
Under review as a conference paper at ICLR 2023

AUXILIARY TASK DISCOVERY THROUGH GENERATE-
AND-TEST

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we explore an approach to auxiliary task discovery in reinforce-
ment learning based on ideas from representation learning. Auxiliary tasks tend
to improve data efficiency by forcing the agent to learn auxiliary prediction and
control objectives in addition to the main task of maximizing reward, and thus
producing better representations. Typically these tasks are designed by people.
Meta-learning offers a promising avenue for automatic task discovery; however,
these methods are computationally expensive and challenging to tune in practice.
In this paper, we explore a complementary approach to the auxiliary task discov-
ery: continually generating new auxiliary tasks and preserving only those with
high utility. We also introduce a new measure of auxiliary tasks’ usefulness based
on how useful the features induced by them are for the main task. Our discov-
ery algorithm significantly outperforms random tasks, hand-designed tasks, and
learning without auxiliary tasks across a suite of environments.

1 INTRODUCTION

The discovery question—what should an agent learn about—remains an open challenge for AI re-
search. In the context of reinforcement learning, multiple components define the scope of what
the agent is learning about. The agent’s behavior defines its focus and attention in terms of data
collection. Related exploration methods based on intrinsic rewards define what the agent chooses
to do outside of reward maximization. Most directly, the auxiliary learning objectives we build in,
including macro actions or options, models, and representation learning objectives force the agent
to learn about other things beyond a reward maximizing policy. The primary question is where do
these auxiliary learning objectives come from?

Classically, there are two approaches to defining auxiliary objectives that are the extremes of a spec-
trum of possibilities. The most common approach is for people to build the auxiliary objectives in
pre-defining option policies, intrinsic rewards, and model learning objectives. Although most empir-
ically successful, this approach has obvious limitations like feature engineering of old. At the other
extreme is end-to-end learning. The idea is to build in as little inductive bias as possible including
the inductive biases introduced by auxiliary learning objectives. Instead, we let the agent’s neural
network discover and adapt internal representations and algorithmic components (e.g., discovering
objectives (Xu et al., 2020), update rules (Oh et al., 2020), and models (Silver et al., 2017)) just
through trial and error interaction with the world. This approach remains challenging due to data
efficiency concerns and in some cases shifts the difficulty from auxiliary objective design to loss
function and curriculum design.

An alternative approach that exists somewhere between human design and end-to-end learning is to
hand-design many tasks in the form of additional output heads on the network that must be optimized
in addition to the primary learning signal. These tasks, called auxiliary tasks, exert pressure on the
lower layers of the neural network during training, yielding agents that can learn faster (Mirowski
et al., 2016; Shelhamer et al., 2016), produce better final performance (Jaderberg et al., 2016), and
at times transfer to other related problems (Wang et al., 2022). This positive influence on neural
network training is called the auxiliary task effect and is related to the emergence of good internal
representations we seek in end-to-end learning. The major weakness of auxiliary task learning is
its dependence on people. Relying on people for designing auxiliary tasks is not ideal because it is

1

Under review as a conference paper at ICLR 2023

challenging to know what auxiliary tasks will be useful in advance and, as we will show later, poorly
specified auxiliary tasks can significantly slow learning.

There has been relatively little work on autonomously discovering auxiliary tasks. One approach is
to use meta learning. Meta-learning methods are higher-level learning methods that adapt the pa-
rameters of the base learning system, such as step-sizes, through gradient descent (Xu et al., 2018).
This approach can be applied to learning auxiliary tasks defined via General Value Functions or
GVFs (Sutton et al., 2011) by adapting the parameters that define the goal (cumulant) and termina-
tion functions via gradient-descent (Veeriah et al., 2019). Generally speaking, these meta-learning
approaches require large amounts of training data and are notoriously difficult to tune (Antoniou
et al., 2018).

An exciting alternative is to augment these meta-learning approaches with generate-and-test mech-
anisms that can discover new auxiliary tasks, which can later be refined via meta-learning. This
approach has produced promising results in representation learning where simple generate-and-
test significantly improve classification and regression performance when combined with back-prop
(Dohare et al., 2021). Before we can combine meta-learning and generate-and-test, we must first
develop the generate-and-test approach to auxiliary task discovery so that their combination has the
best chance for success. Such an effort is worthy of an entire study on its own, so in this paper we
leave combining the two to future work and focus on the generate-and-test approach.

Despite significant interest, it remains unclear what makes a good or bad auxiliary tasks. The meta-
learning approaches do not generate human-interpretable tasks. Updating toward multiple previous
policies, called the value improvement path (Dabney et al., 2020), can improve performance but
is limited to historical tasks. The gradient alignment between auxiliary tasks and the main task has
been proposed as a measure of auxiliary tasks usefulness (Lin et al., 2019; Du et al., 2018). However,
the efficacy of this measure has not been thoroughly studied. Randomly generated auxiliary tasks can
help avoid representation collapse (Lyle et al., 2021) and improve performance (Zheng et al., 2021),
but can also generate significant interference which degrades performance (Wang et al., 2022).

In this paper we take a step toward understanding what makes useful auxiliary tasks introducing a
new generate-and-test method for autonomously generating new auxiliary tasks and a new measure
of task usefulness to prune away bad ones. The proposed measure of task usefulness evaluates
the auxiliary tasks based on how useful the features induced by them are for the main task. Our
experimental results shows that our measure of task usefulness successfully distinguishes between
the good and bad auxiliary tasks. Moreover, our proposed generate-and-test method outperforms
random tasks, hand-designed tasks, and learning without auxiliary tasks.

2 BACKGROUND

In this paper, we consider the interaction of an agent with its environment at discrete time steps
t = 1, 2, The current state is denoted by St ∈ S . The agent’s action At ∈ A is selected
according to a policy π : A×S → [0, 1], causing the environment to transition to the next state St+1

emitting a reward of Rt+1 ∈ R. The goal of the agent is to find the policy π with the highest state-
action value function defined as qπ(s, a)

.
= Eπ[Gt|St = s,At = a] where Gt

.
=

∑∞
k=0 γ

kRt+k+1

is called the return with γ ∈ [0, 1) being the discount factor.

To estimate the state-action value function, we use temporal-difference learning (Sutton, 1988).
Specifically, we use Q-learning (Watkins & Dayan, 1992) to learn a parametric approximation
q̂(s, a;w) by updating a vector of parameters w ∈ Rd. The update is as follows,

wt+1 ← wt + αδt∇wq̂(St, At;w),

where δt
.
= Rt+1 + γmaxaq̂(St+1, a;wt) − q̂(St, At;wt) is the TD error, ∇wv̂(St;w) is the

gradient of the value function with respect to the parameters wt, and the scalar α denotes the step-
size parameter. For action selection, Q-learning is commonly combined with an epsilon greedy
policy.

We use neural networks for function approximation. We integrate a replay buffer, a target network,
and the RMSProp optimizer with Q-learning as is commonly done to improve performance (Mnih
et al., 2013).

2

Under review as a conference paper at ICLR 2023

To formulate auxiliary tasks, a common approach is to use general value functions or GVFs (Sutton
et al., 2011). GVFs are value functions with a generalized notion of target and termination. More
specifically, a GVF can be written as the expectation of the discounted sum of any signal of interest:

vπ,γ,c(s)
.
= Eπ[

∞∑
k=0

(

k∏
j=1

γ(St+j))c(St+k+1)|St = s,At:∞ π]

where π is the policy, γ is the continuation function, and c is a signal of interest and is referred
to as the cumulant. Similarly, a generalized state-action value function qπ,γ,c(s, a) can be defined
where the expectation is conditioned on At = a as well as St = s. A control auxiliary tasks is one
where the agent attempts to learn a π to maximize the expected discounted sum of the future signal
of interest (called a control demon or control GVF in prior work).

To learn these auxiliary tasks, multi-headed neural networks are commonly used where the last hid-
den layer acts as the representation shared between the main task and the auxiliary tasks (Jaderberg
et al., 2016). In this setting, each head corresponds to either the main task or one of the auxil-
iary tasks and the auxiliary tasks make changes to the representation alongside the main task via
backpropagation.

3 AUXILIARY TASK DISCOVERY THROUGH GENERATE-AND-TEST

We propose a new method for auxiliary task discovery based on a class of algorithms called generate-
and-test. Generate-and-test was originally proposed as an approach to representation learning or fea-
ture finding. We can think of backprop with a large neural network as performing a massive parallel
search in feature space (Frankle & Carbin, 2018). Backprop greatly depends on the randomness in
the weight initialization to find good features. The idea of generate and test is to continually inject
randomness in the feature search by continually proposing new features using a generator, to mea-
sure features usefulness using a tester, and to discard useless features. This idea has a long history in
supervised learning (Sutton et al., 2014; Mahmood & Sutton, 2013), and can even be combined with
backprop (Dohare et al., 2021). The same basic structure can be applied to auxiliary task discovery,
which we explain next.

We use generate-and-test for discovering and retaining auxiliary tasks that induce a representation
useful for learning the main task. That is, the goal is to find auxiliary tasks that induce a positive
auxiliary task effect. It is challenging to recognize which auxiliary tasks induce useful representa-
tions. To do so, we first evaluate how good each feature is based on how much it contributes to the
approximation of the main task action-value function. Here we define the features to be the output
of neural network’s last hidden layer after applying the activation function. We then identify which
auxiliary task was responsible for shaping which features.

Our proposed generate-and-test method for discovering auxiliary tasks consists of a generator and
a tester. The generator generates new auxiliary tasks and the tester evaluates the auxiliary tasks.
The auxiliary tasks that are assessed as useful are retained while the auxiliary tasks that are assessed
to be useless are replaced by newly generated auxiliary tasks. The newly generated auxiliary tasks
will most likely have low utility. To prevent the replacement of newly generated auxiliary tasks, we
calculate the number of steps since their generation and refer to that as their age. An auxiliary task
can only be replaced if its age is bigger than some age threshold. Every T time step, some ratio of
the auxiliary tasks get replaced. We refer to T as the replacement cycle and denote the replacement
ratio by ρ. The pseudo-code for the proposed generate-and-test method is shown in Algorithm 1.

Note that the proposed method does not generate-and-test on features but on auxiliary tasks. It,
however, does assess the utility of features and derives the utility of the auxiliary tasks from the
utility of the features that they induced.

We propose a tester that evaluates the auxiliary tasks based on how useful the features induced by
them are for the main task. When following the standard practice of jointly learning the main task
and the auxiliary tasks, recognizing which feature was influenced the most by which auxiliary task
is challenging. This is because all features are jointly shaped by all the tasks, both auxiliary and
main. To address this issue, we use a strategy for learning the representation where all features are
used by all tasks in the forward pass; however, each feature is only modified through the gradient
backpropagated from one task. See Figure 1. This learning strategy is similar to the Master-User

3

Under review as a conference paper at ICLR 2023

Algorithm 1 Generate-and-test for auxiliary task discovery
1: Input: number of auxiliary tasks n, age threshold µ, replacement cycle T , replacement ratio ρ
2: Initialization:
3: generate n auxiliary tasks using the generator
4: randomly initialize the base learning network
5: set age ai for each auxiliary task to zero
6: for Every time step do
7: do a DQN step to update the base learning network
8: Increase ai by one for i = 1, . . . , n
9: update the utility of each auxiliary task uaux(i) for i = 1, ..., n using the tester

10: for Every T time steps do
11: Find nρ auxiliary tasks with the lowest utilities such that ai > µ
12: replace the nρ auxiliary tasks with new auxiliary tasks generated by the generator
13: reinitialize the input and output weights of the features induced by the nρ auxiliary tasks
14: reset ai to zero for the nρ auxiliary tasks

input

main task
action-value
function

aux task 1
action-value
function

aux task 2
action-value
function

.

.

.

.

.

.

features

.

.

.
.
.
.

main task backprop path

input

main task
action-value
function

aux task 1
action-value
function

aux task 2
action-value
function

.

.

.

.

.

.

.

.

.

features

.

.

.

aux task 1 backprop path

input

main task
action-value
function

aux task 1
action-value
function

aux task 2
action-value
function

.

.

.

.

.

.

.

.

.

.

.

.

features

.

.

.
.
.
.

stop gradient
 connections

forward pass

Figure 1: The forward pass, backward pass for the main task, and backward pass for auxiliary task
1 when using the Master-User strategy for learning auxiliary tasks alongside the main task. All fea-
tures are used by all tasks in the forward pass but only modified through the gradient backpropagated
from one task. The dotted arrows show stop-gradient connections. The gradients does not go back
any further from these connections. When using the Master-User strategy, it is clear which auxiliary
task was responsible for inducing which feature.

algorithm proposed for continual recurrent learning (Javed et al., 2021). Therefore, we refer to this
learning strategy as the Master-User strategy. When using the Master-User strategy, it is clear which
auxiliary task was responsible for inducing which feature.

As we mentioned above, the proposed tester assesses the utility of an auxiliary task based on how
useful the features induced by it are for the main task. To assess each feature, the proposed tester
looks at the magnitude of the outgoing weights from the feature to the main task action-value func-
tion for all actions. The magnitude of the weights represents how much the feature contributes to the
approximation of the main task action-value function. The greater the magnitude is, the more impor-
tant the feature is. The tester also considers the magnitude of each feature: the greater the magnitude
of the feature is, the more it contributes to the approximation of the main task action-value function.
Therefore, the instantaneous utility of a feature f i

k is defined as:

u(f i
k) =

∑
a

|wmain
ka × f i

k| (1)

4

Under review as a conference paper at ICLR 2023

where f i
k is the kth feature shaped by auxiliary task i and u(f i

k) is the instantaneous utility of feature
f i
k. Instead of only looking at the instantaneous utility u(f i

k), the proposed tester considers a trace
of the past utilities using an exponential moving average of u(f i

k)’s:

ū(f i
k)← (1− τ)ū(f i

k) + τu(f i
k) (2)

where ū(f i
k) is a trace of u(f i

k) with the trace parameter denoted by τ . This assessment method is
similar to what has been used in generate-and-test on features (Mahmood & Sutton, 2013).

After assessing the utility of the features, the utility of each auxiliary task is set to the sum of the
utility of the features shaped by it: uaux(i) =

∑
k ū(f

i
k).

We combined the proposed tester with a simple generator that randomly generates auxiliary tasks.
The auxiliary task are formulated as subgoal-reaching GVFs where the continuation function returns
0 at the subgoals and 1 elsewhere (similar to γ in an epsiodic MDP). The cumulant is−1 everywhere
and the policy is greedy. In plain english, b The subgoals are randomly selected from the observation
space, meaning the agent is learning many policy to reach different parts of the observation space in
addition to solving the main task.

4 EXPERIMENTAL RESULTS

In this section, we provide empirical results supporting the efficacy of the proposed generate-and-test
method for auxiliary task discovery. We include results on two gridworld environments: four-rooms
and maze. We also include results on the pinball environment (Konidaris & Barto, 2009), which is
widely used in skill chaining, option discovery, and recently model-based planning (Lo et al., 2022).
We choose these environments so that we could easily visualize the discovered auxiliary tasks and
easily design good and bad auxiliary task as baselines. All environments are episodic.

In the gridworld environments, the goal is to learn the shortest path from start state to goal. The start
and goal states are denoted by S and G respectively in Figure 2 and 3. At each cell, four actions
are available: up, down, left, and right, which moves the agent one cell in the respective direction.
The observation space is described with a one-hot representation with the index corresponding to
the agent’s position being 1. The reward is −1 on each time step. There is an episode cutoff of 500
steps.

In the pinball environment, a small ball should be navigated to the goal in a maze-like environment
with simplified ball physics. In Figure 3, the pinball environment is shown with the ball and goal
shown by a grey and yellow circle respectively. Collision with the obstacles causes the ball to
bounce. The observation space is continuous and is described by x, y, ẋ, ẏ. The start location and
goal location are at (0.8, 0.5) and (0.1, 0.1) respectively. The action space includes 5 actions of
increasing or decreasing ẋ or ẏ and no change to ẋ and ẏ. The reward is−5 at each time step. There
is no episode cutoff.

Note that in the original pinball environment, the agent receives a special reward of 10, 000 upon
arrival at the goal. Instead we gave a reward of -5 (like every other step) so that the scale of the
action-value function for the main task and the auxiliary tasks would not be too different. When
learning multiple tasks in parallel, the contribution of each task is determined by the scale of the
corresponding value function (Hessel et al., 2019). Therefore, when the scale of value functions are
very different, we would need to scale the reward of the main task and the cumulants of the auxiliary
tasks appropriately. This issue requires an additional hyper parameter that would give our method
an advantage if tuned. For this paper, we decided to focus on the case where the scale of the value
function for the main task and the auxiliary tasks are similar.

We used DQN with RMSProp optimizer as the base learning system. We used a neural network
with one hidden layer and tanh activation function. (We used tanh activation function so that the
induced features would be all in the same range of (−1, 1); however, our proposed tester should
work well when other activation functions are used too. This can be investigated in future work.)
For the girdworld environments, the one-hot observation vector was fed to the neural network. The
hidden layer size for four-rooms and maze were 50 and 500 respectively. The replay buffer size for

5

Under review as a conference paper at ICLR 2023

episode

no aux tasks

hallway aux tasks

corner aux tasks

steps
to goal

(30 runs)

hallway aux tasks 1

corner aux tasks 1
corner aux tasks 2

hallway auxtasks 2

episode

Aux
utility

(30 run)

1 2

3

3

4

1

S

2

G

Hallway

corner

Figure 2: Left: The four-rooms environment with the good and bad hand-designed auxiliary tasks
shown in red and blue respectively. Middle: Hallway and corner auxiliary tasks improved and hurt
the performance respectively. Right: The proposed tester evaluated the hand-designed auxiliary
tasks well, giving higher utility to the hallway auxiliary tasks.

four-rooms and maze were 500 and 1000 respectively. For both four-rooms and maze, we used a
batch-size of 16 and target network update frequency of 100.

For the pinball environment, the 4-dimensional observation was normalized and fed to the neural
network. The hidden layer size was 128. We used a replay buffer of size 10, 000, a batch-size of 16,
and target network update frequency of 200.

4.1 THE PROPOSED TESTER REASONABLY EVALUATES THE AUXILIARY TASKS

To see how well the proposed tester evaluates the auxiliary tasks, we designed good and bad auxiliary
tasks in the four-rooms environment. The hand-designed auxiliary task were formulated as subgoal-
reaching GVFs with the good and bad hand-designed auxiliary tasks having hallway and corner
subgoals respectively. See Figure 2.

Note that when learning the auxiliary tasks alongside the main task using the Master-User strategy,
the gradient backpropagated from the main task only modifies 1

auxiliary tasks+1 percent of the features.
For example, in the case of learning the hallway auxiliary tasks, there are 3 auxiliary tasks. There-
fore, the gradient backpropagated from the main task only modifies 25% of the features.

The hallway and corner auxiliary tasks improved and hurt learning in terms of learning speed respec-
tively as expected (Figure 2, middle graph). The proposed tester evaluated the hallway and corner
auxiliary tasks well, assigning higher utility to the hallway auxiliary tasks and clearly indicating the
corner tasks are bad.

4.2 THE GENERATE-AND-TEST METHOD IMPROVES OVER THE BASELINE OF NO AUXILIARY
TASKS

Next, we studied the performance of the base learning system when combined with the proposed
generate-and-test method. The generate-and-test method uses the combination of the random gen-
erator and our proposed tester. The random generator produces subgoal-reaching auxiliary tasks
with the subgoals randomly picked from the observation space. More specifically, in the gridworld
environments, the subgoals are cells in the grid. In the pinball environment, the subgoals are deter-
mined by (x, y) and once the ball is within radius 0.035 of a subgoal, it is assumed that the agent
has reached the subgoal.

We included four baselines for comparison which included the base learning system with 1) no
auxiliary tasks 2) hand-designed good auxiliary tasks 3) hand-designed bad auxiliary tasks 4) fixed
random auxiliary tasks. All the auxiliary tasks were in form of subgoal-reaching tasks. The subgoals
corresponding to the hand-designed good and bad auxiliary tasks for all three environments are
shown in red and blue respectively in Figure 3. For the fixed random auxiliary tasks, the subgoals
where randomly picked from the observation space and kept fixed throughout learning.

6

Under review as a conference paper at ICLR 2023

We systematically swept the step-size parameter and report the performance of the best to ensure a
fair comparison. To do so, we ran the baseline with no auxiliary tasks with different values of the
step-size for 10 runs. We used the step-size that resulted in the lowest area under the curve and reran
the baseline with the best step-size for 30 runs to get the final results. We repeated this process for the
baselines with hand-designed auxiliary tasks. For the generate-and-test method, we used the same
step-size as the baseline with good hand-designed auxiliary tasks. For four-rooms, maze, and pinball
the sweep over the step-sizes included {0.000625, 0.0025, 0.01, 0.04}, {0.00025, 0.001, 0.004}, and
{0.0025, 0.005, 0.01}.
The generate-and-test method has hyper-parameters of its own: 1) number of auxiliary tasks 2) age
threshold 3) replacement cycle 4) replacement ratio. For the gridworld environments, we used 8
auxiliary tasks, age threshold of 0, replacement rate of 1000 steps, and replacement ratio of 0.25.
For the pinball environment, we used 5 auxiliary tasks, age threshold of 5000, replacement rate of
5000 steps, and replacement ratio of 0.2.

The proposed generate-and-test method outperformed the baseline with no auxiliary tasks in all
three environments (Figure 3). The generate-and-test method also outperformed the baseline with
fixed random auxiliary tasks. This suggests that the subgoals discovered by the generate-and-test
are actually better than random subgoals.

Interestingly, the fixed random auxiliary tasks resulted in performance gain over the baseline with
no auxiliary tasks in all three environments (Figure 3). This is in line with the findings from the
literature suggesting that random GVFs can form good auxiliary tasks for reinforcement learning
(Zheng et al., 2021).

Four-rooms Maze Pinball

S

G

G

S

episode

no aux tasks

corner aux tasks

gen-and-test

random aux
tasks

centre aux tasks

episode

gen-and-test

corner aux tasks

hallway aux
 tasks

random aux tasks
no aux tasks

3k

1k

2k# steps
to goal

(30 runs)

no aux tasks

random aux
tasks

corner aux tasks

episode

gen-and-test
hallway
aux tasks

500

100

300

500

100

300

Figure 3: The learning curves for the proposed generate-and-test method (green), the baseline with
no auxiliary tasks (orange), the baseline with fixed random auxiliary tasks (black), and the baseline
with good and bad hand-designed auxiliary tasks (red and blue). The results are averaged over 30
runs. The proposed generate-and-test method improved over the baseline with no auxiliary tasks.
The hand-designed good and bad auxiliary tasks respectively improved and hurt the performance.
Generate-and-test also outperformed the baseline with fixed random auxiliary tasks. Fixed random
auxiliary tasks also resulted in performance gain over the baseline.

4.3 THE AUXILIARY TASKS DISCOVERED BY THE GENERATE-AND-TEST METHOD ARE
REASONABLY GOOD

We conducted additional experiments to analyze how good the auxiliary tasks discovered by the
generate-and-test method are. In the previous subsection, we compared the performance of the
base learning system combined with generate-and-test and combined with fixed random auxiliary

7

Under review as a conference paper at ICLR 2023

tasks. Generate-and-test outperformed fixed random auxiliary tasks(Figure 3). This suggests that
the choice of the auxiliary tasks was important and generate-and-test discovered and retained useful
auxiliary tasks.

The auxiliary tasks discovered and retained by generate-and-test are shown in Figure 4. To plot the
discovered auxiliary tasks, we ran the generate-and-test method for 30 runs and stored the auxiliary
tasks that were retained. The green squares correspond to the discovered auxiliary tasks in the
gridworld environments. Darker green indicates that the state was chosen as a subgoal in many
runs. For the pinball environment, the discovered auxiliary tasks are shown by green circles. In the
gridworld environments, the subgoals corresponding to the discovered auxiliary tasks were close to
the goal states. In the pinball environment, the discovered auxiliary tasks were more concentrated
in the central areas—reasonable way-points on the path to the goal.

Four-rooms Maze Pinball

S

G

G

S

Figure 4: Example discovered auxiliary tasks in the three environments. Generate-and-test discov-
ered reasonably good auxiliary tasks: In the gridworld environments, the subgoals corresponding to
the discovered auxiliary tasks were close to the goal states. In the pinball environment, the discov-
ered auxiliary tasks were more concentrated in the central areas.

To confirm that the auxiliary tasks discovered by generate-and-test were useful, we stored the aux-
iliary tasks discovered and retained, in a pool. We then randomly selected a number of auxiliary
tasks from the pool and ran the base learning system, learning the main value function from scratch.
We kept the auxiliary tasks fixed throughout learning. We repeated this for 30 runs. The discovered
auxiliary tasks were useful and substantially improved over the baseline of no auxiliary tasks (Figure
5).

gen-and-test

episode

no aux tasks

discovered aux tasks

episode

gen-and-test

no aux tasks

discovered aux tasks

steps
to goal

(30 runs)

episode

no aux tasks

gen-and-test

discovered aux
 tasks

500

100

300

500

100

300

3k

1k

2k

Figure 5: The learning curves corresponding to the discovered auxiliary tasks. The discovered
auxiliary tasks were kept fixed throughout learning. The discovered auxiliary tasks improved over
the baseline of no auxiliary tasks.

4.4 THE REPRESENTATION INDUCED BY THE GENERATE-AND-TEST METHOD HAS LOWER
REDUNDANCY COMPARED TO THE BASELINE.

Next, we studied the representation that emerged under the generate-and-test method. There are a
multitude of metrics for evaluating the emergent representations (Wang et al., 2022; Javed & White,
2019). We used the stable rank of the weight matrix between the input layer and the hidden layer
(Arora et al., 2018). The stable rank of a matrix A is defined as

∑
i σ

2
i

maxiσ2
i

where σi are the the singular
values of matrix A. The stable rank provides an approximation of the rank of the matrix but it is

8

Under review as a conference paper at ICLR 2023

unaffected by the smaller singular values. The stable rank of the weight matrix between the input
layer and the hidden layer characterizes the amount of generalization/redundancy of the network.
The larger the stable rank is, the lower the redundancy in the representation is.

The stable rank of the representation learned by generate-and-test is larger than the stable rank of
the representation learned by the baseline with no auxiliary tasks (Figure 6). This suggests that the
auxiliary tasks discovered by generate-and-test resulted in a representation with lower redundancy.
The lower stable rank of the learned representation together with the better performance is encour-
aging and suggests that more aggressive pruning by the tester could get a lower stable rank while
maintaining good performance.

episode

Maze

rep.
stable rank
(10 runs)

Four-rooms Pinball

episode episode

no aux tasks

gen-and-test

Figure 6: The stable rank of the weight matrix from the input layer to the hidden layer over episodes.
The results are averaged over 10 runs. The combination of the base learning system with the
generate-and-test method resulted in a representation with a higher stable rank compared to the
case of only having the base learning system. This suggests that the auxiliary tasks discovered by
generate-and-test resulted in a representation with lower redundancy.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new method for auxiliary task discovery. The proposed method uses
a generate-and-test approach. We also introduced a new measure of auxiliary task usefulness.
Through careful experimentation, we showed that: 1) The proposed tester reasonably evaluates the
auxiliary tasks. 2) The generate-and-test method improves over the baseline with no auxiliary tasks.
3) The auxiliary tasks discovered by the generate-and-test method are reasonably good. 4) The
representation induced by the auxiliary tasks discovered by generate-and-test has lower redundancy
compared to the baseline with no auxiliary tasks.

An interesting future work would be to investigate different generators and testers for auxiliary tasks.
For example, to improve the generator, one idea is to to sample subgoals from the replay buffer in-
stead of generating random subgoals. This would be similar to the idea of hindsight experience
replay (Andrychowicz et al., 2017). Another idea to test for the generator is to generate feature-
attainment auxiliary tasks instead of subgoal-reaching auxiliary tasks. For feature-attainment auxil-
iary tasks, the goal is to maximize a feature of the state representation (Sutton et al., 2022). In this
paper, we took a first step toward designing a functional generate-and-test method for auxiliary task
discovery. However, there is a big space of ideas to try for designing the generator and the tester.

Another future direction is to combine the meta-learning approaches with the proposed generate-
and-test method. The meta-learning approaches can be used to refine the auxiliary tasks discovered
by generate-and-test. It would be interesting to test the combination of meta-learning with generate-
and-test in the three tested environments and see if their combination will result in discovering good
auxiliary tasks, outperforming both approaches in isolation.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

9

Under review as a conference paper at ICLR 2023

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. arXiv preprint
arXiv:1810.09502, 2018.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In International Conference on Machine Learning, pp.
254–263. PMLR, 2018.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning. arXiv preprint arXiv:2006.02243, 2020.

Shibhansh Dohare, A Rupam Mahmood, and Richard S Sutton. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Mehrdad Farajtabar, Razvan Pascanu,
and Balaji Lakshminarayanan. Adapting auxiliary losses using gradient similarity. arXiv preprint
arXiv:1812.02224, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado van
Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 3796–3803, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Khurram Javed and Martha White. Meta-learning representations for continual learning. Advances
in Neural Information Processing Systems, 32, 2019.

Khurram Javed, Martha White, and Rich Sutton. Scalable online recurrent learning using columnar
neural networks. arXiv preprint arXiv:2103.05787, 2021.

George Konidaris and Andrew Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. Advances in neural information processing systems, 22, 2009.

Xingyu Lin, Harjatin Baweja, George Kantor, and David Held. Adaptive auxiliary task weighting
for reinforcement learning. Advances in neural information processing systems, 32, 2019.

Chunlok Lo, Gabor Mihucz, Adam White, Farzane Aminmansour, and Martha White. Goal-space
planning with subgoal models. arXiv preprint arXiv:2206.02902, 2022.

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks on
representation dynamics. In International Conference on Artificial Intelligence and Statistics, pp.
1–9. PMLR, 2021.

Ashique Rupam Mahmood and Richard S Sutton. Representation search through generate and test.
In AAAI Workshop: Learning Rich Representations from Low-Level Sensors, volume 10, 2013.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning to navigate in
complex environments. arXiv preprint arXiv:1611.03673, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P van Hasselt, Satinder
Singh, and David Silver. Discovering reinforcement learning algorithms. Advances in Neural
Information Processing Systems, 33:1060–1070, 2020.

Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward: Self-
supervision for reinforcement learning. arXiv preprint arXiv:1612.07307, 2016.

10

Under review as a conference paper at ICLR 2023

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-
Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-end
learning and planning. In International Conference on Machine Learning, pp. 3191–3199. PMLR,
2017.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsu-
pervised sensorimotor interaction. In The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 2, pp. 761–768, 2011.

Richard S Sutton, Steven D Whitehead, et al. Online learning with random representations. In
Proceedings of the Tenth International Conference on Machine Learning, pp. 314–321, 2014.

Richard S Sutton, Marlos C Machado, G Zacharias Holland, David Szepesvari Finbarr Timbers,
Brian Tanner, and Adam White. Reward-respecting subtasks for model-based reinforcement
learning. arXiv preprint arXiv:2202.03466, 2022.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L Lewis, Junhyuk
Oh, Hado P van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as
auxiliary tasks. Advances in Neural Information Processing Systems, 32, 2019.

Han Wang, Erfan Miahi, Martha White, Marlos C Machado, Zaheer Abbas, Raksha Kumaraswamy,
Vincent Liu, and Adam White. Investigating the properties of neural network representations in
reinforcement learning. arXiv preprint arXiv:2203.15955, 2022.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. Ad-
vances in neural information processing systems, 31, 2018.

Zhongwen Xu, Hado P van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder Singh, and David Silver.
Meta-gradient reinforcement learning with an objective discovered online. Advances in Neural
Information Processing Systems, 33:15254–15264, 2020.

Zeyu Zheng, Vivek Veeriah, Risto Vuorio, Richard L Lewis, and Satinder Singh. Learning state rep-
resentations from random deep action-conditional predictions. Advances in Neural Information
Processing Systems, 34, 2021.

11

	Introduction
	Background
	Auxiliary task discovery through generate-and-test
	Experimental results
	The proposed tester reasonably evaluates the auxiliary tasks
	The generate-and-test method improves over the baseline of no auxiliary tasks
	The auxiliary tasks discovered by the generate-and-test method are reasonably good
	The representation induced by the generate-and-test method has lower redundancy compared to the baseline.

	Conclusions and future work

