
SpecHub: Provable Acceleration to Multi-Draft Speculative Decoding

Anonymous ACL submission

Abstract
As large language models (LLMs) become in-001
tegral to advancing NLP tasks, their sequential002
decoding becomes a bottleneck to achieving003
more efficient inference. Multi-Draft Specula-004
tive Decoding (MDSD) emerges as a promising005
solution, where a small draft model produces006
a tree of tokens with each path as a draft pre-007
dicting the target LLM’s outputs, which is then008
verified by the target LLM in parallel. However,009
current methods rely on Recursive Rejection010
Sampling (RRS) and its variants, which suffer011
from low acceptance rates in proceeding drafts,012
diminishing the merits of multiple drafts. In013
this work, we investigate this critical ineffi-014
ciency and sub-optimality through an optimal015
transport (OT) formulation that aims to maxi-016
mize the acceptance rate by optimizing the joint017
distribution π(x1:k, y) of k-draft tokens x1:k018
and an accepted token y. We show that the OT019
can be greatly simplified to a much smaller Lin-020
ear Programming (LP) focusing on a few proba-021
bilities in π(x1:k, y). Moreover, our analysis of022
different choices for the marginal distribution023
Q(x1:k) reveals its importance to the sampling024
effectiveness and efficiency. Motivated by the025
new insight, we introduce SpecHub, which026
adopts a special design of Q(x1:k) that signifi-027
cantly accelerates the LP and provably achieves028
a higher acceptance rate than existing strategies.029
SpecHub can be seamlessly integrated into030
existing MDSD frameworks, improving031
their acceptance rate while only incurring032
linear computational overhead. In extensive033
experiments, Spechub consistently generates034
0.05-0.27 and 0.02-0.16 more tokens per step035
than RRS with and without replacement and036
achieves equivalent batch efficiency with half037
as much concurrency. We attach our code at038
anonymous.4open.science/r/SpecHub.039

1 Introduction040

With the growing adoption of Large Language041

Models (LLMs) in diverse applications, there is042

a significant demand for faster inference and lower043

latency in both local computing and online API ser- 044

vices. However, the sequential generation process 045

of autoregressive language models complicates par- 046

allel computation. This challenge is exacerbated 047

by the memory limitations of current hardware ar- 048

chitectures, where RAM and cache communication 049

latencies often constrain performance, resulting in 050

underutilized computing capacity. 051

Speculative decoding (Leviathan et al., 2023; 052

Chen et al., 2023a) accelerates LLM inference 053

while preserving the model’s output distribution. 054

By generating a sequence of draft tokens in ad- 055

vance using a smaller model, it leverages GPUs 056

to verify tokens simultaneously through rejection 057

sampling. Recent advancements (Chen et al., 2024; 058

Jeon et al., 2024; Sun et al., 2024; Miao et al., 2023) 059

have further enhanced this approach by introducing 060

tree-structured multi-drafts, where each path repre- 061

sents a draft. These tokens are verified in parallel 062

during a single forward pass of the LLM. Using a 063

token tree increases the number of accepted tokens 064

by providing multiple options for each token posi- 065

tion, thus increasing the overall acceptance rate of 066

the algorithm and generation efficiency. 067

Despite having various tree constructions, draft 068

model designs, and hardware optimizations, exist- 069

ing multi-draft methods depend on recursive re- 070

jection sampling (RRS) for acceptance, which is 071

far from optimal. While RRS greedily accepts 072

the token from the first draft, it does not consider 073

the subsequent drafts and misses the opportunity 074

to dynamically adjust the current token’s accep- 075

tance strategy to improve the acceptance rates of 076

the later drafts. Consequently, later iterations in 077

RRS accept tokens according to a residual distri- 078

bution modified by previous acceptances, which 079

may no longer align with the draft distribution 080

these tokens are drawn from, resulting in low accep- 081

tance rates (Chen et al., 2023b). Meanwhile, Sun 082

et al. (2024) shows the design of an acceptance rule 083

can be optimized by solving an Optimal Transport 084

1

anonymous.4open.science/r/SpecHub

3 7 15 31

1.6

1.8

2

2.2

2.4

nodes in a token tree

B
at

ch
E

ffi
ci

en
cy

(T
ok

en
s/

St
ep

)

RRS
RRSw

SpecHub

(a) Llama2-7B with JF68m draft model on CNN dataset.

3 7 15 31

2

2.5

3

3.5

nodes in a token tree

B
at

ch
E

ffi
ci

en
cy

(T
ok

en
s/

St
ep

)

RRS
RRSw

SpecHub

(b) Vicuna-7B with EAGLE draft model on MT-Bench.

Figure 1: Decoding efficiency of SpecHub, RRS, and RRSw with different # nodes in a token tree on a binary tree
using temperature T = 1.0.

problem with Membership Cost (OTM). However,085

OTM requires tremendous computation overhead086

and is not practically feasible.087

In this paper, we solve the dilemma of the com-088

putational efficiency and sampling optimality in089

Multi-Draft Speculative Decoding (MDSD). We090

first reduce the OTM formulation to a much smaller091

linear programming (LP) by focusing only on the092

transport plan of scenarios where at least one draft093

gets accepted. We then investigate the overlooked094

design choice of draft sampling. While all previ-095

ous methods used either sampling with or without096

replacement, which makes finding the optimal so-097

lution notoriously hard, we show that an optimal098

acceptance rule can be trivially obtained if we in-099

stead choose only certain drafts of tokens. As a100

result, we can develop practical algorithms that bal-101

ance acceptance rate with computation overhead.102

Building on the new LP formulation and insights,103

we introduce SpecHub, a faster sampling and veri-104

fication paradigm with only linear computational105

overhead. Instead of constructing a dense distribu-106

tion of k-draft and the accepted token, SpecHub107

strategically selects drafts containing the highest108

probability token sampled from the draft model.109

The top draft token serves as a transport hub for an110

oversampled token 1 to transfer its excessive prob-111

ability mass to an undersampled token. This sparse112

structure simplifies and accelerates the underlying113

linear programming. SpecHub performs particu-114

larly well on LLMs since their output distributions115

concentrate on the top token, leading to a higher116

acceptance rate than RRS. It even provably outper-117

forms OTM under certain situations. The algorithm118

1Draft model probability exceeds that of the target model.

is widely applicable and can seamlessly integrate 119

into various MDSD algorithms, enhancing their 120

efficiency and overall decoding speed. 121

We empirically test SpecHub by implementing 122

it to various MDSD frameworks (Li et al., 2024; 123

Chen et al., 2024; Miao et al., 2023). We observe a 124

1−5% increase in the second draft acceptance rate, 125

which yields a consistent 0.02−0.16 improvement 126

in batch efficiency over current methods. More 127

impressively, SpecHub uses a tree with only half 128

the nodes of other methods to reach the same level 129

of batch efficiency. In our ablation study, SpecHub 130

brings consistent acceleration to LLM decoding 131

under different temperatures. Our toy experiments 132

further show that SpecHub sometimes outperforms 133

OTM in high-entropy regions. 134

2 Background and Related Work 135

Here, we review the sampling and verification 136

schema of speculative decoding. We discuss the 137

theory behind rejection sampling and explain why 138

naively extending it to Multi-Draft Speculative De- 139

coding (MDSD) becomes inefficient. 140

Speculative Sampling Language model decod- 141

ing is intrinsically serial. Let V denote the vocab- 142

ulary, a discrete set of tokens that the language 143

model may generate. Let x1:t = (x1, . . . , xt) ∈ 144

V⊗t denote a sequence of tokens. Then, the target 145

language model produces a conditional probabil- 146

ity p(·|x1:t), from which we sample the next token 147

xt+1 ∼ p(·|x1:t). However, this process is slow for 148

its serial execution. 149

Speculative decoding (Chen et al., 2023a; 150

Leviathan et al., 2023) addresses the issue by par- 151

allelizing the decoding process with a draft and 152

2

Figure 2: An example of a token tree of depth d = 4.
The tree is generated sequentially with the draft model
and evaluated concurrently with the target model. Each
path in the tree corresponds to a potential sequence of
tokens, with accepted tokens and rejected tokens high-
lighted. The black arrows indicate tokens that were
not visited. The dashed line represents a sample drawn
from the residual distribution after all drafts are rejected.
Our paper focuses on the evaluation of one step, how
we choose to sample the k = 2 tokens " dinner" and "
to" from the draft distribution q(·|"I want") and decide
which of them to get accepted based on the target prob-
abilities p(" dinner"|"I want") and p(" to"|"I want").

verify phase. It first uses a smaller draft model153

q(·|x1:t) to generate a draft (xt+1, . . . , xt+d) se-154

quentially. The depth of the draft, d, is usually155

around 5. This draft allows us to compute the tar-156

get distributions p(xt+τ |x1:t+τ−1) in parallel for157

τ ≤ d. Then, we iteratively accept each draft158

token using rejection sampling with acceptance159

probability min
(
1, p(x

t+τ |x1:t+τ−1)
q(xt+τ |x1:t+τ−1)

)
. In this sin-160

gle draft setting, speculative decoding equates to161

sampling directly from the target distribution. After162

rejection, we sample from the residual distribution163

norm(max(0, p(·|x1:t+τ−1)− q(·|x1:t+τ−1))).164

With only a single draft, the expected number of165

tokens generated at each iteration is upper-bounded.166

Assume the average acceptance rate for each to-167

ken is α, the maximum acceleration is 1/(1 − α)168

(Chen et al., 2024). Multi-Draft Speculative De-169

coding solves this issue (Miao et al., 2023; Sun170

et al., 2024). Instead of verifying one sequence per171

time, MDSD generates a tree of tokens and calcu-172

lates their target probability in parallel. Thus, when173

the first draft gets rejected, the other drafts can be174

picked up, and their offspring get verified in the175

current step. By doing so, we trade more parallel176

inference for more tokens generated in each step.177

In the rest of the paper, we ignore any temporal178

relationship and only focus on a single temporal179

step in the decoding process. In particular,180

given q(·|x1:t−1) and p(·|x1:t−1), we discuss the181

sampling and verification algorithm for generating182

the offspring drafts and accepting one. We simplify 183

the notation and use p = p(·|x1:t−1) ∈ ∆|V|−1 184

to denote the target model’s probability distri- 185

bution and q = q(·|x1:t−1) ∈ ∆|V|−1 to denote 186

the draft model’s distribution. Here, ∆|V|−1 = 187{
p ∈ R|V|

∣∣∣∣ ∑x∈V p(x) = 1, p(x) ≥ 0 ∀x ∈ V
}

188

is the probability simplex of dimension |V|. We 189

also notate the probability simplex of joint distri- 190

butions over a group of drafts x1:k = (x1, . . . , xk) 191

as: 192

∆|V|k−1 ={P ∈ R|V|k
∣∣∣∣ ∑

X∈V⊗k

P (x1:k) = 1, 193

P (x1:k) ≥ 0 ∀x1:k ∈ V⊗k} 194

Rejection Sampling in Speculative Decoding 195

We here provide a geometric intuition behind rejec- 196

tion sampling. Given a target distribution p and a 197

sample token from the draft distribution x ∼ q, we 198

seek to accept x as much as possible while ensur- 199

ing the outputted token from the process follows p. 200

We can visualize the process as sampling a point 201

under the probability mass function (PMF) of p. 202

The draft sample lies under the PMF of q. If the 203

token x is undersampled (q(x) < p(x)), we always 204

accept it. If it is oversampled (q(x) > p(x)), the 205

data point may or may not fall under p, in which 206

case we accept it with probability p(x)/q(x), the 207

height ratio between the two curves at this token. 208

Such methods fully utilize the overlap between the 209

two distributions and give the highest theoretical 210

acceptance rate. See Figure 3. 211

The residual distribution norm(max(0, p − q)) 212

captures the remaining probability mass that was 213

not covered by q. Sampling from this residual dis- 214

tribution ensures that any rejections are accounted 215

for by exploring the regions where p exceeds q. 216

This approach aligns the accepted samples closely 217

with p, effectively achieving maximal coupling and 218

ensuring the samples represent the target distribu- 219

tion p. 220

Recursive Rejection Sampling To facilitate 221

MDSD, previous methods use Recursive Rejection 222

Sampling, which naively applies rejection sampling 223

on the residual distributions. First, Recursive Re- 224

jection Sampling (RRS) samples k candidates inde- 225

pendently from the draft distribution. Then, it ac- 226

cepts each candidate with rejection sampling. If the 227

token is rejected, the target distribution is updated 228

to the residual distribution norm(max(p − q, 0)). 229

While the acceptance of the first candidate is high, 230

3

Figure 3: An illustration of rejection sampling. Sam-
pling from the draft distribution gives a point under the
blue distribution q. If the sample is also under the over-
lap with the target distributions p, we accept it. If not,
we reject the token and sample from the residual dis-
tribution, the remaining unexplored area max(p− q, 0)
normalized. The misalignment of the residual distribu-
tion and draft distribution makes Recursive Rejection
Sampling (RRS) inefficient in proceeding runs.

subsequent candidates suffer from the potential mis-231

match between the residual distributions and draft232

distribution q. Essentially, our residual distribution233

deducts draft distribution, so we expect it to diverge234

from the draft distribution q we used to generate235

our samples, leading to small overlapping areas236

and inefficiencies.237

Algorithm 1 Token-level RRS
1: Input: Target model distribution p, draft model distribu-

tion q, number of candidates k
2: Output: A token x selected using RRS without replace-

ment.
3: Generate k samples x1, . . . , xk independently or without

replacement from q
4: for i = 1→ k do
5: sample ri ∼ Uniform(0, 1)

6: if ri < p(xi)
q(xi)

then
7: Return xi

8: else
9: p← norm(max(p− q, 0))

10: if without replacement then
11: q(xi)← 0
12: q ← norm(q)
13: end if
14: end if
15: end for
16: Return x ∼ p

Recursive Rejection Sampling without Replace-238

ment In low-temperature settings, RRS may re-239

peatedly sample the same token and fail to diver-240

sify the tree. Furthermore, a rejected token will241

continuously get rejected since the corresponding242

entry of the residual probability is 0. Following 243

this intuition, several works(Chen et al., 2024; Jeon 244

et al., 2024; Li et al., 2024; Yang et al., 2024) pro- 245

posed Recursive Rejection Sampling without Re- 246

placement (RRSw). Instead of independently sam- 247

pling, it samples tokens without replacement. It 248

also modifies the draft distribution after each re- 249

jection to maintain a correct marginal distribution. 250

The differences are highlighted in Algorithm 1 in 251

red. While the method speeds up the decoding pro- 252

cess by avoiding repetition, it still falls short of 253

a theoretically optimal verification method as the 254

misalignment between residual distribution and the 255

draft distribution remains. 256

3 Mathematical Formulation of 257

Multi-Draft Speculative Decoding 258

In this section, we lay out the mathematical formu- 259

lation of the sampling and verification paradigm of 260

MDSD. We start by reviewing the Optimal Trans- 261

port with Membership Cost framework by Sun et al. 262

(2024) in Section 3.1. We show that it can simpli- 263

fied and propose an equivalent LP formulation that 264

greatly reduces computation complexity in Sec- 265

tion 3.2. Lastly, we point out that changing the 266

design of sampling can make the LP feasible for 267

real-world calculation in Section 3.3 while preserv- 268

ing the acceleration. We also discuss some consid- 269

erations for a real-world algorithm. 270

3.1 Optimal Transport with Membership Cost 271

We show how we finding the optimal sampling and 272

verification algorithm of MDSD that maximizes the 273

acceptance rate as solving an Optimal Transport 274

problem with Membership Cost(Sun et al., 2024). 275

Let the target distribution be p and the joint draft 276

distribution Q = q⊗k ∈ ∆|V|k−1 be the Carte- 277

sian product of the draft distributions that gives 278

the probability of sampling any particular series 279

of draft tokens x1:k, so Q(x1:k) =
∏k

i=1 q(xi). 280

Let y denote the accepted token. We define the 281

coupling between p and Q or equivalently a trans- 282

port plan from Q to p be a joint distribution 283

π(x1:k, y) ∈ ∆|V|k+1−1 whose marginal distribu- 284

tions satisfies
∑

y∈V π(x1:k, y) = Q(x1:k) and 285∑
x1:k∈Vk π(x1:k, y) = p(y). We use the term 286

coupling and transport plan interchangebly. The 287

Membership Cost is c(x1:k, y) =
∏k

i=1 1y ̸=xi
, an 288

indicator function of whether the accepted token 289

y equals any of the draft tokens xi. The transport 290

4

cost then calculates the expected rejection rate:291

C(π) = Ex1:k,y∼π

[
k∏

i=1

1y ̸=xi

]
.292

It is well-known that Optimal Transport on discrete293

space can be solved as a linear programming prob-294

lem as295

min
π∈Π(p,q)

∑
x1:k

∑
y∈V

π(x1:k, y)
k∏

i=1

1y ̸=xi
(1)296

where Π(p, q) is the set of all valid couplings be-297

tween p and q⊗k. However, such a program con-298

tains O(|V|k+1) variables, so even the fastest linear299

programming algorithm struggles to calculate in300

real-time.301

3.2 A Simplified Linear Programming302

Formulation303

While the Optimal Transport formulation provides304

a theoretical framework for understanding Multi-305

Draft Speculative Decoding, its computational com-306

plexity renders it impractical for real-time applica-307

tions. To address this, we introduce a simplified308

Linear Programming (LP) formulation that signifi-309

cantly reduces the number of variables while pre-310

serving the essence of the problem.311

The key insight behind this simplification is that312

the acceptance rate is primarily determined by how313

the sampled draft tokens are handled. Once a token314

is rejected, the subsequent actions, which involve315

recalculating the residual distribution and resam-316

pling, can be performed efficiently without explic-317

itly considering the full coupling.318

Instead of representing the entire coupling π,319

which has O(|V|k+1) variables, our simplified LP320

formulation focuses on π(x1:k, y = xi), i =321

1, . . . , k, a smaller subset of transport plan which322

denotes the probability of sampling the series of323

drafts and accepting the i-th token xi. This effec-324

tively reduces the number of variables to O(|V|k),325

making the problem more tractable. The remaining326

probabilities in the coupling, which correspond to327

cases where the target token does not match any328

of the draft tokens, are implicitly handled by the329

residual distribution.330

The simplified LP formulation is then: 331

minimizeπ 1−
∑

x1:k∈Vk

k∑
i=1

π(x1:k, xi) 332

subject to 333

π(x1:k, xi) ≥ 0 ∀x1:k ∈ Vk, i 334

k∑
i=1

π(x1:k, xi) ≤ Q(x1:k) ∀x1:k ∈ Vk 335

k∑
i=1

∑
x1:k∈Vk,xi=y

π(x1:k, y) ≤ p(y) ∀y ∈ V 336

Given a solution to this simplified LP formula- 337

tion, we can reconstruct the complete transport plan 338

π(x1:k, y). For any series of drafts x1:k and target 339

token y, if y does not equal one of the draft tokens 340

in x1:k, the entry is calculated as: 341

π(x1:k, y) # where y ̸= xi ∀i = 1, . . . , k 342

=
p(y)−

∑k
i=1

∑
x1:k∈Vk,xi=y π(x1:k, y)∑

y∈V p(y)−
∑k

i=1

∑
x1:k∈Vk,xi=y π(x1:k, y)

343

· (Q(x1:k)−
k∑

i=1

π(x1:k, xi)) 344

The first term is the unallocated target probabil- 345

ity mass or the residual probability of y normalized . 346

The second term is the remaining probability mass 347

of the series of drafts x1:k after allocating probabil- 348

ities to cases where the target token matches a draft 349

token. This reconstruction process ensures that the 350

validity of the coupling. This simplified LP formu- 351

lation, while ignoring the explicit representation of 352

the full coupling, retains the essential information 353

needed to optimize the acceptance rate. It provides 354

a practical and computationally feasible approach 355

to solving the MDSD problem. 356

Theorem 1 (Equivalence of LP to OTM). For a 357

given joint draft distribution Q and target distri- 358

bution p, the optimal solution of the simplified 359

LP formulation achieves the same transport cost 360

as the maximal coupling in the Optimal Trans- 361

port with Membership Cost (OTM) problem, i.e., 362

1 −
∑

x1:k∈Vk

∑k
i=1 π(x1:k, xi) = C(π∗), where 363

π∗ is the optimal coupling for the OTM problem as 364

defined in Equation 1. 365

Proof. See Appendix B. 366

5

(a) Optimal solution to LP

(b) RRSw solution to LP

Figure 4: A comparison of an optimal solution to an
RRSw solution under the LP formulation. Here, the
draft distribution q = [0.5, 0.3, 0.2] and the target dis-
tribution p = [0.1, 0.6, 0.3]. Each number on the top of
the cell is Q(x1, x2), and the numbers at the bottom of
the cell show π(x1, x2, x1) and π(x1, x2, x2), i.e. how
much of those draft probabilities are transferred to the
target probability. RRSw has a transport cost of 0.06
for not generating enough token ’b’.

Examining Recursive Rejection Sampling (RRS)367

How does an optimal solution to the Linear Pro-368

gramming (LP) formulation differ from RRS? Con-369

sider the simple case of k = 2. When a series of370

drafts x1, x2 is sampled according to Q(x1:2), we371

must decide whether to accept x1 or x2 based on372

the target distribution p. If x1 is significantly over-373

sampled, meaning p(x1) < q(x1). RRS makes374

this decision independently for each draft token,375

while the OTM solution considers the entire series.376

Specifically, the OTM solution will tend to allo-377

cate less probability mass to accepting x1 if x2 is378

undersampled (p(x2) > q(x2)) and more probabil-379

ity mass if x2 is also oversampled. This flexible380

adaptation ensures a more targeted distribution in381

subsequent drafts, leading to more efficient sam-382

pling and verification.383

Unbalanced Tree and Asymmetric Verification384

When considering a single temporal step in the sam-385

pling and verification process, the order in which 386

a pair of samples x1:k is selected appears inconse- 387

quential, as the branches are executed concurrently. 388

However, as suggested by Sequoia (Chen et al., 389

2024), the most efficient tree structure is often un- 390

balanced. If the acceptance rate of the early draft is 391

higher than that of the second, designing a tree that 392

extends deeper along the first few branches while 393

keeping other branches shallower can enhance effi- 394

ciency. Optimal algorithms may decrease the first 395

few drafts’ acceptance rate slightly to achieve a 396

higher overall acceptance rate, which we need to 397

carefully balance to leveraging the advantages of 398

unbalanced tree structures and significantly improv- 399

ing decoding speed and performance. 400

3.3 Design of Sampling 401

While the simplified LP formulation significantly 402

reduces the computational burden compared to the 403

OTM, it remains computationally expensive for 404

large vocabularies. Directly solving the LP prob- 405

lem is impractical, and previous research has pre- 406

dominantly focused on developing heuristics to 407

approximate the optimal solution. These heuristics, 408

such as Recursive Rejection Sampling (RRS) or 409

SpecTr(Sun et al., 2024), operate under a fixed joint 410

draft distribution, typically assuming independent 411

sampling with (Q = q⊗k) or without replacement 412

(Q(x1:k) =
∏k

i=1 q(xi)∏k−1
i=1 (1−

∑i
j=1 q(xj))

). 413

However, a crucial and often overlooked aspect 414

is the ability to modify the joint draft distribu- 415

tion Q, which unlocks a new dimension for op- 416

timization that has not been fully explored. The 417

key to designing a practical and efficient sampling 418

strategy is recognizing that Q does not need to be 419

a dense distribution over all possible drafts. In- 420

stead, we can strategically construct a sparse Q 421

that simplifies the LP formulation while capturing 422

the essential features of the target distribution. This 423

sparsity reduces the number of variables and con- 424

straints in the LP, making it significantly easier to 425

solve or approximate. 426

Ideally, the design of Q should satisfy two key 427

criteria: 1) Sparsity; Q should be sparse, concen- 428

trating on a small subset of highly probable draft 429

series to reduce computational complexity; and 2) 430

Efficiency; Q should effectively capture the es- 431

sential features of target distribution p, ensuring 432

that the sampled drafts are likely to contain the 433

target token. By carefully designing Q, we can bal- 434

ance computational efficiency and acceptance rate, 435

6

paving the way for practical and high-performance436

MDSD algorithms.437

4 SpecHub438

Building on the aforementioned insights, we in-439

troduce SpecHub, a faster sampling-and-verifying440

paradigm with only linear computational overhead.441

It effectively captures the transport features of442

OTM solutions to enhance the acceptance rate and443

can be applied to various multi-draft speculative444

sampling algorithms. Since using more than two445

drafts offers little gains in efficiency, SpecHub446

uses two drafts (i.e., k = 2) to reduce complexity.447

We thoroughly discuss expanding the algorithm to448

more drafts in Appendix D.449

First, we identify the token with the highest draft450

probability, denoted as a, and sample it alongside451

other tokens. We only populate the first column452

and the first row in the joint draft distribution Q.453

In particular, we define the joint draft distribution454

Q(x1, x2) as follows:455

Q(x1, x2) =

q(x1) if x2 = a,
q(a)q(x2)
1−q(a) if x1 = a,

0 otherwise.

456

This specific design of Q makes the solution to the457

simplified LP formulation straightforward. ∀x ∈458

V, x ̸= a, we have459

π(x, a, x) = min(p(x), q(x))460

π(a, x, x) = min(p(x)− π(x, a, x), Q(a, x))461

After transporting draft probabilities to target prob-462

abilities of non-top tokens, the remaining draft ac-463

cepts the top token a evenly out of p(a) The remain-464

ing entries in π can be reconstructed as described465

in the previous section. This solution effectively466

allocates as much probability mass as possible to467

the non-hub draft tokens while ensuring that the468

hub token a is never undersampled. This strategy469

maximizes the utilization of the draft distribution470

and leads to a higher acceptance rate compared to471

traditional methods like RRS.472

Analysis SpecHub offers several theoretical ad-473

vantages. First, since all drafts contain the474

top token a, it is accepted with a probability475

of p(a) and is never undersampled (see Corol-476

lary 1). Additionally, let α be the first draft ac-477

ceptance rate of rejection sampling, defined as478

α =
∑

xmax(p(x), q(x)). SpecHub achieves a479

Figure 5: SpecHub under the LP formulation. Here, the
draft distribution q = [0.5, 0.3, 0.2] and the target distri-
bution p = [0.1, 0.6, 0.3]. SpecHub focuses on the top
token "a", sampling pairs (x, a) and (a, x) with prob-
abilities q(x) and q(a)q(x)

1−q(a) , respectively. This method
ensures efficient allocation of acceptance probabilities.

higher acceptance rate than Recursive Rejection 480

Sampling (RRS) if the top token a satisfies the 481

condition q(a)
1−q(a) > 1 − α. We even guarantee 482

acceleration over OTM sampled with replacement 483

Q = q⊗2 if 1
1−q(a) > 2 or q(a) > 1

2 . Detailed 484

proofs of these results are in Appendix C.3. 485

While SpecHub might theoretically decrease the 486

first draft acceptance rate for the top token a in 487

rare cases, our empirical results, detailed in Ap- 488

pendix C.4, show that this effect is negligible. 489

5 Experiments 490

In this section, we empirically show can improve 491

batch efficiency in speculative multi-draft decoding. 492

We first show that SpecHub gives a significantly 493

higher acceptance rate for its better coupling prop- 494

erties in the second draft acceptance rate. We then 495

illustrate how the improvement transfers to higher 496

batch efficiency. 497

5.1 Experiment Setup 498

Our experimental setup is based on the Llama and 499

Vicuna models. To mimic the setup of Chen et al. 500

(2024), we utilize the JackFram/Llama-68m and 501

JackFram/Llama-160m (JF68m, JF160m) (Miao 502

et al., 2023) models as our draft models and the 503

Llama2-7B (Touvron et al., 2023) models as our 504

target models. We evaluate our results on the Open- 505

WebText (Gokaslan and Cohen, 2019) and CNN 506

DailyMail (See et al., 2017) datasets. For each 507

run, we use 200 examples to measure the accep- 508

tance rate vector and sample another 200 examples 509

for evaluation. The prompt length and generation 510

length are both set to 128 tokens. We evaluate our 511

7

T RRS RRSw SpecHub

0.3 0.0426 0.1114 0.1184
0.6 0.074 0.1089 0.1379
1.0 0.1021 0.114 0.166

Table 1: Acceptance Rate for JF68m Model

T RRS RRSw SpecHub

0.3 0.0399 0.1129 0.1221
0.6 0.073 0.1212 0.1351
1.0 0.091 0.1176 0.166

Table 2: Acceptance Rate for the JF160m Model

system on a single RTX A5000 GPU.512

We also implement our algorithm on EAGLE (Li513

et al., 2024). In short, EAGLE trains an autoregres-514

sive decoding head that takes both the embedding515

in the last layer of the target model and the draft516

tokens to predict a draft. We test its performance517

on Vicuna-7b (Zheng et al., 2024), a fine-tuned518

LLaMA chatbot using ChatGPT (OpenAI et al.,519

2024) to generate responses. We use the MT-Bench520

dataset and temperatures T = 0.6, 1.0 with binary521

trees and binary Sequoia trees.522

5.2 Main Experiments523

Second Draft Acceptance Rate We evalu-524

ate SpecHub at different temperatures T =525

0.3, 0.6, 1.0 using JF68m and JF160m as draft mod-526

els. We observe that SpecHub consistently outper-527

forms RRS and RRSw. In particular, at higher tem-528

peratures, SpecHub achieves up to 5% improve-529

ments in the second draft acceptance rate from530

0.114−0.117 to 0.166. At a lower temperature, the531

improvement over RRSw becomes smaller since532

the whole process assimilates greedy decoding. In533

fact, SpecHub is equivalent to RRS without replace-534

ment at zero temperature since both algorithms be-535

come top-2 greedy decoding. Results are shown in536

Table 1 and 2.537

Batch Efficiency We examine how the increased538

second-draft acceptance rate translates to better539

batch efficiency in different tree configurations. We540

empirically test SpecHub and RRS without replace-541

ment on binary trees of depth d with 2d − 1 nodes542

and report the batch efficiency in 1. We see that543

with JF68M as the draft model, SpecHub consis-544

tently outperforms RRS and RSSw by 0.02− 0.10545

and 0.04− 0.20 in batch efficiency at temperatures546

Figure 6: The change in batch efficiency at different
temperatures.

T = 0.6, 1.0. Meanwhile, using the EAGLE de- 547

coding head as the draft model, SpecHub generates 548

up to 3.53 and 3.33 tokens per iteration in the bi- 549

nary tree setting at T = 0.6, 1.0, an additional 550

0.08 tokens than RRS without replacement. We 551

also tested the batch efficiency on optimal binary 552

Sequoia trees(Chen et al., 2024). The full experi- 553

ment results are in Appendix G. 554

5.3 Ablations 555

We analyze the performance of SpecHub across 556

different temperatures (T) and compare it with 557

Recursive Rejection Sampling (RRS) and RRS 558

without replacement (RRSw). We use a binary 559

token tree of depth d = 5 with JF68m as the 560

draft model for Llama-2-7b. As shown in Figure 6, 561

SpecHub consistently outperforms both RRS and 562

RRSw regarding batch efficiency across all temper- 563

ature settings. At lower temperatures (T < 0.4), 564

SpecHub assimilates RRSw in performance. At 565

medium (0.4 ≤ T ≤ 0.6) and higher temperatures 566

(T > 0.6), SpecHub maintains superior perfor- 567

mance, demonstrating its robustness and adaptabil- 568

ity across varying entropy levels. 569

6 Conclusion 570

We presented SpecHub, a versatile and provably 571

faster verification method for Multi-Draft Specu- 572

lative Decoding. By improving the coupling of 573

the draft and target distributions, SpecHub can in- 574

crease the acceptance rate of the second draft by 575

1 − 5%, which increases the batch efficiency of 576

autoregressive LLM inference by up to 0.27 tokens 577

per iteration. In addition to providing practical 578

speedups, we believe SpecHub also provides in- 579

sight into the underlying mathematical structure 580

in MDSD. We hope this insight promotes future 581

research in this area. 582

8

Limitations583

Our algorithm, SpecHub, is currently designed to584

support only two drafts due to the computational585

complexities associated with using more drafts.586

This limitation may affect users who rely heavily587

on large-scale parallel computations, particularly588

when the number of nodes in the token tree exceeds589

32. However, such extensive parallelism is rarely590

utilized in practical applications, and most users591

will not encounter this limitation.592

Ethical Statement593

This work focuses on accelerating LLM inferenc-594

ing. There are no potential risks or negative effects595

that the authors are aware of. Additionally, we596

ensured that all datasets and benchmarks used in597

the article comply with their intended purposes and598

standards.599

Use of AI600

During our research, we used LLMs to help write601

code, parse experiment results, and revise lan-602

guages in paper writing.603

References604

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,605
Jason D Lee, Deming Chen, and Tri Dao. 2024.606
Medusa: Simple llm inference acceleration frame-607
work with multiple decoding heads. arXiv preprint608
arXiv:2401.10774.609

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,610
Jean-Baptiste Lespiau, Laurent Sifre, and John611
Jumper. 2023a. Accelerating large language model612
decoding with speculative sampling. Preprint,613
arXiv:2302.01318.614

Zhuoming Chen, Avner May, Ruslan Svirschevski,615
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and616
Beidi Chen. 2024. Sequoia: Scalable, robust, and617
hardware-aware speculative decoding. arXiv preprint618
arXiv:2402.12374.619

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun,620
Jie Huang, and Kevin Chen-Chuan Chang. 2023b.621
Cascade speculative drafting for even faster llm infer-622
ence. arXiv preprint arXiv:2312.11462.623

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,624
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas625
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed626
Roman, et al. 2024. Layer skip: Enabling early627
exit inference and self-speculative decoding. arXiv628
preprint arXiv:2404.16710.629

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 630
2024. Break the sequential dependency of llm in- 631
ference using lookahead decoding. arXiv preprint 632
arXiv:2402.02057. 633

Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext 634
corpus. 635

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, 636
and Di He. 2023. Rest: Retrieval-based speculative 637
decoding. arXiv preprint arXiv:2311.08252. 638

Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Juny- 639
oung Park, Mingu Lee, and Christopher Lott. 2024. 640
Recursive speculative decoding: Accelerating llm 641
inference via sampling without replacement. arXiv 642
preprint arXiv:2402.14160. 643

Wouter Kool, Herke Van Hoof, and Max Welling. 2019. 644
Stochastic beams and where to find them: The 645
gumbel-top-k trick for sampling sequences without 646
replacement. In International Conference on Ma- 647
chine Learning, pages 3499–3508. PMLR. 648

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 649
2023. Fast inference from transformers via spec- 650
ulative decoding. In International Conference on 651
Machine Learning, pages 19274–19286. PMLR. 652

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang 653
Zhang. 2024. Eagle: Speculative sampling re- 654
quires rethinking feature uncertainty. arXiv preprint 655
arXiv:2401.15077. 656

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto- 657
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang. 658
2023. Online speculative decoding. arXiv preprint 659
arXiv:2310.07177. 660

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao 661
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom- 662
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and 663
Zhihao Jia. 2023. Specinfer: Accelerating generative 664
llm serving with speculative inference and token tree 665
verification. arXiv preprint arXiv:2305.09781. 666

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 667
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 668
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 669
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 670
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 671
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir- 672
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, 673
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, 674
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock- 675
man, Tim Brooks, Miles Brundage, Kevin Button, 676
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany 677
Carey, Chelsea Carlson, Rory Carmichael, Brooke 678
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully 679
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben 680
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 681
Dave Cummings, Jeremiah Currier, Yunxing Dai, 682
Cory Decareaux, Thomas Degry, Noah Deutsch, 683
Damien Deville, Arka Dhar, David Dohan, Steve 684
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 685
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 686

9

https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318

Simón Posada Fishman, Juston Forte, Isabella Ful-687
ford, Leo Gao, Elie Georges, Christian Gibson, Vik688
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-689
Lopes, Jonathan Gordon, Morgan Grafstein, Scott690
Gray, Ryan Greene, Joshua Gross, Shixiang Shane691
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,692
Yuchen He, Mike Heaton, Johannes Heidecke, Chris693
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,694
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin695
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,696
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun697
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-698
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-699
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,700
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,701
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-702
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,703
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-704
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal705
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan706
Leike, Jade Leung, Daniel Levy, Chak Ming Li,707
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz708
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,709
Anna Makanju, Kim Malfacini, Sam Manning, Todor710
Markov, Yaniv Markovski, Bianca Martin, Katie711
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer712
McKinney, Christine McLeavey, Paul McMillan,713
Jake McNeil, David Medina, Aalok Mehta, Jacob714
Menick, Luke Metz, Andrey Mishchenko, Pamela715
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel716
Mossing, Tong Mu, Mira Murati, Oleg Murk, David717
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,718
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,719
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex720
Paino, Joe Palermo, Ashley Pantuliano, Giambat-721
tista Parascandolo, Joel Parish, Emy Parparita, Alex722
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-723
man, Filipe de Avila Belbute Peres, Michael Petrov,724
Henrique Ponde de Oliveira Pinto, Michael, Poko-725
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-726
ell, Alethea Power, Boris Power, Elizabeth Proehl,727
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,728
Cameron Raymond, Francis Real, Kendra Rimbach,729
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-730
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,731
Girish Sastry, Heather Schmidt, David Schnurr, John732
Schulman, Daniel Selsam, Kyla Sheppard, Toki733
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav734
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,735
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin736
Sokolowsky, Yang Song, Natalie Staudacher, Fe-737
lipe Petroski Such, Natalie Summers, Ilya Sutskever,738
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,739
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,740
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-741
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,742
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,743
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,744
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-745
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,746
Clemens Winter, Samuel Wolrich, Hannah Wong,747
Lauren Workman, Sherwin Wu, Jeff Wu, Michael748
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-749
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong750

Zhang, Marvin Zhang, Shengjia Zhao, Tianhao 751
Zheng, Juntang Zhuang, William Zhuk, and Bar- 752
ret Zoph. 2024. Gpt-4 technical report. Preprint, 753
arXiv:2303.08774. 754

Abigail See, Peter J. Liu, and Christopher D. Manning. 755
2017. Get to the point: Summarization with pointer- 756
generator networks. In Proceedings of the 55th An- 757
nual Meeting of the Association for Computational 758
Linguistics (Volume 1: Long Papers), pages 1073– 759
1083, Vancouver, Canada. Association for Computa- 760
tional Linguistics. 761

Benjamin Spector and Chris Re. 2023. Accelerating llm 762
inference with staged speculative decoding. arXiv 763
preprint arXiv:2308.04623. 764

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 765
2018. Blockwise parallel decoding for deep autore- 766
gressive models. In Advances in Neural Information 767
Processing Systems, volume 31. Curran Associates, 768
Inc. 769

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah- 770
mad Beirami, Himanshu Jain, and Felix Yu. 2024. 771
Spectr: Fast speculative decoding via optimal trans- 772
port. Advances in Neural Information Processing 773
Systems, 36. 774

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 775
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 776
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 777
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 778
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 779
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 780
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 781
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 782
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 783
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 784
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 785
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 786
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 787
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 788
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 789
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 790
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 791
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 792
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 793
Melanie Kambadur, Sharan Narang, Aurelien Ro- 794
driguez, Robert Stojnic, Sergey Edunov, and Thomas 795
Scialom. 2023. Llama 2: Open foundation and fine- 796
tuned chat models. Preprint, arXiv:2307.09288. 797

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. 798
2024. Multi-candidate speculative decoding. arXiv 799
preprint arXiv:2401.06706. 800

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, 801
Gang Chen, and Sharad Mehrotra. 2023. Draft 802
& verify: Lossless large language model accel- 803
eration via self-speculative decoding. Preprint, 804
arXiv:2309.08168. 805

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 806
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 807

10

https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2309.08168

Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.808
Judging llm-as-a-judge with mt-bench and chatbot809
arena. Advances in Neural Information Processing810
Systems, 36.811

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,812
Aditya Krishna Menon, Afshin Rostamizadeh, San-813
jiv Kumar, Jean-François Kagy, and Rishabh Agar-814
wal. 2023. Distillspec: Improving speculative de-815
coding via knowledge distillation. arXiv preprint816
arXiv:2310.08461.817

A Related Work818

Speculative Decoding Speculative decoding819

aims to execute multiple decoding steps in par-820

allel. Early work (Stern et al., 2018) predicts fu-821

ture tokens to accelerate greedy decoding. Spec-822

ulative Sampling (Chen et al., 2023a; Leviathan823

et al., 2023) extends to non-greedy decoding and824

uses rejection sampling to recover target distribu-825

tion optimally. Recent works focus on reducing826

the running time of the draft model and increas-827

ing the acceptance rate. OSD (Liu et al., 2023)828

and DistillSpec (Zhou et al., 2023) train draft mod-829

els on text generated by the target model. REST830

(He et al., 2023) constructs drafts through retrieval.831

Lookahead Decoding (Fu et al., 2024) breaks the832

sequential dependency with Jacobi Iterations. Self-833

Speculative Decoding (Zhang et al., 2023; Elhoushi834

et al., 2024) avoids additional models and gener-835

ates draft tokens by skipping intermediate layers.836

Several works, such as MEDUSA (Cai et al., 2024)837

and EAGLE (Li et al., 2024), reuse the feature em-838

bedding of LLMs’ last attention layer to predict839

multiple future tokens in a non-causal or autore-840

gressive manner.841

Multi-Draft Speculative Decoding Recent re-842

search explores using tree attention to generate mul-843

tiple drafts for speculative decoding (Miao et al.,844

2023; Spector and Re, 2023; Li et al., 2024). Sun845

et al. (Sun et al., 2024) formulate the acceptance846

of multiple drafts as a maximal coupling problem847

between the drafts and the target distributions and848

propose SpecTr with 1 − 1
e optimality guarantee.849

CS Drafting (Chen et al., 2023b) swaps in a lower-850

quality model to generate drafts for less relevant851

branches. Medusa (Cai et al., 2024) establishes852

candidates according to the Cartesian product of853

the multi-head predictions. Independently, Jeon et854

al.(Jeon et al., 2024) and Yang et al. (Yang et al.,855

2024) notice that a rejected token has zero proba-856

bility in the residual distribution and use sampling-857

without-replacement in the draft generation round858

with the stochastic beam search technique (Kool 859

et al., 2019). Sequoia (Chen et al., 2024) designed 860

a dynamic programming algorithm to search for 861

the optimal tree topology. 862

B Correctness of the LP formulations 863

We prove Theorem 1 to show that the simplified LP 864

formulation is equivalent to the Optimal Transport 865

with Membership Cost (OTM) problem. 866

Proof. We first show that we can construct a valid 867

coupling from a valid solution to the simplified 868

LP formulation. Given a solution represented by 869

π(x1:k, xi), we can derive a complete coupling 870

π(x1:k, y), which represents the joint probability 871

distribution of the k draft tokens x1:k and the target 872

token y. 873

The construction process involves allocating 874

probabilities based on the LP solution. For each 875

possible combination of draft tokens and target to- 876

ken (x1:k, y), if y matches any of the draft tokens, 877

meaning y = xi for some i, then the corresponding 878

entry in the transport plan is given by the solution 879

to the LP: 880

π(x1:k, y) = π(x1:k, xi) 881

If the target token y is different from all draft 882

tokens, the probability is calculated as the product 883

of two terms: 884

π(x1:k, y) 885

=
p(y)−

∑k
i=1

∑
x1:k∈Vk,xi=y π(x1:k, y)∑

y∈V p(y)−
∑k

i=1

∑
x1:k∈Vk,xi=y π(x1:k, y)

886

· (Q(x1:k)−
k∑

i=1

π(x1:k, xi)) 887

The first term is the unallocated target probability 888

mass or the residual probability of y normalized. 889

The second term is the remaining probability mass 890

of the series of drafts x1:k after allocating probabil- 891

ities to cases where the target token matches a draft 892

token. 893

We now verify that the constructed π is indeed 894

a valid coupling. First, we need to show that the 895

marginal distribution on the target token y is indeed 896

11

p(y):897

∑
x1:k

π(x1:k, y)898

=
k∑

i=1

∑
x1:k,xi=y

π(x1:k, y)899

+ (p(y)−
k∑

i=1

∑
x1:k,xi=y

π(x1:k, y))900

= p(y).901

Then, we verify that the marginal distribution on902

the series of drafts is the joint draft distribution:903

∑
y

π(x1:k, y)904

=
k∑

i=1

π(x1:k, xi)905

+
∑

y ̸=xi∀i
(

p(y)−
∑k

i=1

∑
x1:k,xi=y π(x1:k, y)∑

y∈V p(y)−
∑k

i=1

∑
x1:k,xi=y π(x1:k, y)

906

· (Q(x1:k)−
k∑

i=1

π(x1:k, xi)))907

=Q(x1:k)908

Now, we show that an optimal solution to the909

simplified LP formulation is also optimal for the910

OTM problem.911

We prove this by contradiction. Assume there912

exists a coupling π′ that achieves a lower trans-913

port cost than the optimal solution to the sim-914

plified LP formulation. We can construct a so-915

lution π′′(x1:k, xi) to the LP from π′ by setting916

π′′(x1:k, xi) = π′(x1:k, xi). This π′′ will have917

the same objective value as the transport cost of918

π′, contradicting the optimality of the LP solution.919

Therefore, an optimal solution to the simplified LP920

formulation is also an optimal solution to the OTM921

problem.922

C Properties of SpecHub923

C.1 Pseudocode Implementation of SpecHub924

The transport plan of top token a is:925

π(x, a, x) = min(p(x), q(x)) 926

π(a, x, x) = min(p(x)− π(x, a, x), Q(a, x)) 927

π(a, x, a) = min(p(a),
∑
x∈V

(Q(a, x)− π(a, x, x)) 928

· Q(a, x)− π(a, x, x)∑
x∈V(Q(a, x)− π(a, x, x))

929

π(x, a, a) = min(p(a)−
∑
x

π(a, x, a), 930∑
x∈V

q(x)− π(x, a, x)) 931

· q(x)− π(x, a, x)∑
x∈V q(x)− π(x, a, x)

932

Here we provide the pseudocode for using 933

SpecHub in real life. We follow a sequential proce- 934

dure and avoid explicitly writing out the underlying 935

coupling π. 936

Algorithm 2 GetResidual
1: Inputs: target distribution p, draft distribution

q, highest probability token a
2: for all x in V, x ̸= a do
3: p′(x) = max (p(x)− q(x), 0)
4: q′(x) = max (q(x)− p(x), 0)
5: end for
6: p′(a) = p(a)
7: q′(a) = 0
8: return p′, q′

C.2 Correctness 937

Here, we proof that SpecHub does not sacrifice the 938

quality of generation. 939

Theorem 2. Given a target distribution p and a 940

draft distribution q, SpecHub generates tokens such 941

that for any token x ∈ V , the probability of gener- 942

ating x under SpecHub, denoted as P(X = x), is 943

equal to p(x). 944

Proof. Given a target distribution p and a draft dis- 945

tribution q, we need to show that SpecHub gener- 946

ates tokens such that for any token x ∈ V , the prob- 947

ability of generating x under SpecHub, denoted as 948

PSpecHub(x), is equal to p(x). 949

First, all draft pairs sampled by SpecHub involve 950

the top token a = argmaxx∈V q(x). For all x ̸= a, 951

pairs (x, a) and (a, x) are sampled with probabil- 952

ities Q(x, a) = q(x) and Q(a, x) = q(a)q(x)
1−q(a) , re- 953

spectively. 954

12

Algorithm 3 Sampling and Verification with
SpecHub

Inputs: target distribution p, draft distribution q,
vocabulary V
Let a = argmaxx q(x) be the token with the
highest draft probability.
for all i ∈ V , x ̸= a do

Q(x, a) = q(x), Q(a, x) = q(a)q(x)
1−q(a)

end for
Sample draft tokens x(1), x(2) ∼ Q
if x(2) = a then

Return x(1) with probability
min

(
p(x(1))

Q(x(1),a)
, 1
)

end if
p′, Q′(∗, a) =GetResidual(p,Q(∗, a), a)
if x(1) = a then

Return x(2) with probability
min

(
p′(x(2))

Q(a,x(2))
, 1
)

end if
p′′, Q′(a, ∗) =GetResidual(p′, Q(a, ∗), a)
if x(1) = a then

Return a with probability
min

(
p(a)∑

x Q′(a,x) , 1
)

p′(a) = max(p(a)−
∑

xQ
′(a, x), 0)

end if
if x(2) = a then

Return a with probability
min

(
p′(a)∑

x Q′(x,a) , 1
)

p′′(a) = max(p′(a)−
∑

xQ
′(x, a), 0)

end if
Return a token sampled from the residual distri-
bution norm(p′′)

For a token x ̸= a, in the first draft, SpecHub955

generates x with probability956

P(x = x(1) and X = x)957

= Q(x, a)min

(
p(x)

Q(x, a)
, 1

)
958

= min (p(x), q(x)) .959

In the second draft, given that x ̸= a, the residual960

probability for token x after the first draft, denoted961

as p′(x), is:962

p′(x) =max(p(x)− q(x), 0)963

= p(x)−min(p(x), q(x))964

SpecHub generates x in the second draft with965

probability 966

P(x = x(2) and X = x) 967

= Q(a, x)min

(
p′(x)

Q(a, x)
, 1

)
968

= min (p(x)−min(p(x), q(x)), Q(a, x)) 969

= min

(
p(x)−min(p(x), q(x)),

q(a)q(x)

1− q(a)

)
. 970

Now, let’s calculate the residual distribution after 971

both drafts for tokens x ̸= a. The residual proba- 972

bility p′′(x) for token x is calculated as follows: 973

p′′(x) 974

= max(p′(x)−Q(a, x), 0) 975

= max

(
p(x)− q(x)− q(a)q(x)

1− q(a)
, 0

)
976

Since p′′(x) represents the remaining probability 977

after both drafts, it ensures that: 978

P(X = x) 979

= P(x = x(1) and X = x) 980

+ P(x = x(2) and X = x) 981

+ p′′(x) 982

= min(p(x), q(x)) 983

+min

(
p(x)−min(p(x), q(x)),

q(a)q(x)

1− q(a)

)
984

+max

(
p(x)− q(x)− q(a)q(x)

1− q(a)
, 0

)
985

= p(x) 986

Now for x = a: 987

In the first draft, SpecHub generates a with prob- 988

ability 989

P(a = x(1) and X = a) 990

=
∑
x

Q′(a, x)min

(
p(a)∑

xQ
′(a, x)

, 1

)
991

= min

(
p(a),

∑
x

Q′(a, x)

)
. 992

In the second draft, given that a = x, the residual 993

probability for token a after the first draft, denoted 994

as p′(a), is: 995

p′(a) = max(p(a)−
∑
x

Q′(a, x), 0). 996

13

SpecHub generates a with probability997

P(a = x(2) and X = a)998

=
∑
x

Q′(x, a)min

(
p′(a)∑

xQ
′(x, a)

, 1

)
999

= min

(
max(p(a)−

∑
x

Q′(a, x), 0),
∑
x

Q′(x, a)

)
.1000

The total probability for generating a is:1001

P(X = a)1002

= P(a = x(1) and X = a)1003

+ P(a = x(2) and X = a)1004

= min

(
p(a),

p(a)∑
xQ

′(a, x)

)
1005

+min

(
max(p(a)−

∑
x

Q′(a, x), 0),
p(a)∑

xQ
′(x, a)

)
1006

= min

(
p(a),

∑
x

Q′(a, x) +Q′(x, a)

)
1007

It can be shown that p(a) <
∑

xQ
′(a, x) +1008

Q′(x, a). First, since Q(a, a) = 0), we have1009 ∑
x

Q(a, x) +Q(x, a)1010

=
∑

x∈V\{a}

q(x) +
q(a)q(x)

1− q(a)
1011

= 11012

Also, we have p(a) = 1−
∑

x∈V\{a} p(x). Thus,1013 ∑
x∈V\{a}

Q′(a, x) +Q′(x, a)1014

=
∑

x∈V\{a}

(max(Q(a, x)− p(x), 0)1015

+max(Q(x, a)− p′(x), 0))1016

=
∑

x∈V\{a}

max(Q(a, x) +Q(x, a)− p(x), 0)1017

≥
∑

x∈V\{a}

Q(a, x) +Q(x, a)− p(x)1018

=
∑

x∈V\{a}

Q(a, x) +Q(x, a)−
∑

x∈V\{a}

p(x)1019

= 1− (1− p(a)) = p(a)1020

Thus, for any token x ∈ V , the probability of1021

generating x under SpecHub is equal to p(x), ensur-1022

ing that the output distribution matches the target1023

distribution p.1024

As a corrolary of the last part of the proof, 1025

SpecHub accepts as much top token a as p(a). 1026

Corollary 1 (Top Token Acceptance). Given a 1027

draft distribution q and a target distribution p, let 1028

a = argmaxx∈V q(x) denote the token with the 1029

highest draft probability. Then, SpecHub generates 1030

token a with probability p(a). 1031

C.3 Acceptance Rate 1032

We here prove a sufficient condition for SpecHub 1033

to run faster than RRS. 1034

Theorem 3 (Superiority over RRS). Let α = 1035∑
x∈V min(q(x), p(x)) be the acceptance rate of 1036

the first draft. SpecHub has a higher acceptance 1037

rate in the second draft if q(a)
1−q(a) > 1− α. 1038

Proof. First, by Lemma 1, SpecHub generates the 1039

top token a with probability p(a). This maximizes 1040

the acceptance rate for a. Next, we calculate the 1041

second draft acceptance rate for every other token 1042

x ∈ V \ {a}. 1043

For RRS, the acceptance rate for token x in the 1044

first draft is min(p(x), q(x)). The residual proba- 1045

bility for token x after the first draft, denoted as 1046

r(x), is: 1047

p′(x) =
p(x)−min(p(x), q(x))

1− α
1048

where α =
∑

x∈V min(p(x), q(x)) is the overall 1049

acceptance rate in the first draft. The second draft 1050

acceptance rate for token x under RRS is then: 1051

(1− α)min

(
p(x)−min(p(x), q(x))

1− α
, q(x)

)
1052

which simplifies to: 1053

min (p(x)−min(p(x), q(x)), (1− α)q(x)) 1054

For SpecHub, the second draft acceptance rate 1055

for token x is: 1056

min

(
p(x)−min(p(x), q(x)),

q(a)

1− q(a)
q(x)

)
1057

Comparing these rates shows that SpecHub has 1058

a higher acceptance rate if q(a)
1−q(a) > 1− α. 1059

In practice, this condition is usually satisfied. For 1060

example, if α = 0.5, then as long as the top token 1061

has probability q(a) > 1
3 = 0.333, we guarantee 1062

acceleration. Meanwhile, since SpecHub accepts 1063

top tokens up to p(a), the above sufficient condi- 1064

tions become necessary only in unusual cases when 1065

p(a) = 0. 1066

14

Using a similar proof strategy, we can show it1067

guarantees to outperform OTM with independent1068

sampling in rare cases.1069

Theorem 4 (Superiority over OTM). SpecHub1070

guarantees a higher total acceptance rate com-1071

pared to OTM with independent sampling if q(a) >1072

1/2.1073

Proof. Let Q = q⊗2. Then, for a token x, it is1074

contained in any draft pair with probability 1 −1075

(1− q(x))2 < 2q(x). Meanwhile, for the first and1076

second drafts, we can accept up to q(a)
1−q(a)q(x) +1077

q(x) = q(x)
1−q(a) . Thus, we can accept more of token1078

x if q(x)
1−q(a) > 2q(x), or q(a) > 1/21079

Compared to the previous theorem, this bound1080

is nowhere near as tight since we are using a loose1081

lower bound on OTM’s performance. In reality we1082

expect OTM to perform worse.1083

C.4 First Draft Acceptance Rate1084

SpecHub is designed to optimize the acceptance1085

rate across multiple drafts, but in rare cases, it1086

might slightly decrease the acceptance rate of the1087

top token in the first draft. This occurs when the1088

probability of the top token in the target distribu-1089

tion, p(a) > q(a), while another token x takes1090

some of the probability mass Q(a, x). However,1091

our empirical evaluations demonstrate that this ef-1092

fect is not noticeable in practice, as the acceptance1093

rates of the first draft remain high.

Table 3: First Draft Acceptance Rates for SpecHub and
RRSw across different models and temperatures.

T Draft SpecHub RRSw

0.3 JF68m 0.4921 0.4498
JF160m 0.5578 0.5465

0.6 JF68m 0.4842 0.4821
JF160m 0.5632 0.5587

1 JF68m 0.4248 0.4418
JF160m 0.5130 0.5257

1094

D A discussion on more drafts1095

D.1 Diminishing Returns of Increasing Drafts1096

While theoretically appealing, using more drafts1097

in practice offers diminishing returns. As we in-1098

crease the number of drafts, the probability mass1099

of the residual distribution decreases, leading to1100

lower acceptance rates for subsequent drafts. This1101

phenomenon is illustrated in Figure 7, where we 1102

present the acceptance rates for up to 10 drafts us- 1103

ing both RRSw and RRS with temperature T = 1.0. 1104

As evident from the plots, the acceptance rate dras- 1105

tically decreases after the first few drafts, suggest- 1106

ing that the benefit of using more than 5 drafts is 1107

negligible.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

Draft Number
A

cc
ep

ta
nc

e
R

at
e

RRSw
RRS

SpecHub

Figure 7: Acceptance rate decay for different drafts with
temperature T = 1.0.

1108

D.2 Curse of Dimensionality 1109

The computational complexity of finding the op- 1110

timal coupling in Multi-Draft Speculative Decod- 1111

ing grows exponentially with the number of drafts. 1112

This is often referred to as the curse of dimensional- 1113

ity. Specifically, the number of variables in the LP 1114

formulation is on the order of O(|V|k+1), where 1115

|V| is the vocabulary size and k is the number of 1116

drafts. As k increases, solving the LP becomes 1117

computationally intractable for even moderately 1118

sized vocabularies. 1119

D.3 Potential for Sparse Algorithms on more 1120

drafts 1121

The diminishing returns of additional drafts and 1122

the curse of dimensionality suggest that a practi- 1123

cal approach should focus on a small number of 1124

drafts while ensuring an efficient probability of 1125

mass transport. One promising direction is to ex- 1126

plore sparse algorithms that leverage the structure 1127

of the draft and target distributions. For instance, 1128

instead of considering all possible combinations of 1129

drafts, we can prioritize those with higher sampling 1130

probabilities or those that exhibit significant over- 1131

lap between the draft and target distributions. One 1132

potential approach is to extend the "hub" concept 1133

of SpecHub to multiple drafts. Instead of desig- 1134

nating a single token as the hub, we can identify 1135

15

Table 4: Acceptance Rates for Toy Experiments The acceptance rates for SpecHub, Recursive Rejection Sampling
(RRS), and Optimal Transport (OTM) algorithms using toy example drafts and target distributions. T represents
the temperature, and λ controls the similarity between the draft and target distributions. We highlight the best,
second best, and third best entries.

T λ RRS RRSw OTM OTMw SpecHub

0.1 0.7 0.6273 0.7120 0.6380 0.7345 0.7402
0.1 0.5 0.3323 0.4057 0.3346 0.4125 0.4123
0.25 0.7 0.7354 0.7653 0.7846 0.8321 0.8113
0.25 0.5 0.4564 0.4978 0.4743 0.5245 0.4968
0.5 0.7 0.8090 0.8122 0.9037 0.9150 0.8500
0.5 0.5 0.6456 0.6593 0.7052 0.7206 0.6403

a small set of high-probability tokens and create1136

a sparse flow network where probability mass is1137

primarily transported through these hubs. This1138

approach could potentially maintain high accep-1139

tance rates while significantly reducing the com-1140

putational complexity compared to solving the full1141

LP. Further research in this direction could lead to1142

more efficient and scalable algorithms for MDSD.1143

E Comparing SpecHub to OTM in Toy1144

Settings1145

We demonstrate the acceptance rate for SpecHub,1146

RRS, and OTM algorithms using a few toy ex-1147

ample drafts and target distributions with a small1148

vocab size |V| = 50 in Table 4. Given tempera-1149

ture T and a hyperparameter λ that controls the1150

similarity between the two distributions, we gener-1151

ate two logits using uniform distributions such that1152

up ∼ Unif(0, 1)⊗|V| and uq ∼ Unif(0, 1)⊗|V|. The1153

corresponding target and draft distributions are p =1154

softmax(up

T) and q = softmax(λup

T + (1− λ)
uq

T).1155

We calculate the acceptance rate for all methods1156

theoretically except for RRS without replacement,1157

where we perform a Monte-Carlo Simulation with1158

a thousand repetitions. We conduct the experi-1159

ment on a hundred pairs of toy distributions and1160

report the average. The results in Table 4 quantita-1161

tively illustrate the performance differences among1162

SpecHub, Recursive Rejection Sampling (RRS),1163

RRS without replacement, and Optimal Transport1164

(OTM) methodologies under varying conditions of1165

temperature T and similarity parameter λ. In high1166

similarity scenarios (λ = 0.7), SpecHub outper-1167

forms other methods significantly at lower temper-1168

atures (T = 0.1), achieving the best acceptance1169

rate of 0.7402, closely followed by OTM with-1170

out replacement at 0.7345. At higher temperatures1171

(T = 0.5), OTM methods, particularly OTM with-1172

out replacement, dominate, marking the best perfor- 1173

mance with 0.9150 at T = 0.5 and λ = 0.7. This 1174

suggests that SpecHub is particularly effective in 1175

tightly controlled environments with high similar- 1176

ity between distributions and low entropy, whereas 1177

OTM shines with increased distribution complexity. 1178

SpecHub’s consistent performance across different 1179

conditions emphasizes its robustness, particularly 1180

when distribution similarity is moderate (λ = 0.5), 1181

where it maintains competitive acceptance rates, 1182

closely trailing the best results. 1183

F Maximum Flow Problem Formulation 1184

At k = 2, our Linear Programming (LP) formula- 1185

tion describes an equivalent Maximum Flow Prob- 1186

lem formulation. This formulation effectively mod- 1187

els the Multi-Draft Speculative Decoding process 1188

as the transportation of probability mass through a 1189

network of pipes. 1190

Given an LP formulation with vocabulary set 1191

V , pair sampling distribution Q ∈ ∆|V|2−1, and 1192

target distribution p∆|V|−1, we construct a graph 1193

G = (V,E) where the vertex set V consists of the 1194

vocabulary V , a source vertex s, and a sink vertex 1195

t. The capacity function g : (u, v) ∈ E → [0, 1] is 1196

defined for each edge as follows: 1197

g(u, v) =

∑
x(2) Qvx(2) , if u = s and v ∈ V,

p(v), if u ∈ V and v = t,

Quv, if u, v ∈ V and u ̸= v,

0, otherwise.

1198

In this formulation, the source vertex s distributes 1199

the total probability mass to the vertices in the vo- 1200

cabulary set V , while the sink vertex t collects the 1201

transported probability mass from the vocabulary 1202

vertices. The edges between the vocabulary ver- 1203

tices represent the possible transitions dictated by 1204

16

the pair sampling distribution Q. This network flow1205

model not only provides an intuitive visualization1206

of the probability mass transport process but also1207

allows us to leverage well-established algorithms1208

in network flow theory to solve the MDSD problem1209

efficiently.1210

G More Experiment Details1211

JF68m on Full Binary Trees and Binary Sequoia1212

Unbalanced Trees We conducted experiments to1213

measure the batch efficiency of the JF68m model1214

on both full binary trees and binary Sequoia unbal-1215

anced trees. For the full binary trees, we tested tree1216

depths ranging from d = 2 to d = 5, and for the1217

binary Sequoia trees, we used an unbalanced tree1218

structure with varying depths. The results demon-1219

strate that SpecHub consistently outperforms both1220

RRS and RRSw across all tree depths. In the1221

full binary tree configuration, SpecHub achieves a1222

batch efficiency improvement of 0.02− 0.10 over1223

RRS and 0.04− 0.20 over RRSw at temperatures1224

T = 0.6 and 1.0. For the binary Sequoia unbal-1225

anced trees, SpecHub maintains a higher batch ef-1226

ficiency, confirming its robustness across different1227

tree structures.1228

JF160m on Binary and Ternary Trees We also1229

evaluated the batch efficiency of the JF160m model1230

on both binary and ternary trees. For binary trees,1231

we tested tree depths from d = 2 to d = 6,1232

and for ternary trees, we considered depths up1233

to d = 4. The JF160m model shows signifi-1234

cant improvements in batch efficiency when us-1235

ing SpecHub. At temperatures T = 0.6 and 1.0,1236

SpecHub outperforms RRS by 0.03 − 0.12 and1237

RRSw by 0.05− 0.15 in binary tree configurations.1238

In the ternary tree settings, SpecHub’s batch effi-1239

ciency gain is even more pronounced, highlighting1240

its effectiveness in handling more complex tree1241

structures.1242

EAGLE Decoding Head To further explore the1243

efficiency of our proposed method, we imple-1244

mented the SpecHub algorithm using the EAGLE1245

decoding head. The batch efficiency was evaluated1246

on binary trees of depths d = 2 to d = 5. SpecHub1247

with the EAGLE decoding head shows a substan-1248

tial increase in efficiency, generating up to 3.53 and1249

3.33 tokens per iteration at temperatures T = 0.61250

and 1.0, respectively. This represents an additional1251

0.08 tokens per iteration compared to RRS without1252

replacement. The experimental results reinforce1253

the benefits of integrating SpecHub with advanced 1254

decoding heads like EAGLE, particularly in en- 1255

hancing batch efficiency. 1256

17

Table 5: Batch Efficiency Results for JF68m Data Average accepted tokens and batch efficiency for different
configurations of target model and draft model pairs across various temperatures. SpecHub consistently outperforms
RRS and RRSw in both acceptance rate and batch efficiency. We also include binary Sequoia trees and show that
SpecHub performs well on unbalanced trees.

T Data Tree RRS RRSw SpecHub Tree RRS RRSw SpecHub
0.6 CNN 22 1.5540 1.5997 1.6157 biSeq4 1.7938 1.8304 1.8498
0.6 OWT 22 1.5485 1.5895 1.6080 biSeq4 1.7971 1.8225 1.8424
0.6 CNN 23 1.8482 1.9685 1.9863 biSeq8 2.0361 2.1540 2.1542
0.6 OWT 23 1.8576 1.9241 1.9632 biSeq8 2.0247 2.1005 2.1285
0.6 CNN 24 2.0510 2.1694 2.2456 biSeq16 2.1354 2.2667 2.2839
0.6 OWT 24 2.0256 2.1299 2.2103 biSeq16 2.1378 2.2153 2.2064
0.6 CNN 25 2.1385 2.3149 2.4031 biSeq32 2.2452 2.4198 2.4353
0.6 OWT 25 2.0867 2.2295 2.3416 biSeq32 2.2007 2.3556 2.3868
1.0 CNN 22 1.5432 1.5521 1.5997 biSeq4 1.7401 1.7469 1.8057
1.0 OWT 22 1.5488 1.5509 1.5905 biSeq4 1.7355 1.7437 1.7879
1.0 CNN 23 1.8384 1.8790 1.9832 biSeq8 1.9522 2.0063 2.0667
1.0 OWT 23 1.8232 1.8585 1.9661 biSeq8 1.9304 2.0008 2.0720
1.0 CNN 24 1.9762 2.0441 2.2106 biSeq16 2.0529 2.1662 2.2843
1.0 OWT 24 1.9954 2.0493 2.1957 biSeq16 2.0330 2.1030 2.2619
1.0 CNN 25 2.0694 2.1383 2.3104 biSeq32 2.1197 2.1604 2.3445
1.0 OWT 25 2.0890 2.1574 2.3149 biSeq32 2.1008 2.1950 2.3571

18

Table 6: Batch Efficiency Results for JF160m Data Average accepted tokens and batch efficiency for different
configurations of target model and draft model pairs at T = 0.6 and T = 1.0. The results are presented for CNN
and OpenWebText datasets, comparing RRS, RRS without replacement, and TransportHub. We also contained
ternary trees to showcase that using k > 2 gives marginal gain.

T Data Tree RRS RRS w/o SpecHub
0.6 CNN 22 1.633994691 1.667634674 1.6861
0.6 OpenWebText 22 1.641550493 1.672971282 1.677
0.6 CNN 23 2.016376307 2.142804292 2.1758
0.6 OpenWebText 23 2.052868003 2.113952048 2.115
0.6 CNN 32 1.66262118 1.734944266
0.6 OpenWebText 32 1.669826224 1.70473377
0.6 CNN 24 2.282944241 2.369522017 2.4841
0.6 OpenWebText 24 2.28490566 2.411659014 2.4492
0.6 CNN 33 2.113219655 2.279599835
0.6 OpenWebText 33 2.111602497 2.212962963
0.6 CNN 25 2.378323523 2.604486152 2.7238
0.6 OpenWebText 25 2.449243411 2.642651616 2.6901
0.6 CNN 34 2.39760652 2.681949084
0.6 OpenWebText 34 2.433582166 2.667044296
1.0 CNN 22 1.608515798 1.633187465 1.6748
1.0 OpenWebText 22 1.633351663 1.635781207 1.6834
1.0 CNN 23 1.959878368 2.053886546 2.1362
1.0 OpenWebText 23 2.028797337 2.077786547 2.1584
1.0 CNN 32 1.663016602 1.689861121
1.0 OpenWebText 32 1.677094972 1.701585742
1.0 CNN 24 2.20357984 2.286009649 2.4204
1.0 OpenWebText 24 2.295532975 2.379759419 2.4922
1.0 CNN 33 2.105012354 2.165854573
1.0 OpenWebText 33 2.166307084 2.233691623
1.0 CNN 25 2.315296164 2.41812897 2.6624
1.0 OpenWebText 25 2.429887821 2.532017591 2.7334
1.0 CNN 34 2.382244389 2.474047719
1.0 OpenWebText 34 2.467950678 2.550284031

19

Table 7: Batch Efficiency Results for SpecHub and
RRS using EAGLE The batch efficiency of SpecHub
and Recursive Rejection Sampling (RRS) methods when
applied with EAGLE. The table reports average ac-
cepted tokens per step across different temperatures
and datasets, demonstrating that SpecHub consistently
outperforms RRS.

T Tree RRS RRS-wo SpecHub

0.6 22 1.8211 1.8687 1.8825
0.6 23 2.4325 2.5585 2.5939
0.6 24 2.9125 3.0899 3.1192
0.6 25 3.2501 3.4838 3.5380
1.0 22 1.8054 1.8327 1.8655
1.0 23 2.3961 2.4737 2.4850
1.0 24 2.8425 2.9019 3.0281
1.0 25 3.1451 3.2548 3.3318

20

	Introduction
	Background and Related Work
	Mathematical Formulation of Multi-Draft Speculative Decoding
	Optimal Transport with Membership Cost
	A Simplified Linear Programming Formulation
	Design of Sampling

	SpecHub
	Experiments
	Experiment Setup
	Main Experiments
	Ablations

	Conclusion
	Related Work
	Correctness of the LP formulations
	Properties of SpecHub
	Pseudocode Implementation of SpecHub
	Correctness
	Acceptance Rate
	First Draft Acceptance Rate

	A discussion on more drafts
	Diminishing Returns of Increasing Drafts
	Curse of Dimensionality
	Potential for Sparse Algorithms on more drafts

	Comparing SpecHub to OTM in Toy Settings
	Maximum Flow Problem Formulation
	More Experiment Details

