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ABSTRACT

Visually-Rich Documents (VRDs), encompassing elements like charts, tables, and
references, convey complex information across various fields. However, extracting
information from these rich documents is labor-intensive, especially given their
inconsistent formats and domain-specific requirements. While pretrained mod-
els for VRD Understanding have progressed, their reliance on large, annotated
datasets limits scalability. This paper introduces the Domain Adaptive Visually-rich
Document Understanding (DAViD) framework, which utilises machine-generated
synthetic data for domain adaptation. DAViD integrates fine-grained and coarse-
grained document representation learning and employs synthetic annotations to
reduce the need for costly manual labelling. By leveraging pretrained models and
synthetic data, DAViD achieves competitive performance with minimal annotated
datasets. Extensive experiments validate DAViD’s effectiveness, demonstrating its
ability to efficiently adapt to domain-specific VRDU tasks.

1 INTRODUCTION

In today’s information-driven world, documents with complex visual structures, such as charts, tables,
and references, are vital tools for conveying detailed ideas. These Visually-Rich Documents(VRDs)
are commonly used across various domains, offering crucial insights backed by expertise. However,
manually extracting relevant information from the vast number of VRDs available is an overwhelming
and inefficient process, particularly in fields where domain-specific knowledge is critical. The task
becomes even more complex due to the variability in document formats, especially given the rapidly
increasing demands across multiple domains such as finance(Ding et al., 2023), education(Wang et al.,
2021), and politics(Wang et al., 2023), academic papers(Ding et al., 2024b). VRDs often exhibit
flexible and inconsistent layouts, making extracting accurate information a significant challenge.
From a human perspective, understanding a document in a new domain begins by examining its
format and layout, followed by a detailed analysis of its content in response to user demands. Several
pretrained large frameworks for VRD Understanding (VRDU), such as LayoutLMv3(Huang et al.,
2022) and StructExtv3(Lyu et al., 2024), have emerged, leveraging self-supervised learning to
capture general document structures. While these models show promise, their practical application in
specialized domains still relies heavily on large, annotated datasets tailored to the domain in question.
Creating high-quality annotations demands expert knowledge and extensive effort, particularly when
deciphering these documents’ logical arrangement and structure. While PDF parsers and OCR tools
can extract initial structural data—such as text lines or boxes—high-quality layout annotations often
require additional expert-guided processing, using source files like XML or HTML to refine the
extracted data. This bottleneck delays the deployment of VRDU models and limits their practical
scalability across diverse fields.

Beyond document structure, understanding document content also presents significant challenges.
Task-oriented datasets with detailed annotations are typically needed to train models for effective
information extraction or question-answering tasks, particularly in domains requiring specific ex-
pertise, such as finance, academia, or receipts. Annotating these documents requires an expert
understanding of their content and frequently involves preliminary layout annotations. This reliance
on expert annotations can hinder the deployment of VRDU models in real-world scenarios due to
the labor-intensive nature of the process. Recent advances in large language models (LLMs) and
multimodal large models (MLMs) have demonstrated promising zero-shot performance on VRDU
tasks by leveraging extensive training on varied corpora. These models can even be prompted to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

generate synthetic VRD-QA datasets, potentially reducing the need for manual annotations. However,
translating this capability into practical, real-world applications remains challenging. In response to
these challenges, this paper proposes a novel approach that leverages machine-generated synthetic
data to enable domain adaptation for Visually-Rich document understanding. By utilizing synthetic
data to bridge the gap between general and domain-specific documents from VRD structure and
content perspectives, we aim to significantly reduce the need for costly expert annotations. This
approach offers a promising solution for applying VRDU models in a more scalable and efficient
manner across various domains without compromising the accuracy of information extraction.

This paper introduces the Domain Adaptive Visually-Rich Document Understanding (DAViD) frame-
work, a novel VRDU approach that utilizes machine-generated synthetic data for domain under-
standing enhancement. DAViD is designed to achieve high performance in document understanding
tasks, even with limited annotated documents, by leveraging pretrained models from general domains
and introducing effective domain adaptation strategies. The framework incorporates fine-grained
(token-level) and coarse-grained (document entity-level) processing to enrich document representa-
tions while addressing domain-specific challenges through machine-generative synthetic data. By
automatically generating synthetic annotations, DAViD reduces the dependence on expert-labeled
datasets while maintaining high extraction accuracy for VRDU.

The key contributions of this paper are as follows: 1) Joint-grained VRDU Framework: We
present DAViD, a framework that integrates fine-grained (token-level) and coarse-grained (document
entity-level) document representations, leveraging pretrained models and synthetic data to achieve
competitive performance with minimal annotations. 2) Synthetic Data Generation Workflow: We
propose a workflow that generates structural and semantic annotations using off-the-shelf tools and
LLMs, significantly reducing manual annotation efforts and making the VRDU process scalable.
3) Domain Adaptation Strategies: We introduce strategies within DAViD to bridge the gap be-
tween general and domain-specific documents, enabling robust performance across new domains
without extensive domain-specific training data. 4) Comprehensive Validation: Extensive experi-
ments demonstrate that DAViD performs comparably to models trained on large annotated datasets,
effectively adapting to domain-specific VRDU tasks using synthetic data.

2 RELATED WORK

2.1 VISUALLY-RICH DOCUMENT UNDERSTANDING

Heuristic methods(Watanabe et al., 1995; Seki et al., 2007; Rusinol et al., 2013) and statistical
machine learning (Oliveira & Viana, 2017) were applied to closed-domain document applications, but
required expert customization. Recent advances in deep learning, including models based on LSTM
and CNN(Katti et al., 2018; Denk & Reisswig, 2019; Zhao et al., 2019), feature-driven approaches(Yu
et al., 2021; Zhang et al., 2020; Wang et al., 2021), and layout-aware pre-trained frameworks(Xu
et al., 2020; Wang et al., 2022; Hong et al., 2022), have shown promise in enhancing document
representation, but rely heavily on extensive, well-annotated data for domain-specific knowledge
transfer. Visual-cues integrated pretrained frameworks(Xu et al., 2021; Huang et al., 2022) aim to
generate more comprehensive document representations but are limited in capturing long-term logical
relationships. Recently, joint-grained frameworks(Yu et al., 2022; Lyu et al., 2024) have emerged
to address these challenges but face issues with heavy fine-tuning, similar to other deep learning
frameworks. Large Language Model (LLM)-based frameworks(He et al., 2023; Fujitake, 2024; Luo
et al., 2024) have improved zero-shot performance for document understanding tasks by leveraging
broad pretraining. However, they still require extensive training and data to perform effectively in
specific domains. The reliance on large-scale, annotated datasets remains a barrier, underscoring the
need for scalable solutions like synthetic data generation, as explored in this paper.

2.2 DOMAIN ADAPTATION AND KNOWLEDGE DISTILLATION

Domain adaptation is crucial in transfer learning, encompassing several variants such as unsupervized
domain adaptation(Wang et al., 2020) and source-free domain adaptation(Liang et al., 2020), which
focus on transferring knowledge from one source domain to a target domain that differs from our
scenarios. Another subproblem within transfer learning, knowledge distillation(Hinton et al., 2015),
involves transferring knowledge from a large-scale teacher to a small student networks. This has
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been widely applied in language (Adhikari et al., 2020), vision (Fang et al., 2021), and multimodal
applications (Ma et al., 2023), yet there is a lack of research exploring knowledge distillation in
Visually-Rich Document Understanding (VRDU). While some efforts, such as (Ding et al., 2024c),
have explored joint-grained knowledge distillation for VRDU, they rely heavily on large, annotated
datasets and require extensive fine-tuning for practical use. Our work addresses this gap by proposing
a novel approach that utilizes synthetic data to enable domain adaptation and distillation, achieving
competitive results without needing large-scale manual annotations.

3 PROBLEM FORMULATION

Preliminary Definition Given a collection of documents D = {D1, D2, . . . , Dm} from a specific
domain containing m documents, the purpose of the task is to extract the predefined k types of
key information Y = {Y1, Y2, · · · , Yk} from D. The entire document collection can be divided into
three subsets D = {Dn,Dg,Di}, including a relatively larger unannotated set Dn, a relatively small
manually annotated guidance set Dg, and Di a set containing practical inference cases of arbitrary
size. Following the setting up of the joint-grained frameworks, (Gu et al., 2021; Ding et al., 2024c), a
document D ∈ D has fine/coarse-grained information. Fine-grained information from a document D
is represented by a sequence of textual tokens, where TD = {t1, t2, · · · , tn} with text content and
the coordinates of the box of the bounding of each token, t = (text, box). D also can be represented
as a set of document semantic entities ED = {e1, e2, · · · , ep}, where each entity, e.g. paragraph,
table, figure, also comprised by e = (text, box).

Task Clarification Information extraction from VRDs involves fine/coarse-grained processes tailored
to the application and the granularity of the information. For the fine-grained level, each token in a
sequence {t1, t2, · · · , tn} is classified into predefined categories of the set Y. The goal is to determine
the most likely sequence of labels {y1, y2, · · · , yn} corresponding to the token sequence, maximizing
argmax(P (y1, y2, · · · , yn|t1, t2, · · · , tn)), y ∈ Y . Entity-level extraction, as outlined by Form-
NLU (Ding et al., 2023), employs a set of predefined keys Ykeyi ∈ Y and a group of entities ED =
{e1, e2, · · · , ep} to identify and retrieve a specific target entity eki

. This process can be formalized
through a model that aims to maximize conditional probability argmax(P (eki

|Ykeyk
, ED)).

Problem Formulation Suppose F is a KIE model incorporating pretrained backbones (teachers) from
diverse data domains like VRDs (Huang et al., 2022) or natural scene images (Tan & Bansal, 2019),
rich in implicit general domain knowledge. G is an ideal well-trained model in the target domain
D, and D and L are the probability distance and loss functions, respectively. Ft is F trained in the
guidance set Dg, represented as Ft = argmin(L(F(XDg

))). Fn is F learned on the synthetically
annotated dataset Fn = argmin(L(F(XDn

))) and Fnt is Fn further fine-tuned on Dg , represented
as Fnt = argmin(L(Fn(XDi

))). Here, XD denotes the encoded document representation of
any target document collection. This paper aims to propose approaches to distill knowledge from
pretrained backbones and a synthetically annotated set Dn, to achieve D(Fnt,G) < D(Ft,G).

4 DAVID: DOMAIN ADAPTIVE VISUALLY-RICH DOCUMENT
UNDERSTANDING WITH SYNTHETIC INSIGHTS

This section introduces the DAViD architecture, which consists of two main components: the Domain
Knowledge Infuser and the Task-Specific Knowledge Enhancers. The Domain Knowledge Infuser
is designed to infuse domain-specific knowledge into the model by leveraging synthetic data through
various domain adaptation strategies. It is trained on a larger unannotated set Dn, enriched with
machine-generated annotations. The Task-Specific Knowledge Enhancers are responsible for further
enhancing the model’s performance on specific tasks, utilizing a smaller, well-annotated guidance set
Dg . Following the detailed explanation of the DAViD framework, this section outlines the workflow
for domain adaptation and task-specific fine-tuning. Additionally, a pseudo-code is provided to guide
the implementation of the framework, ensuring clarity and precision in the process.

As demonstrated by previous work (Gu et al., 2021; Ding et al., 2024c), joint-grained document
representation learning captures both fine-grained details and coarse-grained relationships, offering a
more comprehensive understanding of Visually-Rich documents (Ding et al., 2024a). To this end,
we propose the framework F , which is composed of a Domain Knowledge Infuser AD and two
Task-Specific Knowledge Enhancers, AT and AE , for refining the model on fine-grained and
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Figure 1: DAViD model architecture contains a Domain Knowledge Infuser and Task-Specific
Knowledge Enhancer for various granularity.

coarse-grained tasks, respectively. The Domain Knowledge Infuser AD contains General Domain
Encoders (GDEs) that encode multimodal and multi-grained information from any subset of D. It
leverages synthetic data from Dn to perform various domain adaptation tasks, such as Structural
Domain Shifting (SDS), Synthetic Sequence Tagging (SST), and Synthetic Instructed-Tuning (SIT),
resulting in the adapted model ADn . The well-annotated set Dg is then used to further train ADn

to refine inter-grained and domain-aware knowledge, and to fine-tune the Task-Specific Knowledge
Enhancers AT or AE for fine-grained or coarse-grained tasks, respectively.

4.1 INITIAL REPRESENTATION

For the well-annotated guidance set Dg , each document Dt ∈ Dg contains high-quality nt tokens, rep-
resented as tDt

= {t1, t2, . . . , tnt
} and mt entity annotations, denoted as eDt

= {e1, e2, . . . , emt
}.

In contrast, for the unannotated set Dn, we employ standard tools to generate synthetic annotations,
resulting in nn tokens tDn = {t̂1, t̂2, . . . , t̂nn} and mn entities, eDn = {ê1, ê2, . . . , êmn}. The
tokens can be directly encoded by fine-grained GDE, GT , to obtain fine-grained textual token embed-
ding. For coarse-grained representations, we follow previous work (Luo et al., 2022) by utilizing a
pretrained backbone to acquire semantic S and visual V representations of each entity e. To better
integrate layout information and capture the correlation between token-entity pairs, we introduce a
new layout embedding method, named L2V, which converts layout information to visual cues by
rendering each input document image to a color-coded image based on the x and y coordinates. A
pretrained CNN-backbone extracts RoI features as layout embedding L of e using RoI-Align, similar
to visual feature extraction. Thus, each token t and entity e can be represented as {t : text, bbox}
and {e : S, V, L}. For any document D ∈ D, the initial representation of tokens T and entities E
can be fed into either the token-level general domain encoder GT or the entity-level encoder GE for
comprehensive representation learning.

4.2 DOMAIN KNOWLEDGE INFUSER

To acquire the domain-specific knowledge from synthetic document collections in Dn, we introduce
the Domain Knowledge Infuser module, AD, which contains two encoders: ET for fine-grained level
information and EE for coarse-grained information. These encoders serve as the General Domain
Encoders(GDEs). Various domain knowledge infusion tasks are employed to leverage synthetic
annotations and mitigate distribution gaps between general domain pretrained models and target
domain D. The following GDE and domain knowledge infusion tasks are designed:

General Domain Encoding (GDE) To encode the fine-grained features of any D ∈ D, we feed the
initial token representations t along with document image I into a VRDU model, ET , pretrained on a
general document collection to obtain a multimodal token representation T̃ = {T̃1, . . . , T̃n′}. Each
T̃i is additive with the corresponding L2V embedding LTi to produce the final token representation
Ti, where all n′ tokens in D are represented as T = {T1, . . . , Tn′}. Similarly, the initial entity visual
representation Vj of an entity Ej is fed into a visual-language pretrained model (VLPM) EE , to
obtain the augmented V ′

j . We then fuse multimodal entity representations by linear projection of the
concatenated V ′

j and Tj , addictive with LEj to get Ej , represented as Ej = Linear(V ′
j ⊕Tj)+LEj .

4
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All m′ semantic entities in document D can be represented as E = {E1, . . . , Em′}. For coarse-
grained level tasks, the query text is fed into ET or EE to obtain vectorized representations Q.

Structural Domain Shifting (SDS) To learn the correlation between tokens and entities, we propose
a joint-grained transformer encoder, Ejg . Document representation learned from general domains are
fed into Ejg to obtain augmented token and entity representations, represented as [T′,E′] = Eig([T,E]).
To further refine inter-grained contextual learning and acquire more domain-specific knowledge from
the large unannotated set Dn, we introduce the inter-grained alignment to predict the existence of
parent-child relationships between paired tokens and entities. For any synthetic token-entity pair
(t̂i, êj), where t̂i ∈ t and êj ∈ e, we obtain (T̂ ′

i , Ê
′
j). Then, we compute the alignment score γ as:

γt̂i,êj = Linear(T̂ ′
i )⊗ Linear(Ê′

i). (1)

If there is a parent-child relation between t̂′i and ê′j , then rt̂′i,ê′j = 1, otherwise rt̂′i,ê′j = 0. We have a

ground truth relation matrix Mt̂,ê = Rn′×m′
and a predicted matrix M ′

t̂,ê
. The training objective of

SDS is to minimize the mean square error between relation matrices:

argmin
θ

LMSE

(
p(Mt̂,ê|θ), p(M

′
t̂,ê
))
)
. (2)

Synthetic Sequence Tagging (SST) To enable the framework to capture fine-grained domain-specific
knowledge from Dn, we introduce the synthetic sequence tagging to train the Domain Knowledge
Infuser AD. For a document D ∈ Dn, each token t̂i ∈ t̂ has a corresponding label ŷi, where
Ŷ = {ŷ1, . . . , ŷn′}. Even if the synthetic labels of Ŷ differ from those in the guidance set Y, training
AD on SST helps to encode more domain-specific implicit knowledge to enhance fine-grained VRDU
tasks. The enhanced token representations T̂′ and entity representations Ê′ are then fed into DT as
source and memory inputs, refining inter-grained contextual learning. The output T̂′′ from DT is
fed into a linear layer to predict the logits Ŷ′

T : Ŷ′
T = Linear(DT (T̂′

T , Ê
′)). The training target is to

minimize the cross-entropy loss between Ŷ′ and Ŷ:

argmin
T′′

LCE(p(Ŷ
′|T̂′′), p(Ŷ)). (3)

Synthetic Instructed-Tuning (SIT) To enhance the coarse-grained level representations, we in-
troduce a Synthetic Instructed-Tuning, is introduced to train AD. For each document D ∈ Dn,
we use LLMs to generate synthetic question-answer pairs ŶE = Ŷkey1

: ev1 , . . . , Ŷkeyj
: êvj},

where êv ∈ ÊDt . The entity representations are fed as source inputs into entity decoder DE , with
the memory inputs being the combined embedding of synthetic key/question, Q̂ and fine-grained
representations T̂. A pointer net (PN) is placed on top of linear projection outputs of DE to get the
final prediction, represented as Ŷ′

E = PN(Linear(DE(Ê′, [Q̂′ : Ê′])))

4.3 TASK-SPECIFIC KNOWLEDGE ENHANCERS

Task-Specific Knowledge Enhancers are employed to fine-tune the DAViD framework for various
downstream tasks using the manually annotated guidance set Dg. The output token embeddings
T′ = {T ′

0, . . . , T
′
n} and entity embeddings E′ = {E′

0, . . . , E
′
n} from Domain Knowledge Infuser

AD are fed into different Task-Specific Knowledge Enhancers to perform fine-tuning for specific
tasks based on the required granularity. For fine-tuning sequence-tagging tasks, a max-pooling layer
is applied to extract significant information from each encoding component, which is then fed into a
linear classifier:

Y′
T = Linear(Maxpool(T̃,T′,T′′)) (4)

For coarse-grained entity retrieval tasks, a transformer decoder Der is used, where the inputs are
max-pooled entity representation, and the memory embeddings are the query sequence embeddings:

Y′
E = PN(Der(Maxpool(E′,E′′), Q)) (5)
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4.4 DOMAIN ADAPTATION AND FINE-TUNING

The entire workflow is systematically outlined to provide clear and reproducible steps for adapting
the framework to solve domain-specific document understanding tasks in real-world scenarios.
Upon acquiring a domain-intensive document collection D, it is divided into three subsets: D =
{Dn,Dg,Di}. Here, Dn contains the synthetic structure and content information, while Dg and Di

are smaller, manually annotated sets used for guidance and practical inference, respectively.

Algorithm 1 Overall Workflow

Input: Specific domain document collection D
Data Preprocessing: D = {Dn,Dg,Di}
Domain Adaptation: Train AD on Dn

i) GDE(t̂, ê)
Et,Ee−−−→ T̂, Ê

ii) SDS(T̂, Ê)
Ejg−−→ T̂′, Ê′

iii) Freeze Et, Ee and Ejg

iv) Fine-grained only: SST(t̂, ê) Dt−−→ T̂′′

v) Coarse-grained only: SIT(t̂, ê) De−−→ Ê′′, Q̂′′

Fine-Tuning: Train F on Dg

i) T′′,E′′ = AD(t, e)

ii) Fine-grained only: ST(T′′)
At−−→ YT

iii) Coarse-grained only: ER(E′′, Q′′)
Ae−−→ YE

Inference: Test F on Di

The first stage involves training the Domain Knowl-
edge Infuser on various domain adaptation tasks to
generate domain-specific document representations
from Dn. Suppose T̂ and Ê are token and entity
representations generated by the GDE. SDS is then
conducted to predict parent-child relations between
tokens (T̂ ′) and entities (Ê′) using the joint-grained
encoder Eig. To preserve the joint-grained repre-
sentation, the pretrained model components will be
frozen during the remainder of the domain adapta-
tion and fine-tuning stages. To further enhance fine-
grained and coarse-grained representations, two do-
main adaptation tasks based on synthetic insights
are introduced. SST is applied to train the output
from DT , allowing the model to capture more de-
tailed information and utilize preliminary synthetic
annotation. Similarly, SIT is used to augment entity representation, making entities query-aware.
After completing the domain-adaptive procedures, the manually annotated tokens tDg

and entities
eDg

are fed into the tuned AD to obtain TDt and EDg
. These representations are then fine-tuned using

Task-Specific Knowledge Enhancers. The final framework is evaluated on the inference set Di.

5 ENVIRONMENTAL SETUP

5.1 BENCHMARK DATASETS

We evaluate our proposed DAViD framework on two benchmark datasets to demonstrate its ability to
capture domain-specific layouts and semantic information from documents enriched with synthetic
insights. The selected datasets simulate real-world scenarios where the framework must adapt to
diverse document formats and content complexities: 1) CORD (Park et al., 2019) includes 800
training, 100 validation, and 100 test samples with multi-level annotations for printed/scanned
(P) receipt understanding. In line with previous document understanding frameworks (Xu et al.,
2021; Huang et al., 2022), we focus on sequence tagging (ST) to identify entity types like ”store
name”, ”menu quantity”, and ”void total 2) Form-NLU (Ding et al., 2023) contains 535 training, 76
validation, and a test set with 50 printed (P) and 50 handwritten (H) samples. From the dataset, we
focus on particularly Task B, which involves extracting key information from digital (D), printed
(P), and handwritten (H) forms. This task provides ground truth bounding boxes for form semantic
entities (e.g., ”Shareholder Name”, ”Share Class”) to facilitate target entity retrieval.

To prepare the benchmark datasets, as shown by Figure 2, we apply a) Document Collection Re-
allocation and b) Synthetic Layout Annotation for structural adaptation across all datasets. For
task-specific knowledge enhancers, additional procedures like c) Synthetic Sequence Tagging and d)
Synthetic Inquiry Generation simulate practical scenarios, enabling DAViD to capture domain-specific
variations and semantic relationships. a) Document Collection Re-allocation replicates real-world
scenarios by dividing the original dataset into three subsets: synthetic annotated, manually annotated,
and test sets. The original training set is used as the synthetic annotated set, the validation set as
the fully annotated set, and the test set for evaluation. Synthetic annotations are generated using
off-the-shelf tools to help the model learn and differentiate between layout and semantic information
at various granularities. b) Synthetic Layout Annotation extracts grouped textual tokens, textlines,
or document semantic entities to capture layout structures. Tools like PDFMiner, OCR tools 1, and

1For example, PaddleOCR: https://github.com/PaddlePaddle/PaddleOCR is widely used.
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Figure 2: Workflow for generating synthetic annotations for domain-specific understanding.

layout analysis models generate synthetic layout annotations, capturing bounding box coordinates
and textual content. c) Synthetic Sequence Tagging creates synthetic annotations for token sequences
to support fine-grained sequence tagging. Large language models (LLMs) generate labels for each
document, which may differ from manually annotated labels. Fine-tuning these synthetic annotations
enhances the model’s contextual understanding. d) Synthetic Inquiry Generation uses question-
answer pairs generated by LLMs to leverage general textual knowledge. Prompts are designed to
extract QA pairs, then matched with entities from layout analyzers. The highest-matched entity serves
as the retrieval target for instructed tuning 2.

5.2 BASELINES AND IMPLEMENTATION DETAILS

We employ a variety of pretrained backbones from both fine-grained and entity-level frameworks
to encode multi-granularity features. To evaluate the effectiveness of existing LLMs/MLLMs on
VRDU tasks, different models are tested under zero-shot settings3. 1) Fine-grained Baselines
We utilize three recently proposed fine-grained document understanding models: LayoutLMv3
(Huang et al., 2022), LiLT (Wang et al., 2022), and UDop (Tang et al., 2023), which leverage
multimodal information pretrained on general document collections, like IIT-CDIP (Lewis et al.,
2006), to perform key information extraction through sequence tagging tasks, achieving state-of-the-
art performance when fully trained on benchmark datasets. 2) Entity-level Baselines For entity-level
document understanding, we include RoI-based Vision-Language Pretrained Models (VLPMs) such
as LXMERT (Tan & Bansal, 2019) and VisualBERT (Li et al., 2019) as baselines for entity retrieval.
Initially pretrained on natural scene images, these models are further adapted through transfer learning
and domain-specific knowledge infusion, enabling effective key information extraction and question
answering in Visually-Rich Documents (VRDs). 3) Zero-shot LLMs and MLLMs LLMs and
MLLMs have shown impressive zero-shot performance across diverse domains. To assess their
capabilities on VRDU tasks, we evaluate GPT-3.5 and GPT-4, leading closed-source models for
mono-modality and multimodal tasks. For open-source models, we select QWen-VL (Bai et al.,
2023) (pretraining-based), LLAVA-1.5 (Liu et al., 2024) (instruct-tuned), and BLIP-3 (Xue et al.,
2024) (pretrained with instruct-tuning) based on their distinct training strategies. We follow the
configurations of baseline models for both token and entity levels as specified in (Huang et al., 2022;
Wang et al., 2022; Tang et al., 2023; Ding et al., 2023). Implementation Details are in Appendix B.

6 RESULTS AND DISCUSSION

We conduct comprehensive experiments accompanied by an in-depth analysis to demonstrate the
effectiveness of the proposed frameworks across diverse scenarios. Furthermore, additional robustness
evaluations, along with the impact analysis of varying quantities of the synthetic dataset, are provided
in Appendix D for a more thorough comparison and understanding.

6.1 PERFORMANCE ANALYSIS

Overall Trend Table 1 presents the performance of various model configurations, demonstrating the
effectiveness of the proposed domain adaptation methods in capturing domain knowledge. Due to
their strong baseline performance, LayoutLMv3 and LXMERT were selected as token and entity

2More detailed dataset statistics and synthetic data analysis please refer to Appendix C
3Please refer to Appendix A to check more details about each group of models.
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encoders to construct the joint-grained Domain Knowledge Infusers AD within the framework F . The
results show that integrating fine and coarse-grained information within F outperforms mono-grained
baselines, boosting downstream task performance. We note that incorporating fine-grained features
significantly enhanced entity representation in FormNLU, with a performance gain of approximately
8% for the printed and 21% for the handwritten sets. All domain adaptation methods, including the
novel L2V positional features, improved performance. Detailed analyzes are in subsequent sections.

Entity Level FormNLU Token Level CORDP H
Full Training Set

Transformer 88.62 74.06 LayoutLMv3 96.56
VisualBERT 85.90 70.14 LiLT 96.07
LXMERT 94.15 82.80 UDOP 97.58

Tuning in Guidance Set (Dg)
Transformer 72.82 60.30 LayoutLMv3 87.08
VisualBERT 46.48 48.41 LiLT 86.74
LXMERT 81.21 64.66 UDOP 80.88

Joint-grained 89.60 85.76 Joint-grained 87.48
+ L2V 90.60 87.60 + L2V 88.11
+ SDS 91.11 88.78 + SDS 89.08
+ SIT 90.77 87.94 + SST 88.83

+ SIT + SDS 92.62 88.61 + SST + SDS 90.25

Table 1: Performance using full and limited train-
ing sets with domain adaptation strategies.

Breakdown Analysis Table 2 compares perfor-
mance across various information categories,
highlighting the benefits of the joint-grained
framework in generating comprehensive rep-
resentations. This framework enriches entity
semantics and token structures, leading to no-
table improvements—such as a 58% increase
in “cid” in FormNLU-H and an 18% increase in
”SubC” in CORD. While L2V enhances feature
representation overall, it may introduce inconsis-
tencies in flexible layout categories, like hand-
written ‘cid” in FormNLU. The proposed meth-
ods, especially SDS, consistently show robust
improvements across most categories, demon-
strating their effectiveness in capturing domain-
aware knowledge. Although leveraging LLM-
generated tags (SST) or QA pairs (SIT) boosts performance, it may lead to occasional instability. For
example, combining SDS with SST or SIT improve specific categories but may yield lower results in
others—such as a 20% decrease in CORD’s ”SubC” when using SDS+SST compared to SST.

Entity Level
FormNLU

Token Level
CORD

cid pdt gdt pvp SubC UP CCP SubOP H P H P H P H
LXMERT 45.83 30.00 72.00 69.39 78.00 83.67 98.00 67.35 LayoutLMv3 55.17 93.53 85.71 82.54
Joint-grained 50.00 88.00 66.00 18.37 92.00 79.80 100.00 89.80 Joint-grained 73.33 85.51 91.67 76.92
+ L2V 66.67 72.00 72.00 61.22 88.00 95.92 100.00 95.92 + L2V 64.29 94.12 84.62 82.54
+ SDS 79.17 88.00 66.00 61.22 88.00 89.80 100.00 95.92 + SDS 80.00 94.89 100.00 89.23
+ FST 62.50 78.00 72.00 67.35 90.00 85.71 100.00 100.00 + SST 84.85 91.43 80.00 80.65
+ FST + SDS 79.17 78.00 80.00 81.63 92.00 85.71 96.00 95.92 + SST + SDS 64.29 97.06 88.89 90.32

Note: ‘cid‘ = Company ID (ACN/ARSN), ‘pdt‘ = Previous Notice Date ‘gdt‘ = Given Date, ‘pvp‘ = Previous Voting Power
‘SubC‘ = Subtotal Count, ‘UP‘ = Unit Price, ‘CCP‘ = Credit Card Price, ‘SubO‘ = subtotal others

Table 2: Selective breakdown results of performance across representative categories.

(a) FormNLU-(P) (b) FormNLU-(H) (c) CORD

Figure 3: Performance of our model with stepped training set ratios on three test sets.

6.2 RESULTS OF FINE-TUNING WITH VARYING TRAINING RATIOS

Few-shot Testing We evaluated the robustness of our methods with varying amounts of annotated
data from Dg , using training sizes from 10% to 100% of Dt. As shown in Table 1, domain adaptation
consistently outperformed non-adapted baselines by leveraging domain-specific information from
the synthetic dataset Dn, although performance sensitivity varied across different tasks and training
sizes. For the entity-level FormNLU, both printed (P) and handwritten (H) test sets improved as
training sizes increased. Without domain adaptation, performance was poor in few-shot scenarios.
With just 10% of Dg, SDS achieved over 80% accuracy on both P and H sets, demonstrating its
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ability to capture domain-specific structural information and enhance semantic understanding. For
token-level results in CORD, incorporating coarse-grained information improved performance across
training sizes. SDS consistently outperformed other configurations, effectively utilizing synthetic
structural information from Dn. However, SIT and SST underperformed in few-shot settings, likely
due to reliance on synthetic LLM-generated samples that need more data to bridge distribution gaps.

FormNLU CORD
Config P H Config Test
Baseline 1.67 0.5 Baseline 0
Joint-grained 0 0 Joint-grained 0
+ L2V 0 0 + L2V 0
+ SDS 87.42 81.74 + SDS 0.05
+ SIT 5.7 0.17 + SST 0.25
+ SIT + SDS 47.65 44.22 + SST + SDS 4.21

Table 3: Comparison of zero-shot performance
on various configurations.

Zero-shot Testing We evaluated zero-shot perfor-
mance (Table 3) to assess domain knowledge cap-
ture. SDS effectively distilled structural knowl-
edge from Dn, achieving 87.42% on FormNLU
(printed) and 81.74% (handwritten). In contrast,
SIT showed minor improvements on the printed set
but decreased on the handwritten set, due to the dis-
tribution gap between digital-born QA pairs from
Dg and handwritten tests. For CORD, domain adap-
tation shows less impact than entity-level tasks, as
the joint-grained framework benefits entity repre-
sentations more than fine-grained token representations. Entities can contextually learn from tokens,
improving semantic understanding and attention alignment during domain adaptation and fine-tuning.
Tokens gain less from coarse-grained embeddings, highlighting the need for joint-grained frameworks
as a future research direction.

6.3 ABLATION STUDY

Effects of Training Epochs We observed that varying the number of training epochs (with ep. 1
representing one epoch in Table 4) for different domain adaptation methods impacts fine-tuning
results. Insufficient training can result in limited domain-specific information capture. For instance,
training the SDS+SST method for just one epoch on the CORD dataset yields about 2.5% lower
performance than two epochs. Conversely, increasing training epochs can cause the model distribution
to shift closer to Dn, but further away from Dg. For example, training SDS+SIT for three epochs
on the FUNSD dataset resulted in a performance drop of approximately 2.5% and 5% on sets P and
R, respectively. Finding the optimal number of epochs for each domain adaptation strategy requires
careful adjustment based on the specific dataset and task.

FormNLU CORD
Config P H Config Test
SDS (ep. 1) 91.11 88.78 SDS (ep. 1) 88.45
SDS (ep. 2) 89.93 86.60 SDS (ep. 2) 89.08
SDS (ep. 3) 91.11 84.42 SDS (ep. 3) 87.35

SIT (ep. 1) 90.94 87.77 SST (ep. 1) 88.83
SIT (ep. 2) 86.91 83.75 SST (ep. 2) 87.54
SIT (ep. 3) 86.07 81.41 SST (ep. 3) 85.71

SDS+SIT (ep. 1) 91.11 89.11 SDS+SST (ep. 1) 86.95
SDS+SIT (ep. 2) 92.62 88.61 SDS+SST (ep. 2) 90.25
SDS+SIT (ep. 3) 87.58 83.92 SDS+SST (ep. 3) 87.49

SDS Frozen 91.11 88.78 SDS Frozen 89.08
SDS Unfrozen 91.61 85.59 SDS Unfrozen 86.91
SDS+SIT Frozen 92.62 85.59 SDS+SST Frozen 90.25
SDS+SIT Unfrozen 88.59 85.93 SDS+SST Unfrozen 86.64

SDS with L2V 91.11 89.11 SDS with L2V 89.08
SDS without L2V 89.26 84.25 SDS without L2V 87.57
SIT with L2V 90.94 87.77 SST with L2V 88.83
SIT without L2V 85.91 87.94 SST without L2V 87.19

Table 4: Ablation results for FormNLU and CORD

Effects of Freezing To retain domain knowl-
edge infused from Dn by the joint-grained en-
coder Ejg , freezing its parameters after applying
SDS proved beneficial. It preserved the learned
structure and semantic insights, leading to bet-
ter performance during fine-tuning. As shown
in Table 4, unfreezing the models resulted in
lower performance. For example, SDS+SIT on
FormNLU-P dropped from 92.62% to 88.58%
when the parameters were not frozen.

Effects of L2V We evaluated the impact of the
L2V positional feature on domain adaptation
methods. As shown in Table 4, removing L2V
led to an approximate 2% performance drop.
This suggests that L2V enhances positional-
awareness in token and entity representations,
contributing to better document understanding.

6.4 COMPARISON WITH LLMS/MLLMS

We evaluated the state-of-the-art LLMs and MLLMs to address VRDU tasks using various mono-
and multi-modal prompts across different model checkpoints based on various training approaches,
comparing their performance and efficiency with the DAViD framework in Table 5. For close-source
GPT-4o, two prompts were used: the text-only prompt Pt : {K,C}, where K is the key text content
and C is the provided text content, and the text-vision prompt Ptv : {K,C, I}, where I is the target
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form image. GPT-3.5 uses Pt only and other open source MLLMs are used Ptv to leverage text and
vision information. GPT-4o with prompt Pt outperforms GPT-3.5 using the same prompt, while with
the multimodal prompt Ptv , GPT-4o achieves around a 13% increase in F1 score. Other open-source
MLLMs show an apparent gap between close GPT-series 4.

Model FormNLU P FormNLU H CORD*
Time F1 Time F1 Time ANLS

GPT-3.5 03:49 34.37 04:38 30.94 01:16 28.15*
GPT-4o (Pt) 04:46 42.09 04:19 36.00 01:48 29.55*

LLava (Ptv) 52:54 9.79 60:58 7.82 10:23 37.98
QWen (Ptv) 1:36:00 9.84 1:58:00 8.43 18:13 37.58
Blip3 (Ptv) 36:06 12.62 35:24 11.67 10:12 43.73
GPT-4o (Ptv) 20:02 59.88 20:49 49.15 07:55 79.46*

DAViD-ZS 03:37 87.42 03:31 81.74 - -
DAViD-Dg 03:37 92.62 03:31 88.78 00:31 90.25

Table 5: Performance between LLM/MLLMs and
DAViD. CORD* is adopted QA-style subset intro-
duced by LayoutLLM.

However, a significant gap remains between the
results of DAViD tuned on the guidance set
Dg and even the zero-shot setting DAViD-ZS.
LLMs/MLLMs still struggle with VRDU un-
der zero-shot scenarios, especially open-source
MLLMs. In contrast, the DAViD demonstrates
superior performance, suggesting that the pro-
posed frameworks and domain adaptation tech-
niques effectively distil knowledge from both
LLMs and VLPMs. Furthermore, the perfor-
mance of DAViD could be further enhanced by
improving the quality of the synthetically anno-
tated set Dn and incorporating more represen-
tative backbone architectures. We evaluated that of LLMs and MLLMs on a subset of the CORD
dataset provided by LayoutLLM (Luo et al., 2024), and the results indicate that the performance of
LLMs/MLLMs remains suboptimal for this task, as well as with less efficiency.

7 QUALITATIVE ANALYSIS: CASE STUDIES

Figure 4: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green.
(ii) - (v) Incorrect predictions marked with red rectangles under various configurations. (vi) The best
performance was achieved using two domain adaptation methods, with no incorrect predictions.

To qualitatively demonstrate the effectiveness of the proposed framework, a real-world example from
the CORD is presented in Figure 15. Compared to baseline models, the joint-grained framework pro-
duces fewer incorrect predictions, likely due to the integration of coarse-grained information. In this
case, while SDS alone does not improve results, the SST approach shows noticeable enhancements.
Furthermore, combining both domain adaptation methods results in entirely accurate predictions.
This highlights the effectiveness of proposed domain adaptation techniques in leveraging domain
knowledge from noisily annotated data to improve downstream task performance 5.

8 CONCLUSION

This paper presents DAViD, a framework that enhances VRDU by capturing domain-specific knowl-
edge using synthetic annotations, achieving strong performance with minimal labeled data. DAViD
utilizes domain adaptation techniques to transition from general-purpose encoders to those optimized
for domain-specific document collections. The framework introduces SDS to create a robust joint-
grained representation by aligning fine- and coarse-grained features. For granularity-specific tasks,
LLMs generate synthetic annotations, supporting SIT and SST. Extensive evaluations demonstrate
that DAViD effectively captures domain-specific knowledge, significantly improving performance
and robustness across benchmarks with limited annotated samples.

4Appendix D.5.1 provides prompt details. Detailed LLM-based analysis are in Appendix D.5.2and D.6
5More visualized quantitative examples with analysis could be found in Appendix E.2
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A BASELINE MODELS

A.1 FINE-GRAINED DOCUMENT UNDERSTANDING FRAMEWORKS

• LayoutLM-v3 (Huang et al., 2022): is the first model to leverage visual cues in VRDU
without using pretrained CNN backbones. Various pretraining methods were proposed to
fuse the multimodal features from the general domain and achieve SOTA on several VRDU
downstream tasks.

• LiLT (Wang et al., 2022): is a language-independent layout transformer which supports
pertained on a single language document collections but fine-tuned on other language
tasks. A bi-directional attention complementation mechanism to learn the layout and
textual modality interaction with layout-aware pretraining tasks for capturing more general
document text-layout interaction.

• UDop (Tang et al., 2023): is an encoder-decoder structure that leverages text, image and
layout modalities to conduct the VRDU tasks in a sequence generation style. UDop is
pretrained in a cross-modal, self-supervised learning way and pretrained supervised tasks on
cross-domain benchmark datasets to acquire more robust representations.

A.2 COARSE-GRAINED VISION-LANGUAGE PRETRAINED MODELS

• VisualBERT (Li et al., 2019): is a transformer-based vision-language pretrained (VLPM)
model that contextualizes the understanding of visual cues from detected regions of interest
(RoI) and accompanying text within the domain of general scene images.

• LXMERT (Tan & Bansal, 2019): is a VLPM that utilizes the bounding boxes of Regions
of Interest (RoIs) to capture spatial relations between them. This approach leads to a more
comprehensive multimodal representation for general domain vision-language tasks.

A.3 LLMS/MLLMS FOR ZERO-SHOT TESTING

• LLaVA-1.5 (Liu et al., 2024): is built upon LLaVA, which was the first model to ex-
tend instruction-tuning to the language-image multimodal space. LLaVA-1.5 addresses
LLaVA’s limitations, particularly its underperformance in generating short-form answers
on academic benchmarks, by introducing a new MLP-based cross-modal connector and
employing scaling-up techniques, such as handling high-resolution images. We use
llava-hf/llava-1.5-7b-hf checkpoints for zero-shot testing.

• QWen-VL (Bai et al., 2023): QWen-VL employs the large language model QWen-7B
as its foundational component and integrates a Vision Transformer as the vision encoder.
These components are jointly trained using a cross-attention-based vision-language adaptor.
The model undergoes a two-stage pretraining process, initially learning from large-scale
weakly labeled image-text pairs, followed by fine-tuning with high-quality, fine-grained
vision-language annotations. We use Qwen/Qwen-VL checkpoints for zero-shot testing.

• xGen-MM (Xue et al., 2024): adopts ViT as its vision encoder, incorporating a perceiver
resampler to downsample the image embeddings, with phi3-mini serving as the large lan-
guage model decoder. This framework is designed to scale up LLM training by leveraging a
combination of multimodal interleaved datasets, curated caption datasets, and other publicly
available sources. We use Salesforce/xgen-mm-phi3-mini-instruct-r-v1
checkpoints for zero-shot testing.

• GPT-3.5 (OpenAI, 2023): is one of the most powerful closed-source mono-modality LLMs,
achieving remarkable performance and being widely employed across diverse daily applica-
tions such as customer support, content creation, and language translation. It is frequently
used as a baseline for evaluating zero-shot performance on linguistic-related tasks. We use
gpt-3.5-turbo-0125 checkpoints for zero-shot testing.

• GPT-4o (OpenAI, 2024): is an advanced multimodal LLM that extends its capabilities
to process diverse inputs, including language, vision, and audio. It demonstrates excep-
tional performance across various multimodal benchmark datasets and is widely used as
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a baseline for assessing zero-shot performance in complex multimodal tasks. We use
gpt-4o-2024-08-06 checkpoints for zero-shot testing.

B IMPLEMENTATION DETAILS

We follow the configurations of baseline models for both token and entity levels as specified in
(Huang et al., 2022; Wang et al., 2022; Tang et al., 2023; Ding et al., 2023). LayoutLMv3 and
LXMERT are used as the token (ET ) and entity (EE) encoders, respectively, based on their proven
performance. Our architecture features six-layer transformer encoders with a hidden size of 768 for
the joint-grained encoder (Ejg). Two additional six-layer transformer decoders with a hidden size of
768 serve as the token (DT ) and entity (DE) decoders. We maintain a consistent learning rate of 2e-5
and a batch size of 2 for domain adaptation and fine-tuning phases. All experiments are conducted on
a 16GB NVIDIA V100 GPU, with 60 epochs for CORD and 15 for Form-NLU. For open source
LLMs/MLLMs, all zero-shot experiments are conducted on a 22.5GB NVIDIA L4 GPU.

C DATASET INFORMATION

C.1 DATASET STATISTICS

The detailed statistics of adopted datasets with the machine-generated synthetic set statistics are listed
there. For FormNLU datasets, as it’s a text-embedded form that can be processed by the PDF parser,
the number of entities is counted as the textlines extracted by the PDFMiner. For the CORD dataset,
we use PaddleOCR to extract the text lines of the scanned receipts to acquire 13,200 entities.

Dataset Split Year Domain Task Script Lang. Synthetic Dataset Size
Train Val Test # IMG # Entities # QA # Cat

FormNLU 535 76 50/50 2023 Financial Form Key Entity Retrieval P/H English 535 103866 15278 N/A
CORD 800 100 100 2019 Receipt Sequence Tagging P English 800 13200 N/A 40

Table 6: Original and synthetic annotated datasets of adopted datasets.

C.2 SYNTHETIC DATA ANALYSIS

(a) FormNLU Syn-Struct (b) CORD Syn-Struct (c) FromNLU Syn-Text (d) CORD Syn-Text

Figure 5: Off-the-shelf-tool analysis. Synthetic-Structure (Syn-Struct) and Synthetic-Text (Syn-Text).

We analyze the distribution characteristics of synthetic annotations generated by off-the-shelf tools,
focusing on two primary types: 1) Layout structure variations arise from inaccuracies in the
regions of document semantic entities extracted by document parsing tools. However, text content
variations result from improperly grouped words and misrecognized text during the parsing process.
From Figures 5b and 5a, most documents exhibit mismatches in layout structures, with the average
Intersection over Union (IoU) between detected entities and ground truth entities falling below 0.3 in
both datasets. 2) Text content variations exhibit even lower Jaccard similarities, dropping below 0.2
for Form-NLU and 0.1 for CORD. Errors in entity detection can propagate during text recognition,
resulting in a larger distribution gap between extracted text sequences and the ground truth. Compared
to text-embedded source files that can be processed by PDF parsing tools like PDFMiner, scanned
documents processed by OCR tools tend to introduce even more variations, further complicating the
adaptation of models to these documents.
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D ADDITIONAL EVALUATION RESULTS

D.1 ALL BREAKDOWN RESULTS

In Section 6.1 of the main paper, we analyze the performance under different configurations of
selective categories. This section presents detailed experimental results for each sub-category,
providing insights into the effects of the proposed methods and modules on specific categories.

D.1.1 FORMNLU DATASET

Tables 7 and 8 compare the performance of the printed and handwritten sets. Overall, the printed set
demonstrates better performance, particularly for target entities located in the ”Table” area. This may
be due to a smaller domain gap between the digital training set and the printed set P, compared to the
handwritten set H. Additionally, joint-grained frameworks consistently outperform mono-grained
baselines, and incorporating domain adaptation methods significantly enhances both performance
and robustness across the framework.

Model F1 cnm cid hnm hid cdt pdt gdt cls ppn pvp cpn cvp
LXMERT 81.21 94.00 84.00 79.17 45.83 78.00 72.00 78.00 72.00 94.00 98.00 82.00 96.00
Joint-grained 89.60 98.00 92.00 97.92 50.00 88.00 66.00 92.00 100.00 100.00 100.00 92.00 98.00
+ L2V 90.60 98.00 98.00 79.17 66.67 94.00 72.00 88.00 98.00 98.00 100.00 96.00 98.00
+ SDS 91.11 100.00 94.00 91.67 79.17 90.00 66.00 88.00 100.00 86.00 100.00 100.00 98.00
+ SIT 90.77 96.00 94.00 93.75 62.50 82.00 72.00 90.00 100.00 100.00 100.00 100.00 98.00
+ SIT + SDS 92.28 98.00 94.00 95.83 79.17 86.00 80.00 92.00 98.00 92.00 96.00 98.00 98.00

Table 7: Model breakdown performance on FormNLU printed set. Explanation of abbreviations: cnm
(Company Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt (Change
Date), pdt (Previous Notice Date), gdt (Given Date), cls (Class of Securities), ppn (Previous Person’s
Votes), pvp (Previous Voting Power), cpn (Current Person’s Votes), cvp (Current Voting Power).

Model F1 cnm cid hnm hid cdt pdt gdt cls ppn pvp cpn cvp
LXMERT 64.66 66.00 76.00 88.00 30.00 58.00 69.39 83.67 8.00 84.00 67.35 72.00 74.00
Joint-grained 85.76 100 100 100 88.00 92.00 18.37 79.59 94.00 90.00 89.80 90.00 96.00
+ L2V 87.60 100 98.00 96.00 72.00 96.00 61.22 95.92 100 92.00 95.92 62.00 92.00
+ SDS 88.78 100 100 100 88.00 92.00 61.22 89.80 84.00 88.00 95.92 82.00 84.00
+ SIT 87.94 100 98.00 100 78.00 60.00 67.35 85.71 100 98.00 100.00 88.00 80.00
+ SIT + SDS 88.61 100 96.00 98.00 78.00 78.00 81.63 85.71 86.00 92.00 95.92 90.00 82.00

Table 8: Model breakdown performance on FormNLU handwritten set. Explanation of abbreviations:
cnm (Company Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt
(Change Date), pdt (Previous Notice Date), gdt (Given Date), cls (Class of Securities), ppn (Previous
Person’s Votes), pvp (Previous Voting Power), cpn (Current Person’s Votes), cvp (Current Voting
Power).

D.1.2 CORD DATASET

The overall and breakdown results of CORD datasets are also represented in Table 9 and 10. Compared
with integrating fine-grained level information to coarse-grained, there is limited improvement on
integrating coarse-grained information to fine-grained baselines.

D.2 STEPPED GUIDANCE SET RATIO RESULTS

To explore the effects of the size of the guidance set on test set performance, we reported and
analyzed the performance in Figure 3. The exact performance of each guidance set ratio is listed in
an additional analysis.

D.2.1 FORMNLU DATASET

In the FormNLU dataset, both the printed set (P) and handwritten set (H) exhibit similar patterns as
represented by Table 11 and Table 12. While incorporating fine-grained information can enhance
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Model Overall CNT DscP NM Num Prc SubC SubNM SubPrc UP CshPrc
LayoutLMv3 87.08 96.00 47.06 92.80 58.82 93.59 55.17 55.56 50.00 93.53 66.67
Joint-grained 87.48 96.02 47.06 92.87 76.19 93.15 73.33 57.53 72.73 85.51 46.15
+ L2V 88.11 95.81 44.44 91.60 62.50 94.35 64.29 57.14 58.82 94.12 62.50
+ SDS 89.08 97.53 44.44 92.57 30.77 95.09 80.00 62.16 64.86 94.89 55.56
+ SST 88.83 95.59 58.33 93.26 58.82 93.93 84.85 62.16 60.00 91.43 62.50
+ SST + SDS 90.25 95.59 53.33 92.08 73.68 95.48 64.29 52.46 74.29 97.06 50.00

Table 9: Model Comparison on Various Metrics (Part 1), including count (CNT), discount price
(DscP), miscellaneous items (Etc), item subtotal (ItmSubT), name (NM), number (Num), price (Prc),
subtotal count (SubC), sub name (SubNM), subtotal price (SubPrc), and unit price (UP).

Model ChgPrc CCP EMP MQtyC MTypC TotEtc TotPrc DscPrc SubO SrvPrc STP
LayoutLMv3 13.33 85.71 87.94 89.13 84.14 83.72 58.54 40.00 82.54 16.67 18.18
Joint-grained 0.00 91.67 91.55 86.87 86.30 94.12 50.91 28.57 76.92 36.36 0.00
+ L2V 0.00 84.62 92.65 93.62 87.42 94.02 57.14 16.67 82.54 20.00 28.57
+ SDS 0.00 100.00 90.65 91.49 92.09 94.12 62.50 10.00 89.23 25.00 0.00
+ SST 14.29 80.00 90.65 94.74 88.59 94.74 57.78 50.00 80.65 46.15 0.00
+ SST + SDS 0.00 88.89 91.97 93.48 91.03 96.55 63.41 33.33 90.32 40.00 11.11

Table 10: Model comparison on various metrics (Part 2), including cash price (CshPrc), change price
(ChgPrc), credit card price (CCP), e-money price (EMP), menu quantity count (MQtyC), menu type
count (MTypC), total etcetera (TotEtc), total price (TotPrc), discount price (DscPrc), subtotal other
(SubO), service price (SrvPrc), and subtotal price (STP).

performance and robustness, especially when using smaller guidance sets, the overall performance
still falls short compared to mono-grained baselines. However, the proposed domain adaptation
approaches significantly improve robustness when the guidance set size, Dn, is reduced. In particular,
Structural Domain Shifting (SDS) demonstrates a strong ability to capture domain-specific informa-
tion across all guidance set ratios. Moreover, combining Synthetic Sequence Tagging (SST) with
SDS results in even better performance when a larger, well-annotated guidance set is available.

Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Baseline 0.00 59.73 67.45 78.36 80.54 76.34 78.86 78.86 78.02 79.70 81.21
Joint-grained 0.00 47.65 76.68 79.87 83.89 85.74 86.91 87.42 86.24 88.93 89.60
+ L2V 0.00 48.83 76.68 85.57 84.23 88.93 87.42 86.58 87.92 89.93 90.60
+ SDS 87.42 89.43 88.93 90.77 88.59 90.77 87.42 90.77 91.61 91.28 91.11
+ SST 0.17 54.03 73.66 86.74 85.40 86.74 86.41 89.26 85.57 91.61 90.77
+ SST + SDS 47.65 85.57 88.26 88.93 88.26 89.09 88.26 91.78 90.27 90.77 92.62

Table 11: Performance comparison of models at different guidance set ratios on printed set P.

D.2.2 CORD DATASET

For the CORD dataset, different from the coarse-grained level task, integrating coarse-grained
information into the fine-grained framework brings limited improvement.

D.3 EFFECTS OF SYNTHETIC SET SIZE

Config. Form NLU Config. CORDP H
No DW 89.60 85.76 No DW 88.11
½ SDS 90.60 86.93 ½ SDS 89.27
½ SIT 91.28 85.76 ½ SST 87.93
½ SDS+SIT 90.60 85.59 ½ SDS+SST 88.25
SDS 91.11 88.78 SDS 89.08
SIT 90.77 87.94 SST 88.83
SDS+SIT 92.62 88.61 SDS+SST 90.25

Table 14: Effects of changing the size of synthetic
annotated set Dn

In practical applications, the availability of syn-
thetic document collections often depends on
domain-specific factors. To evaluate the impact
of varying Dn sizes, we analyzed how perfor-
mance changes with different synthetic set sizes,
as shown in Table 14 to demonstrate the effec-
tiveness of the proposed framework. Generally,
increasing Dn improves model performance dur-
ing fine-tuning on Dg . Domain adaptation meth-
ods that address structural domain shifts are less
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Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Baseline 0.00 48.58 63.32 68.17 66.00 66.67 67.50 62.98 65.33 64.82 64.66
Joint-grained 0.00 36.85 71.86 73.37 71.19 82.91 84.25 82.75 82.41 85.59 85.76
+ L2V 0.00 40.03 72.53 82.08 81.07 80.40 84.09 82.41 82.58 86.41 87.60
+ SDS 81.74 85.26 86.93 82.91 83.39 85.26 84.09 89.45 87.94 87.77 88.78
+ SST 5.70 44.39 67.17 81.24 76.55 83.25 84.09 87.94 84.09 87.10 87.94
+ SST + SDS 44.22 82.41 84.59 87.44 83.56 85.26 84.76 86.77 85.09 89.45 88.61

Table 12: Performance comparison of models at different guidance set ratios on printed set H.

Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Baseline 0.00 69.21 77.91 79.26 78.48 83.59 84.31 86.13 85.28 87.36 87.08
Joint-grained 0.00 68.57 75.77 78.68 79.24 83.33 84.03 86.24 85.01 86.98 87.48
+ L2V 0.00 71.01 76.68 78.82 78.68 82.25 84.47 84.93 85.24 87.08 88.11
+ SDS 0.05 72.03 77.85 77.10 78.69 84.83 85.21 86.41 85.84 88.20 88.81
+ SST 0.25 63.73 71.21 73.32 76.31 81.26 82.37 83.03 84.91 87.76 88.78
+ SST + SDS 4.21 68.61 77.67 79.34 80.31 85.35 85.22 87.38 86.48 88.25 89.33

Table 13: Performance comparison of models at different guidance set ratios on CORD dataset.

sensitive to Dn size, while methods like syn-
thetic inquiry tuning and sequence tagging are
more affected. This indicates that even a limited amount of synthetic structural information can
effectively bridge domain gaps, though a larger Dn size further strengthens model robustness and
overall performance.

D.4 DAVID ROBUSTNESS ANALYSIS

Model X ∼ N(0, 1), y ̸= ŷ X ∼ N(0, 1), ŷ = ∅
P2 P1.5 P1 P2 P1.5 P1

Baseline 86.08 82.65 74.83 85.58 82.09 75.20
Joint-grained 85.47 82.81 74.45 86.21 82.79 76.40
+SDS 84.28 81.79 74.62 85.78 80.19 76.82
+SST 85.70 81.96 75.73 84.36 81.99 75.80
+SDS+SST 87.20 82.26 76.23 86.32 82.89 75.52

Table 15: Performance comparison of models un-
der different types of synthetic annotation label
(incorrect and incomplete) across varying synthe-
sis ratios.

To assess the robustness of the proposed frame-
work and domain adaptation strategies, a syn-
thetic label is introduced into the guidance set
Dg of the CORD dataset. Instances are ran-
domly selected based on a normal distribution,
X ∼ N (0, 1), with their corresponding ground
truth label y replaced by the randomly chosen
label ŷ from the label space Y or assigned a ”no”
label (∅). Adjusting the parameter λ, the synthe-
sis ratio is controlled so that the proportion of
noisy instances is given by P (|X| > λ) = Pλ.
This allows for a thorough evaluation of the
model’s capacity to manage incorrect and incomplete labels across varying levels of label corruption.

Robustness Analysis - Incorrect Labels Incorrect label assignments cause models to learn inaccurate
information during training, which could be used to assess their robustness in handling noisy or
misleading data during training. As shown in Table 15, the joint-grained framework, warmed on
SDS with NST, exhibits superior robustness compared to all other configurations, significantly
outperforming the baseline. This highlights the effectiveness of the proposed frameworks and domain
adaptation strategies in mitigating the negative impact of incorrect labels and enhancing model
robustness in real-world applications.

Robustness Analysis - Incomplete Labels The absence or unavailability of labels prevents models
from learning effectively from samples with missing labels, which is used as another criterion to
assess the model’s robustness in dealing with incomplete datasets. As shown in Table 15, joint-
grained frameworks demonstrate consistent robustness compared to the mono-grained baseline model,
highlighting that fusing coarse-grained information leads to a more robust fine-grained document
representation. Additionally, after tuning the joint-grained framework on various domain adaptation
tasks, the performance is further improved, illustrating that the proposed domain adaptation approach
enhances robustness in scenarios where labels are absent.
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D.5 MORE RESULTS AND ANALYSIS ABOUT LLMS/MLLMS TESTING.

D.5.1 PROMPT DETAILS

The prompt details for each employed LLM/MLLM within the FormNLU dataset are provided in
Table 16. The generated outputs are subsequently post-processed to compute the Jaccard distance
between target entities, thereby ensuring accurate identification of the entity most closely matching
the ground truth. For the CORD dataset, we adopt the LayoutLLM (Luo et al., 2024) configurations,
utilizing ANLS as the evaluation metric.

Model Prompt Image

GPT-3.5 Context: {} \n Above is the context of the target form document, please
extract the {} \n, the output format strictly follow: Value: xxx N

GPT-4o-t Context: {} \n Above is the context of the target form document, please
extract the {} \n , the output format strictly follow: Value: xxx N

LLAVA1.5
USER: Below image is the target form image. <image> \n Context: {}
\n Above is the context of the target form document, please extract the
{} only \n, the output format strictly follow: \n ASSISTANT:

Y

QWen-VL
Below image is the target form image. <image>\n Context: {} \n
Above is the context of the target form document, please extract the {}
only \n, the output format should strictly follow: \n Answer:

Y

xGen-MM Context: {} \n Above is the context of the target form document, which
is {} \n, output the answer only: \n Answer: Y

GPT-4o-v
Below image is the target form image. <image> Context: {} \n Above
is the document image and context of the target form document, please
extract the {} \n, the output format strictly follow: Value: xxx

Y

Table 16: Comparison of prompts and image utilization across different LLMs/MLLMs.

D.5.2 LLMS/MLLMS PERFORMANCE ANALYSIS

We show the breakdown performance of different LLMs/MLLMs predictions under zero-shot scenar-
ios of printed set in Table 17 and handwritten set in Table 18, respectively. The results indicate that
closed-source models exhibit relatively lower performance compared to other models. Consistent
with the overall performance trends, closed-source models, even when utilizing non-multimodal
output forms, tend to underperform against open-source MLLMs across most categories. Notably,
the digit-based entities, e.g. ppn, pvp, located within the table remain challenging using text inputs
alone, suggesting that incorporating visual information could enhance performance.

Models F1 cnm cid hnm hid cdt pdt gdt cls ppn pvp cpn cvp
GPT-3.5 34.37 96.00 88.00 47.92 17.00 32.00 30.00 66.00 96.00 0.00 4.00 12.00 4.00
GPT-4o-t 42.09 98.00 94.00 87.50 56.25 32.00 28.00 56.00 98.00 0.00 4.00 6.00 0.00
LLaVA-1.5 9.79 10.00 72.00 10.42 16.67 0.00 8.00 20.00 12.00 0.00 0.00 46.00 0.00
QWen-VL 9.84 8.00 56.00 31.25 10.42 6.00 10.00 48.00 2.00 2.00 6.00 8.00 6.00
xGen-MM 12.62 46.00 6.00 12.50 22.02 26.00 10.00 40.00 34.00 4.00 14.00 34.00 6.00
GPT-4o-v 59.88 34.00 52.00 92.00 6.00 46.00 14.00 93.75 94.00 98.00 90.00 60.16 82.00
Ours - Best 92.62 98.00 94.00 95.83 79.17 86.00 80.00 92.00 98.00 92.00 96.00 98.00 98.00

Table 17: Zero-shot LLMs/MLLMs overall F1 and Breakdown Accuracy on FormNLU printed set.
Explanation of abbreviations: cnm (Company Name/Scheme), cid (Company ID), hnm (Holder
Name), hid (Holder ID), cdt (Change Date), pdt (Previous Notice Date), gdt (Given Date), cls (Class
of Securities), ppn (Previous Person’s Votes), pvp (Previous Voting Power), cpn (Current Person’s
Votes), cvp (Current Voting Power).
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Models F1 cnm cid hnm hid cdt pdt gdt cls ppn pvp cpn cvp
GPT-3.5 30.94 86.00 62.77 58.00 18.74 20.00 16.33 34.35 90.00 4.94 10.12 31.00 6.17
GPT-4o-t 36.00 96.00 78.00 84.00 41.05 24.00 18.37 20.41 94.40 4.17 2.00 12.00 1.09
LLAVA 7.82 14.00 52.31 10.00 33.56 0.00 0.00 2.04 16.00 2.00 0.00 6.00 0.00
QWen-VL 6.00 8.43 36.00 20.00 24.00 20.00 6.12 18.37 2.00 2.00 4.08 2.00 8.00
xGen-MM 11.67 8.16 10.00 32.00 10.00 36.00 6.12 20.41 14.00 2.00 8.16 16.00 18.00
GPT-4o-v 49.15 98.00 29.59 54.73 97.14 39.78 24.15 26.00 78.77 96.00 20.18 48.06 5.41
Ours - Best 88.78 100 96.00 98.00 78.00 78.00 81.63 85.71 86.00 92.00 95.92 90.00 82.00

Table 18: Zero-shot LLMs/MLLMs overall F1 and Breakdown Accuracy on FormNLU handwritten
set. Explanation of abbreviations: cnm (Company Name/Scheme), cid (Company ID), hnm (Holder
Name), hid (Holder ID), cdt (Change Date), pdt (Previous Notice Date), gdt (Given Date), cls (Class
of Securities), ppn (Previous Person’s Votes), pvp (Previous Voting Power), cpn (Current Person’s
Votes), cvp (Current Voting Power).

D.6 QUALITATIVE ANALYSIS: LIMITATIONS OF LLM/MLLMS

Layout/Structure Interpretation LLMs excel at processing unstructured text but struggle with
understanding the spatial relationships and visual structures in form-based documents. This limitation
results in misaligned content, missed logical groupings, and poor performance in tasks requiring
precise layout comprehension, such as interpreting complex templates or extracting values from
nested structures, as shown in Figure 8.

Inconsistency LLMs frequently produce inconsistent outputs when handling form-based documents,
generating conflicting associations for the same key-value pairs or contradicting themselves across
different sections. This lack of coherence highlights their difficulty maintaining logical consistency
in structured content interpretation. For example, as shown in Figure 7, the LLM classifies differently
between the exact same form or the same company forms with the same person’s handwriting. The
same limitation existed in the receipt dataset, CORD9.

Lack of Contextual Understanding LLMs often generate incorrect answers by relying on superficial
patterns rather than understanding contextual relationships within the document. This results in
confusion between unrelated elements, making LLMs unsuitable for accurately processing structured
documents that require deeper contextual and spatial alignment, as shown in Figure 6

Figure 6: FormNLU sample with LLM-based document understanding (Lack of Contextual Under-
standing)
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Figure 7: FormNLU sample with LLM-based document understanding (Inconsistency)

Figure 8: FormNLU sample with LLM-based document understanding (Lack of Layout Interpretation)

E SUPPLEMENTARY OF CASE STUDIES

Quantitative and qualitative case studies have demonstrated the effectiveness and robustness of the
proposed joint-grained framework and domain adaptation methods. For further insights, additional
supplementary materials and comprehensive analyzes are provided herein.

E.1 SYNTHETIC LABEL SYNTHESIS DISTRIBUTION

As discussed in Section D.4, synthetic noise is introduced into the guidance set Dg of the CORD
dataset. This noisy dataset is then used to fine-tune the model, which is subsequently tested on a
well-annotated test set Dt. Compared to the FormNLU dataset, the CORD dataset shows limited
performance improvement. We applied random noise following a normal distribution to demonstrate
the robustness of the proposed DAViD framework, rather than focusing solely on performance. This
noise is introduced by replacing the original labels with incorrect labels (Figure 11) or marking them
as unknown (Figure 12). Figures 11 and 12 illustrate the distribution of original and noisy labels
across varying levels of noise rates.

E.2 ADDITIONAL QUALITATIVE ANALYSIS

To highlight the strengths and weaknesses of the proposed DAViD framework, additional qualitative
analyzes were conducted to compare the inference performance in a more straightforward manner.
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Figure 9: CORD LLM Case Study. (Inconsistency)

Figure 10: CORD LLM Case Study. (Inconsistency)

E.2.1 QUALITATIVE ANALYSIS ON CORD

Additional visualized qualitative analysis samples are provided below, accompanied by more detailed
descriptions in the captions.

E.2.2 QUALITATIVE ANALYSIS ON FORMNLU

The visualized qualitative analysis for both the FormNLU printed and handwritten datasets is also
presented. A more detailed analysis for each case is provided in the corresponding captions.
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Figure 11: Comparison of category distributions in the ground truth and after applying varying levels
of synthesis, where the ground truth labels are randomly replaced with another category following a
normal distribution.

Figure 12: Comparison of category distributions in the ground truth and after applying varying levels
of synthesis, where the ground truth labels are randomly replaced with unknown categories following
a normal distribution.

Figure 13: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green.
(ii) - (iv) Incorrect predictions marked with red rectangles under various configurations. (v,vi) The
best performance was achieved after applying SST to extract all key information correctly.
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Figure 14: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green.
(ii) - (vi) Incorrect predictions marked with red rectangles under various configurations. (vi) The
best performance was achieved using two domain adaptation methods, with only one incorrect
predictions. Compared to the fine-grained-only baseline LayoutLMv3, the Joint-grained framework
effectively reduces the number of incorrect cases. The application of SDS further decreases erroneous
predictions. While the number of errors remains unchanged after applying SST, combining SST
with SDS improves robustness.

Figure 15: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green.
(ii) - (iv) Incorrect predictions marked with red rectangles under various configurations. (v,vi) The
best performance was achieved after applying SST to extract all key information correctly.

Figure 16: Real-world FormNLU printed dataset sample: (i) Ground truth key information highlighted
in green. (ii) - (vi) Incorrect predictions are marked with red rectangles under various configurations,
and red dashed rectangles represent missing detection (unknown). The joint-grained framework
significantly enhances performance on the target sample image by integrating fine-grained information
into coarse-grained representations. While applying individual domain adaptation methods does not
effectively reduce the number of error cases, combining both methods yields the best performance,
with only one target entity value missing.
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Figure 17: Real-world FormNLU printed dataset sample: (i) Ground truth target value entities
are highlighted in green. (ii,v) Incorrect predictions marked with red rectangles under various
configurations. Other configurations could detect all cases correctly, which may result from the
effectiveness of joint-grained frameworks.

Figure 18: Real-world FormNLU printed dataset sample: (i) Ground truth key information highlighted
in green. (ii,iii) Incorrect predictions marked with red rectangles under various configurations. The
best performance was achieved using any domain adaptation method, resulting in no incorrect
predictions.

Figure 19: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information
highlighted in green. (ii) - (vi) Incorrect predictions marked with red rectangles under various config-
urations. Joint-grained framework could effectively reduce the number of incorrect predictions.

Figure 20: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information
highlighted in green. (ii) - (vi) Incorrect predictions marked with red rectangles under various
configurations. A joint-grained framework significantly reduces incorrect predictions by integrating
coarse and fine-grained features. The addition of SDS further enhances the prediction quality,
resulting in more accurate and reliable outcomes.
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Figure 21: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information high-
lighted in green. (ii,iii) Incorrect predictions marked with red rectangles under various configurations.
The best performance was achieved using any domain adaptation method, resulting in no incorrect
predictions.

Figure 22: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information
highlighted in green. (ii) - (v) Incorrect predictions marked with red rectangles under various
configurations. (vi) The best performance was achieved using two domain adaptation methods, with
no incorrect predictions. The joint-grained framework significantly enhances performance on
the target sample image by integrating fine-grained information into coarse-grained representations.
While applying individual domain adaptation methods does not effectively reduce the number of
error cases, combining both methods yields the best performance without any incorrect prediction.
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