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ABSTRACT

The heavy overparameterization of current deep neural networks requires model
generalization guarantees. Recently, flat minima are proven to be effective for im-
proving generalization and sharpness-aware minimization (SAM) achieves state-
of-the-art performance. Yet we show that SAM fails to measure flatness/sharpness
when there are multiple minima within the perturbation radius. We present a novel
regularizer named Gradient Norm Regularizer (GNR) to seek minima with uni-
formly small curvature across all directions and measure sharpness even when
multiple minima are within the perturbation radius. We show that GNR bounds
both the maximum eigenvalue of Hessian at local minima and the regularization
function of SAM. We present experimental results showing that GNR improves
the generalization of models trained with current optimizers such as SGD and
AdamW on various datasets and networks. Furthermore, we show that GNR can
help SAM find flatter minima and achieve better generalization.

1 INTRODUCTION

Current neural networks have achieved promising results in a wide range of fields (Ren et al., 2015;
Kipf & Welling, 2016; Simonyan & Zisserman, 2014; Young et al., 2018; Touvron et al., 2021; Zhou
et al., 2021), yet they are typically heavily over-parameterized. Such heavy overparameterization
leads to severe overfitting and poor generalization to unseen data when the model is learned simply
with common loss functions (e.g., cross-entropy). Thus effective training algorithms are required to
limit the negative effects of overfitting training data and find generalizable solutions.

Some studies have demonstrated that current optimization approaches, such as stochastic gradi-
ent descent, Adam (Kingma & Ba, 2015), AdamW (Loshchilov & Hutter, 2017), Adai (Xie et al.,
2022b), and others (Duchi et al., 2011; Chen et al., 2018; Luo et al., 2019), can affect model general-
ization. However, it can be a trade-off between generalization ability and convergence speed (Keskar
et al., 2017; Xie et al., 2022b). Different tasks and network architectures may agree with different
optimizers (e.g., SGD is often chosen for ResNet (He et al., 2016) while AdamW (Loshchilov &
Hutter, 2017) for ViTs (Dosovitskiy et al., 2020)). Thus selecting a proper optimizer is critical while
the understanding of its relationship to model generalization remains nascent (Foret et al., 2021).

Many studies try to improve model generalization via modifying the training procedure, such as
batch normalization (Ioffe & Szegedy, 2015), dropout (Hinton et al., 2012), and data augmentation
(Zhang et al., 2018; Yun et al., 2019; Cubuk et al., 2020). Especially, some works discuss the con-
nection between the geometry of the loss landscape and generalization (Izmailov et al., 2018; He
et al., 2019; Foret et al., 2021). A branch of effective approaches, sharpness-Aware Minimization
(SAM) (Foret et al., 2021) and its variants (Kwon et al., 2021; Zhuang et al., 2022) seek to minimize
the sharpness of the loss landscape and achieve state-of-the-art performance on various image clas-
sification tasks. Foret et al. (2021) prove that optimizing the worst case of loss in the neighborhood
of a weight point leads to flatter minima and lower generalization error.

Optimizing the worst case, however, relies on a reasonable choice of perturbation radius. We show
that SAM may fail to indicate flatness/sharpness when there are multiple minima inside the perturba-
tion radius. As a prefixed hyperparameter in SAM or a hyperparameter under parameter re-scaling
in its variant, ASAM (Kwon et al., 2021), the perturbation radius ρ can not always be a perfect
choice (covering only a single minimal) in the whole training process.
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To address this problem, we introduce a novel regularize, gradient norm regularizer (GNR), to con-
trol the maximum gradient norm in the neighborhood of minima. We show that when the perturba-
tion radius is relatively small, both GNR and SAM control the maximum eigenvalue of the Hessian
of the training loss, which is a proper sharpness/flatness measure indicating the worst-case loss in-
crease under an adversarial perturbation to the weights (Keskar et al., 2017; Jiang et al., 2019). When
the perturbation radius covers multiple minima, which we show is quite common, GNR discrimi-
nates more drastic jitters from real flat valleys. Moreover, SAM can be considered as a regularization
term that constrains the gap between the worst-case loss and the current loss. We show that the SAM
term is upper-bounded by the GNR term and thus, the constraint of GNR also constrains the SAM
term.

We summarize our contributions as follows.

• We present a novel regularizer named gradient norm regularizer (GNR), which constrains
the largest gradient norm in the neighborhood of minima. We show that the GNR term is a
proper measure of the maximum eigenvalue of the Hessian and thus leads to flatter minima.

• We analyze the generalization error and the convergence of GNR.

• We empirically show that GNR considerably improves model generalization when com-
bined with current optimizers such as SGD and AdamW across a wide range of datasets
and networks. We show that GNR further improves the generalization of models trained
with SAM.

• We empirically validate that GNR indeed finds flatter optima with lower Hessian spectra.

2 GRADIENT NORM REGULARIZER (GNR)

In this section, we introduce the overall framework of our Gradient Norm Regularizer (GNR)
method. In Section 2.1, we formulate the regularizer and show its connection with the maximal
eigenvalue of the Hessian, which is proven to be a proper flatness measure (Kaur et al., 2022) and
closely related to the generalization ability (Foret et al., 2021). We further provide a generalization
bound with respect to the empirical loss, the gradient norm regularizer, and high order terms, in-
dicating that optimizing the regularizer could help improve generalization abilities. Motivated by
these theoretical observations, in Section 2.2, we present the optimization framework based on GNR
as shown in Algorithm 1. We then prove the convergence of this algorithm. Finally, we discuss the
relationship between GNR and SAM in Section 2.3.

Notations Let X and Y be the sample space and label space, respectively. Let D denote the
training distribution on X ×Y and S = {(xi, yi)}ni=1 denote the training dataset with n data-points
drawn independently from D. Let θ ∈ Θ ⊆ Rd denote the parameters of the model. In addition, we
use B(θ, ρ) to denote the open ball of radius ρ > 0 centered at the point θ in the Euclidean space,
i.e., B(θ, ρ) = {θ′ : ∥θ − θ′∥ < ρ}1.

Let ℓ : Θ × X × Y → R be the per-data-point loss function. Let L̂(θ) =
∑n

i=1 ℓ(θ, xi, yi) and
L(θ) = E(x,y)∼D[ℓ(θ, x, y)] denote the empirical loss function and population-level loss function,
respectively. ∇L(θ) and ∇2L(θ) (∇L̂(θ) and ∇2L̂(θ)) are the derivative and Hessian matrix of
the function L(·) (L̂(·)) at point θ, respectively. Besides, for any θ ∈ Θ, we use ∇∥∇L̂(θ)∥ to
represent the gradient of function ∥∇L̂(·)∥ at point θ. In addition, we use Loracle(θ) to denote an
oracle loss function and it can be chosen as empirical loss function L̂(θ), L̂(θ) with the weight
decay regularization, and other common loss functions.

2.1 GRADIENT NORM REGULARIZER

We first introduce the formulation of the regularizer, which measures the maximal gradient norm in
the neighbourhood of a point θ ∈ Θ.

1We use ∥ · ∥ to denote the L2 norm throughout the paper.
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Definition 2.1 (Gradient Norm Regularizer (GNR)). For any ρ > 0, the Gradient Norm Regularizer
(GNR) is defined as

RGNR
ρ (θ) ≜ ρ · max

θ′∈B(θ,ρ)

∥∥∥∇L̂(θ′)
∥∥∥ , ∀θ ∈ Θ. (1)

Here ρ is the perturbation radius that controls the magnitude of the neighbourhood.

Intuitively, GNR at a local minimum θ∗ can be explained as a flatness measure of the loss function
L̂ at θ∗. Specifically, when the function L̂ is flat at θ∗, L̂ should not change drastically in the
neighbourhood of θ∗ (i.e., B(θ∗, ρ) for a constant ρ), indicating that the norm of ∇L̂(θ) should
also be small in the neighbourhood. As a result, RGNR

ρ (θ∗) is small in this case. Conversely, when
L̂ is sharp at θ∗, there would probably exist a point θ in the neighbourhood B(θ∗, ρ) such that the
gradient norm ∥L̂(θ)∥ is large. Under this circumstance, RGNR

ρ (θ∗) would also be large.

More formally, as shown in Proposition 2.1, when the radius ρ is small, GNR in Equation 1 is pro-
portional to the maximal eigenvalue of the hessian matrix ∇2L̂(θ∗), which is proven to be a proper
flatness measure and closely related to generalization abilities (Jastrzębski et al., 2017; Keskar et al.,
2017; Wen et al., 2019; Chaudhari et al., 2019; Kaur et al., 2022).

Proposition 2.1. Let θ∗ be a local minimum of L̂. Suppose L̂ can be second order Taylor approxi-
mated in the neighbourhood B(θ∗, ρ), i.e., ∀θ ∈ B(θ∗, ρ), L̂(θ) = L̂(θ∗)+(θ−θ∗)⊤∇2L̂(θ∗)(θ−
θ∗)/2. Then

λmax

(
∇2L̂(θ∗)

)
=

RGNR
ρ (θ∗)

ρ2
. (2)

Remark. The second order Taylor approximation assumption is commonly adopted in optimization-
related literature (Mandt et al., 2017; Zhang et al., 2019; Xie et al., 2021; 2022b) to analyze the
properties near critical points.

Since the maximal eigenvalue of Hessian matrices is usually difficult to approximate and optimize
directly (Yao et al., 2018; 2020), GNR in Equation 1 becomes a proper surrogate. Moreover, we
derive a generalization bound w.r.t. the regularizer as shown in Proposition 2.2.

Proposition 2.2. Suppose the per-data-point loss function ℓ is differentiable and bounded by M .
Fix ρ > 0 and θ ∈ Θ. Then with probability at least 1 − δ over training set S generated from the
distribution D,

Eϵi∼N(0,ρ2/(
√
d+

√
logn)2)[L(θ + ϵ)]

≤ L̂(θ) +RGNR
ρ (θ) +

√√√√√ 1
4d log

(
1 +

∥θ∥2(
√
d+

√
logn)

2

dρ2

)
+ 1

4 + log n
δ + 2 log(6n+ 3d)

n− 1
+

M√
n
.

(3)

Remark. The left-hand side of Equation 3 is close to the population-level loss function L(θ) since
the numbers of samples n and parameters d are often large. As a result, ignoring high-order terms,
the population-level loss L(θ) is bounded by the empirical loss L̂(θ) and GNR RGNR

ρ (θ), which
motivates us to use RGNR

ρ (θ) as a regularizer to help improve the generalization abilities of models.

2.2 OPTIMIZATION WITH GRADIENT NORM REGULARIZER

In this subsection, we propose a novel framework to incorporate the gradient norm regularizer
RGNR

ρ (θ) into optimization procedures.

Specifically, suppose we could obtain an oracle loss function Loracle(θ) and calculate its gradient
∇Loracle(θ). Loracle(θ) can be chosen as the empirical loss function L̂(θ), empirical loss function
with other regularizations (such as the weight decay), and many other loss functions (such as the
SAM loss (Foret et al., 2021)). Inspired by Propositions 2.1 and 2.2, the overall loss function is
given by

Loverall(θ) = Loracle(θ) + αRGNR
ρ (θ). (4)
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The gradient of the loss function Loverall(θ) is given by ∇Loverall(θ) = ∇Loracle(θ) + α∇RGNR
ρ (θ).

Using similar techniques in (Foret et al., 2021), we could approximate∇RGNR
ρ (θ) by

∇RGNR
ρ (θ) ≈ ρ · ∇

∥∥∥∇L̂(θadv)
∥∥∥ , θadv = θ + ρ · f

∥f∥
, f = ∇

∥∥∥∇L̂(θ)∥∥∥ . (5)

Details of the derivation of∇RGNR
ρ (θ) can be found in Appendix A.1. Notice that

∀θ ∈ Θ, ∇∥∇L̂(θ)∥ = ∇
2L̂(θ) · ∇L̂(θ)
∥∇L̂(θ)∥

. (6)

As a result, Equation 5 can be calculated efficiently by the Hessian vector product. The pseudocode
of the whole optimization procedure is shown in Algorithm 1.

Convergence analysis We further analyze the convergence properties of Algorithm 1. Firstly,
we introduce the Lipschitz smoothness, which is common adopted in optimization-related literature
(Allen-Zhu & Li, 2018; Xu et al., 2018; Zhuang et al., 2022).
Definition 2.2. A function J : Θ→ R is γ-Lipschitz smooth if

∀θ1,θ2 ∈ Θ, ∥∇J(θ1)−∇J(θ2)∥ ≤ γ∥θ1 − θ2∥. (7)

With Definition 2.2, we could prove the convergence property of Algorithm 1 as shown in Theorem
2.3.
Theorem 2.3. Suppose Loracle(θ) is γ1-Lipschitz smooth and L̂(θ) is γ2-Lipschitz smooth. Suppose
|Loracle(θ)| is bounded by M . For any timestamp t ∈ {0, 1, . . . , T} and any θ ∈ Θ, suppose we can
obtain noisy and bounded observations gloss

t (θ), gnorm
t (θ), and g̃loss

t (θ) of ∇L̂(θ), ∇∥∇L̂(θ)∥, and
∇Loracle(θ) such that

E[gloss
t (θ)] = ∇L̂(θ), ∥gloss

t (θ)∥ ≤ Gloss,E[gnorm
t (θ)] = ∇∥∇L̂(θ)∥, ∥gnorm

t (θ)∥ ≤ Gnorm,

E[g̃loss
t (θ)] = ∇Loracle(θ), ∥g̃loss

t (θ)∥ ≤ G̃loss.
(8)

Then with learning rate ηt = η0/
√
t and perturbation radius ρt = ρ0/

√
t, Algorithm 1 could obtain

1

T

T∑
t=1

E
[∥∥∇Loverall(θt)

∥∥2] ≤ C1 + C2 log T√
T

, (9)

for some constants C1 and C2 that only depend on γ,Gloss, Gnorm, G̃loss,M, η0, ρ0, and α.
Remark. The assumptions in Theorem 2.3 are common and standard when analyzing convergence
of non-convex functions via SGD-based methods (Kingma & Ba, 2015; Reddi et al., 2018; Zhuang
et al., 2022). In addition, the requirements on Loracle(θ) (i.e., Loracle(θ) is Lipschitz smooth and we
can obtain unbiased and bounded observations of ∇Loracle(θ)) are mild and common. For example,
when the empirical loss function L̂(θ) satisfies the constraints, it is easy to check that L̂(θ) with
the weight decay regularization also meets the requirements. This indicates that GNR is a general
regularization strategy and can be plugged into most commonly used loss functions.

2.3 COMPARISON WITH SAM

SAM (Foret et al., 2021) proposes to optimize the following loss function

Lsam(θ) = L̂(θ) + max
θ′∈B(θ,ρ)

(
L̂(θ′)− L̂(θ)

)
. (10)

Let RSAM
ρ (θ) ≜ maxθ′∈B(θ,ρ)

(
L̂(θ′)− L̂(θ)

)
and it can be considered as a regularization func-

tion. However, we highlight that GNR, as shown in Equation 1, can deal with common cases that
can not be handled by SAM.

To be specific, fix a perturbation radius ρ and consider a local minimum θ∗. When ρ is small, both
regularizers could approximate the maximal eigenvalue of the Hessian matrix at point θ∗ (Proposi-
tion 2.1 for GNR and Lemma 3.3 in (Zhuang et al., 2022) for SAM) and hence measure the flatness
of the loss function at θ∗.
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Algorithm 1 Optimization with Gradient Norm Regularizer (GNR)

1: Input: Batch size b, Learning rate ηt, Perturbation radius ρt, Trade-off coefficient α, Small
constant ξ

2: t← 0, θ0 ← initial parameters
3: while θt not converged do
4: Sample batch Wt ← {(x1, y1), (x2, y2), . . . , (xb, yb)}
5: hloss

t ← ∇Loracle(θt) ▷ Calculate the oracle loss gradient∇Loracle(θt)

6: ft ← ∇2L̂Wt(θt) ·
∇L̂Wt (θt)

∥∇L̂Wt (θt)∥+ξ

7: θadv
t ← θt + ρt · ft

∥ft∥+ξ

8: hnorm
t ← ρt · ∇2L̂Wt

(θadv
t ) · ∇L̂Wt (θ

adv
t )

∥∇L̂Wt (θ
adv
t )∥+ξ

▷ Calculate the norm gradient∇RGNR
ρ (θt)

9: θt+1 ← θt − ηt(h
loss
t + αhnorm

t )
10: t← t+ 1
11: end while
12: return θt

L̂1(θ) = cos(πθ + π)

RSAM
ρ = 2

RGNR
ρ = π

Flat minimum

L̂2(θ) = cos(3πθ + π)

RSAM
ρ = 2

RGNR
ρ = 3π

Sharp minimum

(a)
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Figure 1: Subfigure (a) is a showcase of flat minimum (left) and sharp minimum (right). GNR
(RGNR

ρ ) could distinguish the flatness of two functions while SAM (RSAM
ρ ) could not. Subfigure (b)

reports the distribution of numbers of local minima and maxima within the perturbation radius ρ
after convergence.

When ρ is large, there probably exist several other local minima in the neighborhood B(θ∗, ρ). This
case is common in practice as shown in Section 3.1. In addition, when the number of local minimum
in B(θ∗, ρ) becomes larger, θ∗ is expected to become sharper since the valley of θ∗ becomes nar-
rower. However, SAM only measures the maximal gap of the loss function in B(θ∗, ρ) and fails to
distinguish the cases when the number of local minimums varies. By contrast, the maximal gradient
norm in B(θ∗, ρ) increases when the number of local minimum is larger, indicating that GNR can
successfully characterize the sharpness in this case.

A detailed example can be found in Figure 1a. Fix ρ = 1. Consider two univariate functions
L̂1(θ) = cos(πθ + π) and L̂2(θ) = cos(3πθ + π). θ takes value in [−1, 1]. By definition, we could
obtain that RSAM

ρ (0) = 2, RGNR
ρ (0) = π for L̂1(θ) while RSAM

ρ (0) = 2, RGNR
ρ (0) = 3π for L̂2(θ).

In this case, θ = 0 in L̂1(θ) is flatter than that in L̂2(θ). However, RSAM
ρ could not distinguish the

flatness of the minimum θ = 0 for the two functions since RSAM
ρ (0) is equal for the two functions.

By contrast, GNR could identify the flatter function L̂1(θ).

Moreover, in Proposition 2.4, we show that RSAM
ρ (θ) is bounded by RGNR

ρ (θ).

Proposition 2.4. For any θ ∈ Θ, RSAM
ρ (θ) is bounded by RGNR

ρ (θ), i.e., RGNR
ρ (θ) ≥ RSAM

ρ (θ).

Thus optimizing RGNR
ρ also leads to a smaller RSAM

ρ . Proposition 2.4 gives an explanation of GNR
covering wider scenarios compared with SAM.
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Table 1: Results of GNR with state-of-the-art models on CIFAR-10 and CIFAR-100. The best
results are highlighted in bold font.

CIFAR-10 CIFAR-100

Model SGD SGD + GNR SAM SAM + GNR SGD SGD + GNR SAM SAM + GNR

ResNet18 95.32±0.13 96.17±0.21 96.10±0.20 96.58±0.18 78.32±0.32 79.53±0.30 79.27±0.16 80.45±0.25

ResNet101 96.35±0.08 96.79±0.11 96.82±0.16 97.20±0.15 80.47±0.13 81.76±0.10 82.03±0.12 83.13±0.07

DenseNet121 91.16±0.28 92.10±0.17 92.19±0.20 92.56±0.29 69.25±0.40 70.28±0.25 70.44±0.19 70.82±0.25

WRN28_2 94.82±0.07 95.69±0.13 95.47±0.08 95.85±0.08 75.45±0.25 76.89±0.31 77.04±0.18 77.55±0.20

WRN28_10 95.73±0.10 96.61±0.15 96.78±0.80 97.29±0.11 81.40±0.13 83.45±0.09 83.41±0.04 84.31±0.06

ResNeXt29-32x4d 95.75±0.31 96.40±0.25 96.32±0.36 96.75±0.27 79.45±0.29 81.18±0.33 81.35±0.12 82.08±0.20

PyramidNet110 96.19±0.11 97.11±0.14 97.26±0.05 97.51±0.09 82.74±0.12 84.91±0.09 85.01±0.09 85.25±0.06

3 EXPERIMENTS

We empirically show that the case discussed in Section 2.3 is common in practice. Then we eval-
uate GNR with random initialization on various state-of-the-art models and the transfer learning
setting on various datasets. We show the Hessian spectra of GNR at convergence and discuss the
computation overhead of GNR with the considerable improvement of model generalization.

3.1 THE DENSITY OF LOCAL MINIMA

To investigate the number of local minima within the perturbation radius, we train 3 ResNet-18
models with SAM on CIFAR-100 with proper hyperparameters for 200 epochs. The perturbation
radius is set to 0.1 as suggested by Foret et al. (2021). We load the checkpoints at convergence
and freeze the model weights for evaluation. We randomly generate 100 perturbation directions
with the same size as the model weights for each model. For each direction, we repeatedly add
a perturbation with the norm of 0.01 along the direction 10 times. We calculate the training loss
after each addition. We report the distribution of the number of local maxima and minima along
each perturbation direction within the perturbation radius ρ of 0.1. As shown in Figure 1b, we find
more than 1 local minima within ρ for most of the directions, indicating that the case is common in
practice. As discussed in Section 2.3, SAM fails to tell the sharpness caused by multiple minima
while the GNR term increases as the sharpness grow. As shown in Section 3.4, GNR convergences
to lower Hessian spectra.

3.2 TRAINING FROM SCRATCH

3.2.1 CIFAR-10 AND CIFAR-100

We conduct experiments on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) with ResNets (He
et al., 2016), WideResNet (Zagoruyko & Komodakis, 2016), ResNeXt (Xie et al., 2017), Pyramid-
Net (Han et al., 2017) and Vision Transformers (ViTs) (Dosovitskiy et al., 2020). All the models are
trained with basic data augmentations (horizontal flip, padding by four pixels, and random crop) for
200 epochs from scratch. GNR has two hyperparameters, ρ and α. We conduct a grid search over
{0.05, 0.1, 0.2, 0.5, 1.0, 2.0} to tune ρ and {0.1, 0.2, 0.5, 1.0, 2.0, 3.0, ..., 10.0} for α using 10% of
the training data as a validation set. For CIFAR-10 and CIFAR-100, we set both ρ and α to 0.1.

As a gradient regularizer, GNR can be integrated with current optimizers such as SGD and Adam
(Keskar et al., 2017). We also show that GNR can be combined with sharpness-aware training proce-
dures such as SAM. As shown in Section 2.3, the GNR term bounds the regularization term in SAM.
Yet the practical implementations of GNR and SAM rely on first-order Taylor expansion of different
objective functions (GNR approximates the maximum gradient norm while SAM approximates the
maximum loss). We empirically show that the combination of GNR and SAM outperforms both of
them, indicating that they may strengthen each other with omitted items.

As shown in Table 1, GNR improves generalization for all models on CIFAR-10 and CIFAR-100.
When combined with SGD, GNR achieves considerably higher test accuracy compared with SGD.
Moreover, GNR further improves generalization combined with SAM. For example, GNR improves
SAM performance by 1.18% and 1.10% on CIFAR-100 with ResNet-18 and ResNet-101, respec-
tively, which are noticeable margins.

6



Under review as a conference paper at ICLR 2023

Table 2: Results of GNR with ResNet50 on ImageNet.

Dataset SGD SGD + GNR (Ours) SAM SAM + GNR (Ours)

Top-1 75.53±0.16 76.05±0.12 76.10±0.10 76.56±0.11

Top-5 92.59±0.06 92.85±0.08 92.92±0.08 93.19±0.07

Table 3: Results of GNR for finetuning EfficientNet-b0 and Swin Transformers on various datasets.

EfficientNet-b0 Swin-t

Dataset SGD SGD + GNR SAM SAM + GNR AdamW AdamW + GNR SAM SAM + GNR

Stanford Cars 82.14 83.54 83.21 83.45 83.50 84.70 83.55 84.11
CIFAR-10 86.26 87.37 86.95 87.13 91.32 91.71 91.77 91.87

CIFAR-100 63.75 64.59 63.52 63.64 72.88 73.30 73.05 73.10
Oxford_IIIT_Pets 91.03 91.66 91.36 91.09 93.49 93.62 93.45 93.68

Food101 82.54 82.69 82.57 83.01 86.38 86.89 86.64 87.03

3.2.2 IMAGENET

We use ResNet50 (He et al., 2016) for evaluations on ImageNet (Russakovsky et al., 2015) to evalu-
ate GNR on large scale data. Following previous works (He et al., 2016), we resize and crop images
to 224×224 resolution and normalize them to N(0, 1). We set the batch size to 256, learning rate to
0.1, and weight decay to 0.0001. The learning rate is decayed by the factor of 0.1 every 30 epochs.
As shown in Table 2, GNR consistently improves SGD performance on ImageNet. GNR also fur-
ther improves the model generalization compared with SAM. The combination of GNR and SAM
outperforms SGD and SAM.

3.3 TRANSFER LEARNING

Transfer learning shows the generalization of models when trained on sufficient labeled data and
finetuned on a small dataset (Zhuang et al., 2020). We show that GNR improves generalization on
all datasets in this setting.

We consider Stanford Cars (Krause et al., 2013), CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
Oxford_IIIT_Pets (Parkhi et al., 2012) and Food101 (Bossard et al., 2014) for this setting. We
apply SGD, SAM, and GNR to finetuning EfficientNet-b0 (Tan & Le, 2019) and Swin-Transformer-
t (Liu et al., 2021) on these datasets. Both EfficientNet-b0 and Swin-Transformer-t are pretrained
on ImageNet.

We use ImageNet pretrained weights of EfficientNet-b0 and Swin-t except for the last linear layer
for classification. Following previous works, we train for 40k steps since our batch size is 128. The
initial learning rate is set to 2e-3 with cosine learning rate decay. Weight decay is set to 1e-5. We
do not use any data augmentations for Stanford Cars, Oxford_IIIT_Pets and Food101. For CIFAR
datasets, we employ the same data augmentations as previous experiments.

As seen in Table 3, GNR once again brings generalization improvement for SGD, AdamW, and SAM
on both EfficientNet-b0 and Swin-t. For example, GNR improves AdamW by 1.2% on Stanford Cars
with Swin-t and 1.11% on CIFAR-10 with EfficientNet-b0.

3.4 TOP EIGENVALUES OF HESSIAN AND HESSIAN TRACE

Proposition 2.1 shows that the GNR term can be an equivalent measure of the maximum eigenvalue
of the Hessian, which is a well-known measure of flatness/sharpness. Thus optimizing the GNR
term decreases the maximum eigenvalue of the Hessian and leads to flatter minima. To empirically
validate that GNR finds optima with low curvature, we present the Hessian spectra of SGD, SAM,
and GNR. We consider the maximum eigenvalue of Hessian, which measures the worst-case loss
increase under an adversarial perturbation to the weights (Keskar et al., 2017) and the Hessian trace,
which measures the expected loss increase under random perturbations to the weights (Kaur et al.,
2022) as the measures of flatness. We empirically show that GNR significantly decreases both the
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Figure 2: The distribution of top eigenvalues and the trace of Hessian at epoch 100 and 200 on
CIFAR-100 with SGD, SGD + GNR, SAM, or SAM + GNR.

maximum eigenvalue and trace of Hessian during training compared with SGD and SAM, and thus
finds flatter minima.

We compute the Hessian spectra of ResNet-18 trained on CIFAR-100 for 200 epochs with SGD,
SAM, SGD + GNR, and SAM + GNR. We use power iteration (Yao et al., 2018) to compute the
top eigenvalues of Hessian and Hutchinson’s method (Avron & Toledo, 2011; Bai et al., 1996; Yao
et al., 2020) to compute the Hessian trace. We report the histogram of the distribution of the top-50
Hessian eigenvalues for each method.

As shown in Figure 2, the model trained with SGD has a higher maximum Hessian eigenvalue and
Hessian trace at convergence compared to the middle of training, indicating that optimizing directly
with cross-entropy loss does not contribute to the lower Hessian spectra. In contrast, GNR leads to
lower Hessian spectra and thus flatter minima. Moreover, GNR helps to reduce both top eigenvalues
and the Hessian trace when combined with SAM, where Hessian spectra at convergence are lower
than other methods. We show visualizations of landscapes of SGD, SAM, and GNR in Appendix C.

3.5 COMPUTATION OVERHEAD

As discussed in Section 2.2, the GNR term can be easily calculated via the Hessian vector product,
which is an efficient approach to calculating the dot product between the Hessian and a vector with-
out the need to calculate the entire Hessian. However, it can still introduce extra computation when
calculated in each iteration. To accelerate the training with GNR, we investigate applying GNR to
only a few iterations in each epoch. Surprisingly, we show that only several iterations of learning
with GNR (with higher α compared with applying GNR to all iterations) improve model generaliza-
tion considerably. As shown in Table 4, with approximately 1/20 of iterations, GNR improves test
accuracy for both SGD and SAM on CIFAR-10 and CIFAR-100. When applying GNR to 1/10 itera-
tions of training, it shows similar effectiveness to applying GNR to all the iterations, while the extra
computational cost for GNR is less than 25% of the original cost. Thus the computation overhead
of GNR can be easily controlled.

4 RELATED WORKS

4.1 OPTIMIZER

For accommodating numerous distinct learning tasks, researchers have proposed many optimizers
with different properties, such as SGD, Adam (Kingma & Ba, 2015), Adai (Xie et al., 2022b),
AdamW (Loshchilov & Hutter, 2017), AdaBound (Luo et al., 2019), Padam (Chen et al., 2018),
RAdam (Liu et al., 2020), Yogi (Zaheer et al., 2018) and Adagrad (Duchi et al., 2011). SGD itera-
tively updates the parameters of deep neural networks by computing the gradient of the loss function
with the randomly sampled batches. Adam optimizes the deep neural networks with adaptive learn-
ing rate and momentum based on SGD, therefore can make the training procedure faster. However,
some previous literature find that Adam is more vulnerable to sharp minima than SGD (Wilson et al.,
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Table 4: Accuracy and training speed of training with different ratios of iterations using GNR.
Numbers in parentheses indicate the ratio of the training speed compared with the vanilla base
optimizer SGD/SAM.

CIFAR-10

SGD SGD + GNR0.05 SGD + GNR0.1 SGD + GNR0.5 SGD + GNR1

Accuracy 95.32 96.08 96.15 96.17 96.17
Images/s 2,593 (100%) 2,258 (87%) 1,996 (77%) 1,023 (39%) 658 (25%)

SAM SAM + GNR0.05 SAM + GNR0.1 SAM + GNR0.5 SAM + GNR1

Accuracy 96.10 96.54 96.62 96.65 96.58
Images/s 1,314 (100%) 1,247 (95%) 1,184 (90%) 858 (65%) 629 (48%)

CIFAR-100

SGD SGD + GNR0.05 SGD + GNR0.1 SGD + GNR0.5 SGD + GNR1

Accuracy 78.32 79.25 79.42 79.50 79.53
Images/s 2,609 (100%) 2,243 (86%) 1,955 (75%) 1,011 (39%) 655 (25%)

SAM SAM + GNR0.05 SAM + GNR0.1 SAM + GNR0.5 SAM + GNR1

Accuracy 79.27 80.08 80.44 80.40 80.45
Images/s 1,318 (100%) 1,251 (95%) 1,172 (89%) 848 (64%) 628 (48%)

2017), which results in worse generalization ability (Xie et al., 2022a; Hardt et al., 2016; Hochreiter
& Schmidhuber, 1994). To overcome the generalization problem of Adam while maintaining the
fast convergence speed, Xie et al. (2022b) propose Adai algorithm which focuses on adjusting the
hyperparameters of momentum rather than learning rate.

4.2 FLAT MINIMA

The vanilla training procedure aims to search for a single parameter point that achieves a low loss
value in the training dataset. However, when the model is developed for the testing dataset, the
potential shift of the loss function landscape may lead to a drop of the generalization performance
(Keskar et al., 2017). This phenomenon can be more severe when the neighborhood of minima is
sharper. Therefore, some literature points out the necessity of seeking flat minima (Keskar et al.,
2017; Zhuang et al., 2022).

Recently, Kaur et al. (2022) thoroughly reviews the literature related to generalization and sharpness
of minima. It highlights the role of maximum Hessian eigenvalue in deciding the sharpness of
minima (Keskar et al., 2017; Wen et al., 2019). And there also have been several simple strategies to
achieve a smaller maximum Hessian eigenvalue, such as choosing a large learning rate (Lewkowycz
et al., 2020; Cohen et al., 2021; Jastrzebski et al., 2020) and smaller batch size (Smith & Le, 2018;
Lewkowycz et al., 2020; Jastrzębski et al., 2017).

Some previous works have been proposed to evaluate the sharpness of minima and minimize it.
Sharpness-Aware Minimization (SAM) (Foret et al., 2021) and its variants (Zhuang et al., 2022;
Kwon et al., 2021; Du et al., 2021; Liu et al., 2022; Du et al., 2022) are representative training algo-
rithm to seek flat minima for better generalization. Particularly, SAM aims to minimize the perturbed
loss, which is defined as the maximum loss in the neighborhood. However, the lower perturbed loss
does not exactly imply flatter minima. To eliminate this inconsistency, Zhuang et al. (2022) proposes
a two-step method GSAM to simultaneously minimize the perturbed loss and surrogate gap. Kwon
et al. (2021) introduce the adaptive sharpness concept as the substitute and propose a learning algo-
rithm based on it that eliminates the influence of scale dependency. In addition, Du et al. (2021) and
Liu et al. (2022) respectively propose LookSAM and ESAM to improve the computation efficiency
based on original SAM. Du et al. (2022) design SAF and MESA with a trajectory loss as a target
which almost does not require extra computations.

5 CONCLUSION

We proposed a novel regularizer named Gradient Norm Regularizer (GNR) to seek minima with
uniformly small curvature across all directions and measure sharpness when SAM fails. We showed
that GNR bounded both the maximum eigenvalue of the Hessian and the regularization function of
SAM. We empirically showed that GNR improved generalization for SGD, AdamW, and SAM.
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A OMITTED DETAILS IN SECTION 2

A.1 DERIVATION OF EQUATION 5

We follow the steps in (Foret et al., 2021) to approximate

∇RGNR
ρ (θ) = ρ · ∇θ max

ϵ∈B(0,ρ)

∥∥∥∇L̂(θ + ϵ)
∥∥∥ . (11)

We first conduct the first-order Taylor expansion of ∥∇L̂(θ + ϵ)∥ and get that

ϵ∗(θ) = argmax
ϵ∈B(0,ρ)

RGNR
ρ (θ + ϵ) ≈ argmax

ϵ∈B(0,ρ)

∥∥∥∇L̂(θ)∥∥∥+
(
∇
∥∥∥∇L̂(θ)∥∥∥)⊤

ϵ

= argmax
ϵ∈B(0,ρ)

(
∇
∥∥∥∇L̂(θ)∥∥∥)⊤

ϵ =
ρ · f
∥f∥

,

(12)

where f = ∇∥∇L̂(θ)∥.
As a result, by letting θadv = θ + ϵ∗(θ),

∇RGNR
ρ (θ) ≈ ρ · ∇θ

∥∥∥∇L̂(θ + ϵ∗(θ))
∥∥∥ = ρ · ∇

∥∥∥∇L̂(θadv)
∥∥∥+ ρ · ∇dϵ∗(θ)

dθ
·
∥∥∥∇L̂(θadv)

∥∥∥ . (13)

In addition, similar to (Foret et al., 2021), we further drop the second-order term to accelerate the
computation. Finally, the derivative∇RGNR

ρ (θ) is given by

∇RGNR
ρ (θ) ≈ ρ · ∇

∥∥∥∇L̂(θadv)
∥∥∥ , θadv = θ + ρ · f

∥f∥
, f = ∇

∥∥∥∇L̂(θ)∥∥∥ . (14)

B PROOFS

B.1 PROOF OF PROPOSITION 2.1

Proof. By assumption, we have that for all θ ∈ B(θ∗, ρ),

L̂(θ) = L̂(θ∗) +
1

2
(θ − θ∗)⊤∇2L̂(θ∗)(θ − θ∗). (15)

In addition,
∇L̂(θ) = ∇2L̂(θ∗)(θ − θ∗). (16)

As a result, according to the eigen-decomposition of∇2L̂(θ∗) = QΛQ⊤, we have∥∥∥∇L̂(θ)∥∥∥2 = (θ − θ∗)⊤
(
∇2L̂(θ∗)

)2

(θ − θ∗) = (θ − θ∗)⊤QΛ2Q⊤(θ − θ∗). (17)

Let ϵ = Q⊤(θ − θ∗) = (ϵ1, ϵ2, . . . , ϵd) and Λ2 = diag(λ2
1, λ

2
2, . . . , λ

2
d). We have

∥∥∥∇L̂(θ)∥∥∥2 =∑d
i=1 ϵ

2
iλ

2
i . As a result,

max
ϵ:
∑d

i=1 ϵ2i≤ρ2

d∑
i=1

ϵ2iλ
2
i = ρ2λ2

max. (18)

Now the claim follows.

B.2 PROOF OF PROPOSITION 2.2

Proof. Define h(θ) = maxθ′∈B(θ,ρ)

∥∥∥∇L̂(θ)∥∥∥. Fix σ = ρ/(
√
d+
√
log n), we can obtain that with

probability at least 1− δ,

Eϵi∼N(0,σ2) [L(θ + ϵ)] ≤ Eϵi∼N(0,σ2)

[
L̂(θ + ϵ)

]
+

√√√√ 1
4
d log

(
1 +

∥θ∥22
dσ2

)
+ 1

4
+ log n

δ
+ 2 log(6n+ 3d)

n− 1
.

(19)
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Since ϵi ∼ N(0, σ2), ∥ϵ∥2/σ2 has a chi-square distribution. As a result, according to (Laurent &
Massart, 2000, Lemma 1), we have that for any t > 0,

P
(
∥ϵ∥2/σ2 − d ≥ 2

√
dt+ 2t

)
≤ exp(−t). (20)

By letting t = 1
2 log n, we can get that with probability at least 1− 1/

√
n,

∥ϵ∥2 ≤ σ2
(
d+

√
2d log n+ log n

)
≤ σ2

(√
d+

√
log n

)2

= ρ2. (21)

As a result,

Eϵi∼N(0,σ2)

[
L̂(θ + ϵ)

]
≤Eϵi∼N(0,σ2)

[
L̂(θ + ϵ) | ∥ϵ∥ ≤ ρ

]
+ Eϵi∼N(0,σ2)

[
L̂(θ + ϵ) | ∥ϵ∥ > ρ

]
≤Eϵi∼N(0,σ2)

[
L̂(θ + ϵ) | ∥ϵ∥ ≤ ρ

]
+

M√
n
.

(22)

According to the mean value theorem and Cauchy–Schwarz inequality, for any ϵ such that ∥ϵ∥ < ρ,
there exists a constant 0 ≤ c ≤ 1, such that

L̂(θ + ϵ) = L̂(θ) +
(
∇L̂(θ + cϵ)

)⊤
ϵ

≤ L̂(θ) +
∥∥∥∇L̂(θ + cϵ)

∥∥∥ · ∥ϵ∥
≤ L̂(θ) + h(θ)ρ.

(23)

Now the claim follows from Equations 19, 22, and 23.

B.3 PROOF OF THEOREM 2.3

Proof. Observe that ∥∥∇Loverall(θt)
∥∥2 =

∥∥∥∇Loracle(θt) + αρt · ∇
∥∥∥∇L̂(θadv

t )
∥∥∥∥∥∥2

≤ 2

(∥∥∇Loracle(θt)
∥∥2 + ∥∥∥αρt · ∇ ∥∥∥∇L̂(θadv

t )
∥∥∥∥∥∥2) .

(24)

The claim follows from Propositions B.1 and B.2.

Proposition B.1. Assume the conditions in Theorem 2.3 hold (with parameters
γ1, γ2, G

loss, Gnorm, G̃loss,M, η0, ρ0, α). Then with learning rate ηt = η0/
√
t and perturba-

tion radius ρt = ρ0/
√
t, Algorithm 1 could obtain

1

T

T∑
t=1

E
[∥∥∇Loracle(θt)

∥∥2] ≤ C ′
1 + C ′

2 log T√
T

(25)

for some constants C ′
1 and C ′

2 that only depend on γ1, γ2, G
loss, Gnorm, G̃loss,M, η0, ρ0, α.

Proof. By definition, we have hloss
t = g̃loss

t (θt) and hnorm
t = gnorm

t (θadv
t ). By assumption,

Loracle(θt+1) ≤ Loracle(θt) +
(
∇Loracle(θt)

)⊤
(θt+1 − θt) +

γ1
2
∥θt+1 − θt∥2

= Loracle(θt)− ηt
(
∇Loracle(θt)

)⊤ (
hloss
t + αρth

norm
t

)
+

γ1η
2
t

2

∥∥hloss
t + αρth

norm
t

∥∥2 .
(26)

Take the expectation conditioned on the observations till timestamp t. By the assumption E[hloss
t ] =

E[g̃loss
t (θt)] = ∇Loracle(θt) and E[hnorm

t ] = E[gnorm
t (θadv

t )] = ∇2L̂(θadv) · ∇L̂(θadv)

∥∇L̂(θadv)∥+ξ
, we can
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obtain that

E
[
Loracle(θt+1)

]
− Loracle(θt)

≤ − ηt
∥∥∇Loracle(θt)

∥∥2 − ηtρtαE

(∇Loracle(θt)
)⊤ ∇2L̂(θadv) · ∇L̂(θadv)∥∥∥∇L̂(θadv)

∥∥∥+ ξ


+

γ1η
2
t

2

∥∥hloss
t + αρth

norm
t

∥∥2
(27)

Because L̂ is γ2-Lipschitz smooth, the maximal absolute eigenvalue of ∇2L̂(θ) is smaller than γ2
and ∥∇2L̂(θ)∥ ≤ γ2 for any θ ∈ Θ. As a result,

= − ηtρtαE

(∇Loracle(θt)
)⊤ ∇2L̂(θadv

t )
∇L̂(θadv

t )∥∥∥∇L̂(θadv
t )

∥∥∥+ ξ


≤ ηtρtαE

∥∥∇Loracle(θt)
∥∥ ∥∥∥∇2L̂(θadv

t )
∥∥∥
∥∥∥∥∥∥ ∇L̂(θadv

t )∥∥∥∇L̂(θadv
t )

∥∥∥+ ξ

∥∥∥∥∥∥


≤ ηtρtαG̃
lossγ.

(28)

In addition,

E
[∥∥hloss

t + αhnorm
t

∥∥2] ≤ E
[∥∥hloss

t

∥∥2]+ α2E
[
∥hnorm

t ∥2
]
≤

(
G̃loss

)2

+ α2 (Gnorm)
2
. (29)

Combining Equations 27, 28, and 29, we can get that

ηt
∥∥∇Loracle(θt)

∥∥2 ≤ −E [
Loracle(θt+1)

]
+ Loracle(θt) + ηtρtZ1 + η2tZ2 (30)

for some constants Z1 and Z2 that only depend on γ,Gloss, Gnorm, G̃loss, α. Now perform telescope
sum and take the expectations at each step, we can obtain that

T∑
t=1

ηt
∥∥∇Loracle(θt)

∥∥2 ≤ −E [
Loracle(θT+1)

]
+ Loracle(θ1) + Z1

T∑
t=1

ηtρt + Z2

T∑
t=1

η2t . (31)

By letting ηt = η0/
√
t and α = α0/

√
t, we can get that

η0√
T

T∑
t=1

∥∥∇Loracle(θt)
∥∥2 ≤ T∑

t=1

ηt
∥∥∇Loracle(θt)

∥∥2
≤ −E

[
Loracle(θT+1)

]
+ Loracle(θ1) + Z1

T∑
t=1

ηtρt + Z2

T∑
t=1

η2t

≤ 2M + Z1η0ρ0

T∑
t=1

1

t
+ Z2η

2
0

T∑
t=1

1

t

≤ Z4 + Z5 log T

(32)

for some constants Z4 and Z5 that only depend on γ,Gloss, Gnorm, G̃loss,M, η0, ρ0, α. Divide the
two sides of the equation by η0

√
T and the claim follows.

Proposition B.2. Assume the conditions in Theorem 2.3 hold (with parameters
γ1, γ2, G

loss, Gnorm, G̃loss,M, η0, ρ0, α). Then with perturbation radius ρt = ρ0/
√
t, Algorithm 1

could obtain
1

T

T∑
t=1

E
[∥∥∥αρt · ∇ ∥∥∥∇L̂(θadv)

∥∥∥∥∥∥2] ≤ C ′′
1 + C ′′

2 log T√
T

(33)

for some constants C ′′
1 and C ′′

2 that only depend on γ1, ρ0, α.
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Proof. For any t ∈ {1, 2, . . . , T},

E
[∥∥∥αρt · ∇ ∥∥∥∇L̂(θadv)

∥∥∥∥∥∥2] = α2ρ2tE
[∥∥∥∇∥∥∥∇L̂(θadv)

∥∥∥∥∥∥2]

=α2ρ2tE

∥∥∥∥∥∥∇2L̂(θadv
t )

∇L̂(θadv
t )∥∥∥∇L̂(θadv
t )

∥∥∥
∥∥∥∥∥∥
 ≤ α2ρ2tE

∥∥∥∇2L̂(θadv
t )

∥∥∥
∥∥∥∥∥∥ ∇L̂(θ

adv
t )∥∥∥∇L̂(θadv
t )

∥∥∥
∥∥∥∥∥∥


≤α2ρ2tE[γ1] = α2ρ2tγ1.

(34)

By letting ρt = ρ0/
√
t,

1

T

T∑
t=1

E
[∥∥∥αρt · ∇ ∥∥∥∇L̂(θadv)

∥∥∥∥∥∥2] ≤ 1

T
α2γρ20

T∑
t=1

1

t
≤ C ′′

1 + C ′′
2 log T√
T

(35)

for some constants C ′′
1 and C ′′

2 that only depend on γ1, ρ0, α.

B.4 PROOF OF PROPOSITION 2.4

Proof. Suppose ϵ∗ = argmaxϵ∈B(0,ρ) L̂(θ + ϵ). Then RSAM
ρ (θ) = L̂(θ + ϵ∗)− L̂(θ). According

to the mean value theorem, there exists a constant 0 ≤ c ≤ 1 such that

L̂(θ + ϵ∗)− L̂(θ) =
(
∇L̂(θ + c · ϵ∗)

)⊤
ϵ∗. (36)

As a result,

RSAM
ρ (θ) = L̂(θ + ϵ∗)− L̂(θ) =

(
∇L̂(θ + c · ϵ∗)

)⊤
ϵ∗ ≤

∥∥∥∇L̂(θ + c · ϵ∗)
∥∥∥ ∥ϵ∗∥

≤ max
ϵ∈B(0,ρ)

∥∥∥∇L̂(θ + ϵ)
∥∥∥ · ρ = RGNR

ρ (θ).
(37)

C VISULIZATION OF LANDSCAPES

We visualize the loss landscapes of models trained with SGD, SGD+GNR, SAM, SAM+GNR of
the ResNet-18 model on CIFAR-100. All the models are trained with the same hyperparameters for
200 epochs as described in Section 3.2.1. As shown in Figure 3, GNR consistently helps SGD and
SAM find flatter minima.

(a) SGD (b) SGD + GNR (c) SAM (d) SAM + GNR

Figure 3: Visualization of loss landscape for SGD, SGD+GNR, SAM, SAM+GNR
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