary, respectively. FPS is measured using a single
NVIDIA A100 GPU. * are taken from the corresponding papers and are scaled based on the FPS of
MapTRv2 [23] for a fair comparison.

Range Method nuScenes Argoverse2
Epoch APp APd APb mAP FPS Epoch APp APd APb mAP

60
×

30
m

MapTR[ICLR’23] [22] 24 46.3 51.5 53.1 50.3 16.7* 6 54.7 58.1 56.7 56.5
MapVR[NeurIPS’23] [47] 24 47.7 54.4 51.4 51.2 16.7* - 54.6 60.0 58.0 57.5
GeMap[ECCV’24] [49] 24 49.2 53.6 54.8 52.6 13.2* - - - - -
PivotNet[ICCV’23] [9] 24 56.2 56.5 60.1 57.6 11.1* - - - - -
BeMapNet[CVPR’23] [33] 30 57.7 62.3 59.4 59.8 9.7* - - - - -
MapTRv2[IJCV’24] [23] 24 59.8 62.4 62.4 61.5 15.6 6 62.9 72.1 67.1 67.4
StreamMapNet[WACV’24] [46] 24 - - - 62.9 12.5* 6 62.0 59.5 63.0 61.5
SQD-MapNet[preprint] [41] 24 63.0 62.5 63.3 63.9 - 6 64.9 60.2 64.9 63.3
MGMap[CVPR’24] [25] 24 61.8 65.0 67.5 64.8 12.3* - - - - -
MapQR[ECCV’24] [27] 24 63.4 68.0 67.7 66.4 14.2* 6 64.3 72.3 68.1 68.2
HIMap[CVPR’24] [51] 30 62.6 68.4 69.1 66.7 9.7* 6 69.0 69.5 70.3 69.6
MapUnveiler (ours) 24 67.6 67.6 68.8 68.0 12.7 6 68.9 73.7 68.9 70.5

10
0
×

50
m MapTR[ICLR’23] [22] 24 45.5 47.1 43.9 45.5 16.7* 6 - - - 47.5

MapTRv2[IJCV’24] [23] 24 58.1 61.0 56.6 58.6 15.6 6 66.2 61.4 54.1 60.6
StreamMapNet[WACV’24] [46] 24 62.9 63.1 55.8 60.6 12.5* 6 - - - 57.7
SQD-MapNet[preprint] [41] 24 67.0 65.5 59.5 64.0 - 6 66.9 54.9 56.1 59.3
MapUnveiler (ours) 24 68.0 70.0 68.2 68.7 12.7 6 69.7 67.1 59.3 65.4

For fair comparisons with state-of-the-art VHC methods, we follow the standard metric [20, 26]
of average precision (AP) under several Chamfer thresholds {0.5m, 1.0m, 1.5m}. We report the
average AP in three Chamfer thresholds for each semantic map categories of pedestrian crossing,
divider, and boundary. We average AP at three Chamfer thresholds and report the results for each
semantic map category: pedestrian crossing, divider, and boundary. To validate the scalability in map
categories, we further examine our model by learning semantic centerline, and the results are given in
Appendix (see Sec. A.2).

4.2 Implementation Details

Our model is trained with 8 NVIDIA A100 GPUs using batch size of 16. We train MapUnveiler using
AdamW [28] with a learning rate of 6× 10−4 and a weight decay of 0.01. We follow the standard
setup [22, 23] that training models for the total epochs of 24 with an image resolution of 800× 450
and the total epochs of 6 with an image resolution of 614×614 on nuScenes and Argoverse2 datasets,
respectively. The number of the embedding dimension C, memory tokens M , and clip tokens Nc,
map elements Ni, points per map element Np are set to 256, 96, 50, 50, and 20 respectively. We use
temporal window size T and stride S of 3 and 2, respectively. The spatial size of the BEV feature is
100×200. We pre-train the frame-level MapNet on the standard setting and then main train our model
to facilitate the exploitation of the frame-level map information. For fair comparisons, MapUnveiler
is pre-trained for 12 and 3 epochs, and then main trained for an additional 12 and 3 epochs, resulting
in a total of 24 and 6 epochs on nuScenes and Argoverse2 datasets, respectively. During main training,
we perform clip-level inference three times and compute losses after each clip-level inference to
effectively handle the GPU memory overhead.

4.3 Comparisons

We compare our MapUnveiler against state-of-the-art VHC methods trained with standard settings,
which use ResNet50 [12] as a backbone, multi-camera modality, and train for 24 epochs and 6 epochs
on nuScenes [3] and Argoverse2 [44] respectively. As shown in Tab. 1, MapUnveiler achieves state-of-
the-art performance on all validation sets. Specifically, we surpass the state-of-the-art temporal model
(SQD-MapNet [41]) by mAP of 4.1% and 4.7% on two range settings of nuScenes validation set and
7.2% and 6.1% on Argoverse2. We also outperform a heavy VHC model (HiMap [51]) by 1.3% and
0.9% on two benchmark sets. Notably, we boost frame-level model (MapTRv2 [23]) by 6.5% and
10.1% on nuScenes and 3.1% and 4.8% on Argoverse2. The superiority of our approach is particularly
evident in the long-range setting: mAP on 60×30m→100×50m settings are 61.5%→58.6% (-2.9%)

7

Range 60 × 30 𝑚𝑚 Range 100 × 50 𝑚𝑚

GT MapTRv2 StreamMapNet OursInput Images GT MapTRv2 StreamMapNet OursInput Images

Ti
m

e

Figure 4: Qualitative comparisons on two range variants of nuScenes val set: 60×30m and 100×50m.
We compare our MapUnveiler with MapTRv2 [23] and StreamMapNet [46]. We marked significant
improvements from MapTRv2 and StreamMapNet using green boxes.

Table 2: Experimental results of the long training schedules.

Range nuScenes Argoverse2
Epoch APp APd APb mAP Epoch APp APd APb mAP

60 × 30 m
24 67.6 67.6 68.8 68.0 6 68.9 73.7 68.9 70.5
48 69.5 69.4 70.5 69.8 12 69.0 74.9 69.1 71.0

110 71.0 69.1 71.8 70.6 30 72.5 74.2 71.9 72.9

100 × 50 m
24 68.0 70.0 68.2 68.7 6 69.7 67.1 59.3 65.4
48 68.4 71.2 68.3 69.3 12 70.4 66.8 59.3 65.5

110 71.2 71.7 72.2 71.7 30 71.7 67.9 62.6 67.4

and 68.0%→68.7% (+0.7%) for MapTRv2 [23] and ours. Although MapUnveiler incorporates
temporal modules, we achieve a reasonable inference speed (12.7 FPS) compared to frame-level
MapNet (MapTRv2 [23], 15.6 FPS), surpassing both performance and speed compared to the state-
of-the-art (HiMap [51], 9.7 FPS).

Qualitative Comparison. Fig. 4 shows qualitative comparisons on two perception range settings
on nuScenes benchmark. We compare our MapUnveiler with the state-of-the-art frame-level model
(MapTRv2 [23]) and temporal model (StreamMapNet [46]). As shown in the figure, MapTRv2 often
mis-detects complex pedestrian crossings and cannot precisely predict dividers occluded by vehicles
on the road. StreamMapNet struggles to accurately predict the boundaries of intersections, despite
leveraging temporal information. In contrast, MapUnveiler consistently delivers accurate results for
all map categories in most cases. We provide more qualitative results on various scenes in Appendix
and full-frame results through the supplementary video.

4.4 Analysis Experiments
In this study, we present extensive experimental results on nuScenes benchmark and provide analysis.

Long Training Schedules. Tab. 2 demonstrates the performance improvement achieved through
longer training schedules. We obtained (24, 48, 110) and (6, 12, 30) epoch models by pre-training
for (12, 24, 24) and (3, 6, 6) epochs, and then main training for (12, 24, 86) and (3, 6, 24) epochs on
nuScenes and Argoverse2 datasets, respectively. As given in the table, the performance consistently
improves with longer training, although the gains are relatively marginal. We conjecture that our
MapUnveiler converges rapidly because we train the temporal modules from a pre-trained frame-level
MapNet. Since our model shows no significant gain from the 110 epoch model on nuScenes, we opt
for 48 epochs for the remaining analysis experiments.

Robustness to Occlusion. Tab. 3 presents results on our challenging validation splits collected based
on the nearest dynamic objects (detailed in Sec. 4.1). For comparisons, we evaluate MapTRv2 and
StreamMapNet using the code and pre-trained weight provided in each official repository. As shown in
the table, MapUnveiler surpasses MapTRv2 and StreamMapNet in all evaluated metrics. In particular,
existing approaches degrade performance significantly compared to the results on the standard

8

Table 3: Experimental results under heavy occlusions.
Method APp APd APb mAP

MapTRv2 [23] 24.1 62.2 55.2 47.1
StreamMapNet [46] 32.1 59.4 67.9 53.1
MapUnveiler (ours) 38.6 80.6 72.2 63.8

Table 4: Ablation study on the proposed modules.
Method APp APd APb mAP

MapTRv2 [23] 58.8 61.8 62.8 61.2
+ Intra-clip Unveiler 65.6 67.6 68.0 67.1
+ Inter-clip Unveiler 69.5 69.4 70.5 69.8

Table 5: Speed analysis of the proposed modules.
Method FPS GPU (MB) Params (MB)

MapTRv2 [23] 15.6 830.4 76.4
+ Intra-clip Unveiler 13.1 1552.5 144.0
+ Inter-clip Unveiler 12.7 1614.9 213.9

Table 6: Results with freezing frame-level MapNet.
Read APp APd APb mAP

Freeze 64.9 66.5 68.7 66.7
End-to-End 69.5 69.4 70.5 69.8

Table 7: Input variants in read.
Read APp APd APb mAP

Memory 68.3 68.5 70.0 68.9
Memory + Qmap 69.5 69.4 70.5 69.8

Table 8: Input variants in write.
Write APp APd APb mAP

None 65.6 67.6 68.0 67.1
U clip
L 68.7 68.9 69.6 69.1

U clip
L + Umap

L 69.5 69.4 70.5 69.8
U clip
L + Umap

L + UBEV
L 68.5 68.8 69.5 68.9

Table 9: Temporal window size T and stride S.
T S APp APd APb mAP

1 1 63.5 66.0 66.1 65.2
3 1 69.0 69.4 69.4 69.3
3 2 69.5 69.4 70.5 69.8
3 3 68.6 68.7 69.6 68.9
5 3 70.4 69.5 70.5 70.1

Table 10: Variant memory token sizes.
M APp APd APb mAP

24 68.2 68.3 69.1 68.5
48 68.4 69.3 69.9 69.2
96 69.5 69.4 70.5 69.8

192 69.0 69.4 70.1 69.5
384 70.0 69.3 69.9 69.7

Table 11: Variant clip token sizes
Nc APp APd APb mAP

25 67.8 69.6 70.1 69.2
50 69.5 69.4 70.5 69.8
100 67.9 68.1 69.6 68.5
200 69.3 68.8 70.2 69.4

split, i.e., 61.5%→47.1% (-14.4%) in MapTRv2 and 62.9%→53.1% (-9.8%) in StreamMapNet,
MapUnveiler also shows a performance degradation of 69.8%→63.8% (-6.0%), but it demonstrates a
smaller performance gap compared to previous studies.

Effectiveness of The Proposed Modules. Tabs. 4 and 5 show an ablation study and speed analysis
of our two proposed modules: Intra-clip Unveiler and Inter-clip Unveiler. We started with a frame-
level MapNet, MapTRv2 [23], obtaining the result by reproducing it on our system. As shown in
the result, Intra-clip Unveiler significantly boosts the performance from 61.2% to 67.1% (+5.9%) by
mapping within a clip, and it rarely requires extra computation (15.6 FPS → 13.1 FPS). Inter-clip
Unveiler further improves performance from 67.1% to 69.8% (+2.7%) by building global relationship
of the mapping. However, our approach requires approximately two times more peak GPU memory
and three times more parameters compared to the frame-level MapTRv2 model during inference.
This could be considered a potential limitation of our method, but the amounts are not large.

Frozen Frame-level MapNet. Tab. 6 presents the results of MapUnveiler where frame-level
MapNet is frozen and only Intra-clip Unveiler and Inter-clip Unveiler are trained. Despite the frozen
model consuming the same amount of computation during inference, it effectively reduces GPU
memory consumption and converges quickly during training. As given in the table, we obtained
slightly lower performance compared to the end-to-end training setting. Interestingly, however, the
frozen model also achieves the state-of-the-art performance on nuScenes benchmark (current SOTA
performance is mAP of 66.7%, the concurrent work of HIMap [51]). This indicates that our approach
effectively unveils the hidden maps in the frame-level representations and does not rely solely on
strong BEV representation learning.

Ablation Study on Read and Write. As given in Tab. 7, reading only from memory is not enough,
and feeding map tokens facilitates the understanding of the current map information (68.9%→69.8%).

9

We also ablate the input in write, and the result is given in Tab. 8. We significantly improve the per-
formance by writing clip tokens to the memory (67.1%→69.1%). This suggests that the propagation
of memory tokens facilitates constructing the global map. By additionally writing map tokens, we
further boost the performance by explicitly providing the current map information (69.1%→69.8%).
Unfortunately, however, we cannot obtain performance gain by writing dense BEV feature addition-
ally. We conjecture that memorizing different types of features, i.e., vectorized representation of
tokens and rasterized representation of dense features, may disturb training and tend to converge to a
sub-optimal state.

Temporal Window Size T and Stride S. We train MapUnveiler with various temporal window
size T and stride S. As shown in Tab. 9, increasing the temporal window leads to performance
improvement by interacting with more frames in a clip. However, training with a T = 5 setting
requires > 40GB of GPU memory, limiting the GPU models. If we train MapUnveiler with T = 3,
it consumes < 32GB of GPU memory, making it possible to train with various GPU models, and
it achieves comparable performance. Additionally, selecting either too short (S = 1) or too long
(S = 3) a temporal stride yields sub-optimal results. Therefore, we opt for T = 3 and S = 2 as the
default setting.

Memory Token Size M . Tab. 10 presents the experimental results with various memory token sizes.
Selecting a memory token size of 96 or above does not significantly change the performance, whereas
choosing a size smaller than 96 results in considerable performance degradation. This indicates that
MapUnveiler does not require a large memory token size to store the 50 clip tokens and 50×20 map
tokens, demonstrating that it performs memory-efficiently.

Clip Token Size Nc. Tab. 11 gives the results with various clip token sizes. MapUnveiler achieves
state-of-the-art performance of 69.2% using only 25 clip tokens. We further boost the performance by
using a larger clip token size of 50. However, employing clip token sizes beyond 50 disrupts learning
and leads to a performance degradation.

Ti
m

e

GT OursInput Images

Figure 5: A limitation under heavy occlusions. Ma-
pUnveiler initially roughly predicts the boundary
where we highlighted in green. However, the in-
visible regions are continuous, and MapUnveiler
eventually predicts the region as having no bound-
ary.

More Analysis in Appendix. We provide ad-
ditional experimental results including center-
line, 3D map construction, geo-disjoint split,
various backbones, and limitation analysis in
Appendix.

4.5 Limitation
MapUnveiler takes temporally consecutive
frames as input. Therefore, if an intermediate
frame is not correctly inputted due to commu-
nication errors in real-world scenarios, the un-
veiling within the clip may not be performed
properly. We expect that the performance will
recover quickly from the subsequent unveiling
pipeline. Additionally, if the model cannot see a
clear region across all frames as shown in Fig. 5,
MapUnveiler may fail to recognize the occluded
map information.

5 Conclusion
In this paper, we present a new VHC paradigm that constructs clip-level maps to efficiently incorporate
conventional offline mapping strategies. In contrast to the recent temporal VHC models that do not
consider the cumulative impacts of occluded map elements and directly propagate the noisy BEV
features, we unveil the hidden map and noise in BEV features by interacting with compact clip
tokens. To establish global mapping efficiently, we propagate the clip tokens instead of dense
BEV features. With these two advanced modules, we propose MapUnveiler, which significantly
outperforms previous works in challenging scenarios such as long-range perception and heavy
occlusions. Since we introduce a novel insight into online VHC approaches to incorporate mapping
strategy efficiently, we hope that our research motivates follow-up studies to delve deeper into
establishing global mapping online and leads to practical VHC solutions.

10

References
[1] Angelos Amditis, Matthaios Bimpas, George Thomaidis, Manolis Tsogas, Mariana Netto, Saïd Mammar,

Achim Beutner, Nikolaus Möhler, Tom Wirthgen, Stephan Zipser, et al. A situation-adaptive lane-keeping
support system: Overview of the safelane approach. IEEE Transactions on Intelligent Transportation
Systems, 11(3):617–629, 2010. 1

[2] Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V Sapunov. Memory transformer. arXiv
preprint arXiv:2006.11527, 2020. 3

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In CVPR, pages 11621–11631, 2020. 2, 6, 7

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, pages 213–229. Springer, 2020. 3

[5] Shaoyu Chen, Tianheng Cheng, Xinggang Wang, Wenming Meng, Qian Zhang, and Wenyu Liu. Efficient
and robust 2d-to-bev representation learning via geometry-guided kernel transformer. arXiv preprint
arXiv:2206.04584, 2022. 1, 3

[6] Zhilu Chen and Xinming Huang. End-to-end learning for lane keeping of self-driving cars. In IV, pages
1856–1860. IEEE, 2017. 1

[7] Ho Kei Cheng, Seoung Wug Oh, Brian Price, Joon-Young Lee, and Alexander Schwing. Putting the object
back into video object segmentation. arXiv preprint arXiv:2310.12982, 2023. 3

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. In NeurIPS Workshops, 2014. 3

[9] Wenjie Ding, Limeng Qiao, Xi Qiu, and Chi Zhang. Pivotnet: Vectorized pivot learning for end-to-end hd
map construction. In ICCV, pages 3672–3682, 2023. 7

[10] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i. IEEE robotics &
automation magazine, 13(2):99–110, 2006. 3

[11] Xunjiang Gu, Guanyu Song, Igor Gilitschenski, Marco Pavone, and Boris Ivanovic. Producing and
leveraging online map uncertainty in trajectory prediction. arXiv preprint arXiv:2403.16439, 2024. 1

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, pages 770–778, 2016. 4, 7, 14

[13] Miran Heo, Sukjun Hwang, Seoung Wug Oh, Joon-Young Lee, and Seon Joo Kim. Vita: Video instance
segmentation via object token association. In NeurIPS, volume 35, pages 23109–23120, 2022. 3

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997. 3

[15] Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei
Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In CVPR, pages 17853–17862, 2023. 1

[16] Junjie Huang and Guan Huang. Bevpoolv2: A cutting-edge implementation of bevdet toward deployment.
arXiv preprint arXiv:2211.17111, 2022. 4

[17] Sukjun Hwang, Miran Heo, Seoung Wug Oh, and Seon Joo Kim. Video instance segmentation using
inter-frame communication transformers. In NeurIPS, volume 34, pages 13352–13363, 2021. 3

[18] Hung Le, Truyen Tran, and Svetha Venkatesh. Learning to remember more with less memorization. In
ICLR, 2019. 3

[19] Youngwan Lee and Jongyoul Park. Centermask: Real-time anchor-free instance segmentation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pages 13906–13915, 2020.
14

[20] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: An online hd map construction and evaluation
framework. In ICRA, pages 4628–4634. IEEE, 2022. 1, 3, 7

[21] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bev-
former: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers.
In ECCV, pages 1–18. Springer, 2022. 1, 3

[22] Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang, Wenyu Liu, and Chang
Huang. Maptr: Structured modeling and learning for online vectorized hd map construction. In ICLR,
2023. 1, 2, 5, 6, 7, 13

[23] Bencheng Liao, Shaoyu Chen, Yunchi Zhang, Bo Jiang, Qian Zhang, Wenyu Liu, Chang Huang, and Xing-
gang Wang. Maptrv2: An end-to-end framework for online vectorized hd map construction. International
Journal of Computer Vision, pages 1–23, 2024. 1, 2, 3, 4, 6, 7, 8, 9, 13, 14

[24] Chang Liu, Seungho Lee, Scott Varnhagen, and H Eric Tseng. Path planning for autonomous vehicles
using model predictive control. In IV, pages 174–179. IEEE, 2017. 1

[25] Xiaolu Liu, Song Wang, Wentong Li, Ruizi Yang, Junbo Chen, and Jianke Zhu. Mgmap: Mask-guided
learning for online vectorized hd map construction. In CVPR, pages 14812–14821, 2024. 7

[26] Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun Wang, and Hang Zhao. Vectormapnet: End-to-end
vectorized hd map learning. In ICML, pages 22352–22369. PMLR, 2023. 2, 3, 7, 13

11

[27] Zihao Liu, Xiaoyu Zhang, Guangwei Liu, Ji Zhao, and Ningyi Xu. Leveraging enhanced queries of point
sets for vectorized map construction. In ECCV, 2024. 7

[28] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019. 7
[29] Jean-Arcady Meyer and David Filliat. Map-based navigation in mobile robots:: Ii. a review of map-learning

and path-planning strategies. Cognitive Systems Research, 4(4):283–317, 2003. 1
[30] Sriram Narayanan, Ramin Moslemi, Francesco Pittaluga, Buyu Liu, and Manmohan Chandraker. Divide-

and-conquer for lane-aware diverse trajectory prediction. In CVPR, pages 15799–15808, 2021. 1
[31] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object segmentation using

space-time memory networks. In ICCV, pages 9226–9235, 2019. 3
[32] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly

unprojecting to 3d. In ECCV, pages 194–210. Springer, 2020. 1, 3, 4
[33] Limeng Qiao, Wenjie Ding, Xi Qiu, and Chi Zhang. End-to-end vectorized hd-map construction with

piecewise bezier curve. In CVPR, pages 13218–13228, 2023. 7
[34] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive transformers

for long-range sequence modelling. In ICLR, 2019. 3
[35] Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa Dehghani, and Anelia Angelova. Tokenlearner:

Adaptive space-time tokenization for videos. In NeurIPS, volume 34, pages 12786–12797, 2021. 5
[36] Michael S Ryoo, Keerthana Gopalakrishnan, Kumara Kahatapitiya, Ted Xiao, Kanishka Rao, Austin Stone,

Yao Lu, Julian Ibarz, and Anurag Arnab. Token turing machines. In CVPR, pages 19070–19081, 2023. 3, 5
[37] Tixiao Shan and Brendan Englot. Lego-loam: Lightweight and ground-optimized lidar odometry and

mapping on variable terrain. In IROS, pages 4758–4765. IEEE, 2018. 1, 3
[38] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Daniela Rus. Lio-sam: Tightly-

coupled lidar inertial odometry via smoothing and mapping. In IROS, pages 5135–5142. IEEE, 2020. 1,
3

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, volume 30, 2017. 3, 5

[40] Jingke Wang, Tengju Ye, Ziqing Gu, and Junbo Chen. Ltp: Lane-based trajectory prediction for autonomous
driving. In CVPR, pages 17134–17142, 2022. 1

[41] Shuo Wang, Fan Jia, Yingfei Liu, Yucheng Zhao, Zehui Chen, Tiancai Wang, Chi Zhang, Xiangyu
Zhang, and Feng Zhao. Stream query denoising for vectorized hd map construction. arXiv preprint
arXiv:2401.09112, 2024. 2, 3, 7

[42] Shihao Wang, Yingfei Liu, Tiancai Wang, Ying Li, and Xiangyu Zhang. Exploring object-centric temporal
modeling for efficient multi-view 3d object detection. In ICCV, pages 3621–3631, 2023. 3

[43] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and Huaxia Xia.
End-to-end video instance segmentation with transformers. In CVPR, pages 8741–8750, 2021. 3, 6

[44] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal,
Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, Deva Ramanan, Peter Carr, and
James Hays. Argoverse 2: Next generation datasets for self-driving perception and forecasting. In NeurIPS
Datasets and Benchmarks, 2021. 2, 6, 7

[45] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In ICCV, pages 5188–5197, 2019. 3
[46] Tianyuan Yuan, Yicheng Liu, Yue Wang, Yilun Wang, and Hang Zhao. Streammapnet: Streaming mapping

network for vectorized online hd map construction. In WACV, pages 7356–7365, 2024. 2, 3, 7, 8, 9, 13, 14
[47] Gongjie Zhang, Jiahao Lin, Shuang Wu, Zhipeng Luo, Yang Xue, Shijian Lu, Zuoguan Wang, et al. Online

map vectorization for autonomous driving: A rasterization perspective. In NeurIPS, volume 36, 2023. 7
[48] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time. In Robotics: Science and

systems, volume 2, pages 1–9. Berkeley, CA, 2014. 1, 3
[49] Zhixin Zhang, Yiyuan Zhang, Xiaohan Ding, Fusheng Jin, and Xiangyu Yue. Online vectorized hd map

construction using geometry. In ECCV, 2024. 7
[50] Brady Zhou and Philipp Krähenbühl. Cross-view transformers for real-time map-view semantic segmenta-

tion. In CVPR, pages 13760–13769, 2022. 1, 3
[51] Yi Zhou, Hui Zhang, Jiaqian Yu, Yifan Yang, Sangil Jung, Seung-In Park, and ByungIn Yoo. Himap: Hybrid

representation learning for end-to-end vectorized hd map construction. In CVPR, pages 15396–15406,
2024. 7, 8, 9, 13

[52] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable
transformers for end-to-end object detection. In ICLR, 2021. 3, 5

12

A Appendix

A.1 Clip-level Inference Scheme

Our MapUnveiler runs in a clip-level. Specifically, the k-th clip of Ck includes

Ck = {ft}kS+T
t=kS+1. (7)

MapUnveiler infers from k = 0. ft represents a frame at time t, and {ft}kS+T
t=kS+1 denote a sequence

of consecutive frames from kS + 1 to kS + T , where S and T indicate the clip stride and the
temporal window, respectively. Therefore, when T = 3 and S = 2, we obtain clip sets such as
C0 = {f1, f2, f3}, C1 = {f3, f4, f5}, ..., and Ck = {f2k+1, f2k+2, f2k+3}.

A.2 Predicting with Centerline

In Tab. 12, we present a quantitative comparison on centerline predictions. MapUnveiler outperforms
MapTRv2 [23] by significant margins on both nuScenes (54.0%→63.0%, +9.0%) and Argoverse
(62.6%→68.0%, +5.4%) benchmarks. This demonstrates the robustness of our approach on various
map categories.

Table 12: Centerline predictions. APp, APd, APb, APc indicate the average precision for pedestrian
crossing, divider, boundary, and centerline, respectively.

Method nuScenes Argoverse2
Epoch APp APd APb APc mAP Epoch APp APd APb APc mAP

MapTRv2[IJCV’24] [23] 24 50.1 53.9 58.8 53.1 54.0 6 55.2 67.2 64.8 63.2 62.6
MapUnveiler (ours) 24 59.0 65.7 68.0 59.4 63.0 6 62.2 73.2 70.0 66.6 68.0

A.3 Extension to 3D Vectorized Map Construction

Tab. 13, presents a comparison on 3D map construction. In this study, we conduct experiment on
Argoverse2 dataset. MapUnveiler achieves state-of-the-art performance in Tab. 13, demonstrating the
efficacy of our approach even when extended to 3D VHC.

Table 13: Comparisons on Argoverse2 val set with 3D map construction.
Method Epoch APp APd APb mAP

MapTRv2[IJCV’24] [23] 6 60.7 68.9 64.5 64.7
HIMap[CVPR’24] [51] 6 66.7 68.3 70.3 68.4
MapUnveiler 6 66.0 72.6 67.6 68.7

A.4 A More Comparison on Geo-disjoint Split

Tab. 14 presents a experimental results on a recent geo-disjoint dataset split proposed in StreamMap-
Net [46]. In this dataset, the performance of MapTRv2 [23] has been significantly drop from 61.5%
to 36.6%. We also successfully achieve state-of-the-art performance on geo-disjoint dataset split.

Table 14: Experimental results on geo-disjoint dataset split proposed in StreamMapNet [46]. The
results are obtained on nuScenes with 60×30m range.

Method Epoch APp APd APb mAP

VectorMapNet[ICML’23] [26] 120 15.8 17.0 21.2 18.0
MapTR[ICLR’23] [22] 24 6.4 20.7 35.5 20.9
StreamMapNet[WACV’24] [46] 24 29.6 30.1 41.9 33.9
MapTRv2[IJCV’24] [23] 24 37.2 26.5 46.1 36.6
MapUnveiler (ours) 24 43.2 26.5 48.7 39.4

13

A.5 Various Backbones

We present experimental results with various backbones: ResNet-18 [12] and V2-99 [19]. As shown
in Tab. 15, our method is not limited to MapTRv2 [23] with ResNet50, but can be extended to
ResNet18 and V2-99 backbones.

Table 15: Experimental results with various backbones.

Range Method Backbone nuScenes Argoverse2
Epoch APp APd APb mAP Epoch APp APd APb mAP

60
×

30
m

MapTRv2[IJCV’24] [23] R18 24 53.3 58.5 58.5 56.8 6 58.8 68.5 64 63.8
MapTRv2[IJCV’24] [23] R50 24 59.8 62.4 62.4 61.5 6 62.9 72.1 67.1 67.4
MapTRv2[IJCV’24] [23] V2-99 24 63.6 67.1 69.2 66.6 6 64.5 72.2 70.1 68.9
MapUnveiler (ours) R18 24 62.4 65.2 65.7 64.4 6 63.8 70.1 67.1 67.0
MapUnveiler (ours) R50 24 67.6 67.6 68.8 68.0 6 68.9 73.7 68.9 70.5
MapUnveiler (ours) V2-99 24 69.8 72.0 74.7 72.1 6 69.6 75.1 72.8 72.5

10
0
×

50
m

MapTRv2[IJCV’24] [23] R18 24 52.7 57.3 51.5 53.8 6 60.3 57.6 49.6 55.8
MapTRv2[IJCV’24] [23] R50 24 58.1 61.0 56.6 58.6 6 66.2 61.4 54.1 60.6
MapTRv2[IJCV’24] [23] V2-99 24 62.6 67.8 65.2 65.2 6 68.5 62.1 58.4 63.0
MapUnveiler (ours) R18 24 64.1 67.3 65.3 65.6 6 65.4 63.2 54.7 61.1
MapUnveiler (ours) R50 24 68.0 70.0 68.2 68.7 6 69.7 67.1 59.3 65.4
MapUnveiler (ours) V2-99 24 70.5 74.6 73.6 72.9 6 71.1 66.1 61.4 66.2

A.6 Randomly Dropped Intermediate Frames

In the limitations section (Sec. 4.5), we discussed that our MapUnveiler relies on temporally con-
secutive frames, and the performance can degrade when intermediate frames are missing. However,
we expected that the performance would recover quickly from the subsequent unveiling pipeline. To
validate this, we evaluated two models with randomly dropped intermediate frames. Frames were
dropped by converting multi-camera images into black images. The experiment was conducted with
drop rates of 20%, 10%, and 5%, and the results are given in Tab. 16. MapUnveiler is affected by
dropped frames, but the performance degradation is reasonable compared to MapTRv2 [23].

Table 16: Experimental results with randomly dropped intermediate frames. The results are obtained
on nuScenes with 60×30m range

Method Drop rate APp APd APb mAP

MapTRv2[IJCV’24] [23]

0% 58.8 61.8 62.8 61.2
5% 56.6 56.6 58.7 57.7

10% 53.4 54.8 55.3 54.5
20% 47.2 48.5 38.9 48.2

MapUnveiler (Ours)

0% 69.5 69.4 70.5 69.8
5% 58.0 60.6 60.0 66.9

10% 63.3 64.7 65.0 64.3
20% 66.2 66.9 67.6 59.6

A.7 More Qualitative Results

We present additional qualitative results in Figs. 6, 7, 8, and 9. For all results, we provide multi-camera
input and the results of MapTRv2 [23], StreamMapNet [46], and our MapUnveiler.

A.8 Broader Impacts

While our framework notably enhances the performance of online vectorized HD map construction
relying on streaming multi-view camera sensors, it does not assure flawless prediction of all map
elements. Therefore, it is crucial to have a backup plan ready for safety-critical real-world applications.

14

Range 60 × 30 𝑚𝑚

Ti
m

e

GT MapTRv2 StreamMapNet OursInput Images

Figure 6: Qualitative comparisons on nuScenes val with 60×30m perception range setting.

15

Range 60 × 30 𝑚𝑚

Ti
m

e

GT MapTRv2 StreamMapNet OursInput Images

Figure 7: Qualitative comparisons on nuScenes val with 60×30m perception range setting.

16

Range 100 × 50 𝑚𝑚

Ti
m

e

GT MapTRv2 StreamMapNet OursInput Images

Figure 8: Qualitative comparisons on nuScenes val with 100×50m perception range setting.

17

Range 100 × 50 𝑚𝑚

Ti
m

e

GT MapTRv2 StreamMapNet OursInput Images

Figure 9: Qualitative comparisons on nuScenes val with 100×50m perception range setting.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions of our work are summarized at the end of the introduction,
aligning with the content of the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Sec. 4.5 (Limitation) we addressed and outlined the constraints of the
suggested method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

19

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Sec. 4.2, we provide implementation details in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We plan to release source codes upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Sec. 4, we provide detailed information on the dataset and experimental
setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: In Sec. 4.2, we describe the computing resources used for training in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We abide by the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Appendix (Sec. A.8), we describe the broader impacts of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Proper citation has been provided for the data, models, and code used in the
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

