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Abstract

Knowledge distillation methods aim at transferring
knowledge from a large powerful teacher network to a small
compact student one. These methods often focus on close-
set classification problems and matching features between
teacher and student networks from a single sample. How-
ever, many real-world classification problems are open-set.
This paper proposes an Evolutionary Embedding Learning
(EEL) framework to learn a fast and accurate student net-
work for open-set problems via massive knowledge distilla-
tion. First, we revisit the formulation of canonical knowl-
edge distillation and make it suitable for the open-set prob-
lems with massive classes. Second, by introducing an angu-
lar constraint, a novel correlated embedding loss (CEL) is
proposed to match embedding spaces between the teacher
and student network from a global perspective. Lastly, we
propose a simple yet effective paradigm towards a fast and
accurate student network development for knowledge dis-
tillation. We show the possibility to implement an accel-
erated student network without sacrificing accuracy, com-
pared with its teacher network. The experimental results
are quite encouraging. EEL achieves better performance
with other state-of-the-art methods for various large-scale
open-set problems, including face recognition, vehicle re-
identification and person re-identification.

1. Introduction

With the development of deep learning [31, 32], various
deep neural networks have made great improvements on
different computer vision tasks. Obviously, given enough
data, the network tends to be deeper and wider, which
achieves better performance. However, deploying such a
larger network requires much more latency and computa-
tional resources in practice. Some researchers pay atten-
tion to the acceleration and compression of neural networks.

Existing efforts can be categorized into three aspects: net-
work pruning [12, 42, 27, 40, 11] and quantization [5, 48],
computational efficient network development [17, 22, 71,
51, 79] and knowledge distillation [1, 50, 16, 67, 69, 4].
Network pruning prunes the neurons or weights with low
responses based on some criteria. Network quantization
utilizes low precision computation to compress and accel-
erate neural networks. However, the acceleration of these
methods highly depends on the dedicated implementations.
By considering network development, some efficient ar-
chitectures with low computation and few parameters are
proposed for different computer vision tasks. Meanwhile,
the speed also depends on specific implementations or de-
vices. For example, depthwise convolution used in Mo-
bileNet [17, 51] and ShuffleNet [71] is fast using a GPU,
but not equally efficient due to fewer cores in a CPU.

In contrast, Hinton et al. [16] proposed Knowledge Dis-
tillation (KD) that directly trains a small student network
under the supervision of large teacher networks. Compared
with other methods, KD can achieve considerable acceler-
ation and compression without bells and whistles. Based
on this idea, many methods [1, 50, 67, 69] employ different
forms of knowledge to constrain the student networks. Cur-
rent KD methods often focus on image classification in a
closed-set setting. For this protocol, all the testing iden-
tities are the same as ones in training set. However, in
practical scenario, the testing identities are often disjointed
from the training set. Therefore, it is impossible to clas-
sify the testing samples to known identities in training set.
This can be defined as open-set problem. For this protocol,
the main challenging issue is that we need to map samples
to a discriminative feature space rather than achieve per-
fect classification accuracy. Obviously, it could not be ad-
dressed well in the previous KD methods. Another limita-
tion is that the existing KD methods such as attention trans-
fer [69], neuron selectivity transfer [21] and DarkRank [4]
only measure the information from a single sample between
a teacher and a student network. Obviously, the embedding



space encoded by the teacher network is a valuable knowl-
edge resource, especially for open-set problems. Relational
Knowledge Distillation (RKD) [44] proposes distance-wise
and angle-wise distillation, penalizing structural differences
in relations. Instance Relationship Graph (IRG) [38] ex-
ploits knowledge including instance features, instance re-
lationships, and feature space transformation across layers.
However, it is hard to feed all the samples into a mini-batch
during training. Therefore, a mini-batch SGD still results
in providing local structure information (supported by sev-
eral samples), rather than global one. Besides, it may also
lead to a complex batch sampling strategies, especially for
large-scale training set.

Moreover, although knowledge is well defined by vari-
ous forms [67, 69, 4], there is still a performance gap be-
tween student networks and teacher networks. Thus there
are three questions to be further discussed:

e How can knowledge distillation be applied for open-
set problems including face recognition, vehicle re-
identification and person re-identification?

e How can the global information of the embedding
space (but not subspace supported by several samples)
from the teacher network be effectively utilized?

e [s it possible to implement a student network that can
be accelerated and also achieve or even outperform the
accuracy of the teacher network?

For the first question, we revisit knowledge distilla-
tion [16] and reformulate it as a term of matching logits
between the teacher and student network. Different from
the original KD, the temperature parameter 7 is applied to
logits in both the soft target and original softmax aimed at
the open-set problem. Considering the massive but noisy la-
beled data in the training set [64], we employ the least abso-
lute deviation regression instead of the least square error for
the logit matching term. In this way, the modified knowl-
edge distillation can robustly transfer knowledge from the
teacher network, and also achieve discriminative embed-
dings with intra-class affinity and inter-class separability.

Considering the second question, benefiting from an an-
gular constraint, we propose a novel loss function, named
Correlated Embedding Loss (CEL), to match embedding
spaces between teacher and student networks. We encode
the well-separated embedding space by the class centers of
deep features from the teacher network. During training,
CEL ensures that embeddings from the student network are
close to their own corresponding class center and also far
away from other class centers in the encoded embedding
space. Therefore, CEL can be aware of the global structure
of the embedding space from the teacher network.

Regarding the third question, we should clarify that there
are no absolute relationships between computational speed
and the number of parameters for any network. A large net-
work with many parameters may not mean slow inference

and vice versa. Therefore, in this paper, we focus on model
acceleration rather than model compression. By exploring
the computational-bound and memory-bound of basic oper-
ations in Convolution Neural Network (CNN), we present
a paradigm for implementing a fast and accurate student
network (compared with its teacher network) in knowledge
distillation.

As stated above, in this paper, we propose an Evolution-
ary Embedding Learning (EEL) framework, which aims to
achieve acceleration of the student network without sacri-
ficing accuracy, compared with its teacher, for large-scale
open-set problems. The main contributions are as follows:

e We revisit and modify the formulation of the origi-
nal knowledge distillation for open-set problems. The
modified knowledge distillation can efficiently transfer
massive knowledge from a teacher network to a stu-
dent one for open-set problems.

e By introducing an angular constraint, Correlated Em-
bedding Loss (CEL) is proposed to match the embed-
ding spaces between the teacher network and the stu-
dent one for knowledge distillation from a global per-
spective.

e By investigating the properties of widely used basic
blocks in convolution neural network, we propose a
simple yet effective paradigm towards fast and accu-
rate student network development for knowledge dis-
tillation.

e We evaluate our approach on various open-set prob-
lems with massive classes, including face recognition,
vehicle re-identification and person re-identification,
and obtain appealing results compared with other
state-of-the-art methods.

The rest is organized as follows. We briefly review some
related works for knowledge distillation and representation
learning in Section 2. In Section 3, we present the details
of the proposed Evolutionary Embedding Learning (EEL)
framework. Section 4 provides the algorithmic analyses and
experimental results on different open-set tasks. Finally, we
conclude the paper in Section 5.

2. Related Work
2.1. Knowledge Distillation

Ba et al. [1] demonstrate that the shallow feed-forward
network can learn the complex functions by mimic learning
with regressing logits. Hinton ef al. propose Knowledge
Distillation (KD) [16] to implement information transfer
from a large teacher network to a small student one. Fit-
net [50] directly matches the embeddings of each sample
between the teacher and student network to improve perfor-
mance. Attention transfer [69] extends Fitnet from embed-
ding matching to attention map matching for different lev-
els of feature maps. Furthermore, Yim et al. [67] introduced



the Flow of Solution Procedure (FSP) by matching Gramian
matrix across layers for fast optimization and transfer learn-
ing. They claimed that FSP can reflect the data flow of
how the teachers solve the problems. Instead of knowledge
transfer by feed-forward information, Czarnecki et al. [6]
exploited gradient transfer using Sobolev training. All the
above studies focus on close-set problems.

Deep mutual learning [72] learns collaboratively and
teaches each other between two networks to boost perfor-
mance for both close-set and open-set problems. Chen et
al. [4] propose DarkRank for open-set problems and ob-
tained comparable performance on person re-identification.
Luo et al. [41] propose a neuron selection method to com-
press models by the teacher network. However, there are
still performance gaps between student and teacher net-
works.

2.2. Deep Embedding Learning

Metric learning is widely used to obtain the discrimina-
tive embedding space in deep learning. Siamese Network
[2] is first applied for signature verification to find a dis-
criminative embedding space. Contrastive loss [57] and
triplet loss [52, 8, 70] are proposed for face recognition, in
order to optimize the distances between positive and nega-
tive samples. Benefiting from triplet loss, PDDM [18] pro-
poses quadruplets to enforce the constraints between pos-
itive and negative pairs. However, in practice, the perfor-
mance of metric learning is limited to the effectiveness of
positive and negative pairs. Facenet [52] proposes a semi-
hard triplet sampling method to learn embedding space ef-
ficiently, while lifted structure embedding [56] and n-pair
loss [53] define sampling strategies on all the images in
each batch during training. HDC [68] learns an ensemble
to models with different complexities and finds hard exam-
ples adaptively. Beyond these local sampling methods de-
fined on one batch, Song et al. [55] propose a new metric
learning scheme which is aware of the global structure of
the embedding space.

Recently, the angular constraints [34, 33, 62] have been
introduced into deep embedding learning. Since the in-
tuition of features and weights in softmax can be factor-
ized into amplitude and angular with cosine similarity, large
margin softmax [34] encourages the intra-class compact-
ness and inter-class separability in training. A-softmax [33]
further improves the angular constraint by normalizing the
features and weights onto a hypersphere manifold. Angular
loss [62] also enhanced the convergence and performance of
triplet loss by constraining the angle in triplet triangles. Be-
sides, normalization also contributes to discriminative em-
beddings. NormFace [61] and L2-softmax [47] reformulate
the sofmtax and explain the necessity of normalization in
embedding learning, respectively.

2.3. Efficient Network Architectures

It is important to strike an optimal balance between
speed and accuracy and recently, many studies have focused
on the efficient convolution neural network architecture de-
velopments [17, 22, 71, 51, 79] for mobile and resource
constrained environments.

Considering manual architecture search,
SqueezeNet [22] achieves an AlexNet-Level accuracy
by carefully designing the fire module, including the
squeeze and expand layers. The MobileNet [17] based on
streamlined architecture employs depthwise separable con-
volutions, which theoretically reduces the computational
cost with little loss of accuracy. MobileNetV2 [51] pro-
poses an inverted residual structure with linear bottleneck
in shortcut connections. Compared with MobileNet [17],
MobileNetV2 further improves the state-of-the-art per-
formance of mobile models and significantly reduce the
memory footprint. Moreover, shuffleNet [71] propose a
novel channel shuffle operation to help the information
flowing across feature channels in the pointwise group
convolutions.

Recently, Neural Architecture Search network (NAS-
Net) [79] brings optimization methods, including reinforce-
ment learning to architectural search. NASNet trains the
RNN with reinforcement learning to maximize the expected
accuracy on a validation set. In this way, [79] designs novel
convolution neural network architectures that are better than
most human-invented architectures on ImageNet [7].

Both manual architectures and neural architecture search
networks rely on depthwise separate convolutions to imple-
ment accelerated models. However, there is not yet an effi-
cient implementation of depthwise separate convolution in
most deep learning platforms, especially on devices with
few computational cores, such as CPUs.

3. Our Approach
3.1. Knowledge Distillation with Massive Labels

Generally, logit can be defined as z = W "z + b, where
W and b are the weight and bias, respectively, and the prob-

ability of i-th class can be denoted as p; = %.

Here, let 2T, 25, pT and p® denote the logits and probabili-
ties from the teacher and student network, respectively. Ac-
cording to KD [16] that can transfer knowledge from one
network to another, we can formulate the loss function as

Lyp =—+% > (logpf + >, pr(7)logpy (7))
1 exp(}) exp(zL/r) exp(z}/) >
= (bg S o) T Ok T, exp(1/7) 108 5T exp(577)
(D

where the first term is the cross-entropy loss with one-
hot labels for the student network, and the second term is
the cross-entropy loss with soft targets generated by the



(a) Teacher network.

(b) KD

(¢) MKD (d) EEL

Figure 1. Visualization comparison on MNIST for the learned embeddings of the teacher and the student network with original KD and
MKD, respectively. (a) the teacher network with the softmax loss; (b) the student network under the supervision of the teacher network
with the original KD loss (7 = 10); (c) the student network under the supervision of the teacher network with the MKD loss (7 = 10). (d)
the student network under the supervision of the teacher network with the EEL loss(7 = 10, A = 1).

teacher network. In KD, the soft target is defined by the
logit 2z /7 from the teacher network. Compared with the
original one-hot label, the soft target provides continuous
signals, especially for massive labels. The new continuous
n-hot label contains the intra-class and inter-class similari-
ties from the teacher network, which can be treated as the
knowledge transfer from the teacher network and as an extra
regularizer for optimization.

Furthermore, 7 is a temperature parameter and using a
higher value for 7 produces a softer probability distribution
over the classes. When 7 is a higher temperature than the
magnitude of the logits, Eq. (1) can be approximated in [16]

as

Lxp = & 32 <— log 22D 4 & 37 (% *)2)
N >, exp(zs) k T

2

where the scale « is set to 72 to balance the magnitudes
of the gradients. This formulation can be treated exactly
as the matching logits in [1]. However, both KD [16] and
Logits [1] are proposed for close-set classification tasks.
When considering open-set problems such as face recog-
nition, although the training procedure can be treated as a
fine-grained classification with massive labels, the intention
is instead to obtain discriminative embeddings. Therefore,
we make a simple yet effective modification on Eq. (2) and
define modified knowledge distillation as follows:

exp(z5/7)

L =1 —log =XPE/T) L «a Zi o 22
L2-MKD — Z ( 0g E_;‘ exp(z?-/r) + 2 Zk< T T ) >

3)
Different from the original KD [16], the temperature param-
eter 7 is also applied to the softmax loss for the student net-
work. By selecting a 7 greater than 1, Eq. (3) can produce
higher gradients for the well-separated samples, which can
shrink the intra-class variance and enlarge the inter-class
distance. In this way, the modified knowledge distillation
is suitable for the open-set problem.

Fig. 1 presents the qualitative comparison for the dis-
tributions of the embeddings on MNIST [26]. It is obvi-
ous that the embeddings in Fig. 1(d) are more compact and
more similar with the embeddings from the teacher net (Fig.
1(a)) than those in Fig. 1(b). The phenomenon indicates
that the modified KD loss has better ability to capture the
properties of the embeddings from the teacher network.

Moreover, since open-set problems such as face recog-
nition contain massive classes with noisy labels [64], we
reformulate the modified knowledge distillation loss func-
tions as follows:

exp(z; /T

LLimkp = % (—logm tad |* - *|)

“)
Similarly, to balance the gradients’ magnitudes, we also set
scale o to 72 in practice. In Eq. (4), we use Least Absolute
Deviation (LAD) instead of Least Square Error (LSE) for
knowledge transfer. The reasons regarding the modification
are as follows. On the one hand, LAD tends to be a higher
response than LSE when the value of the difference between
2T and 2% is located in [—1,1]. Since the training set for
open-set problems such as face recognition often contains
thousands of classes, employing LAD instead of LSE can
produce higher gradients when the network is roughly con-
verged, which is beneficial to avoid saddle points during
optimization. On the other hand, considering the noisy la-
beled data in the training set, LAD is more robust than LSE
for the outliers.

3.2. Correlated Embedding Loss
3.2.1 Revisiting N-pair Loss
Since N-pair loss [53] aims to optimize the (N + 1)-tuples

{z,2T,21,....,25_1}, where z is a positive example to =
and {z;} 7! are negative examples, the loss can be defined



as follows:
P exp(foﬂ
Z (T + 2 ep(fT fi)

where f(-) € R is an embedding defined by the convo-
lution neural network. Obviously, N-pair loss can shorten
the distance between an embedding f and its positive sam-
ple T, while it can enlarge the distances between it and
multiple negatlve samples { fz}, 1 . Specially, if we treat
ST and { iy i ! as the weight vectors for each class in a
classifier (often defined by the last fully-connected layer in
CNN), Eq. (5) is similar to the softmax loss without the bias
term.

®)

3.2.2 Correlated Embedding Loss

The intention of correlated embedding loss is to match the
embedding spaces between the teacher and student net-
works. Different from previous works [50, 4] that directly
match the features from teacher and student networks for
each sample, we propose a flexible way to measure the two
embedding spaces.

Let ¢; € denote the center of j-th class for deep features.
Therefore, we can define the embedding space by a set of
centers {c; }1 j=1, Where K is the number of classes. Hence,
we denote {cT}K 1 to represent the embedding space of the
teacher network and the correlated embedding loss can be
measured by

exp((£) el

1

LcgL = -~ Zz log exp((ff)—rc]y;i)"'zj';ﬁyi exp((ff)—rcy)
(6)

where f} is an embedding from the student network with its

label y;. Eq. (6) can be treated as a special form of N-pair

loss, where we use the set of centers ¢} and {c} }%.'! from

the teacher network instead of the positive sample f* and

the negative samples { [N = 1 !, respectively.

The G;(f7) = (f?) "¢} is defined as the correlated simi-
larity, and it can ensure that the distribution of features from
the student network is close to the distribution of the teacher
network embeddings. From the angular perspective, we can
present the formulation of the correlated similarity as fol-
lows:

G,(£5) = I31lIEE | cos (6. )
in which 6;;(0 < 6;; < ) is the angle between a fea-
ture f7 from the student network and a center ¢; from the
teacher network. Here, we set ||c} || = 1. Therefore, Eq. (7)
can be written as

Gi(f7) = 121l cos (85) ®
Then, we can reformulate Eq. (6) as
_ 1 exp(||.f7 || cos(By,,i))
LepL = — 5 22i108 ooy c05(0y,,)) T3y, exp([1 751 cos(0;,0)
)

By further introducing an angular margin m to Eq. (9), sim-
ilar to the L-softmax [34] and A-softmax [33], the corre-
lated embedding loss can be written as

CXP(Hfwa(eylt))

—_1
Lep = — 5 > log exp(|[ £ 19(0y,.))+32; 2, exp(lI£31] cos(8;,:))
(10)
where

¥(0) = (=1)* cos(mb) — 2k, 0 € []:Z (k—:nl)ﬂ] 11

Since Eq. (10) is similar to the softmax, it is easy to com-
pute the forward and backward processes. The only dif-
ference between the softmax and the correlated embedding
loss lies in || f3||4(0y,.:)-

If we fix the centers {ch}szl from the teacher network
and strictly match the embeddings from the student network
with their corresponding center, it is hard to optimize and
may lead to the collapse of the convergence. To address
this problem, we employ a simple way to update the centers
using the features of the corresponding classes in each mini-
batch as follows:

(e ) = (cf ) (12)

J
il

3.2.3 Relations with A-softmax

The A-softmax [33] loss imposes discriminative power via
the angular margin for deep embedding learning. It incor-
porates the angular margin in the original softmax loss to
restrict the intra-class variance and enlarge the inter-class
margins, thus leading to a more discriminative embedding
space. Correlated embedding loss (CEL) introduces the an-
gular constraint to match embedding spaces between the
teacher network and student one. The main difference is
that CEL incorporates two embedding spaces and optimizes
their distribution distance using the angular margin, while
the A-softmax loss aims to obtain one discriminative em-
bedding space instead.

3.2.4 Relations with Center Loss

By minimizing the distances between the deep features
and their corresponding class centers, center loss [63] ob-
tains the discriminative features for deep embedding learn-
ing. The main differences between CEL and center loss
are as follows: First, the centers in CEL are obtained from
teacher network, while center loss is initialized randomly
and learned by back-propagation. Second, center loss only
considers the intra-class constraints when optimizing, but
we utilize both the intra-class and inter-class information
for each embedding in CEL.



Layer | LightCNN-9 | LightCNN-9-Fast | LightCNN-29 | LightCNN-29-Fast

Convl.x | [5x5,96] x 1 [ [6x5,96] x 1,82 | [6x 5,96] x 1 [ [5 x 5,96] x 1,52
Pooll 2 x 2 Max-+Ave, S2
{3 X 3,96J ‘1
Conva.x [1x1,96] x1 3 x 3,96
‘ [3x3,192] x 1 [1x1,96] x1
[3x3,192] x 1
Pool2 2 x 2 Max+Ave, S2
{3 X 3, 192J 9
Comv3.x [1x1,192] x 1 3% 3,192
’ [3x3,384] x 1 [1x1,192] x 1
[3 x3,384] x 1
Pool3 2 x 2 Max+Ave, S2
{3 x 3, 384J "3
Convd.x [1x1,384] x 1 3 x 3,384
) [3 x 3,256] x 1 [1x 1,384] x
[3 x 3,256] x
{3 x 3, 256J 4
Convs.x [1x1,256] x 1 3 x 3,256
’ [3 x 3,256] x 1 [1 x 1,256] x
[3 x 3,256] x
Pool4 2 x 2 Max+Ave, S2
Feature fc-256 | Global Ave Pool fc-256 | Global Ave Pool
#Params 55M 14 M 104 M 8.6 M
#FLOPs 976 M 243 M 36G 922 M

Table 1. The network architectures of LightCNN-9, LightCNN-9-Fast, LightCNN-29 and LightCNN-29-Fast for face recognition.
Convl.x~Conv5.x denote the convolution units that contain multiple convolution layers. The double-row brackets with the same con-
volution kernels denote residual units. E.g. [3 x 3,96] X 2 means 2 cascaded convolution layers with 96 filters of size 3 x 3. S2 denotes
the stride 2. All the outputs of convolution layers are activated by mfm operation [64]. Pooll~Pool4 represent the down-sampling units.
”Max+Ave” denotes a combination of max-pooling and ave-pooling operation. The "fc-256” means a 256-d fully-connected layer.

3.3. Student Network Development
3.3.1 Development Paradigm

In this section, we investigate a simple yet effective
paradigm towards designing fast and accurate student net-
work architectures. First, we present two properties:

e Similar network structures with almost the same num-
ber of parameters have similar capacities, thus leading
to comparable performance.

e The shallow convolution layers (especially the first
one) capture low-level features.

Based on the above properties, we propose our paradigm
towards designing a fast and accurate student network:

e We initialize the student network with the same archi-
tecture of teacher one.

e For acceleration, we increase the stride of the first con-
volution layer.

Given the feature map w X h X ¢, and a convolution

kernel ci, X k X k X coy With stride s and padding p, the size

of the output feature map is (M%Qp +1) x (M%Qp +

1) X cout- Obviously, if we change the stride of the first
convolution layer to 2s, the size of the output feature map is
decreased by 1/4, which leads to nearly 4 X computational
acceleration for the whole network. Increasing the stride in
first convolution layer seems to down-sample the pixel-level
features. Since the pixel-level features may be redundant, if
we carefully select the stride of the first convolution layer, it
is possible to realize considerable acceleration and preserve
the generalization.

3.3.2 Implementation Details

Table 1 provides the network architectures for face recog-
nition as an example. The LightCNN-9 and LightCNN-
29! are used as the teacher networks. Note that there are
two differences compared with the original LightCNN [64]:
1) The down-sampling operations employ a combination of

Uhttps://github.com/AlfredXiangWu/Light CNN



max-pooling and ave-pooling; 2) The feature layer is a lin-
ear projection without any non-linear activation functions,
while the original LightCNN is implemented by a 512-d
fully-connected layer with the mfm operation.

According to the proposed paradigm in Section 3.3.1,
the architectures of the student networks (LightCNN-9-Fast
and LightCNN-29-Fast) are shown in Table 1. Obviously,
most operations in the teacher and student network are the
same except two aspects: 1) The stride of the first convolu-
tion layer for the student network is 2. 2) The global aver-
age pooling layer is used instead of a 256-d fully-connected
layer as the representation. In this way, we observe that
the FLOPs of student networks are nearly a quarter of their
corresponding teacher networks, which leads to about 4x
acceleration in practice.

3.4. Evolutionary Embedding Learning

As stated above, by combining the modified knowledge
distillation, the correlated embedding loss and the student
network paradigm, we propose Evolutionary Embedding
Learning (EEL) for open-set problems via massive knowl-
edge distillation. The loss function can be defined as fol-
lows:

Lggr = Lyi-mkp + ALceL (13)

where ) is a trade-off parameter for CEL and the detailed
discussions for all the parameters in EEL are shown in Table
5. Based on the paradigm of designing the student network
in Section 3.3, the proposed EEL can realize considerable
acceleration without sacrificing accuracy for open-set prob-
lems.

The “Evolutionary” means that under the guidance of
the teacher network, the student network can be evolved
and its performance can reach or even surpass its teacher’s.
Moreover, different from the previous knowledge distilla-
tion works [67, 69, 4], we show that Eq. (13) is effective to
transfer knowledge from a high-capacity model to a com-
pact one, and is also suitable for two models with similar
capacities (even the same architectures).

4. Experiments

In this section, the proposed EEL framework is evalu-
ated against state-of-the-art methods on one closed-set im-
age classification task and three large-scale open-set tasks,
including face recognition, vehicle re-identification and per-
son re-identification.

4.1. Image Classification

We conduct an experiment on the CIFAR-10 dataset to
evaluate the proposed EEL method. CIFAR-10 contains
32 x 32 RGB images totally with 50K training samples and
10K testing samples in 10 classes. We follow [13] for the
experimental setting. The input takes a 32 x 32 random crop

Method Teacher Student error (%)
ResNet-20 7.82
ResNet-110 ) ) 5.96
KD [16] 7.18
Logits [1] 6.67
Fitnet [50] 7.45
AT [69] 7.16
Noro) | ResNer110 | ResNev20 | 70
PKT [46] 7.05
FT [24] 6.80
DML [72] 7.19
RKD [44] 7.11
IRG [38] 7.09
L2-MKD 6.66
L1-MKD ResNet-110 ResNet-20 6.63
EEL 6.46

Table 2. Comparisons with state-of-the-art knowledge distillation
methods on the CIFAR-10 dataset. The teacher and student net-
works are ResNet-110 and ResNet-20, respectively.

from a zero-padding 40 x 40 image. Horizontal flipping is
also used for data augmentation. The teacher and student
networks are ResNet-110 and ResNet-20, respectively. For
optimization, SGD is used with a mini-batch size of 128.
The momentum and weight decay is set to 0.9 and 10~4,
respectively. We train 200 epochs. The initial learning rate
is 0.1 and is divided by 10 at 100 and 150 epochs.

Table 2 presents the performance comparisons on
CIFAR-10. Comparing with the original ResNet-20 per-
formance (7.82%), EEL achieves 6.46% error rate, which
demonstrates the effectiveness of our method on closed-
set problem. Besides, in Table 2, EEL also outper-
forms other state-of-the-art methods, including KD [16],
Logits [1], Fitnet [50], Attention Transfer (AT) [69],
Flow of Solution Procedure (FSP) [67], Neural Selec-
tive Transfer (NST) [21], Probabilistic Knowledge Trans-
fer (PKT) [46], Factor Transfer (FT) [24], Deep Mutual
Learning (DML) [72], Relational Knowledge Distillation
(RKD) [44] and Instance Relationship Graph (IRG) [38].

4.2. Face Recognition
4.2.1 Datasets and Protocols

We use the LFW [20] and MegaFace [23] datasets to evalu-
ate EEL. LFW [20] contains 13,233 images of 5,749 people
collected from the web and 6,000 pairs evaluation is per-
formed for standard verification protocols. Besides, there
is a more challenging and generalized benchmark called
BLUFR [29] for the LFW evaluations. There are 10-fold
sub-experiments, where each fold contains 156,915 genuine
matchings and 46,960,863 impostor matchings for perfor-
mance evaluation. MegaFace [23] aims to evaluate face
recognition algorithms using 1 million distractors. It con-
tains 3,530 images of 80 identities from FaceScrub [43] as
the probe set and 1 million images of 690K identities as the
distractors. The rank-1 accuracy for face identification and
TPR@FAR=1e-6 for face verification are reported.



BLUFR MegaFace

Method VR@0.1% | DIR@I% | Rank-l | VR@Ie6
Teacher 9041 04.43 76.02 8974
Student 98.17 85.82 65.48 79.43
Contrastive [57] 9820 8654 65.88 8023
N-Pair [53] 98.18 86.60 66.07 81.35
Triplet [52] 9834 88.90 69.03 84.13
Center Loss [63] 98.20 86.97 66.29 80.32
LM-Softmax [34] | 98.67 89.80 70.79 84.92
A-Softmax [33] 98.69 90.90 72.14 86.82
KD [16] 98.05 3784 6142 §0.44
Logits [1] 98.60 88.82 69.29 83.55
Fitnet [50] 98.89 90.97 7033 83.79
AT [69] 98.85 89.31 69.77 83.60
FSP [67] 98.90 90.97 7057 83.80
NST [21] 98.90 90,81 70.98 83.98
FT [24] 98.89 90.90 71.03 84.07
T5-MKD 98.97 3%.73 7356 §7.19
L1-MKD 99.27 93.48 73.95 89.45
CEL 98.71 91.18 7215 86.95
L2-MKD+CEL 99.29 93.92 7432 90.05
L1-MKD-+CEL 99.41 94.57 76.40 90.70

Table 3. Varying various deep embedding learning and knowl-
edge distillation methods. All the models are trained on MS-
Celeb-1M and evaluated on BLUFR for LFW and MegaFace. The
LightCNN-29-Fast and the LightCNN-29 are the backbones for
student and teacher network, respectively.

4.2.2 Implementation Details

We use LightCNN, including LightCNN-9 and LightCNN-
29, as the teacher networks, and LightCNN-9-Fast and
LightCNN-29-Fast are defined as the student networks ac-
cording to Section 3.3. All the experiments are trained on
the MS-Celeb-1M dataset [10]. During training, the face
images are aligned to 144 x 144 and randomly cropped into
128128 as the inputs. If not specific, the batch size is
256, the temperature 7 is 2, and the trade-off parameter A
is 1. The learning rates for MKD and EEL are 0.005 and
0.0001, respectively. Besides, the student network under
the EEL training is initialized by the pre-trained model af-
ter the MKD training.

4.2.3 Ablation Study

We conduct ablation studies on different hyper-parameters
for the proposed EEL framework. In this section, the default
student and teacher networks are LightCNN-29-Fast and
LightCNN-29, respectively. The performance of teacher
and student networks under the supervision of softmax loss
is shown in Table 3.

First, we attempt to discuss the influence of knowledge
distillation methods. Table 3 lists different knowledge dis-
tillation methods including KD [16], Logits [1], Fitnet [50],
Attention Transfer (AT) [69], Flow of Solution Procedure
(FSP) [67], Neural Selective Transfer (NST) [21], Factor
Transfer (FT) [24], L2-MKD in Eq.(3) and L1-MKD in
Eq.(4). Compared with the baseline (directly training the
student network only with the softmax loss), all the knowl-
edge distillation methods achieve better performance. Since

- BLUFR MegaFace
VR@0.1% | DIR@1% | Rank-1 VR@Ie-6

1 99.07 93.04 72.12 86.54

2 99.27 93.48 73.95 89.45

4 99.25 91.76 73.83 88.90

6 98.92 90.40 73.75 88.39

8 98.42 90.23 73.48 88.08

Table 4. Varying 7 for L1-MKD. All the models are trained on
MS-Celeb-1M and evaluated on BLUFR for LFW and MegaFace.
The LightCNN-29-Fast and the LightCNN-29 are the backbones
for student and teacher network, respectively.

batch A BLUFR MegaFace
size VR@0.1% | DIR@I% | Rank-I | VR@Ie-6
128 5 99.37 94.40 75.79 90.26
256 5 99.37 94.51 75.70 90.10
512 5 99.36 94.39 75.54 89.57
128 75 99.41 94.54 76.29 90.30
256 75 99.39 94.54 76.04 90.18
512 .75 99.39 94.50 75.86 89.99
128 1 99.40 94.48 76.54 90.62
256 1 99.41 94.57 76.40 90.70
512 1 99.39 94.50 76.13 90.30

Table 5. Varying batch size and trade-off A in EEL.

Logits [1], Fitnet [50], AT [69], FSP [67] and NST [21]
directly match features as a regression model, the student
network has only a marginal improvement over the baseline
that is trained by the softmax loss. The reason is that the stu-
dent model struggles to match features without relaxation
due to limited capacity. Meanwhile L2-MKD can make sig-
nificant improvements compared with KD [16], Logits [1]
and Fitnet [50]. Furthermore, compared with L2-MKD, L1-
MKD gains 1.39% on Rank-1 and 2.26% on VR @FAR=1e-
6 for MegaFace. This finding indicates that our proposed
L1-MKD in Eq (4) is suitable for transferring knowledge
under massive class training for open-set problems. There-
fore, we choose L1-MKD as the default knowledge distilla-
tion method in EEL.

Second, we compare the proposed EEL with other well-
known deep embedding learning methods such as Con-
trastive [57], N-pair [53], Triplet [52], Center loss [63],
LM-softmax [34] and A-softmax [33], respectively, in Ta-
ble 3. Obviously, although various deep embedding learn-
ing methods contribute to performance improvements com-
pared with baseline, EEL outperforms all of them. It in-
dicates that benefiting the prior knowledge from the strong
teacher network, EEL has more powerful potential of per-
formance improvements than conventional deep embedding
learning methods.

Third, in order to understand the knowledge distilla-
tion for better deep embeddings, we analyze the influence
of the temperature 7 in the L1-MKD loss, as shown in
Table 4. Especially, we take our default LightCNN-29-
Fast model trained by varying 7 for the L1-MKD method
under the LightCNN-29 teacher network. As the tem-
perature 7 increases, the convergence of the student net-



BLUFR MegaFace Performance
Backbone Method <RG0 1% | DIR@T% | Rank-T | VR@Ie-6 | Speed Size

Softmax 93.69 71.88 49.84 56.00

SqueezeNet [22] L1-MKD 95.58 76.16 54.89 66.91 17 ms 3.26 MB
EEL 96.30 79.79 57.93 69.05
Softmax 97.97 85.35 66.18 79.22

MobileNet [17] L1-MKD 98.58 88.71 68.62 81.57 45 ms 13.33 MB
EEL 98.84 90.52 71.61 85.28
Softmax 96.54 78.64 56.64 66.59

ShuffleNet [71] L1-MKD 96.69 78.28 57.73 70.53 25 ms 5.02MB
EEL 97.05 83.13 61.23 72.76
Softmax 97.99 84.73 65.56 78.76

MobileNetV2 [51] L1-MKD 98.35 87.54 68.03 81.01 67 ms 9.89 MB
EEL 98.76 90.20 71.16 85.03
Softmax 95.11 75.78 54.92 59.69

LightCNN-9-Fast L1-MKD 95.99 79.17 60.95 70.71 7.6 ms 5.22 MB
EEL 96.54 82.62 62.78 72.54
Softmax 98.17 85.82 65.48 79.43

LightCNN-29-Fast | L1-MKD 99.27 93.48 73.95 89.45 26 ms 33.10 MB
EEL 99.41 94.57 76.40 90.70
Softmax 99.41 94.43 76.02 89.74

LightCNN-29 [64] L1-MKD 99.44 95.01 76.75 90.61 92 ms 39.97 MB
EEL 99.57 95.91 77.14 92.01

Table 6. Varing different backbones for the student networks. The teacher network is LightCNN-29. The time cost is evaluated on i7-4790.
Note that the depthwise convolution operations used in Mobilenet, ShuffleNet and MobileNetV2 are not parallel for each group due to the

fair comparisons of a single thread implementation.
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Figure 2. Training and evaluation performance by different center initialization. The “Weights” denotes initializing the centers by the
weights of the classifier in the teacher network. The ”Centers” denotes averaging the features of each class from the teacher network. (a)
shows the training curves of the softmax loss and knowledge distillation loss with EEL training. (b) presents the performance on LFW

BLUFR and MegaFace.

work becomes difficult. Compared with the baseline,
LI-MKD under 7 2 yields 1.10% and 7.66% im-
provements on VR@FAR=0.1% and DIR@FAR=1% for
BLUFR respectively, and 8.47% and 10.02% improvements
on Rank-1 and VR @FAR=1e-6 for MegaFace, respectively.

Next, since the aim of correlated embedding loss is to
constrain the embedding spaces between the teacher and
student networks from a global perspective, it is important
to investigate the influences of batch size and loss trade-off
A. The results are presented in Table 5. When fixing A
and varying the batch size for CEL, we find there is nearly
no difference among the results. The phenomenon demon-
strates that, different from some metric learning [57, 52] as
a local view optimization, the proposed correlated embed-

ding loss is not sensitive to the batch size. And then, we
explore the influence of the loss trade-off parameter A and
find the best A ranges in [0.5,1.0] (we test A € [0.25,2.0]).
Note that if A is too large, the hard optimization tends to
collapse the convergence.

Finally, we present the effectiveness of our proposed
EEL framework on different student structures, including
SqueezeNet [22], MobileNet [17], ShuffleNet [71], Mo-
bileNetV2 [51], LightCNN-9-Fast, LightCNN-29-Fast and
LightCNN-29 [64]. The results are tabulated in Table 6.
Obviously, the performance of all the student backbones
trained by EEL is significantly improved, comparing with
the results of L1-MKD and softmax. This phenomenon
indicates that the proposed EEL is applicatble for various



BLUFR MegaFace Performance
Method AcconLFW 52 @01% | DIR@I% | Rank-T | VR@Ie6 | Speed Size
DeepID2+ [58] 99.47 - - - - -
WebFace [66] 97.73 80.26 28.90 ; ; .
FaceNet [52] 99.63 ; - 70.49 86.47 -
VGG Face [43] 98.95 ; ] ; ; -
CenterLoss [63] 99.28 - - 65.23 76.51 -
SphereFace [33] 99.42 - - 72.73 85.56 - -
LightCNN [64] 99.40 98.88 92.29 7375 85.13 | 121ms | 50.30 MB
VGG Face™ [45] 9727 7334 36.56 - - S8ims | 524 MB
CenterLoss” 98.70 94.64 70.66 63.10 7466 | 160ms | 76.54 MB
T 9870 96.80 83.06 578 7628 S9ms | 2170 MB
™ 99.43 99.41 94.43 76.02 89.74 92ms | 39.97MB
ST (softmax) 9850 9511 7578 3492 39.60
S1(T1EEL) 98.70 96.15 82.71 62.81 7303 | 76ms | 522MB
SI (T2 EEL) 98.70 96.54 82.62 6278 7254
$2 (softmax) 9927 9817 8582 65.48 79.43
S2 (T2 EEL) 99.47 99.41 94.57 76.40 90.70 26ms | 33.10MB

Table 7. Comparisons with other state-of-the-art methods on LFW for standard, BLUFR protocols, and MegaFace protocols. * denotes that
we evaluate the performance according to the released models (or features). S1 and S2 denote the LightCNN-9-Fast and Light CNN-29-Fast
models for student networks, respectively. T1 and T2 denote the LightCNN-9 and LightCNN-29 models for teacher networks, respectively.

student networks and improves the performance by a large
margin. When the teacher network is Light CNN-29, we find
that the best advancement comes from LightCNN-29-Fast,
which gains 8.75% on DIR @FAR=1% for BLUFR, 10.92%
on Rank-1 and 11.37% on VR@FAR=1e-6 for MegaFace.
It also certificates that the proposed paradigm for the stu-
dent network development is effective to implement a fast
and accurate network without bells and whistles.

Besides, we employ the LightCNN-29 as the student net-
work, which means both the teacher and the student net-
works are the same architectures. Surprisingly, the student
network outperforms its teacher network by a large mar-
gin (99.57% vs 99.41% on VR@FAR=0.1% and 95.91%
vs 94.43% on DIR@FAR=1% for BLUFR as well as
77.14% vs 76.02% on Rank-1 and 92.01% vs 89.74% on
VR@FAR=1e-6 for MegaFace, respectively), as shown in
Table 6. The results demonstrate that knowledge distillation
should not be limited to the model acceleration or model
compression. It also contributes to obtain better generaliza-
tion as a prior to regularize convolutional neural networks.

4.2.4 Detailed Analysis of Centers

In this section, we present a detailed analysis of center ini-
tialization and online updating strategy. The teacher and
student networks are LightCNN-29 and LightCNN-29-Fast,
respectively.

Since we denote a set of centers {C;F}é\]: 1 to represent
the embedding space of the teacher network, there are two
simple methods to initialize centers for correlated embed-
ding loss: (1) Using the weights of the classification layer
in the teacher network; (2) Averaging deep features of each
class extracted from the teacher network. As shown in Fig.
2, these two initializations obtain similar performance, in-
dicating that the proposed correlated embedding loss is in-
sensitive to the center initialization during training. There-
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fore, for convenience, we use the weights of the classifica-
tion layer in the teacher network as the initialization for the
correlated embedding loss.

According to Eq. (12), the centers of each identity
are updated online. However, for mini-batch SGD, it is
hard to put all the identities into one mini-batch during
training, especially for massive identities. Therefore, we
simply employ a moving average to update centers in the
training phase. We conduct experiments with two updat-
ing forms, including Cumulative Moving Average (CMA)
and Exponential Moving Average (EMA). For the CMA
updating strategy, EEL obtains 99.38% and 94.52% on
VR@FAR=0.1% and DIR@1% for BLUFR, respectively.
Considering EMA, we achieve 99.41% and 94.57% on
VR@FAR=0.1% and DIR@1% for LFW BLUFR, respec-
tively.

4.2.5 Comparisons with State-of-the-arts

Table 7 summarizes the comparison results about the com-
plexity of the networks and the performance on LFW and
MegaFace. We use LightCNN-9 (T1) and LightCNN-29
(T2) as the teacher networks, and LightCNN-9-Fast (S1)
and LightCNN-29-Fast (S2) as the student networks. It is
obvious that the proposed EEL framework can significantly
improve the performance of the student networks, which
can achieve or even outperform their teacher networks. For
example, the LightCNN-29-Fast under the LightCNN-29
EEL training (S2+T2 EEL) beats its teacher network on
DIR @FAR=1% (94.57% vs 94.43%) for BLUFR, as well as
Rank-1 accuracy (76.40% vs 76.02%) and VR @FAR=1e-6
(90.70% vs 89.74%) for MegaFace. Considering the com-
putational time cost, LightCNN-29-Fast is approximately
3.5 X faster (26 ms vs 92 ms) than LightCNN-29 on a CPU
with a single thread implementation. The results indicate
that it is possible to implement both a fast and accurate stu-



Method CASIA NIR-VIS 2.0 Oulu-CASIA NIR-VIS BUAA-VisNir
Rank-1 FAR=0.1% | Rank-1 FAR=1% | FAR=0.1% | Rank-1 FAR=1% | FAR=0.1%

TRIVET [37] 95.7 91.0 922 67.9 33.6 93.9 93.0 80.9
IDR [14] 97.3 95.7 94.3 734 46.2 94.3 93.4 84.7
CDL [65] 98.6 98.5 94.3 81.6 539 96.9 95.9 90.1
W-CNN [15] 98.7 98.4 98.0 81.5 54.6 97.4 96.0 91.9
Teacher 98.1 97.4 100.0 96.6 78.3 99.1 99.1 97.7
Student 91.6 87.1 99.0 93.1 58.7 96.9 97.1 89.6
EEL 98.5 97.6 100.0 95.1 83.2 99.3 99.2 97.4

Table 8. Comparisons with other state-of-the-art heterogeneous face recognition methods on the CASIA NIR-VIS 2.0 dataset, the Oulu-
CASIA NIR-VIS dataset and the BUAA-VisNir dataset. The teacher network and the student network are LightCNN-29 and LigthCNN-

29-Fast, respectively.

(a) CASIA NIR-VIS 2.0 ROC

(b) Oulu-CASIA NIR-VIS ROC

(c) BUAA-VisNir ROC
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Figure 3. ROC curves of different methods on the three heterogeneous face recognition datasets, including the CASIA NIR-VIS 2.0, the

Oulu-CASIA NIR-VIS and the BUAA-VisNir databases.

dent network and compete with the high-capacity teacher
network, under our proposed EEL framework.

Further comparisons with current state-of-the-art meth-
ods including DeepID2+ [58], WebFace [66], FaceNet [52],
CenterLoss [63], SphereFace [33], VGGFace [45] and
LightCNN [64] are also shown in Table 7. The LightCNN-
29-Fast (S2) network under EEL achieves 99.41% on
VR@FAR=0.1% and 94.57% on DIR@FAR=1% for
BLUFR, as well as 76.40% on Rank-1 and 90.70% on
VR@FAR=1e-6 for MegaFace, which significantly out-
performs other state-of-the-art methods. We also design
LightCNN-9-Fast (S1) as a student network by referring to
LightCNN-9. It can achieve 98.70% on LFW and the speed
of inference is only 7.6 ms on a CPU with only 5.22 MB
parameters.

In addition, in terms of the LightCNN-9-Fast (S1) shown
in Table 7, we assess whether the optimal teacher network
is LightCNN-9 or LightCNN-29, since their performances
are similar. Here, we clarify that EEL is able to improve the
performance of the student network. However, if the capac-
ity of the student network has a large gap compared with the
teacher’s, the improvements are limited. It may be the main
reason that the performance of the student network could
not reach that of the teacher’s in previous works [67, 69, 4].
When the student network is changed to the LightCNN-29-
Fast, designed by referring to the LightCNN-29, the results
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outperform its teacher network. This phenomenon demon-
strates that the proposed paradigm is significant towards de-
signing a student network, which can accelerate the model
and also preserve accuracy.

4.2.6 Generalization on Heterogeneous Face Recogni-
tion

This section aims to verify the generalization of EEL. We
directly evaluate the proposed LightCNN-29-Fast model
with EEL training on heterogeneous face recognition
tasks. Three heterogeneous face recognition datasets, in-
cluding CASIA NIR-VIS 2.0 Face database [28], Oulu-
CASIA NIR-VIS database [3] and BUAA-VisNir face
database [19], are used for evaluations.

The CASIA NIR-VIS 2.0 database [28] is the largest
public and most challenging NIR-VIS dataset due to the
large variations of lighting, expression and pose. For test-
ing, it contains 10-fold experiments and each fold contains
358 identities. For each fold, the gallery set is constructed
from 358 identities and each identity only has one VIS im-
age. The probe set has over 6,000 NIR face images from
the same 358 identities. All the NIR images in the probe
set are to be matched against the VIS images in the gallery
set, resulting in a 6000 x 358 similarity matrix. The Rank-1
accuracy and VR@FAR=0.1% are reported.



Vehicle-ID Vehicle-1M
Method Backbone Speed top-1 top-5 top-1 top-5
Small Medium  Large | Small Medium Large | Small Medium Large | Small Medium  Large
DRDL [30] VGG-M 154 ms 49.0 4238 382 73.5 66.8 61.6 - - - - - -
FACT [35] GoogleNet 92 ms 49.5 44.6 39.9 67.9 64.1 60.4
NuFACT [36] GoogleNet 92 ms 489 43.6 38.6 69.5 65.3 60.7 - - - - - -
GoogleNet [9] GoogleNet 92 ms 46.6 425 38.1 62.2 58.9 55.4 54.5 50.8 40.9 60.9 58.6 50.5
C2F-Rank [9] GoogleNet 92 ms 61.1 56.2 51.4 81.7 76.2 72.2 67.1 62.0 52.8 70.3 67.1 60.1
Teacher LightCNN-29 65 ms 67.0 66.4 64.0 77.5 75.5 72.8 89.9 87.8 83.9 94.3 933 91.1
Student LightCNN-29-Fast 34 ms 61.4 60.0 573 72.1 70.4 67.1 86.3 83.0 77.9 90.8 89.0 86.7
EEL LightCNN-29-Fast 34 ms 70.2 69.4 66.3 83.1 79.7 77.1 92.2 88.7 85.7 96.9 95.1 94.2

Table 9. Comparisons with other state-of-the-art methods of Vehicle Re-Identification on the Vehicle-ID and Vehicle-1M datasets. The

time cost is evaluated on 17-4790.

The Oulu-CASIA NIR-VIS database [3] contains 80
identities with 6 expression variations. Following the set-
ting in [15], 20 identities are used for testing. We randomly
select 8 images for each expression from NIR and VIS im-
ages, respectively. All the VIS images of the 20 identities
are used as the gallery set and all the NIR images are treated
as the probe. The similarity matrix between the probe set
and the gallery set is 960 x 960. The rank-1 accuracy,
VR@FAR=1% and VR @FAR=0.1% are reported for com-
parisons.

The BUAA-VisNir face database [19] is composed of
150 identities with 9 NIR and 9 VIS images. Following
the setting in [15], we randomly select 100 identities for
testing. Only one VIS image of each identity is selected
in the gallery set and the probe set contains 900 NIR im-
ages. We report the rank-1 accuracy, VR@FAR=1% and
VR@FAR=0.1% by the 900 x 100 similarity matrix.

Table 8 and Fig. 3 show the results of the pro-
posed EEL method with other state-of-the-art heteroge-
neous face recognition methods. Note that the three
datasets are strictly independent from the MS-Celeb-1M
training dataset [10] and we don’t fine-tune our models on
the training data for these three datasets. The results are
promising. As the student network, the LightCNN-29-Fast
with EEL training obtains comparable performance against
its teacher network LightCNN-29 and other state-of-the-art
methods, including TRIVET [37], IDR [14], CDL [65] and
W-CNN [15]. On the most challenging CASIA NIR-VIS
2.0 database, the student network with EEL training outper-
forms its teacher network in terms of both Rank-1 accuracy
(98.5% vs 98.1%) and VR@FAR=0.1% (97.6% vs 97.4%).
The performance of EEL is a little lower than CDL [65] and
W-CNN [15], because the LigthCNN-29-Fast doesn’t fine-
tune on the heterogeneous face data, and other state-of-the-
art methods employ cross domain matching on the CASIA
NIR-VIS 2.0 database instead. Besides, considering the
Oulu-CASIA NIR-VIS database and the BUAA-VisNir face
database, the LigthCNN-29-Fast with EEL training outper-
forms state-of-the-art methods by a large margin. The ex-
perimental results on heterogeneous face recognition show
that the proposed EEL method has good generalization abil-
ity for open-set problems.
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4.3. Vehicle Re-Identification
4.3.1 Datasets and Protocols

We evaluate EEL on Vehicle-ID [30] and Vehicle-1M [9],
the top two largest vehicle re-identification datasets.
Vehicle-ID contains 110,178 images of 13,134 vehicles for
training and 11,1585 images of 13,133 vehicles for testing.
The testing data are divided into small (7,332 images of
800 vehicles), medium (12,995 images of 1,600 vehicles)
and large (20,038 images of 2,400 vehicles) testing sets.
Vehicle-1M is even larger, including 884,571 images from
50,000 vehicles for training and 91,480 images from 5,527
vehicles for testing. Similarly, the testing data are also di-
vided into three subsets. The small set contains 16,123 im-
ages of 1,000 vehicles, the medium includes 32,539 images
of 2,000 vehicles and the large one covers 49,259 images of
3,000 vehicles, respectively. For Vehicle-ID and Vehicle-
1M, we randomly select one image of each vehicle as the
gallery set and the others are all probe queries. The results
are measured by the Cumulative Matching Characteristic
(CMC) curve.

4.3.2 Implementation Details

The teacher and student networks have the same architec-
tures as LightCNN-29 and LightCNN-29-Fast, respectively.
The main differences are as follows: 1) the inputs are RGB
vehicle images with the size of 224 X224, and 2) the strides
of the first convolution layer for the teacher and student net-
work are 2 and 4, respectively. During training, we resize
images to 256256 and randomly crop them to 224 x224.
The batch size is 128, the learning rate is 0.005 for MKD
and 0.0001 for EEL, and A and 7 are set to 1 and 2, respec-
tively. Moreover, the horizontal flipping and color jittering
are used as the data augmentation.

4.3.3 Comparisons

Table 9 illustrates the top-1 and top-5 match rates of our
proposed method and other competitors on the Vehicle-ID
and Vehicle-1M datasets. It is obvious that the student
network under EEL outperforms state-of-the-art methods



Market-1501 DukeMTMC-reID
Method Backbone Speed Single Query Multi. Query

Rank-1 mAP RanK-1 mAP Rank-1 mAP

DarkRank [4] NIN-BN 23 ms 86.7 68.2 91.4 76.4 - -
Basel+LSRO [77] ResNet-50 180 ms 83.9 66.0 88.4 76.1 67.6 47.1
PAN [76] ResNet-50™ >180 ms 86.6 69.3 90.8 76.3 71.5 51.5
SVDNet [59] ResNet-50 180 ms 82.3 62.1 - - 76.7 56.8

MGCAM [54] ResNet-50* >180 ms 83.7 74.3 - -
IDE [78] ResNet-50" >180 ms 88.1 68.7 75.2 57.6
Mancs[60] ResNet-50* >180 ms 93.1 82.3 84.9 71.8
DSA-relID [73] ResNet-18* >43 ms 95.7 87.6 86.2 74.8
DG-Net [75] ResNet-50 180 ms 94.8 86.0 - - 86.6 74.8
Teacher LightCNN-29 123 ms 90.6 74.6 92.8 78.9 75.6 56.3
Student LightCNN-29-Fast 42 ms 88.5 715 90.6 744 71.1 51.0
EEL LightCNN-29-Fast 42 ms 91.3 78.3 93.3 83.4 76.4 57.5
Teacher ResNet-101 209 ms 94.5 85.9 95.9 90.9 87.5 76.6
Student ResNet-50 180 ms 94.4 85.8 95.9 89.9 86.4 76.0
EEL ResNet-50 180 ms 94.9 87.5 96.2 91.1 88.2 78.3

Table 10. Comparisons with other state-of-the-art methods of Person Re-Identification on the Market-1501 and DukeMTMC-relD datasets.
The time cost is evaluated on i7-4790. * denotes that these methods incorporate other branches on the backbone, thus the time cost takes

longer than the speed of original backbone.

including DRDL [30] and C2F-Rank [9] by a large mar-
gin. Especially, considering that the large-scale Vehicle-1M
dataset contains 50,000 classes approximately 880,000 im-
ages, EEL significantly improves the generalization from
67.1%, 62.0%, and 52.8% to 92.2%, 88.7% and 85.7% on
the small, medium and large testing set, respectively. More-
over, both MKD and EEL improve the performance of the
fast student network, and the student under EEL also beats
its respective teacher on all the small (92.2% vs 89.9%),
medium (88.7% vs 87.8%) and large (85.7% vs 83.9%) test-
ing sets. The results indicate that EEL facilitates the bridge
of the performance gap between teacher and student net-
works on the vehicle re-identification task.

4.4. Person Re-Identification
4.4.1 Datasets and Protocols

For person re-identification, we evaluate EEL on the
Market-1501 [74] and DukeMTMC-reID [49] datasets.
Market-1501 dataset is collected from six cameras, includ-
ing five high-resolution cameras and one low-resolution
camera. It contains 32,688 images of 1,501 identities,
where the 12,936 images of 750 identities are used for train-
ing, and the others are used for testing. DukeMTMC-relD
dataset is collected from eight cameras, and is a subset for
cross-camera tracking. Zheng er al. [77] selected 1,404
identities from eight cameras, where a total of 16,522 im-
ages of 702 IDs are used for training, and the other 702 IDs
(including 2,282 query images and 17,611 gallery images)
are used for testing.

4.4.2 Implementation Details

We conduct two experiments for person re-identification.
For the first one, the teacher and student networks are
LightCNN-29 and LightCNN-29-Fast, respectively, follow-
ing the same structures of face recognition. There are some
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trivial differences. Instead of gray-scale inputs for face
recognition, we use RGB images as the input since the color
information is important for person re-identification tasks.
During training, each input image is resized to 256 x 128
and then randomly cropped to 224 x 112. Moreover, hori-
zontal flipping is used as the data augmentation. The batch
size is 128, the learning rates are 0.005 for MKD and 0.0001
for EEL, and A and 7 are set to 1 and 2, respectively. For
the second one, we utilize ResNet-101 and ResNet-50 as the
teacher and student networks, respectively. Following [39],
the input size is set to 256 x 128. Horizontal flipping and
random erasing are used as the data augmentation. The
networks are initialized from ImageNet pretrained models.
The optimization method is Adam [25] and the learning rate
is 0.00035 for MKD and EEL. The hyper-parameter A and
T is set to 1 and 2, respectively.

4.4.3 Comparisons

The results on the Market-1501 and DukeMTMC-relD
datasets are shown in Table 10.

For LightCNN-29-Fast as the student backbone, EEL
achieves Rank-1=91.3, mAP=78.3 in the single query
mode and Rank-1=93.3, mAP=83.4 in the multiple query
mode on Market-1501, and Rank-1=76.4, mAP=57.5 on
DukeMTMC-reID. Further, as shown in Table 10, when
utilizing more powerful student backbone (ResNet-50), we
achieve comparable results on Market-1501 (87.5 vs 87.6
on mAP and 94.9 vs 95.7 on Rank-1) and DukeMTMC-
relD (78.3 vs 74.8 on mAP and 88.2 vs 86.6 on Rank-1),
respectively.

Although Mancs[60], DSA-reID [73] and DG-Net [75]
also obtain good performance, our EEL only utilizes a sin-
gle network to learn embeddings under the supervision of
Eq. (13). Mancs introduces attention mechanism to cap-
ture the spatial information, while DSA-relD utilizes two



stream networks that consist of a full image stream and a
densely semantically-aligned stream. DG-Net utilizes gen-
erated data from a generative module as data augmentation
to improve the person re-identification performance.

Here, we should clarify that the motivation of EEL is to
train a fast and accurate student network which can reach
the performance of its teacher. As shown in Table 10,
the performance on mAP is promising since LightCNN-
29-Fast improves it by approximate 3.7% on Market-1501
and 1.2% on DukeMTMC-reID. For ResNet-50 as the stu-
dent backbone, comparing with its teacher (ResNet-101),
we also gain 1.6% and 1.7% on mAP for Market-1501 and
DukeMTMC-relD, respectively. These results indicate that
the knowledge provided by EEL can be transferred and
treated as regularizer to alleviate the overfitting with a lim-
ited number of training samples. Unquestionably, there are
similar phenomena with vehicle re-identification in which
the student network under EEL training outperforms its
teacher network.

5. Conclusion

In this paper, we develop an efficient knowledge distil-
lation framework called Evolutionary Embedding Learning
(EEL) for open-set problems. It provides a simple yet ef-
fective way to implement a model acceleration for embed-
ding learning without sacrificing accuracy. First, EEL re-
formulates the knowledge distillation for open-set problems
with massive classes. Second, we introduce an angular con-
straint and formulate the Correlated Embedding Loss (CEL)
to match the embedding spaces between teacher and student
networks from the global perspective for knowledge trans-
fer. Third, EEL proposes a paradigm towards fast and ac-
curate student network developments, which can hold the
capacity of embeddings, and lead to a fast model without
any dedicated implementation on specific devices. Thus,
our proposed EEL can achieve comparable or even better
results on different open-set tasks, including face recogni-
tion, vehicle re-identification and person re-identification.
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