
Under review as a conference paper at ICLR 2024

DSPARSE: DYNAMIC SPARSE EMBEDDING FOR
KNOWLEDGE GRAPH COMPLETION TASK

Anonymous authors
Paper under double-blind review

ABSTRACT

Addressing the incompleteness problem in knowledge graphs remains a signifi-
cant challenge. Current graph completion methods, such as ComDensE (a rep-
resentative of the fully connected network) and InteractE (a representative of the
convolutional network), have certain limitations. Specifically, ComDensE is prone
to overfitting and has constraints on network depth, while InteractE has limitations
in feature interaction and interpretability. To overcome these drawbacks, we pro-
pose the Dynamic Sparse Embedding (DSparsE) model. This model employs
sparse linear structure, replacing the conventional dense layers with adaptable
sparse ones. By applying sparse structure to the dynamic MLP layers composed of
multiple expert blocks and the residual MLP layers in decoders, DSparsE maintain
the network’s robustness while ensuring the capability for feature interaction. Fur-
thermore, through dimensionality reduction and visualization of the feature space
output by the gating layers, we discovered that the hypernetwork structure within
the dynamic layers is capable of effectively modeling various semantic associ-
ations between entity-relation pairs. A comprehensive series of experiments on
general datasets demonstrate that DSparsE achieves state-of-the-art performance
across multiple metrics.

1 INTRODUCTION

Knowledge graph (KG) is a directed heterogeneous graph that represents concepts, entities, and
their relationships in a structured form using knowledge triples. Knowledge triples are typically
represented as (s, r, o), where s, r and o denote the subject entity, the relation, and the object entity,
respectively. KGs have a wide range of applications in various fields, including natural language
processing, information retrieval, recommendation systems, and semantic web technologies. They
are used to represent and organize knowledge in a structured and machine-readable format, which
can be used to power intelligent applications and services.

Some well-known KGs, including Wikidata (Vrandecic & Krtoetzsch, 2014) and DBpedia (Auer
et al., 2007) contain billions of knowledge triples, but they are often incomplete, which poses a sig-
nificant challenge in the field of knowledge graph research. To address this issue, knowledge graph
completion has emerged as an important task, which aims to predict missing knowledge triples. Link
prediction, a subtask of knowledge graph completion, focuses on predicting the missing entity in a
knowledge triple. Graph embedding, which uses low-dimensional, dense, and continuous vectors to
represent nodes and relationships in knowledge graphs, is the basis of most link prediction methods.
Existing link prediction models can be categorized into (Rossi et al., 2021) tensor decomposition
models (Kolda & Bader, 2009), translational models, and deep learning models (Rossi et al., 2021).
Recently, pre-trained language models, such as LLM (Large Language Model) in NLP, have also
been introduced into KG completion tasks.

This paper focuses on deep learning models for link prediction, starting from simple fully con-
nected models and convolutional neural network models, and optimizing their network structures
by introducing dynamic and sparse layers. ComDensE retains both shared fully connected layers
and relation-aware fully connected layers, and concatenates their results in the projection layer to
achieve feature fusion. The relation-aware layer can be seen as a dynamic weight that changes with
the input data. However, this dynamic processing is not comprehensive because the weights of the
shared layers are still fixed, which limits the network’s expressive power. MoE (Shazeer et al., 2017;

1

Under review as a conference paper at ICLR 2024

Jacobs et al., 1991) and CondConv (Yang et al., 2019) were proposed in 2017 and 2019, respectively.
The former divides the fully connected layer into several expert layers and uses a separate network
to generate the combination weights of these expert layers. It takes the expert blocks with the top
k weights for feature fusion. The latter uses dynamic convolution kernels based on input data for
convolution operations. These dynamic methods give the network greater flexibility and have been
shown to have good application potential. DSparsE introduces a structure similar to MoE into the
encoding end, but it takes the results of all expert blocks for weighted fusion instead of taking the
results of the top k expert blocks. This method could improve performance without a significant
increase of parameters.

Compared to fully connected networks, convolutional layers introduce position-related sparse con-
nections, which effectively suppress overfitting, save computing resources, and efficiently capture
feature correlations between adjacent pixels. However, in the task of knowledge graph link pre-
diction, the input to the neural network is a one-dimensional embedding vector, which does not
naturally have position information like pixels in images. Most of the aforementioned convolution-
based models (Dettmers et al., 2018; Nguyen et al., 2017; Jiang et al., 2019; Vashishth et al., 2020)
attempt to enhance the interaction between entity and relation embedding vectors in different dimen-
sions through different method. These novel methods achieved good results on many datasets, but
they still suffer from insufficient feature interaction and interpretability (Because the neighborhood
information of a point does not have actual meaning). Therefore, this paper considers directly using
sparse layers with adjustable sparsity to replace all dense layers. Sparse layers can be seen as an
upgrade to convolutional layers, while at the same time alleviating the overfitting issues faced by
dense layers through unstructured pruning (Dettmers & Zettlemoyer, 2019).

In addition, the research of ComDensE (Kim & Baek, 2022) shows that the effect of a single wide
network layer is even better than that of a deep network. This paper introduced residual connections
(He et al., 2016) to solve the problem of the inability to deepen network models. In summary, the
contributions of this paper can be listed as follows:

• We propose a novel knowledge graph link prediction model DSparsE, which introduces a dynamic
layer into the encoding end and a residual structure into the decoding end. This enables neural
networks to better perform information fusion and has the potential to deepen the network’s layers.

• By replacing the fully connected layer with a sparse layer, our model effectively mitigates overfit-
ting risks, all the while preserving its capacity for feature interactions. Significantly, at comparable
interaction levels, fixed sparse structures demonstrate enhanced predictability compared to meth-
ods like Dropout or the reduction of output dimensions.

• By applying dimensionality reduction to the output of the gating layer within the dynamic layer,
we discovered that the gating structure distributes weights to expert blocks based on the semantic
information of node-relation pairs. The visualization results demonstrate that the hypernetwork
structure is capable of effectively modeling semantic inverse relationships, antonymic relation-
ships, and similar relationships. Additionally, the entities within the entity-relation pairs induce
slight shifts in the hypernetwork’s output.

• Tests conducted on FB15k-237, WNRR18, and YAGO3-10 demonstrate that our proposed model
achieves state-of-the-art performance across multiple metrics. A series of extensive ablation stud-
ies and comparative experiments further elucidate the interconnections and efficacy of different
components within the model.

2 BACKGROUND

A knowledge graph is a collection of triples (facts) that represent relationships between entities,
denoted as G = {(s, r, o)} ⊆ E × R × E , where s ∈ E and o ∈ E are the triple subject and object,
respectively, and r ∈ R is the relationship between them. The link prediction task in KGs can be
regard as a point-wise learning to rank problem, where the goal is to learn a scoring function that
maps an input triple t = (s, r, o) to a score ψ(t) that reflects the likelihood of the fact encoded by t
being true, denoted as ψ : E × R × E 7→ R. In other words, the objective is to predict the missing
entity in a triple given the other two entities and the relationship between them using a mapping
function. Due to space constraints, we have placed the related work in Appendix A, while some
typical scoring strategy are shown in Appendix B.

2

Under review as a conference paper at ICLR 2024

Figure 1: The architecture of DSparsE. The model consists of two parts: the encoding end and the
decoding end. The encoding end is composed of a dynamic sparse MLP layer and a sparse relation-
aware layer. The decoding end is composed of several sparse residual layers.

3 METHODOLOGY

This paper proposes a new neural network model that reduces overfitting and improves network
robustness through network sparsification and dynamicization. On the one hand, this maximizes the
network’s expressive power, and on the other hand, it allows the network to deepen and improve its
performance ceiling. In ComDensE, deepening the network leads to a decrease in accuracy, and this
paper introduces residual connections to alleviate this effect.

Specifically, the proposed DSparsE model consists of two main parts: encoding and decoding. The
encoding part includes an MLP layer with k expert blocks (i.e structurally similar MLP sub-blocks
(Jacobs et al., 1991)) and a relation-aware MLP layer. The decoding part consists of m levels of
residual MLP connection layers. In contrast to conventional dense layers, each module introduces
a sparsity degree as a measure of its sparsity. The sparsity degree is a hyperparameter that can be
adjusted according to the dataset. The architecture of DSparsE is shown in Figure 1. Specifically,
DSparsE takes the d-dimensional head node embedding of a knowledge triplet and the d-dimensional
embedding of the relation as inputs, which are denoted by es and er, respectively. We first concate-
nate the two embeddings to form a 2d-dimensional vector, which is passed through a dynamic MLP
layer and a sparse relation-aware MLP layer. Each of these modules obtains a d-dimensional feature,
and the two features are concatenated and passed through an MLP layer to obtain a d-dimensional
vector eencode as the output of the encoding layer, which can be written as

eencode = f(ΩαP

P [f(ΩαR

R ([es; er])); f(Ω
αD

D ([es; er]))]) (1)

This d-dimensional vector is further passed through a decoding layer consisting of residual MLP
blocks to obtain the output vector edecode = ΩαRes

Res (eencode). After computing the dot product
of this vector with the node embedding vector in the embedding table and applying the sigmoid
function, the score is obtained as

ψ = σ(ΩαRes

Res (f(ΩαP

P [f(ΩαR

R ([es; er])); f(Ω
αD

D ([es; er]))]))eo) (2)

where ΩαD

D , ΩαR

R , ΩαP

P , ΩαRes

Res denote the dynamic MLP layer, relation-aware MLP layer, projection
layer and residual MLP layer, respectively. αD, αR, αP , αRes denote the sparsity degree of the
corresponding layer. σ denotes the sigmoid function.

3

Under review as a conference paper at ICLR 2024

3.1 DYNAMIC MLP LAYER

The dynamic MLP layer is a linear layer with dynamically changing weights. It can be posited that
the network weights change in response to variations in the input (Figure 2 shows the architecture
of the dynamic MLP layer). Such structure can enhance the robustness of the model, leading to
improved predictive performance. The dynamic layer takes an input vector ein and produces k
different output vectors eout1 , eout2 , ..., eoutk by passing the input vector through k different MLP
layers. The output vector eout of the dynamic layer is obtained by taking a weighted sum of these
output vectors. The combination weights are determined by another small network g(·), which
includes a dense fully connected layer and a softmax layer with temperature T as a parameter. The
whole process can be formulated as follows:

eouti = ΩαD

Di
(ein) (3)

g(ein) = softmax(Ωgate(ein)/T) (4)

eout = ΩαD

D (ein) =

k∑
i=1

g(ein)i · eouti (5)

where Ωgate,Ω
αD

Di
denote the gate network, the i-th dynamic MLP layer. T denotes the temperature

parameter. (·)i denotes the i-th element of a vector. eouti , ein, eout denotes the i-th output vector,
input vector and output vector of the dynamic MLP layer, respectively.

3.2 RELATION-AWARE MLP LAYER

When the relation in a knowledge triplet changes, the interaction pattern between the head and tail
nodes also changes (Ji et al., 2015; Kim & Baek, 2022). To achieve more accurate feature extraction
in the encoding stage, it is necessary to introduce a layer that changes dynamically with the input
relation. This can be viewed as part of the network’s dynamic nature (See Kim & Baek (2022) for
more details). The whole process can be formulated as

eout = ΩαR

R ([es; eri]) = W αR
ri [es; eri] + bri (6)

where W αR
ri , bαR

ri denote the parameter of the i-th relation-aware MLP layer. eri denotes the em-
bedding of the i-th relation. eout denotes the output vector of the relation-aware MLP layer.

3.3 RESIDUAL CONNECTION

As shown in Figure 3, a residual block consists of a sparse MLP layer, a batchnorm layer, an acti-
vation layer (ReLU or others), a dropout layer and a residual connection. Note that the input and
output dimension of the residual block should be the same. The decoder of DSparsE is a stack of m
residual blocks with the i-th the residual block formulated as

eResi = f(BN(W αRes

Resi
(eResi−1

) + bResi) + eResi−1
) (7)

where BN,W αRes

Resi
, bResi , eResi denote the batchnorm layer, the weight and bias of the sparse MLP

of the i-th residual block, and the output vector of the i-th residual block, respectively. Note that
eRes0 denotes the output of the projection layer.

As introduced in (He et al., 2016; Ma et al., 2022), residual connections help enhance the trainability
of deep networks and to some extent prevent deep networks from being outperformed by shallow
networks. Similar to the structure of residual convolutional neural networks that can promote net-
work learning, the results in 4.4.3 show that the residual MLP also performs well in link prediction
tasks.

3.4 SPARSE STRUCTURE

The parameter count of a convolutional block is relatively lower than that of a conventional fully
connected layer, because a convolutional layer is essentially a sparse and parameter-sharing linear
layer. This result in insufficient information exchange and difficulty in effectively extracting fea-
tures. Moreover, convolving the feature embeddings of nodes and relations does not have a natural

4

Under review as a conference paper at ICLR 2024

Figure 2: Dynamic MLP layer architecture. The dynamic
layer is composed of a series of structurally similar MLP
(Multilayer Perceptron) sub-blocks. The input is processed
in parallel through these sub-blocks and then combined with
weights. The combination weights are determined by a hy-
pernetwork structure formed by the gating layer.

Figure 3: Residual connection
structure. A residual MLP block
consists of a sparse MLP layer,
a batchnorm layer, an activation
layer (ReLU or others), and a
residual connection.

physical interpretation. Dense layers, on the other hand, can extract the most features, but they have
a large number of useless parameters, poor model generalization, and increased training difficulty
(Dettmers & Zettlemoyer, 2019). To tackle this issue, the present study introduces sparsity to the
network itself. In the initialization stage of training, the weight matrix is randomly set to zero with
a certain probability, forming a sparse MLP layer. A sparse MLP layer can be derived from two
directions. Firstly, it can be viewed as the result of enhancing interaction by using a convolutional
layer and removing weight sharing. Secondly, it can be viewed as the result of pruning a dense layer
(See Appendix C for detail). Given the parameter of a normal dense MLP layer W , b and a sparsity
degree α, we substitute W with W α, where W α is formulated as

W α
i,j =

{
0, with probability α
Wi,j , with probability 1− α

(8)

while b remains unchanged. Note that α is a hyper parameter that can be adjusted according to the
dataset.

4 EXPERIMENTS AND ANALYSIS

4.1 TRAINING STRATEGY

In our experiments, we use 1-N training strategy introduced by Dettmers et al. (2018) to train
DSparsE and adopt the binary cross entropy loss function given by

L = − 1

N

∑
i

yi logψ(s, r, oi) + (1− yi) log(1− ψ(s, r, oi)) (9)

whereN is the number of negative samples, yi is the label of the i-th negative sample, and ψ(s, r, oi)
is the score of the i-th node as an object. The label yi of all the entity oi such that (s, r, oi) ∈ G is 1,
and such that (s, r, oi) /∈ G is 0.

4.2 DATASETS AND EVALUATION SETTINGS

We evaluate the performance of DSparsE on two typicial datasets: FB15k-237 (Toutanova & Chen,
2015), WN18RR (Dettmers et al., 2018) and YAGO3-10 (Suchanek et al., 2007). Our evaluation of
link prediction is conducted in the filtered setting, where we calculate scores for all other potential
triples in the test set that are not present in the training, validation, or test set. To generate these
potential triples, we corrupt the subjects for object prediction. We use Mean Reciprocal Rank (MRR)

5

Under review as a conference paper at ICLR 2024

Table 1: Results on FB15k-237, WN18RR, and YAGO3-10. The best results are in bold, and the
second best results are underlined.

Model
FB15k-237 WN18RR YAGO3-10

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR
TransE (Bordes et al., 2013) 0.199 0.471 0.290 0.422 0.512 0.465 – – –

TransD (Ji et al., 2015) 0.148 0.461 0.253 – 0.508 – – – –
DistMult (Yang et al., 2014) 0.155 0.419 0.241 0.390 0.490 0.430 0.240 0.540 0.340

CompGCN (Vashishth et al., 2019) 0.264 0.535 0.355 0.443 0.546 0.494 – – –
R-GCN (Schlichtkrull et al., 2018) 0.151 – 0.249 – – – – – –

ConvE (Dettmers et al., 2018) 0.237 0.501 0.325 0.400 0.520 0.430 0.350 0.620 0.440
ConvKB (Nguyen et al., 2017) – 0.517 0.396 – 0.525 0.248 – – –

TuckER (Balažević et al., 2019) 0.266 0.544 0.358 0.443 0.526 0.470 – – –
ComplEx (Trouillon et al., 2016) 0.158 0.428 0.247 0.410 0.510 0.440 0.26 0.55 0.360

RESCAL (Nickel et al., 2011) 0.269 0.548 0.364 0.417 0.487 0.441 – – –
RotatE (Nickel et al., 2011) 0.241 0.533 0.338 0.417 0.552 0.462 0.402 0.670 0.495
KG-BERT (Yao et al., 2019) – 0.420 – – 0.524 – – – –

ComDensE (Kim & Baek, 2022) 0.265 0.536 0.356 0.440 0.538 0.473 – – –
InteractE (Vashishth et al., 2020) 0.263 0.535 0.354 0.430 0.528 0.463 0.462 0.687 0.541

DSparsE (proposed) 0.272 0.551 0.361 0.443 0.539 0.474 0.464 0.690 0.544

and Hits at N (Hits@N) metrics to evaluate the performance of our models on these datasets. To
ensure robust evaluation, we train and evaluate our models five times and average the performance
results. The detail of datasets and experiment settings are given in Appendix F.

4.3 OVERALL RESULTS

The overall results are shown in Table 1. It can be seen that DSparsE reached state-of-the-art per-
formance on FB15k-237, WN18RR and YAGO3-10 among neural based models. On FB15k-237,
it achieves a improvement of 2.3% and 3.0% on Hits@1 compared to ComDensE and InteractE, re-
spectively. On WN18RR, the improvement is not significant compared to CompGCN and TuckER,
but it still outperformed those models based on translation and deep learning. On YAGO3-10,
DSparsE achieves a state-of-the-art performance on all the matrices, which highlights the effec-
tiveness of the proposed model. Specifically, DSparsE performs better than those models based on
feature convolution. For instance, it achieves a improvement of 14% on Hits@1 compared to ConvE
and 6.6% on Hits@10 compared to ConvKB. KG-BERT, which is a link prediction model based
on BERT pre-trained language model, performs average on small knowledge graph like FB15k-237
and WN18RR, and its accuracy is much lower than DSparsE. It is observed that DSparsE outper-
forms KG-BERT, a model based on pretrained language model, with a 24% and 3% improvement on
hits@10 on the first two datasets, respectively. For more detailed results, please refer to Appendix
H.

4.4 ABLATION STUDIES & FURTHER EXPERIMENTS

4.4.1 THE EFFECT OF SPARSITY DEGREE

Figure 4: Hits@1 of InteractE, Com-
DensE, and DSparsE on FB15k-237
with different sparsity degree.

The sparsity of neural networks has a significant impact
on their performance. Starting from the fully MLP-based
model ComDensE and InteractE, we observe the effect of
sparsity on the neural network models and CNN based
models. According to Figure 4, the accuracies of both
ComDensE and DSparsE models first increase and then
decrease with the increase of sparsity, and the highest ac-
curacies of both models appear at a sparsity of 0.5, which
refers to the fact that low sparsity in the network can lead
to overfitting, limiting its potential, while appropriately
increasing sparsity can mitigate this issue. Excessively
high sparsity, however, reduces the number of effective
parameters and disrupts neuron connections, diminishing

6

Under review as a conference paper at ICLR 2024

the network’s expressive power and impairing training due to decreased neuronal interaction. No-
tably, DSparsE is less adversely affected by increased sparsity compared to ComDensE, owing to its
marginally greater parameter count and more complex structure.

On the other hand, the performance of the InteractE model demonstrates a consistent decrease with
increasing levels of sparsity. This trend is attributed to the model architecture of InteractE, where
only the final feature decoding layer is an MLP layer. Experimental results indicate that introducing
increased sparsity over the sparse interactions already captured by the earlier convolutional layers
adversely impacts the model’s predictive performance.

Figure 5: The effect after processing
the network in different ways. Sparse
represents the proposed sparse structure,
Downscale means cutting off part of
the output dimension of the network,
and Dropout means adding extra dropout
based on the original dropout layer.

The results demonstrate that enhancing a network’s ef-
fectiveness can be achieved by introducing random spar-
sity. However, this raises two questions:

1. Can actively reducing the scale of the linear layer
yield a similar effect?

2. Can a similar outcome be achieved by actively in-
creasing the Dropout probability?

To address these queries, we actively implemented two
modifications to the network. Firstly, we actively reduce
the output dimension in the linear layers to α times their
original number, ensuring the same level of interaction.
Specifically, for a linear layer with output dimension d,
we set the output dimension to d̂ = αd. Secondly, we
actively increase the dropout rate to p̂ = p + α(1 − p),
where p is the original dropout rate . The results are
shown in Figure 5. It indicates that actively decreasing
the number of neurons significantly reduced performance, whereas actively increasing dropout rate
drastically deteriorated the final outcomes. This is due to the fact that reducing the neuron number
confines the output to a smaller subspace, limiting expressive freedom. Simultaneously, since each
training iteration changes the dropout mask, an excessively high dropout actively introduces more
uncertainty, thus diminishing network stability.

Figure 6: Hits@1 of DSparsE on FB15k-237
with different number of experts and differ-
ent temperatures. t denotes the temperature
and Pure MLP denotes an MLP layer which has
the same number of parameters as the dynamic
layer.

Figure 7: The effect of Dynamic layer and
Relation-aware layer. The result shows a sig-
nificant difference when removing the dynamic
layer and the relation-aware layer, indicating
that both layers are essential to the model. The
experiment is conducted on FB15k-237.

4.4.2 THE EFFECT OF EXPERTS

Incorporating expert blocks into the dynamic MLP Layer, we observe enhanced dynamics and im-
proved generalization capabilities within the network. Figure 6 illustrates the variation in Hits@1

7

Under review as a conference paper at ICLR 2024

Figure 8: The output of the gated layer for
each entity-relation pair. Each point represents
a unique entity-relation pair in latent space after
tSNE reduction. The color of the point represents
the relation type.

Figure 9: The distribution of different enti-
ties in the same relation cluster (e.g. a rela-
tion named Location). The points that close to
each other are somehow semantic smilar in latent
space.

scores, contingent upon the number of expert blocks and different temperature settings. The exper-
imental results indicate that the predictive performance initially increases and then decreases with
the rising number of expert blocks. Initially, the addition of expert blocks can effectively enhance
feature fusion capabilities. This can be explained from two perspectives. Firstly, in contrast to a
non-partitioned fully connected structure (i.e., a very wide fully connected layer), the expert blocks
in the dynamic layer represent a form of regular sparse connections (See Appendix D for details).
These sparse connections are further integrated through a decision layer, namely a gating layer,
forming a hypernetwork structure, which brings robustness to the entire network. Secondly, the ex-
pert blocks in the dynamic layer can be viewed as sub-modules in an ensemble learning framework.
This ensemble learning architecture can effectively suppress the propagation of errors, reducing the
variance in prediction results. Under the hypernetwork’s constraints, the multi-modular architecture
can evolve towards the optimal direction. Experimental results demonstrate that different expert
blocks can directly extract features at various levels for node and relation embeddings and predict
links through different pathways (See Appendix E for more detail).

However, when the number of expert blocks becomes excessive, the performance deteriorates, which
can be attributed to two factors. First, an increase in network parameters introduces additional
training complexity, diminishing the network’s generalization performance. Second, the gating net-
work is fundamentally a multi-classifier. An excessive number of categories increases the decision-
making complexity of the network, making it more prone to difficulties.

Another important influencing factor is the temperature of the dynamic layer. High temperature
values make the weight combinations tend towards an average, leading to weight homogenization.
Conversely, low temperature values can render many experts ineffective in learning, thus impacting
the results.

DSparsE concatenates outputs from the Dynamic and Relation-aware layers, which our further ab-
lation studies show are both essential for optimal performance when used in tandem (Shown in
Figure 7). The Dynamic layer compensates for the Relation-aware layer’s lack of interconnected-
ness, facilitating the integration of diverse relational knowledge. The expert layer’s gating output is
determined by head-relation pairs, fostering a more entity-aware weighting system and enabling the
connection of different knowledge types. The interplay between these two layers yields enhanced
performance, highlighting their synergistic effect.

Moreover, our investigation into the gating layer’s outputs has unveiled some intriguing insights.
Each entity-relation pair in the dataset, upon processing through the gating layer, yields an output
vector o. These high-dimensional vectors were subjected to tSNE reduction, with the resultant
visualization displayed in Figure 8 and Figure 9. Each point in this figure represents a unique
entity-relation pair, distinguished by varying colors corresponding to different relationships. The
visualization result reveals the following observations:

8

Under review as a conference paper at ICLR 2024

• A tendency for entity-relation pairs of the same relationship type to cluster together, indicating
proximity within the output space of the gated layer outputs.

• The spatial distribution of clusters is significantly influenced by the nature of the relationships.
For instance, relationships denoting inverse meanings (e.g., nominee inv and nominee) or se-
mantic opposites (e.g., place of birth vs. place of burial) exhibit a tendency to spatially diverge,
exhibiting a unique central symmetry characteristic in the reduced dimensional space, Conversely,
relationships with similar semantics (e.g., nationality and city town) are observed to be proximate
in the latent space. This proved that DSparsE can capture various associations between entities
and relations.

• Alterations in the head entity of a relation pair result in minor shifts within the vector output,
confined to a limited scope. Within a fixed relation, the relative positioning of nodes within its
corresponding cluster does not display a discernible pattern. This phenomenon can be attributed
to the relatively lower frequency of triples involving individual nodes compared to those asso-
ciated with a particular relation type, posing challenges in accurately modeling semantic infor-
mation for nodes (Bordes et al., 2013). Still, certain examples, such as Mariah Carley and Dmitri
Shostakovich—both notable in the music domain—demonstrate proximity within clusters pertain-
ing to specific relations.

4.4.3 THE EFFECT OF RESIDUAL BLOCKS

Figure 10: Hits@1 of DSparsE on FB15k-
237 with different number of residual layer
depth. The result deteriorates dramatically
with the depth increases if no residual struc-
ture are used.

We observed during training that the need for
deeper decoding layers increases with the scale of
the dataset (shown in Appendix F). However, sim-
ply stacking MLP layers leads to a rapid decline in
performance. Employing residual connections ef-
fectively maintains the expressive capacity of the
network. The residual block helps deepen the net-
work and improve the trainability of the network.
Figure 10 shows the results of Hits@1 with dif-
ferent numbers of residual blocks and of Hits@1
with same parameters but without residual blocks.
To address the challenge of deepening the network
in ComDensE, DSparseE divides the network into
two parts: feature fusion and feature decoding. In
the feature fusion encoding end, a sparse and dy-
namic architecture effectively resolves the issue of
over-tuning in convolutional networks caused by sparse interactions and dense layers. It also en-
ables the network to generate distinct weight responses for different node-relation pairs. To alleviate
training pressure and enhance data generalization performance, residual connections are introduced
in the MLP layer of the decoding end. The presence of residual connections allows for further
deepening of the network without compromising performance, thereby ensuring enhanced expres-
sive capability. If the residual blocks are replaced with normal fully connected layers, the accuracy
decreases rapidly as the number of layers increases. In our model, the residual layers effectively
reduce the adverse effects of increasing the number of layers on training performance.

5 CONCLUSION

This paper proposed the DSparsE for graph completion. This is a new link prediction model struc-
ture that uses only MLP layers and employs sparse and residual structures to alleviate overfitting,
reduce the difficulty of training deep networks, and improve prediction performance. By introducing
expert blocks to construct a dynamic MLP layer, the model’s representation power was effectively
enhanced. Furthermore, we discovered that the hypernetwork structure formed by gated layers can
effectively capture the semantic features and semantic associations of entity-relation pairs, with the
results of latent space dimensionality reduction exhibiting interesting clustering and intra-cluster
deviation phenomena. The experimental results demonstrate that DSparsE achieves the best per-
formance across multiple metrics on three general datasets FB15k-237, WN18RR, and YAGO3-10.
Yet, future work is still required to further explore the patterns of network feature extraction.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, and Zachary G. Ives. Dbpedia: A
nucleus for a web of open data. semantic web, 2007.

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for knowl-
edge graph completion. arXiv preprint arXiv:1901.09590, 2019.

Zhen Bi, Siyuan Cheng, Ningyu Zhang, Xiaozhuan Liang, Feiyu Xiong, and Huajun Chen.
Relphormer: Relational graph transformer for knowledge graph representation. arXiv preprint
arXiv:2205.10852, 2022.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information pro-
cessing systems, 26, 2013.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph embedding via
dynamic mapping matrix. In Proceedings of the 53rd annual meeting of the association for com-
putational linguistics and the 7th international joint conference on natural language processing
(volume 1: Long papers), pp. 687–696, 2015.

Xiaotian Jiang, Quan Wang, and Bin Wang. Adaptive convolution for multi-relational learning.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 978–987, 2019.

Minsang Kim and Seungjun Baek. Comdense: Combined dense embedding of relation-aware and
common features for knowledge graph completion. In 2022 26th International Conference on
Pattern Recognition (ICPR), pp. 1989–1995. IEEE, 2022.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In Proceedings of the AAAI conference on artificial
intelligence, volume 29, 2015.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. arXiv preprint arXiv:2202.07123,
2022.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. A novel embedding
model for knowledge base completion based on convolutional neural network. arXiv preprint
arXiv:1712.02121, 2017.

Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel, et al. A three-way model for collective learn-
ing on multi-relational data. In Icml, volume 11, pp. 3104482–3104584, 2011.

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo.
Knowledge graph embedding for link prediction: A comparative analysis. ACM Transactions
on Knowledge Discovery from Data (TKDD), 15(2):1–49, 2021.

10

Under review as a conference paper at ICLR 2024

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The Semantic Web: 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings
15, pp. 593–607. Springer, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on World Wide Web, pp. 697–706, 2007.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on continuous vector space models and their
compositionality, pp. 57–66, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In International conference on machine learning, pp.
2071–2080. PMLR, 2016.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. arXiv preprint arXiv:1911.03082, 2019.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, and Partha Talukdar. Interacte:
Improving convolution-based knowledge graph embeddings by increasing feature interactions. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 3009–3016, 2020.

Denny Vrandecic and Markus Krtoetzsch. Wikidata: a free collaborative knowledgebase. Commu-
nications of the Acm, 57(10):78–85, 2014.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 28, 2014.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parame-
terized convolutions for efficient inference. Advances in Neural Information Processing Systems,
32, 2019.

Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert: Bert for knowledge graph completion. arXiv
preprint arXiv:1909.03193, 2019.

A RELATED WORKS

• Tensor decomposition models
Tensor decomposition models treat the link prediction task as a process of tensor decomposi-
tion. It encodes the knowledge graph as a three-dimensional tensor, which is incomplete due to
the incompleteness of the knowledge graph. Before learning, the tensor is decomposed into a
combination of low-dimensional vectors, from which embeddings of entities and relations can
be obtained. The model learns the relationships between vectors by setting a loss function and
predicts the existence and correlation of underlying facts in the knowledge graph. Some typical
tensor decomposition models include DistMult (Yang et al., 2014), ComplEx (Trouillon et al.,
2016), TuckER (Balažević et al., 2019), etc. Although these models are mostly lightweight and
easy to train, they are sensitive to sparse data and have limited modeling capabilities.

• Translational models
Translational models are based on the assumption that the relationship between entities can be
represented by the translation of an entity vector. The most representative translational model
is TransE (Bordes et al., 2013). This model learns the embeddings of entities and relations by

11

Under review as a conference paper at ICLR 2024

minimizing the energy function, and predicts the existence of underlying facts in the knowledge
graph. Translational models are simple and easy to train, but they are not suitable for modeling
symmetric relations and complex relations. To address these issues, TransH (Wang et al., 2014),
TransR (Lin et al., 2015), and TransD (Ji et al., 2015) models are proposed to enhance the mod-
eling capability by dynamically mapping entities and relations and suppress the homogenization
tendency of embedding vectors. Although these methods achieve good results on some datasets
such as WN18, FB15K, and FB13, the accuracy is still relatively low. Moreover, the improved
methods based on TransE introduce additional computational overhead.

• Deep learning models
Deep learning models for link prediction can be roughly categorized as :

1. Models based on simple fully connected layers (MLPs)
2. Models based on convolutional neural networks (CNNs)
3. Models based on graph neural networks (GNNs)
4. Models based on recurrent neural networks (RNNs) or transformers.

During link prediction, these networks typically take known node and relation embeddings as
input (some networks also take additional information as input), and obtain a result vector after
encoding and decoding the input data through several neural network linear and nonlinear lay-
ers. Networks based on simple fully connected layers, such as ComDensE (Kim & Baek, 2022),
add a Relation-aware component, which generates different weight matrices for different rela-
tions that appear in the training set based on the common layer. Models based on convolutional
neural networks (CNNs) include ConvE (Dettmers et al., 2018), ConvKB (Nguyen et al., 2017),
ConvR(Jiang et al., 2019), and InteractE (Vashishth et al., 2020). These methods convert embed-
ding vectors into two-dimensional feature maps in different ways and apply filters for convolution.
More specifically, ConvR uses the relation embedding vector as the convolution kernel, while In-
teractE enhances the interaction between features by reshaping them into a checkerboard pattern.
Models based on graph neural networks (GNNs) include R-GCN (Schlichtkrull et al., 2018) and
CompGCN (Vashishth et al., 2019). These methods use graph convolutional networks to grab the
neighborhood information of entities and relations and aggregate them into the entity embedding
vector. Those method natually take advantage of the graph structure and achieve good results on
some datasets. However, the parallelization challenge caused by the heterogeneous graph structure
limits the performance of these methods. Some methods achieve link prediction by fine-tuning
pre-trained language models, such as KG-BERT (Yao et al., 2019) and Rhelphormer (Bi et al.,
2022). Although these models achieve good results, they suffer from high complexity and require
external information beyond the knowledge graph (encyclopedia entries for instance).

B SCORING FUNCTIONS

Most link predition models based on machine learning methods consists of two components: an
embedding layer and a scoring function. The embedding layer maps the entities s, o and relations r
in the knowledge graph to a low-dimensional vector space Rd, and the scoring function calculates
the score of the triple based on the embeddings of the entities and relations. The widely used scoring
functions include several kind of distance-based functions, such as the l1 distance, l2 distance, and
cosine distance, and the bilinear function. The distance-based functions are usually used in trans-
lational models, while the bilinear function is usually used in tensor decomposition models. Some
typical scoring functions are shown in Table 2.

C INTUITIVE EXPLANATION OF THE SPARSE STRUCTURE

Figure 11 shows the intuitive process of the sparse structure derived from both convolutional and
dense layers.

D WHY DYNAMIC LAYER IS ACTUALLY A SPARSE LAYER

Figure 12 shows the comparison between a fully connected layer and a connected layer with expert
blocks. Let x be the input vector, W and Wi be the weight matrix and the weight matrix of the i-th

12

Under review as a conference paper at ICLR 2024

Table 2: Scoring functions. The notations es, er, eo are the embeddings of the subject, relation, and
object, respectively. wr is the normal vector of the hyperplane of the relation r. ω is the convolution
kernel. W is the weight matrix of the linear layer. f denotes the activation function. Pk denotes the
k-th permutation of the concatination of the input feature vector. ϕ denotes the reshaping operator. Ω
is the common projection function. Ωr is the relation-specific projection function. ⊛ is the circular
convolution operator. vec is the vectorization operator. [·; ·] is the concatenation operator. [·]1d is
the reshaping operator. The notation ⟨es, er, eo⟩ = eTs (er ◦ eo), where ◦ is the Hadamard product
operator. ℜ(·) is the real part operator.

Model Scoring functions ψ(es, er, eo)

TransE (Bordes et al., 2013) ∥es + er − eo∥p
TransH (Wang et al., 2014)

∥∥(es −w⊤
r eswr) + er − (eo −w⊤

r eowr)
∥∥
p

DistMult (Yang et al., 2014) ⟨es, er, eo⟩
ComplEx (Trouillon et al., 2016) ℜ(⟨es, er, eo⟩)

ConvE (Dettmers et al., 2018) f (vec (f ([es; er] ∗ ω))W) eo

InteractE (Vashishth et al., 2020) f (vec (f (ϕ (Pk)⊛ ω))W) eo

ComdensE (Kim & Baek, 2022) f
([
f
(
Ωr

(
[es; er]1d

))
; f

(
Ω
(
[es; er]1d

))]⊤
1d

W
)
eo

Figure 11: The intuitive explanation of sparse structure. The sparse layer can be regarded either
as a fully connected layer with unstructed pruning or as a convolution layer with enhanced feature
interaction with no weight sharing.

Figure 12: Comparison between a fully connected layer and a connected layer with expert
blocks. The Dynamic layer can be conceptualized as a structured sparsity in the neural connections
between the hidden layers and the output layer. Note that the activation process are omitted for
clarity.

13

Under review as a conference paper at ICLR 2024

expert block, respectively. Let b be the bias vector, and y be the output vector. The output of the
fully connected layer with one hidden layer can then be given by the following equation:

y = W2f(W1x+ b1) + b2 (10)

While the output of the connected layer with n expert blocks can be given by the following equation:

y =

n∑
i=1

ωif(Wix+ bi) (11)

which can be reformulated as:

y = W ′ concat(f(W1x+ b1); · · · ; f(Wnx+ bn)) + 0 (12)

where the W ′ is the equivalent weight matrix of the connected layer with n expert blocks, and
concat is the operator that concatinate the output of each expert block into a matrix. It can be
observed that W ′ is a well structured sparse matrix. Specifically, the number of non-zero elements
in each row is equivalent to the number of expert blocks. When the elements of each row are
grouped (with the number of groups equal to the number of expert blocks), each group contains
only one non-zero element. Moreover, the position of this non-zero element varies across rows, but
it is guaranteed to appear exactly once in each row.

E RESPONSE OF THE EXPERT BLOCK TO THE INPUT

Figure 13: The response of the expert block to the input. In the heatmap, the horizontally arranged
colored blocks represent the importance of the input neurons. Specifically, a higher brightness in-
dicates a higher normalized weight value corresponding to the input neuron. Note that for ease of
viewing, the image shows the inputs after the embeddings of the head and tail nodes have been re-
duced to only 32 dimensions each.

The importance of a neuron can be represented by its normalized weight, which we define as follows.

Definition 1 The normalized weight of a neuron is defined as the absolute value obtained after
normalizing the Euclidean norm (L2 norm) of the vector consisting of all weight coefficients asso-
ciated with it. Let ωn denotes the normalized weight of neuron of neuron n, norm denotes the norm
operator, and ωn denotes the vecotor formed by all the weights coefficient to a certain neuron n.
This can be specifically given by the following equation:

ωn = |norm(∥ωn∥2)| (13)

14

Under review as a conference paper at ICLR 2024

Figure 13 indicates that different expert blocks have maximal responses to different input neurons,
indicating that each input neuron has varying levels of importance to each expert block. Furthermore,
each expert block responds maximally to only a few neurons. This suggests that expert blocks are
capable of capturing distinct parts of the feature information, thereby reducing the decision errors
that might arise from a single layer.

F DETAILED EXPERIMENT SETTINGS

During training, we use Adam as the optimizer and search the hyperparameters with learn-
ing rate ∈ {0.0001, 0.001, 0.002, 0.005, 0.01}, batch size ∈ {128, 256}, embedding dimen-
sion ∈ {256, 512}, sparsity degree ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}, number of experts
∈ {10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60}, number of residual blocks ∈ {1, 2, 3, 4, 5, 10, 50}, tem-
perature ∈ {10, 15, 20, 25, 30}. We use the best hyperparameters found during the search to train
the model for 800 epochs. The best hyperparameters are selected based on the performance on the
validation set. The embedding dimension is set to 256 and the sparsity degree is set to 0.5 for all
relevent layers. The number of experts is set to 15, 35, 12 for FB15k-237, WNRR18, and YAGO3-
10, respectively. The number of residual blocks is set to 3, 1, 5 for FB15k-237, WN18RR, and
YAGO3-10, respectively. The temperature is set to 20, the learning rate is set to 0.002, and the batch
size is set to 128, respectively.

Table 3: The details of the datasets.

WN18RR FB15k-237 YAGO3-10

#Entity 40,943 14,541 123,182
#Relation 11 237 37
#Train 86,835 272,115 1,079,040
#Valid 3,034 17,535 5,000
#Test 3,134 20,466 5,000

G PARAMETER EFFICIENCY

DSparsE incorporates the sparse structure into the fully connected layer and the convolutional layer.
Table 5 shows the number of parameters of ComDensE, InteractE and DSparsE. It can be observed
that DSparsE has fewer parameters than InteractE and ComDensE on WN18RR18 and slightly more
parameters than ComDensE on FB15k-237. This is because the number of experts in DSparsE is
larger than the number of relation-specific weight matrices and shared dense layer in ComDensE.
However,our experiments conducted on an RTX 4080 laptop indicate that there is no significant
difference in the training speed among the three models.

It is important to note that although DSparse employs an unstructured sparse topology that typically
does not reduce computational overhead under normal circumstances, for well-designed hardware,
this sparse structure can effectively conserve computational resources and enhance processing speed.

Table 4: The number of parameters of ComDensE, InteractE and DSparsE.

Number of parameters FB15k-237 WN18RR
InteractE 18M 60M
ComDensE 66M 33M
DSparsE 69M 29M

Table 5: The average running time per epoch of ComDensE, InteractE and DSparsE on FB15k-
237. The device used for the experiment is NVIDIA GeForce RTX 4080 Laptop GPU.

model DSparsE ComDensE InteractE
FB15k237 2.67s 2.61s 2.58s
WN18RR 3.44s 3.60s 3.43s

15

Under review as a conference paper at ICLR 2024

H DETAILED RESULTS

Table 6 shows the detailed results for each relation category.

Table 6: Detailed results of 4 different kinds of relations 1:1, 1:N, N:1, N:N on FB15k-237. Note
that a given relation is 1:1 if a head can appear with at most one tail, 1:N if a head can appear with
many tails, N:1 if many heads can appear with the same tail, or N:N if multiple heads can appear
with multiple tails (Bordes et al., 2013).

Relation Type InteractE ComDensE DSparsE
MRR Hits@10 Hits@1 MRR Hits@10 Hits@1 MRR Hits@10 Hits@1

Pred Head

1:1 0.386 0.547 0.245 0.422 0.557 0.349 0.434 0.572 0.358
1:N 0.106 0.192 0.043 0.084 0.181 0.043 0.101 0.185 0.044
N:1 0.466 0.647 0.369 0.466 0.649 0.372 0.467 0.655 0.376
N:N 0.276 0.476 0.164 0.279 0.476 0.187 0.287 0.494 0.195

Pred Tail

1:1 0.368 0.547 0.229 0.422 0.563 0.349 0.428 0.570 0.351
1:N 0.777 0.708 0.881 0.779 0.884 0.717 0.778 0.886 0.796
N:1 0.074 0.141 0.034 0.084 0.169 0.043 0.088 0.171 0.042
N:N 0.395 0.617 0.272 0.396 0.618 0.285 0.395 0.624 0.286

16

	Introduction
	Background
	Methodology
	Dynamic MLP layer
	Relation-aware MLP layer
	residual connection
	Sparse structure

	Experiments and analysis
	Training strategy
	Datasets and evaluation settings
	Overall results
	Ablation studies & further experiments
	The effect of sparsity degree
	The effect of experts
	The effect of residual blocks

	Conclusion
	Related works
	Scoring functions
	Intuitive explanation of the sparse structure
	Why dynamic layer is actually a sparse layer
	Response of the expert block to the input
	Detailed experiment settings
	Parameter efficiency
	Detailed results

