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Abstract
Accurately aligning CAD models to their corresponding

objects in indoor RGB-D scans is a central challenge in
3D semantic reconstruction. The task requires estimating a
9-Degree-of-Freedom (DoF) pose—position, rotation, and
scale along three axes—but is hindered by noisy and in-
complete scans, as well as segmentation errors that cause
geometric distortions. We present Completion-Assisted Ob-
ject–CAD Alignment (CAOA), a method that integrates a
semantically and contextually aware point cloud comple-
tion module with a symmetry-aware relative pose estima-
tion algorithm, enabling precise alignment of CAD models
to scanned objects. Existing completion methods are typ-
ically trained and evaluated on synthetic datasets, which
often fail to generalize to real-world scans. To bridge
this gap, we introduce a synthetic data generation strat-
egy tailored to indoor scenes, significantly reducing the
synthetic-to-real domain gap—validated through quantita-
tive comparisons with widely used completion datasets. In
addition, we release S2C-Completion, an expert-annotated
dataset of over 8,500 object–CAD pairs from Scan2CAD,
created for real-world indoor single-object completion and
intended as a new benchmark for this task. For object–CAD
alignment, we incorporate symmetry information via a
symmetry-aware loss, improving robustness to symmetric
ambiguities. On the Scan2CAD benchmark, CAOA achieves
a 17% accuracy improvement over state-of-the-art meth-
ods. All code, datasets, and annotation tools will be pub-
licly available on GitHub.

1. Introduction
Recent indoor 3D semantic reconstruction methods [2–4]
integrate high-level semantic information with geometric
data, enabling the generation of more complete and inter-
pretable models compared to traditional mesh-based surface
reconstruction techniques [8, 12, 25]. These semantic ap-
proaches effectively address challenges such as occlusions
and incomplete data, while also producing lightweight rep-
resentations that are well-suited for a wide range of down-
stream applications, such as creating interactive virtual en-

vironments, digital twinning, etc.
RGB-D scans are effective for indoor 3D semantic re-

construction due to their comprehensive representation of
environments. However, challenges like clutter, occlu-
sion, and unreliable depth sensing result in noisy, incom-
plete scans. Traditional post-processing methods often ad-
dress these issues but can introduce artifacts and lose de-
tail. These challenges are critical for tasks associated with
3D semantic reconstruction, such as CAD model retrieval,
object-CAD alignment, and object-based CAD texturing. In
this work, we focus on enhancing object-CAD alignment
within semantic reconstruction for indoor scenes.

The quality of indoor scans presents significant chal-
lenges for accurate CAD alignment, as noise, incomplete-
ness, and errors from earlier steps, like 3D object segmen-
tation, can distort an object’s geometry, complicating pose
estimation. Current methods, such as energy optimization
[2], loss functions [3, 13], and object-layout optimization
[4], aim to improve alignment, but their effectiveness is lim-
ited by poor scan quality.

1.1. Proposed Approach
To address the aforementioned challenges in object-CAD
alignment, we introduce Completion-Assisted Object-CAD
Alignment (CAOA), a novel approach that leverages point
cloud completion to enhance alignment accuracy. An
overview of the approach is shown in Figure 1. CAOA con-
sists of 3 modules:
• Context-Aware Point Cloud Completion Module

(CAPCM): CAOA processes incomplete and noisy ob-
ject point clouds using a CAPCM, which generates
cleaner, more complete representations. CAPCM is
trained with S2C-Completion, a new expert-annotated
dataset for real-world indoor object point cloud com-
pletion, enabling context-aware training. Addition-
ally, we augment the training with a new synthetic
dataset, ShapeNet-Indoor(SN-Indoor), generated from
the ShapeNet dataset using novel techniques tailored to
indoor environments.

• Symmetry Encoder Module (SEM): To further improve
alignment accuracy, we incorporate SEM, which encodes

https://github.com/kumarhiranya/S2CCompletion


Figure 1. Overview of CAOA: The input to CAOA is a 3D room scan and its corresponding instance segmentation mask. Using this mask,
object point clouds (red circle) and surrounding context points (blue dotted rectangle) are extracted from the scan. These are processed
by the Context-Aware Point Cloud Completion Module (CAPCM) to produce a completed point cloud (green). Uniformly sampled CAD
model points are passed through the Symmetry Encoder Module (SEM) to generate a symmetry vector. The completed point cloud,
CAD point cloud, and symmetry vector are then used by the Object–CAD Alignment Module (OCAM) to estimate the final alignment
parameters.

symmetry information through a 3D Transformer-based
feature encoder [34].

• Object-CAD Alignment Module (OCAM): The output
of CAPCM—a more complete and accurate representa-
tion of real-world objects—is combined with the symme-
try vector from SEM and a matching CAD model. These
3 form the input for the OCAM, which estimates the final
alignment parameters.

By addressing the limitations of incomplete and noisy point
clouds through completion and leveraging symmetry, our
approach significantly enhances the robustness and accu-
racy of object-CAD alignment. In summary, the primary
contributions of this work are as follows:
• A novel pose estimation approach that incorporates

context-aware point cloud completion to mitigate issues
related to noise, incompleteness, and segmentation errors
in object instances.

• We introduce S2C-Completion, a real-world indoor ob-
ject point cloud completion dataset of over 8,500 object-
CAD pairings derived from Scan2CAD[2] to train and
benchmark point cloud completion algorithms.

• We introduce the SN-Indoor dataset, derived from
ShapeNet [6], and generated using synthetic data tech-
niques specifically designed for indoor environments.
This approach enables better generalization to real-world
data. Additionally, we assess the generalizability of exist-
ing synthetic datasets on S2C-Completion by evaluating
them with a leading point cloud completion algorithm.

• A training methodology leveraging a symmetry encoder

and a symmetry-aware loss formulation to learn robust
pose features.

2. Related Work
In this section, we discuss existing works in the domain on
semantic reconstruction and datasets for point-cloud com-
pletion and object-CAD alignment. Semantic reconstruc-
tion approaches generally fall into two categories: modular,
multi-step methods [1, 13] and unified, end-to-end meth-
ods [3] [4] [14]. The flexibility of multi-step methods al-
lows them to integrate state-of-the-art methods optimized
for specific tasks, such as segmentation or object comple-
tion or pose estimation, thereby benefiting from the latest
advances in these areas. In contrast, end-to-end methods
are custom-built and trained holistically for the task, en-
abling the model to learn the complete data transformation
pipeline and potentially achieve faster processing times.

2.1. Semantic Reconstruction
Semantic reconstruction typically involves CAD retrieval,
object-CAD alignment and layout estimation. In the do-
main of CAD retrieval, early methods such as the one pro-
posed by Li et al. [16] relied on using handcrafted features,
often derived from local histograms. Among modern meth-
ods employing learned feature descriptors, 3DMatch [38]
employs a Siamese network to extract discriminative fea-
tures common to both scan and CAD objects. Recent work
on deformation-based CAD retrieval [10, 31, 39] has sub-
stantially enhanced the geometric fidelity of semantic re-
constructions. By enabling part-wise deformation of CAD



meshes to more closely conform to scan objects, these
approaches achieve high-quality reconstruction even when
CAD model resources are sparse or retrieval quality is lim-
ited. However, it is important to note that while most
deformation-based methods integrate a CAD retrieval algo-
rithm, they assume an existing object–CAD alignment as a
prerequisite, rather than eliminating the need for such align-
ment.

Among methods for object-CAD alignment, Scan2CAD
[2], introduces learnable parameters to establish correspon-
dences between CAD models and scan objects, using an it-
erative energy optimization algorithm for alignment. The
authors in [3] further developed an end-to-end pipeline
for processing 3D scans to produce aligned CAD mod-
els, integrating segmentation, layout detection, and CAD
object retrieval and alignment into a single, efficient pro-
cess. SceneCAD [4] approaches CAD alignment from
a global perspective, jointly considering object arrange-
ment and scene layout. This enables SceneCAD to lever-
age contextual information, achieving globally consistent
alignment by exploiting inter-object relationships within the
scene. Ainetter et al. [1] propose an unsupervised itera-
tive approach to aligning CAD models to their scan coun-
terparts. In CIS2VR [13], the authors take a modular ap-
proach to semantic reconstruction by decoupling 3D object
segmentation from pose estimation. It utilizes object point
clouds extracted through 3D instance segmentation of scans
to infer 9-DoF poses and align CAD models.
2.2. Datasets
Point Cloud Completion Although numerous studies
have introduced point cloud completion algorithms for both
scenes [26, 27, 33] and objects [9, 20], including recent ad-
vancements [19, 23, 29], these approaches predominantly
depend on synthetic datasets for training and quantitative
evaluation. The primary challenge for synthetic datasets,
in the context of indoor settings, is emulating characteris-
tics of real-world point clouds, such as noise and irregulari-
ties introduced by sensors, and occlusion caused by limited
perspectives and environmental clutter. Synthetic datasets
such as PCN [37] and ShapeNet-55/34 [36], derived from
the ShapeNet [6] dataset, try to address these challenges
by using various methods such as perspective projection
and point cloud cropping. The KITTI [11] dataset, in con-
trast, contains partial point clouds obtained from real-world
scans. However, it lacks ground truth data, making suitable
only for qualitative analysis.

Object-CAD Alignment While several datasets provide
CAD model alignment data for 2D images, including IKEA
objects [17], Pix3D [28], and PASCAL 3D+ [35], these
only include annotations for 6-DoF alignment. Currently,
Scan2CAD [2] is the only large-scale dataset dedicated to
object-CAD alignment in indoor 3D scans. It provides a
set of aligned ShapeNet [6] CAD models for each scan in

ScanNet while using 9-DoF alignment parameters.

Research Gap Despite advancements in object-CAD
alignment algorithms, the poor quality of scanned point
cloud objects pose a significant challenge. While point
cloud completion algorithms can help address this issue,
they are primarily trained on synthetic data and a sub-
stantial gap persists between the quality of synthetic and
real-world point clouds. Consequently, algorithms trained
exclusively on synthetic data struggle to generalize effec-
tively to real-world data, as demonstrated by our experi-
ments detailed in 5.1. Additionally, in the context of learn-
ing object-CAD alignment, Scan2CAD, designed for end-
to-end optimization, lacks explicit annotations linking each
CAD model and alignment parameter to individual ScanNet
ground truth instances. This makes it unsuitable for train-
ing algorithms focused on object point clouds. While some
methods have used intersection-over-union (IoU) thresh-
olds to address this, the discrepancy between Scan2CAD
and ScanNet ground truths (illustrated in Figure 2), coupled
with the incomplete nature of object point clouds leading
to low IoUs even for correct matches, makes it difficult to
handle using such approaches, often causing algorithms to
learn sub-optimal features.

Figure 2. Annotations from Scan2CAD with CAD model (black)
and corresponding ScanNet ground truth instance (red) point
clouds. Each pair shows the discrepancy in ground truth anno-
tations between Scan2CAD’s aligned CAD models and ScanNet’s
object instances.

3. Completion-Assisted Object-CAD Align-
ment (CAOA)

The complete CAOA pipeline is shown in Figure 1. Start-
ing from an indoor scan as a point cloud, we extract object
point clouds using an off-the-shelf 3D instance segmenta-
tion algorithm [24]. This modular design enables CAOA
to adopt advances in 3D instance segmentation without re-
training the entire pipeline. The following subsections de-
scribe CAOA’s modules.
3.1. Context-Aware Point Cloud Completion

(CAPCM)
Point Cloud Completion As shown in Figure 3(a), object
point clouds from indoor scans are often noisy and incom-
plete, with missing features that can significantly alter the
object’s geometry and affect object-CAD alignment. These
issues can lead to slower convergence and suboptimal per-
formance during training. To address this, CAPCM lever-
ages point cloud completion algorithms. However, due to



the lack of real-world datasets for object point cloud com-
pletion, these methods are typically trained and validated on
synthetic data, which often does not generalize well to real-
world scenarios. Moreover, most synthetic datasets rely
on generic techniques like perspective projection and linear
cropping, which fail to accurately replicate indoor scans.

To facilitate the training and benchmarking of point
cloud completion methods on real-world indoor scenes,
we introduce the S2C-Completion dataset, specifically de-
signed for indoor environments. In addition, we present
SN-Indoor, a new synthetic dataset that incorporates tech-
niques optimized for simulating indoor settings, enhancing
the generalization of models trained on real-world indoor
data. Detailed descriptions of both datasets are provided in
Sections 4.1 and 4.2. To demonstrate the effectiveness of
these datasets, we evaluate them by training and testing a
state-of-the-art point cloud completion algorithm proposed
by Cai et al. [5], as detailed in Section 5.1.

Context-Aware Setting In cases where large parts of an
object are missing, we observe that point cloud completion
algorithms trained on pairs of incomplete and complete ob-
jects tend to over or under generate point clouds, with the
completed point clouds ending up with dimensions that are
inconsistent with their environments (as shown in Figure
3). To address this issue, CAPCM incorporates a context-
aware approach for point cloud completion: in addition
to the incomplete object point cloud, we incorporate point
clouds from surrounding objects or structures within a de-
fined context radius. This additional contextual information
enhances the algorithm’s understanding of the surrounding
scene, leading to results that are more consistent with the
environment.

To extract context points Pctxt for a given object point
cloud Pobj within a scene point cloud Pscene, we begin
by creating an axis-aligned bounding box (AABB) BBobj

around the object. With a specified context radius Rctxt,
we define a new context bounding box (BBctxt), sharing
the same center as BBobj , with dimensions adjusted as fol-
lows:

Dimctxt = Dimobj +Rctxt (1)

Where Dimctxt and Dimobj are dimensions of the context
and object bounding boxes respectively. Using BBctxt, we
extract Pctxt from Pscene by extracting all points within this
bounding box, excluding points corresponding to the object
Pobj . To help the algorithm distinguish between the object
(Pobj) and context (Pctxt) point clouds, we append a 1 to
the spatial features of Pobj and a -1 to those of Pctxt:

Fobj = (Xobj , Yobj , Zobj , 1) (2)
Fctxt = (Xctxt, Yctxt, Zctxt,−1) (3)

Fin = Fobj ⊕ Fctxt;Pin = Pobj ⊕ Pctxt (4)

Here, Fobj and Fctxt represent the spatial features of the
object and context point clouds, ⊕ denotes the concatena-
tion operator, while Pin and Fin denote the final input 3D
coordinates and features, respectively.

For training in the normal setting (without context data),
the input consists of the incomplete object point cloud
Pobj and features Fobj , both represented by 3D coordi-
nates (Xobj , Yobj , Zobj). The target point cloud Ptrgt is
obtained by uniformly sampling points from the aligned
CAD model’s mesh, with coordinates (Xtrgt, Ytrgt, Ztrgt).
In the context-aware scenario, the inputs to the algorithm
are Fin and Pin, while the target point cloud Ptrgt remains
unchanged. We compare the outputs from both settings in
Figure 3, where the context-aware approach demonstrates
improved consistency in the generated point cloud relative
to its surrounding context. Empirical studies indicated an
optimal value of Rctxt = 100 cm, as increasing the radius
further had no impact on the overall performance of CAOA.
Further details on training the CAPCM are discussed in 5.2.

We then use PointNet-based shape descriptors [21] de-
rived from the completed object point cloud to retrieve a
CAD model from the ShapeNet dataset [6] that is both geo-
metrically and semantically similar.

(a) (b) (c) 

Figure 3. Comparison of pose estimation on raw instance point
cloud (a), completion without context (b), context-aware comple-
tion (c), with context points shown in black. Ground truth and
predicted poses are visualized using blue and red bounding boxes,
respectively. Note that although context points are shown for all,
they are used only in the context-aware (c) setting.

3.2. Symmetry Encoder Module (SEM)

Ground truth labels for learning object-CAD alignment
do not account for object symmetry, which can signifi-
cantly impact the learning process, particularly for rota-
tion and scale-related features. Since symmetry is defined
along specific axes and depends on the object’s orienta-
tion, symmetry-related features are not naturally learned
when training to estimate alignment parameters. To ad-
dress these challenges, we introduce SEM, an encoder mod-
ule designed to extract symmetry-aware features. This
module is implemented using a Transformer-based net-
work [34] and is trained for binary symmetry classifi-
cation—identifying whether an object has symmetry or



Figure 4. Proposed architecture of OCAM using
MinkowskiFCNN[7] as backbone. We use a shared back-
bone for extracting pose features from CAD and completed object
point clouds. The extracted features are concatenated with the
symmetry feature vector from SEM and forwarded to 3 different
MLP heads, one each for estimating translation, rotation and
scale.

not—using the Scan2CAD dataset. We also experimented
with training the network on multiple symmetry classes
(No symmetry, 2-fold, 4-fold, and infinite symmetry) from
Scan2CAD to capture more nuanced features. However,
this approach led to a significant decline in performance.
It is important to note that symmetry-related features are
extracted from the CAD point cloud, not the object point
cloud, as the symmetry of an object with an arbitrary pose
is ill-defined, and CAD models in synthetic datasets are in
a common canonical pose. SEM is trained separately from
OCAM, the alignment estimation module, and the embed-
ding vector from SEM is used for training and inference in
OCAM. Training details for SEM can be found in 5.3

3.3. Object-CAD Alignment Module (OCAM)

Our method for learning object-CAD alignment utilizes a
Siamese-style network that processes pairs of object and
CAD point clouds to estimate the alignment parameters
between them. This approach is implemented in OCAM,
which consists of a 3D CNN backbone [7] for feature
extraction, followed by separate Multi-Layer Perceptron
(MLP) heads to regress translation, rotation, and scale pa-
rameters. The output features from the backbone network
are concatenated with the symmetry vector generated by
SEM. The combined features are then processed through
each MLP head to predict the translation (tx, ty, tz), which
is formulated as an offset from the centroid of the object
point cloud, as well as the rotation (3x3 rotation matrix) and
scale (sx, sy, sz) parameters. An overview of this process is
illustrated in Figure 4.

We further support the alignment training process by in-
corporating Chamfer Loss [18] as a symmetry-aware loss

function. Chamfer Loss is defined as follows:

Losscl =
1

N1

∑
o∈O

min
g∈GT

∥o− g∥22 +
1

N2

∑
g∈GT

min
o∈O

∥o− g∥22

(5)

where O is the CAD point cloud (with N1 points) trans-
formed using the 4x4 transformation matrix formed by the
predicted alignment parameters and GT is the object point
cloud with N2 points. In addition, we also utilize weighted
L1 loss as follows:

L1 pose = λtL1(tgt, tp) + λrL1(rgt, rp) + λsL1(sgt, sp)
(6)

where (tgt, rgt, sgt) are ground truth translation, rotation
and scale parameters, (tp, rp, sp) are predicted parameters,
and (λt, λr, λs) are their corresponding loss weights. Based
on empirical studies, we found values of λt = 2, λr =
3, λs = 2 to work best. Our final loss formulation is as
follows:

loss = 5× Losscl + L1 pose (7)

4. Dataset
To train and validate our approach, particularly CAPCM,
we require datasets tailored for point cloud completion. As
discussed in 2.2, real-world datasets for this task are scarce,
while modern deep learning benefits from large-scale data.
Moreover, existing synthetic datasets often differ greatly
from real-world scans, hindering generalization. To bridge
this gap, we introduce two datasets—S2C-Completion and
SN-Indoor—designed for benchmarking on real-world data
and reducing the domain gap between synthetic and real-
world indoor scenes. The following subsections detail each
dataset.
4.1. S2C-Completion dataset

To address the lack of real-world point cloud completion
datasets, and the limitations of Scan2CAD in this context
(as discussed in 4), we introduce S2C-Completion, an ex-
pert annotated dataset that combines instance annotations
from ScanNet with pose and CAD model information from
Scan2CAD and ShapeNet. S2C-Completion prioritizes pre-
cise alignment and considers finer geometric details to en-
sure an accurate match between scan instances and corre-
sponding CAD models, resulting in a high-quality dataset
for real-world indoor point cloud completion and object-
CAD alignment tasks. A few samples from the dataset are
shown in Figure 5 (additional examples provided in supple-
mentary materials), with CAD models aligned with instance
point clouds and bounding boxes for visualizing pose. The
full dataset is available here. S2C-Completion consists of

https://github.com/kumarhiranya/S2CCompletion


8,535 samples, with 6,671 allocated to the training set and
1,864 to the test set. For each CAD model annotation from
Scan2CAD, we provide a key (scannet instance id) that
explicitly maps the CAD model to a ground truth object in-
stance in ScanNet via its instance ID. If no suitable match
is found, the key value is -1; otherwise, it is the same as the
instance label ID of the matched object.

Figure 5. Annotations from S2C-Completion dataset with CAD
model (grey) and corresponding ScanNet ground truth instance
point clouds. Pose of the object is visualized as a green bound-
ing box around the object.

4.2. SN-Indoor

(a) (b) (c) 

(f) (e) (d) 

Figure 6. Incomplete point cloud generation steps from synthetic
mesh. (a) Synthetic mesh. (b) Multi-view depth maps generated
through single perspective ray-casting. (c) Occluded point cloud
based on camera perspective. (d) Randomly generated non-linear
plane. (e) Cropped point cloud. (f) Final output after adding Gaus-
sian noise.

To generate synthetic data from ShapeNet, we begin by
selecting a 3D model (Figure 6(a)) and positioning a virtual
camera at a random viewpoint around the object. Using ray-
casting, we capture a single-perspective point cloud, which,
unlike traditional 2D projection methods used in some syn-
thetic datasets, better emulates real-world scenarios by re-
ducing sampling density with distance, resulting in non-
uniform surface coverage. Next, we slightly translate the
camera in both vertical and horizontal directions (Figure
6(b)) without significantly altering the perspective. The pro-
cess is repeated, and the resulting point clouds are merged
(Figure 6(c)), mimicking camera movements during real-
world scanning and generating a more comprehensive 3D
point cloud instead of a predominantly planar one. To sim-
ulate occlusions, common in cluttered indoor environments,

we crop a portion of the point cloud using a randomly gen-
erated non-linear plane (Figure 6(d,e)), as detailed in the
supplementary materials. We repeat this process multiple
times, depending on the difficulty mode, to simulate multi-
object occlusion. This approach more accurately represents
real-world occlusions compared to linear plane-based crop-
ping. The proportion of cropped points are determined by
the dataset difficulty setting—easy (25%), medium (50%),
and hard (75%). Finally, a small amount of Gaussian noise
is added to the point cloud to simulate sensor imperfections
(Figure 6(e)). We provide further details on the data aug-
mentation techniques in the supplementary materials.

5. Experiments
5.1. Point Cloud Completion

To benchmark the generalizability of synthetic datasets on
real-world data, we use the algorithm proposed by Cai et al.
[5], ODGNet, which currently ranks as the top point cloud
completion method on ShapeNet. We train on ShapeNet-
derived synthetic sets and benchmark on real-world data
from S2C-Completion.

Training We use AdamW (lr 5e−4, weight decay) with
LambdaLR (step 20, γ=0.8, min 5e−6), multi-level Cham-
fer Distance L1 (CDL1) loss, and orthogonal constraints on
all learnable dictionaries. We train for 200 epochs or until
convergence with a batch size of 32, which takes ∼1.5 days
on one Nvidia RTX A6000 GPU.

Results Table 2 reports Chamfer Distance L1/L2
(CDL1/CDL2) on S2C-Completion for ODGNet trained
on PCN [37], ShapeNet-34/55 [36], and SN-Indoor;
we also train on real S2C-Completion (S2C-C), a mix
(SN-Indoor+S2C-C), and the mix with 100 cm context
(SN-Indoor+S2C-C+Ctxt 100). Our results show a
significant improvement in generalization when using
the proposed SN-Indoor synthetic dataset, highlight-
ing the effectiveness of our augmentation techniques.
When training exclusively on the real-world data from
S2C-Completion, performance plateaus after 80 epochs.
However, augmenting this data with synthetic datasets
prevents this stagnation, enabling the model to converge
further and achieve better results than training on either
dataset alone. Finally, incorporating context data into
the combined dataset improves the model’s performance,
underscoring the value of contextual information for
completion. Notably, since SN-Indoor lacks context data,
the algorithm was trained on mixed samples, with the
S2C-Completion samples containing context, while the
others did not. We also explored injecting explicit global
and local semantic features while training CAPCM, but
we found no improvements, suggesting that the algorithm
might be learning similar features implicitly while training
for completion.



bath bookshelf cabinet chair other sofa table Class avg Avg
FPFH [22] 0.00 1.92 0.00 10.00 5.41 2.04 1.75 2.57 4.45
SHOT [30] 0.00 1.43 1.16 7.08 3.57 1.47 0.44 1.83 3.14
Li et al. [15] 0.85 0.95 1.17 14.08 6.25 2.95 1.32 4.38 6.03
3D Match [38] 0.00 5.67 2.86 21.25 10.91 6.98 3.62 6.48 10.29
Scan2CAD [2] 36.2 36.4 34 44.26 70.63 30.66 30.11 35.64 31.68
End-to-End [3] 38.89 41.46 51.52 73.04 26.83 76.92 48.15 51.44 50.72
CIS2VR [13] 49.66 19.52 29.92 67.47 - 54.02 56.54 46.19 60.25
SceneCAD [4] 42.42 36.84 58.33 81.23 40.24 82.86 45.60 52.27 61.24
CAOA (No Completion) - Sph 55.75 45.50 45.50 74.29 38.31 63.70 53.93 48.63 60.92
CAOA (w/ CAPCM) - Sph 84.24 59.49 70.62 83.45 58.47 81.03 74.55 67.45 75.83
CAOA (w/ CAPCM+SEM) - SG 72.20 59.81 69.28 83.75 60.11 77.42 76.51 66.84 76.04
CAOA (w/ CAPCM+SEM) - Sph 86.51 61.21 72.23 84.52 60.55 81.65 78.26 69.17 77.51
CAOA (w/ CAPCM+SEM) - GT 88.71 73.58 81.35 93.87 75.00 87.14 84.62 78.15 86.54

Table 1. Alignment results for various methods on the Scan2CAD[2] benchmark. Numbers represent alignment accuracy for each category,
higher is better. Last five rows show results on various configurations of CAOA, with the last row showing CAOA’s performance on ground
truth (GT) ScanNetv2 labels.

Train Dataset CDL1↓ CDL2↓
PCN[37] 161.521 137.124
ShapeNet-55[36] 94.103 78.029
ShapeNet-34[36] 94.014 77.893
SN-Indoor (ours) 51.193 29.662
S2C-Completion (ours) 46.802 25.692
SN-Indoor + S2C-C 34.986 4.999
SN-Indoor + S2C-C + Ctxt 100 22.471 2.3

Table 2. Performance metrics of ODGNet (CD-L1×10−3, CD-
L2×10−3), lower is better, trained on various datasets and evalu-
ated on the S2C-Completion benchmark.

5.2. CAD Alignment

We evaluate CAOA using the benchmarks defined by au-
thors in [2], considering an alignment accurate if the trans-
lation, rotation, and scale errors are within 20 cm, 20◦, and
20% of the ground truth, respectively. Since CAOA oper-
ates as a modular framework, taking input from an instance
segmentation algorithm, we integrate a recent instance seg-
mentation approach proposed by Shin et al. [24].

Training The network is trained using the loss function
defined in Equation (7) and optimized with AdamW. The
training process employs an initial learning rate of 1e−4,
weight decay of 1e−4, and a Cosine Annealing scheduler
that lowers the minimum learning rate to 1e−6 over the
training period. Training runs for 150 epochs or until con-
vergence, taking approximately 2 hours on an RTX 3090.
Results Table 1 presents the performance of CAOA on
the Scan2CAD alignment benchmark. To ensure a fair
comparison with existing modular methods, we also evalu-
ate CAOA using the same instance segmentation algorithm
(SoftGroup [32]) as used in CIS2VR [13]. Our evaluation
is conducted on ScanNet’s validation set, consisting of 312

scenes. The findings indicate that CAOA improves class av-
erage accuracy by approximately 17% and overall accuracy
by around 16%, significantly surpassing the performance of
existing methods and validating the effectiveness of our pro-
posed approach. Lastly, we evaluate CAOA on ground truth
ScanNetv2 labels to assess the impact of instance segmenta-
tion errors. Results suggest ∼ 10% alignment performance
loss due to segmentation errors, indicating potential gains
from improving instance point cloud quality. For qualita-
tive comparison, we provide examples in the supplementary
materials.
5.3. Symmetry Encoding

Our SEM is trained on ShapeNet data, incorporating sym-
metry annotations from Scan2CAD. The architecture uses
PointTransformerV3 [34] as the feature extraction back-
bone, with an embedding dimension of 128 and an MLP
head that employs Softmax activation for the final classifi-
cation. The model is trained using Binary Cross Entropy
(BCE) loss and the AdamW optimizer, with a learning rate
initialized at 1e−4, weight decay of 1e−3, and a Cosine An-
nealing scheduler that reduces the minimum learning rate
to 1e−6. Training lasts for 150 epochs or until convergence,
requiring approximately one hour on an RTX 3090. The
network achieves 95.8% accuracy and a 94.1% F1-Score,
demonstrating its successful learning of symmetry-related
features.

5.4. Ablation studies

We conduct ablation studies to assess the impact of different
CAOA components on the final results. In these studies, we
train and evaluate CAOA with various components disabled
and present the results in Table 1.
Effect of Point Cloud Completion The entries in Table
1 labeled “CAOA (No Completion) - Sph” and “CAOA (w/



CAPCM) - Sph” present the results of running our algo-
rithm without point cloud completion (no CAPCM) and
with CAPCM, respectively. The results demonstrate that
CAPCM has a significant impact on performance, leading
to improvements of over 40% in certain categories. Fur-
thermore, the overall and weighted average performance
increase by 15% and 19%, respectively, when CAPCM is
included, highlighting its importance for achieving better
results.
Effects of Training CAPCM on Synthetic Datasets We
also investigate the impact of training CAPCM on differ-
ent datasets on the final alignment performance of CAOA.
The results, included in supplementary materials, indicate
that the choice of dataset for CAPCM training significantly
influences alignment performance. When trained on the
ShapeNet-55/34 and SN-Indoor datasets, overall perfor-
mance decreases by about 7% compared to our default train-
ing configuration (using a mix of ScanNet-Indoor and S2C-
Completion with 100 cm context), suggesting that these
datasets generalize well to real-world settings, but don’t
close the gap completely. Notably, minor variations in
point cloud completion performance between ShapeNet-
55/34 and SN-Indoor do not lead to noticeable differences
in alignment results. However, when trained on the PCN
dataset, performance drops dramatically by approximately
23%, even performing worse than training with incomplete
point clouds, highlighting the importance of proper dataset
selection for training CAPCM.
Effects of Symmetry Features The rows labeled “CAOA
(w/ CAPCM) - Sph” and “CAOA (w/ CAPCM+SEM) -
Sph” in Table 1 show the results of training CAOA without
and with symmetry information (SEM), respectively. In-
cluding SEM in the training process leads to an approxi-
mate 2% improvement, demonstrating that symmetry fea-
tures contribute positively to alignment estimation. Note
that Chamfer Loss is only used while training with SEM, as
it doesn’t lead to any noticeable improvements otherwise.

5.5. Runtime Analysis

We assess CAOA’s runtime by executing the entire
pipeline—from 3D instance segmentation to final alignment
prediction—on scenes with varying object counts. The
evaluation is conducted on a system with an AMD Ryzen
5900X processor and an Nvidia RTX 3090 GPU. Table 3
compares CAOA’s runtime with various existing methods,
showing results for both SoftGroup and SphericalMask as
instance segmentation approaches. The results indicate that
our method outperforms existing methods in runtime ef-
ficiency, averaging approximately 0.58 seconds per scene
across the ScanNet validation dataset. However, it is im-
portant to note that the results provided by CIS2VR include
several other steps such as scene reconstruction in Unity.
A detailed runtime analysis of individual pipeline modules

reveals that the point cloud completion module requires
around 10.3 ms, while the relative pose estimation takes 3.5
ms per object, with a nearly linear increase as the number of
objects rises. The low inference time makes CAOA suitable
for dynamic or real-time applications.

7 Objects 16 Objects 20 Objects
Scan2CAD [2] 288.60s 565.86s 740.34s
SceneCAD [4] 2.0s(5) - 2.60s(26)
End-to-End [3] 0.62s 1.11s 2.60s
CIS2VR [13] 0.55s 0.61s 0.66s
CAOA + SG 0.38s 0.54s 0.59s
CAOA + Sph 0.35s 0.5s 0.56s

Table 3. Runtime (in seconds) comparison with existing methods
for scenes with varying number of objects. Note that evaluation
on a matching number of objects wasn’t available for SceneCAD,
hence we mention the number of objects in parenthesis.

6. Limitations and Future Work
CAOA achieves state-of-the-art performance in ob-
ject–CAD alignment but still offers room for enhancement.
At present, the point cloud completion and pose estima-
tion modules are trained separately; a unified training strat-
egy could allow the completion process to be guided di-
rectly by pose estimation objectives. Moreover, incorporat-
ing a context-aware pose estimation module that accounts
for surrounding objects and scene structures—similar to the
approach in [4]—could further improve accuracy. While
CAOA is designed for object–CAD alignment, the under-
lying techniques can also benefit other stages of semantic
reconstruction, including CAD retrieval and layout estima-
tion.

7. Conclusion
CAOA is a single-object scan–based object–CAD align-
ment method that leverages context-aware point cloud com-
pletion and symmetry encoders prior to pose estimation,
yielding cleaner, more complete inputs and symmetry-
aware features that enhance alignment accuracy. We in-
troduce S2C-Completion, an expert-annotated real-world
completion dataset extending Scan2CAD, and SN-Indoor,
a synthetic data generation technique tailored to indoor en-
vironments, both enabling improved training and bench-
marking for completion algorithms. We further propose a
symmetry-aware learning process for more robust pose fea-
ture extraction.
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