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Abstract

Acquisition of data is a difficult task in many applications of machine learning, and
it is only natural that one hopes and expects the population risk to decrease (better
performance) monotonically with increasing data points. It turns out, somewhat
surprisingly, that this is not the case even for the most standard algorithms that
minimize the empirical risk. Non-monotonic behavior of the risk and instability in
training have manifested and appeared in the popular deep learning paradigm under
the description of double descent. These problems highlight the current lack of
understanding of learning algorithms and generalization. It is, therefore, crucial to
pursue this concern and provide a characterization of such behavior. In this paper,
we derive the first consistent and risk-monotonic (in high probability) algorithms
for a general statistical learning setting under weak assumptions, consequently
answering some questions posed by [53] on how to avoid non-monotonic behavior
of risk curves. We further show that risk monotonicity need not necessarily come
at the price of worse excess risk rates. To achieve this, we derive new empirical
Bernstein-like concentration inequalities of independent interest that hold for
certain non-i.i.d. processes such as Martingale Difference Sequences.

1 Introduction

Guarantees on the performance of machine learning algorithms are desirable, especially given the
widespread deployment. A traditional performance guarantee often takes the form of a generalization
bound, where the expected risk associated with hypotheses returned by an algorithm is bounded in
terms of the corresponding empirical risk plus an additive error which typically converges to zero as
the sample size increases. However, interpreting such bounds is not always straight forward and can
be somewhat ambiguous. In particular, given that the error term in these bounds goes to zero, it is
tempting to conclude that more data would monotonically decrease the expected risk of an algorithm
such as the Empirical Risk Minimizer (ERM). However, this is not always the case; for example,
[33] showed that increasing the sample size by one, can sometimes make the test performance worse
in expectation for commonly used algorithms such as ERM in popular settings including linear
regression. This type of non-monotonic behavior is still poorly understood and indeed not a desirable
feature of an algorithm since it is expensive to acquire more data in many applications.

Non-monotonic behavior of risk curves [47]—the curve of the expected risk as a function of the
sample size—has been observed in many previous works [18, 43, 48, 20] (see also [33, 52] for
nice accounts of the literature). At least two phenomena have been identified as being the cause
behind such behavior. The first one, coined peaking [30, 19], or double descent according to more
recent literature [6, 49, 7, 17, 15, 37, 40, 41, 16, 12, 11, 14, 42], is the phenomenon where the risk
curve peaks at a certain sample size n. This sample size typically represents the cross-over point
from an over-parameterized to under-parameterized model. For example, when the number of data
points is less than the number of parameters of a model (over-parameterized model), such as Neural
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Networks, the expected risk can typically increase until the number of data points exceeds the number
of parameters (under-parameterized model). The second phenomenon is known as dipping [32, 31],
where the risk curve reaches a minimum at a certain sample size n and increases after that—never
reaching the minimum again even for very large n. This phenomenon typically happens when the
algorithm is trained on a surrogate loss that differs from the one used to evaluate the risk [8].
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Figure 1: Expected risk of ERM on a 1d lin-
ear regression problem with absolute loss and
two instances z1 = (x1, y1) = (1,1) and z2 =

(x2, y2) = (1/10,1) such that P[Z = z1] = 0.1
and P[Z = z2] = 0.9. The set of hypotheses is the
real line, i.e.H = R. The ERM solution ĥn admits
a closed form in this case—see [33] for details.

It is becoming more apparent that the two phe-
nomena just mentioned (double descent and
dipping) do not fully characterize when non-
monotonic risk behavior occurs [34]. [33]
showed that non-monotonic risk behavior could
happen outside these settings and formally prove
that the risk curve of ERM is non-monotonic
in linear regression with prevalent losses. The
most striking aspect of their findings is that
the risk curves in some of the cases they study
can display a perpetual “oscillating” behavior;
there is no sample size beyond which the risk
curve becomes monotone—see Figure 1. In
such cases, the risk’s non-monotonicity cannot
be attributed to the peaking/double descent phe-
nomenon. Moreover, they rule out the dipping
phenomenon by studying the ERM on the actual
loss (not a surrogate loss).

The findings of [33] stress our current lack of un-
derstanding of generalization. This was echoed
more particularly by [53], who posed the follow-
ing question as part of a COLT open problem:

How can we provably avoid non-monotonic behavior?

While excess risk bounds are typically monotonic, this does not guarantee the monotonicity of the
actual risk. In this work, we study under which assumptions on the learning problem there exist
consistent and risk monotonic algorithms. We also aim to quantify the price to pay, in terms of
corresponding excess risk rates, for achieving risk monotonicity.

Contributions. In this work, we answer some questions posed by [53] by presenting an algorithm
that is both consistent and risk-monotonic in high probability under weak assumptions on the learning
problem. Our algorithm is technically a “wrapper” that takes as input any base learning algorithm B
and makes up a new algorithm A that is risk monotonic in high probability and enjoys essentially the
same excess risk rate as B. Crucially, our results show that risk monotonicity need not come at the
expense of worse excess risk rates. In fact, we show that fast rates are achievable under a Bernstein
condition (Definition 3).

Our results hold under the general statistical learning setting with a bounded loss. We even go beyond
the standard i.i.d. assumption on the loss process. Our relaxed technical condition on the loss process,
which is formalized in Assumption 1 below, is reminiscent of the condition characterizing Martingale
Difference Sequences (MDS). In a nutshell, we will assume a setting where the instance random
variables Z1, Z2, . . . and the loss ` satisfy, for all hypotheses h, E[`(h,Zt) ∣ Z1, . . . , Zt−1] = L(h),
for some risk function L. This is trivially satisfied in the i.i.d. case, where L corresponds to the
standard risk function. In general, this condition may be satisfied even if Z1, Z2, . . . are dependent or
have different marginal distributions. We argue that our relaxed assumption on the loss process is the
weakest assumption under which studying risk-monotonicity still makes sense.

To achieve risk monotonicity under our loss process assumption, we derive a new concentration
inequality/generalization bound of PAC-Bayesian flavor for MDS (see Proposition 5). This concentra-
tion inequality may be thought of as an empirical Freedman’s inequality [23] or as an extension of the
empirical Bernstein inequality [35] to MDS. Our concentration inequalities also have the advantage
of being time-uniform with the optimal dependence on the number of samples. Here, time-uniform
means that the inequalities hold for all sample sizes simultaneously. While standard concentration
inequalities can be turned into time-uniform ones using a union bound over the number of samples
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n, the resulting bounds will have a sub-optimal lnn factor instead of the optimal2 ln lnn that we
are able to get. Finally, our concentration bounds are easily derived using the guarantee of a recent
parameter-free online learning algorithm—FREEGRAD[39]. Our approach opens up the door for
obtaining new concentration inequalities through the design of online learning algorithms.

Approach Overview. Our approach to deriving the new concentration inequalities is based on the
guarantee of the recent FREEGRAD algorithm. The algorithm operates in rounds, where at each
round t, FREEGRAD outputs ŵt in some convex set W , say Rd, then observes a vector gt ∈ Rd,
typically the sub-gradient of a loss function at the iterate ŵt. The algorithm guarantees a regret bound
of the form ∑

T
t=1 g

⊺
t (ŵt −w) ≤ Õ(∥w∥

√
QT ), for all w ∈ W , where QT ∶= ∑

T
t=1 ∥gt∥

2. What is
more, FREEGRAD’s outputs (ŵt) ensure the following (see [39, Theorem 5]):

ŵ⊺
t gt +Φ(St,Qt) ≤ Φ(St−1,Qt−1), ∀t ≥ 1, (1)

where St ∶= ∥∑
t
i=1 gi∥, Qt ∶= ∑ti=1 ∥gi∥

2, and Φ(S,V ) ∶= exp( S2
/2

γ2+V +∣S∣
− 1

2
ln γ2

γ2+V
), for any γ > 0.

Instantiating this guarantee in 1d with (gt) set to an MDS (Xt) and taking (conditional) expectation
in (1) shows that Φt ∶= Φ(∑

t
i=1Xi,∑

t
i=1X

2
i ) is a non-negative supermartingale, from which concen-

tration results can be obtained via Ville’s inequality (a generalization of Markov’s inequality—see
Lemma 18). Our proof technique is similar to the one introduced in [28],with the difference that we
use the specific shape of FREEGRAD’s potential function to build our supermartingale, which leads
to a desirable empirical variance term in the final concentration bound.

On the side of risk monotonicity, given n samples, the key idea behind our approach is to iteratively
generate a sequence of distributions P1, P2, . . . leading up to Pn over hypotheses, where we only
allow consecutive distributions, say Pk−1 and Pk to differ if we can guarantee (with high enough
confidence) that the risk associated with Pk is lower than that of Pk−1. To test for this, we compare
the average empirical losses of hypotheses sampled from Pk−1 versus ones sampled from Pk, taking
into account the potential gap between empirical and population expectations. Applying our new
concentration bounds to quantify this gap not only allows us to achieve risk monotonicity under
a non-i.i.d. loss process but also enables us to achieve fast excess risk rates under the Bernstein
condition. For the latter, it was crucial to have an empirical loss variance term in the concentration
inequality.

Related Works. Much work has already been done in efforts to mitigate the non-monotonic
behavior of risk curves [54, 42, 33]. For example, in the supervised learning setting with the zero-one
loss, [9] introduced the “memorize” algorithm that predicts the majority label on any test instance
x that was observed during training; otherwise, a default label is predicted. [9] showed that this
algorithm is risk-monotonic. However, it is unclear how their result could generalize beyond the
particular setting they considered. Risk-monotonic algorithms are also known for the case where
the model is correctly specified (see [33] for an overview); in this paper, we do not make such an
assumption.

Closer to our work is that of [54] who, like us, also used the idea of only updating the current predictor
for sample size n if it has a lower risk than the predictor for sample size n−1. They determine whether
this is the case by performing statistical tests on a validation set (or through cross-validation). They
introduce algorithm wrappers that ensure that the risk curves of the final algorithms are monotonic
with high probability. However, their results are specialized to the 0-1 loss and they do not answer
the question by [53] on the existence of learners that guarantee a monotonic risk in expectation.

On the side of concentration bounds for non-i.i.d. processes, our results are somewhat similar to
those found in e.g. [27, 26]. However, our technique for deriving them, which relies on the guarantee
of a parameter-free online learning algorithm, is entirely different. The theoretical link between
online regret and concentration inequalities was previously drawn—see e.g. [45, 22]. However, our
approach is slightly different as we use the monotonicity of an online algorithm’s potential function
to get our concentration results. Thus, new concentration inequalities may be derived similarly by
modifying the explicit potential function directly. Our approach is more similar to that of [28] who
also derived concentration inequalities using guarantees of online betting algorithms that bet fractions
smaller than one of their wealth at each round.

2One can not improve on the ln lnn factor by the law of iterated logarithm [13].
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We allow for a parameter h ∈H in our concentration bounds to make the results useful in the statistical
learning setting. These bounds are of PAC-Bayesian type and are somewhat reminiscent of those in
[50, 38]. We refer the reader to [25] for an overview of existing PAC-Bayesian bounds.

Outline. In Section 2, we introduce the setting, notation, and relevant definitions. In Section 3, we
present our new concentration inequalities for Martingale Difference Sequences and loss processes we
are interested in (those that satisfy Assumption 1 below). In Section 4, we present our risk-monotonic
algorithm wrapper and show that it achieves risk monotonicity in high probability. We conclude with
a discussion in Section 5. The proofs of the new concentration inequalities and risk monotonicity are
differed to Appendices B and C, respectively. Appendix A presents existing and new technical results
needed in some of our proofs.

2 Preliminaries

In this section, we present the setting, notation, and relevant definitions for the rest of the paper.

Setting and Notation. Throughout, we will assume an underlying probability space (Ω,F ,P). Let
Z [resp.H] be an arbitrary feature [resp. hypothesis] space, and let ` ∶H ×Z → [0,1] be a bounded
loss function. We denote by △(H) the set of probability measures on H. Data is represented by
random variables Z1, Z2, ⋅ ⋅ ⋅ ∈ Z that we assume are accessible to a learning algorithm in a sequential
fashion. We use the concise notation Z1∶t for the tuple (Z1, . . . , Zt) and denote by Gt the σ-algebra
generated by the random variables Z1, . . . , Zt, with the convention that G0 = ∅. We will write
Et−1[⋅] ∶= E[⋅ ∣ Gt−1], for t ≥ 1.

We will not assume that the random variables (Zt) are independent and identically distributed.
Instead, we will make the following weaker assumption on the loss process (`(h,Zt)):
Assumption 1 (Process Assumption). There exists a risk function L ∶ H → [0,1] such that the
sequence of random variables Z1, Z2, . . . satisfy Et−1[`(h,Zt)] = L(h), for all h ∈H and t ≥ 1.

When the random variables Z1, Z2, . . . are i.i.d. and Zi ∼ PZ , i ∈ N, then Assumption 1 trivially holds
with the standard risk function L(h) = EPZ(z)[`(h, z)]. In Assumption 1, the conditional distribution
of Zt given Gt−1 may be arbitrary as long as the corresponding conditional expectation Et−1 of the
loss of a given hypothesis h is the same (equal to L(h)) for all t ≥ 1. Arguably, Assumption 1
represents the weakest condition under which studying risk monotonicity in the statistical learning
setting still makes sense. We touch more on this point after defining risk monotonicity below. To
simplify notation for the rest of this paper, we let

L(Q) ∶= EQ(h)[L(h)], for all Q ∈△(H),

where L is as in Assumption 1.

A learning algorithm A is a map from ⋃
∞
i=1Z

i to △(H); given data Z1∶t, the output A(Z1∶t) of the
algorithm is a distribution over hypotheses inH. This definition includes deterministic algorithms for
which the distribution A(Z1∶t) is a Dirac at some h = h(Z1∶t). We will use the notation A(⋅ ∣ Z1∶t) ∶=

A(Z1∶t)(⋅).

Throughout, we will make use of a fixed “prior” distribution P0 over hypotheses in H. In Section
4, we will present an algorithm wrapper that takes any base algorithm B as input and makes a
risk-monotonic algorithm out of it with essentially the same excess risk rate. The results of this
paper are useful for base algorithms that output distributions that are absolutely continuous w.r.t. our
choice of prior P0; that is B(Z1∶t) ≪ P0, for all t ≥ 13. In practice, if H = Rd, P0 may be a
multivariate Gaussian around the origin and B(Z1∶t) may also be a multivariate Gaussian around the
ERM ĥn ∈ arg infh∈H∑

n
i=1 `(h,Zi), in which case B(Z1∶t) ≪ P0 holds for all t ≥ 1. We now define

the notion of risk monotonicity we will work with:
Definition 1 (Risk Monotonicity). For δ ∈ (0,1) and N ≥ 1, we say that a learning algorithm
A ∶ ⋃

∞
i=1Z

i →△(H) is (δ,N)-risk-monotonic if, with probability at least 1 − δ,

∀t ≥ N, EA(h∣Z1∶t) [Et[`(h,Zt+1)]] ≤ EA(h∣Z1∶t−1) [Et−1[`(h,Zt)]] . (2)
3We inherit this restriction from the PAC-Bayesian approach that we use to quantify generalization. In

Appendix D, we show how this restriction can be removed in the i.i.d. setting (see also Remark 7).
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Note that since the loss ` is positive, Fubini’s theorem implies that EA(h∣Z1∶t−1) [Et−1[`(h,Zt)]] =

Et−1 [EA(h∣Z1∶t−1)[`(h,Zt)]], for all t ≥ 1. Thus, the condition in (2) requires the expected loss
of algorithm A on the next sample, conditioned on the past data, to decrease with the size of the
data. We note that if Assumption 1 does not hold and Et[`(h,Zt+1)] depends on t in an arbitrary
fashion, then requiring (2) would be too strong. Thus, we will restrict our attention to processes that
satisfy Assumption 1. We stress that the condition in this assumption is weaker than i.i.d., and allows
the random variables Z1, Z2, . . . to have different (conditional) distributions as long as the moment
constraint Et−1[`(h,Zt)] = L(h) is satisfied for all h ∈H and t ≥ 1.

The notion of monotonicity presented in [33, 53] concerned only i.i.d. random variables, and requires
the risk to be monotonic in expectation as opposed to in high probability. In particular, the strongest
notation of monotonicity in [33], which they refer to as global Z-monotonicity, can be expressed as

∀t ≥ 1, E [EA(h∣Z1∶t)[L(h)]] ≤ E [EA(h∣Z1∶t−1)[L(h)]] , (3)

where L(h) ∶= EPZ(z)[`(h, z)] and Z1, Z2 . . .
i.i.d.
∼ PZ . We will show that achieving risk-

monotonicity in expectation up to a small fast rate term is as easy as achieving (δ,N)-risk-
monotonicity—at least for bounded losses. In fact, we will show how our risk-monotonic (in
the sense of Def. 1) algorithm can easily be turned into one that satisfies (3) up to a fast rate term.

Monotonicity alone is rather easy to achieve; it suffices to output a fixed hypothesis h ∈H regardless
of the training dataset. In this case, the risk would be constant, and so risk monotonicity is achieved by
definition. In practice, it is important to generate hypotheses with low risk, and so a fixed hypothesis
that does not dependent on data is likely to be useless. Formally, we want algorithms that are risk
monotonic and consistent:
Definition 2 (Consistency). Under Assumption 1, we say that algorithm A is consistent if for any
ε > 0, limn→∞P [∣EA(h∣Z1∶n)[L(h)] − infh∈HL(h)∣ > ε] = 0.

We will go beyond the notation of consistency and study the rate of convergence of the risk of our
algorithm to the optimal risk. We do this under the assumption that the loss process `(h,Zt) satisfies
the Bernstein condition for h ∈H:
Definition 3 (Bernstein Condition). For β ∈ [0,1] and B > 0, the (β,B)-Bernstein condition holds
if the random variables Z1, Z2, . . . and the loss ` satisfy, for all t ≥ 1 and all h ∈H,

Et−1 [(`(h,Zt) − `(h⋆, Zt))
2
] ≤ BEt−1[`(h,Zt) − `(h⋆, Zt)]

β ,

for h⋆ ∈ arg infh∈HEt−1[`(h,Zt)].

The Bernstein condition [3, 4, 5, 21, 29] essentially characterizes the easiness of the learning
problem. In particular, it implies that the conditional variance of the excess-loss random variable
`(h,Zt) − `(h⋆, Zt) vanishes when the risk associated with the hypothesis h ∈ H gets closer to
the H-optimal risk L(h⋆). For bounded loss functions, the Bernstein condition with β = 0 always
holds, and so the results of this paper are always true for β = 0. The Bernstein condition with β = 1
corresponds to the easiest learning setting. The case where β ∈ (0,1) interpolates naturally between
these two extremes, where intermediate excess-risk rates are achievable. We refer the reader to [29,
Section 3] for examples of learning settings where a Bernstein condition holds.

Additional useful definitions. For ρ > 1 and δ ∈ (0,1), we define

c ∶= ∑
k≥1

1

k ln2
(k + 1)

≈ 3.2; φρ(n) ∶= c
√
ρ + 1(lnρ(n) + 1) ln2

(lnρ(n) + 2); (4)

and nδ ∶= sup{n ∈ N ∶ 8 ln(φρ(n)/δ) > n} . (5)
Note that nδ is not too large as a function of 1/δ. In fact, the definitions of φρ and nδ imply that
nδ ≤ O(ln(1/δ)). In the next section, we present some new concentration inequalities of independent
interest that will be useful in achieving risk-monotonicity under Assumption 1 while maintaining
good excess risk rates.

3 New (PAC-Bayesian) Concentration Inequalities

In this section, we present some new concentration inequalities of PAC-Bayesian flavor that will be
crucial to deriving our risk monotonic algorithm wrapper under Assumption 1. These concentration
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inequalities hold for non-i.i.d. data (which we require to accommodate Assumption 1), and are so-
called time-uniform; the inequalities hold for all sample sizes simultaneously given a fixed confidence
level. We explain below the advantage that this has in our setting.

We start by a new concentration inequality for Martingale Difference Sequences, from which we
derive the bound we need under Assumption 1. First, we give the formal definition of an MDS:
Definition 4. Let (Ft)t∈N be a filtration w.r.t. the underlying probability space (Ω,F ,P), i.e. (Ft)t∈N
is a sequence of non-decreasing sub-σ-algebras of F . A sequence of random variables (Xt) is an
MDS w.r.t. (Ft)t∈N, if for all t ≥ 1, Xt is Ft-measurable; E[∣Xt∣] <∞; and E[Xt ∣ Ft−1] = 0 a.s.

With this in hand, we present our first concentration inequality:
Proposition 5 (PAC-Bayes for MDS). Let ρ > 1 and φρ be as in (4). Further, let {Xh

t } be a family
of random variables taking values in [−1,1] and (Ft)t∈N be a filtration such that (Xh

t ) is an MDS
w.r.t to (Ft)t∈N, for all h ∈H. Then, for any distribution P0 onH and all δ ∈ (0,1), we have

P [∀n ≥ 1,∀P,
EP (h)[∣S

h
n ∣]

2

2(ρ + 1)EP (h)[V hn ] + 2EP (h)[∣Shn ∣]
≤ KL(P ∥P0) + ln

φρ(n)

δ
] ≥ 1 − δ, (6)

where Shn ∶= ∑
n
t=1X

h
t and V hn ∶= 1 +∑

n
t=1(X

h
t )

2.

The proof of the theorem is in Appendix B. The bound in Proposition 5 does not look like the typical
PAC-Bayesian bound. However, simple algebra reveals that for any C > 0,

EP (h)[∣S
h
n ∣]

2

2(ρ + 1)EP (h)[V hn ] + 2EP (h)[∣Shn ∣]
≤ C Ô⇒ EP (h)[∣S

h
n ∣] ≤ 2C +

√

2(ρ + 1)EP (h)[V hn ] ⋅C.

Combining this with the fact that ∣EP (h)[S
h
n]∣ ≤ EP (h)[∣S

h
n ∣] (by Jensen’s inequality), and (6), we

obtain, under the same conditions as Proposition 5 that

P [∀n ≥ 1,∀P ∈△(H), ∣EP (h)[S
h
n]∣ ≤ 2Cn(P ) +

√

2(ρ + 1)EP (h)[V hn ] ⋅Cn(P )] ≥ 1 − δ, (7)

where Cn(P ) ∶= KL(P ∥P0) + ln(φρ(n)/δ). WhenH is a singleton, the concentration inequality in
(7) can be viewed as an empirical version of Freedman’s inequality [23] for MDS. The inequality is
also reminiscent of the PAC-Bayesian empirical Bernstein inequality due to [50]. In addition to it
holding for MDS, another advantage of (7) is that it is time-uniform—it holds for all sample sizes n,
simultaneously. While standard concentration inequalities that hold for a fixed sample size can be
turned into time-uniform ones by applying a union bound over sample sizes, the resulting inequalities
will have sub-optimal lnn factors under the main square-root error term. In contrast, the concentration
inequality in (7) has a ln(φρ(n)) = O(ln lnn) term, which matches the optimal dependence in n
according to the law of iterated logarithm [13]. MDS is a central concept in probability theory [44]
and machine learning [10], and so our result in Proposition 5 is of independent interest.

Interestingly, the concentration inequality in Proposition 5 is derived using the guarantee of a
parameter-free online algorithm—FREEGRAD. This opens the door for new ways of deriving such
concentration inequalities through online learning algorithms, adding to existing results due to
[45, 22, 28].

Using the result of Proposition 5, we are now going to derive a time-uniform “Empirical Bernstein”
concentration inequality that holds under Assumption 1:
Theorem 6. Let δ ∈ (0,1), ρ > 1, and φρ be as in (4). Further, for P0 ∈ △(H) define εn(P ) ∶=
2(ρ+1)
n

(KL(P ∥P0) + ln
φρ(n)

δ
) and Pn ∶= {P ∶ 1 − εn(P ) > 0}. Under Assumption 1, we have

P

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∀n ≥ nδ,∀P ∈ Pn, ∣
1

n

n

∑
t=1

EP (h) [`(h,Zt) −L(h)]∣ ≤

√

εn(P ) ⋅ V̂n(P ) +
εn(P )

ρ+1

1 − εn(P )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≥ 1 − δ,

where V̂n(P ) ∶= 1
n ∑

n
t=1EP (h) [(`(h,Zt) −

1
n ∑

n
i=1EP (θ)[`(θ,Zi)])

2
] + 1

n
and nδ is as in (5).

The restriction that P ∈ Pn in the theorem merely ensures that the denominator in the concentration
bound remains positive. The set Pn is guaranteed to be non-empty for all n ≥ nδ . In this case, P is in
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Pn whenever 8(ρ + 1)KL(P ∥P0) ≤ n, which is a fairly weak condition on the distribution P ; even
for large models such as Neural Networks the KL-divergence KL(P ∥P0) does not typically grow
superlinearly with the size n of the sample used to generate the posterior P [55]. Nevertheless, we
note that if one only cares about the i.i.d. setting then other concentration inequalities may be used to
achieve risk monotonicity without restrictions on the posterior P (see Appendix D).

The concentration inequality in Theorem 6 can be viewed as an extension of the empirical Bernstein
inequality in [35, 50] that holds under the non-i.i.d. condition described in Assumption 1. Our new
bound is also time-uniform with the optimal dependence in the sample size n. As mentioned before,
simply applying a union bound to a standard (non-time-uniform) concentration inequalities to obtain
its time-uniform version will lead to a sub-optimal dependence in n. WhenH is a singleton (i.e. no
learning), the concentration inequality becomes reminiscent of an existing one due to [26]. However,
the latter has a term that looks like, but is different than, the empirical variance, and so it is not
directly comparable to ours. The proof of Theorem 6 is postponed to Appendix B.

Finally, we note that for any sample size n the value of ρ in Theorem 6 that minimizes the bound
would typically fall within the interval (1,2). One can tune ρ as a function of the data by treating
ρ as an extra “hypothesis” parameter. In the case of a finite grid G ⊂ (1,+∞) of ρ’s, the result of
Theorem 6 would hold for all ρ ∈ G inside the probability event as long as any KL(P ∥P0) instance is
replaced by KL(P ∥P0) + ln ∣G∣.

We now move on to describing our risk monotonic procedure that makes use of our new concentration
inequality.

4 Risk Monotonicity in Statistical Learning

In this section, we combine the concentration inequality from Theorem 6 with a novel “greedy”
procedure for selecting distributions over hypotheses to derive a risk monotonic algorithm in the
statistical learning setting. With the right choice of gap sequence (ξn), the procedure we present in
Algorithm 1 takes as input a base learning algorithm B ∶ ⋃

∞
i=1Z

i → △(H) together with samples
Z1∶n whose generating process satisfies Assumption 1, and returns a distribution over H that has
a monotonic risk as a function of n with high probability. By leveraging our new concentration
inequality in Theorem 6 to specify the gap sequence (ξn), we further show that achieving risk
monotonicity need not deteriorate rates of convergence to the optimal risk infh∈HL(h). In fact, we
show that it is possible to attain fast rates under the Bernstein condition (Definition 3). To arrive at
this result, it was crucial for our concentration inequality to have an empirical variance term.

Algorithm 1 A Risk Monotonic Algorithm Wrapper
Require:

A base learning algorithm B ∶ ⋃
∞
i=1Z

i →△(H).
Samples Z1, . . . , Zn.
A sequence of gap functions (ξk), where ξk = ξk(Z1∶k,B) for all k. ▷ (ξk) will be set

according to (9) [resp. (11)] for risk-monotonicity in probability [resp. expectation].

1: for k = 1, . . . , n do

2: if
1

k

k

∑
i=1

EB(h∣Z1∶k)[`(h,Zi)] −
1

k

k

∑
i=1

EPk−1(h)[`(h,Zi)] ≤ −ξk then

3: Set Pk = B(Z1∶k).
4: else
5: Set Pk = Pk−1.
6: Return Pn.

To simplify our analysis, we will focus our attention on base algorithms that are restricted in the
following way:

Assumption 2 (Base Algorithm Restriction). We assume access to a base algorithm B ∶ ⋃
∞
i=1Z

i →

△(H) such that for ρ > 1, prior distribution P0 onH, and all k ≥ 1,

B(Z1∶k) ∈ Qk ∶= {Q ∈△(H) ∶ 16(ρ + 1)KL(Q∥P0) ≤ k}. (8)
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In other words, we are restricting our attention to algorithms whose posteriors given samples of
size k do not have a KL divergence to the prior P0 that grow too quickly with k. We make this
assumption to satisfy the technical conditions needed for the concentration bound in Theorem 6 to be
non-vacuous. Assumption 2 is reasonable even for large Neural Network models [55]4.

In practice, ifH is Rd, an option for B is the algorithm that outputs a multivariate Gaussian distribution
around a regularized ERM. The KL-divergence between the outputs of B and P0 can be controlled
by tuning the regularisation parameter(s) and/or the co-variance matrix of the multivariate Gaussian.
Remark 7. If one only cares about i.i.d. loss processes, Assumption 2 can be removed by using
generalization bounds based on the standard Bernstein concentration inequality, e.g. [50, 36], which
would also enable our risk decomposition in Theorem 9 below (and thus fast rates). We make
Assumption 2 only to bound the denominator in our (non-i.i.d) concentration in Theorem 6 away from
zero, which is not needed for other concentration bounds in the i.i.d. setting such as those in [50, 36]
(see Appendix D for more detail).

To specify the sequence of gaps (ξn) that our wrapper Algorithm 1 requires, we will use our
concentration bound in Theorem 6. We recall that using this concentration bound instead of other
existing ones allows us to I) achieve risk monotonicity under a weaker condition than i.i.d. on the
loss process (Assumption 1 in this case); and II) to achieve potentially fast excess risk rates under the
Bernstein condition. The latter is made possible by the fact that the concentration bound in Theorem
6 has an empirical loss variance term that allows a particularly useful decomposition of the excess
risk under the Bernstein condition (see Theorem 9 below).

To give a concise expression of the gaps (ξk), we let Qk ∶= B(Z1∶k) × Pk−1, where (Pk) are the
intermediate distributions generated internally by Algorithm 1. With this, and the convention that
1/0 = +∞, we define

ξk ∶=

√
εk ⋅ V̂k +

2εk
ρ+1

∣1 − εk ∣
, where εk ∶=

2 KL(Qk∥P0 × P0) + 2 ln
φρ(k)

δ

k ⋅ (ρ + 1)−1
; and (9)

V̂k ∶=
1

k

k

∑
t=1

EQk(h,h′) [(`(h,Zt) − `(h
′, Zt))

2
] − (

1

k

k

∑
t=1

EQk(h,h′) [`(h,Zt) − `(h
′, Zt)])

2

.

We note that our Assumption 2 ensures that εn ≤ 1/2 (which in turn ensures that the gaps (ξn) are not
too large), for all n ≥ nδ, where nδ is as in (5). This follows from the fact that KL(Qk∥P0 × P0) =

KL(B(Z1∶k)∥P0)+KL(Pk−1∥P0), and that there existsm < k such that Pk−1 = B(Z1∶m) ∈ Qm ⊆ Qk
(by definition of (Pk) in Algorithm 1). Furthermore, Qn ≠ ∅ for all n ≥ nδ .

Before presenting our results for this section, we also note that Algorithm 1 assumes we can evaluate
expectations over the output distributions of B. Such expectations can be approximated via Monte
Carlo sampling, and any approximation errors need be added to the gaps (ξn) to maintain the
guarantees we present. Alternatively, one can avoid estimating expectations by applying recent
derandomization techniques, see e.g. [46, 51], or by using other, non PAC-Bayesian generalization
bounds (see Appendix D).

We now state the guarantees of Algorithm 1. We start by the statement of risk-monotonicity (the
proof is postponed to Appendix C):
Theorem 8 (Risk Monotonicity). Let δ ∈ (0,1) and nδ be as in (5). Under Assumptions 1 and 2,
Algorithm 1 with (ξk) as in (9) is (δ, nδ)-risk-monotonic according to Definition 1.

We now show that risk monotonicity need not come at a worse excess risk rate. Under the Bernstein
condition, we have the following excess risk decomposition for the output of Algorithm 1:
Theorem 9 (Risk Decomposition). Let B > 1, β ∈ [0,1], and suppose that the (β,B)-Bernstein
condition holds. Further, for ρ > 1 and δ ∈ (0,1), let nδ and εn be as in (5) and (9), respectively.
Then, under Assumptions 1 and 2, the outputs (Pk) of Alg. 1 satisfy, with probability at least 1 − 2δ,

∀n ≥ nδ, L(Pn) −L(h⋆) ≤ 3(L(B(Z1∶n)) −L(h⋆)) +O (εn)
1

2−β , (10)

where h⋆ ∈ arg infh∈HL(h).

4Besides, when the KL divergence is very large, it is often very hard to infer non-vacuous generalization
bounds (which one may view as a prerequisite to achieving risk monotonicity) using a PAC-Bayesian approach.
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We stress that this risk decomposition was only made possible by the fact that our concentration
bound in Theorem 6 has an empirical loss variance term.

Theorem 9 shows that the excess risk of Algorithm 1 is at most a constant times the excess risk of the

base algorithm B, plus a potentially lower-order term O(ε
1

2−β
n ). To appreciate what this additional

term is doing, consider the case of a finite hypothesis classH. In this case, the definition of εn in (9)

implies that εn ≤ O( 1
n

ln ∣H∣ lnn
δ

). Thus, ε
1

2−β
n interpolates between the fast 1

n
ln ∣H∣ lnn

δ
rate under the

best Bernstein condition with β = 1 and the standard (up to log-log-factors) rate
√

1
n

ln ∣H∣ lnn
δ

under
the Bernstein condition with β = 0, which we recall always holds for bounded losses. What is more,
ifH is finite and algorithm B is the ERM, i.e. if B(Z1∶k) is a Dirac at ĥn ∈ arg infh∈H∑

n
i=1 `(h,Zi),

then we have the following explicit excess risk rate for Algorithm 1:
Proposition 10. Under the setting of Theorem 9, ifH is finite, P0 is set to the uniform prior overH,
and B(Z1∶n) is a point mass around the ERM ĥn ∈ arg minh∈H∑

n
i=1 `(h,Zi), ∀n ≥ 1, then Alg. 1 is

risk monotonic according to Def. 1 and its outputs (Pk) satisfy, with probability at least 1 − 2δ,

∀n ≥ nδ ∨ (16(ρ + 1) ln ∣H∣), L(Pn) −L(h⋆) ≤ O
⎛

⎝

ln ∣H∣ lnn
δ

n

⎞

⎠

1
2−β

.

The story is not much different for a continuous set H. The standard excess risk rate one would
expect from algorithm B is

√
(KL(B(Z1∶k)∥P0) + ln(1/δ))/k, which can dominate the right-most

term in our risk decomposition (10) since5

(εn)
1

2−β ≤ O (
maxk≤nKL(B(Z1∶k)∥P0) + ln lnn

δ

n
)

1
2−β

.

Together, the above inequality and Theorem 9 show that fast rates for algorithm 1 are achievable
whenever the Bernstein condition holds with β > 0 and the base algorithm B itself achieves a fast rate
(whenH is finite and B is the ERM, Proposition 10 shows that it is sufficient that β > 0). Thus, risk
monotonicity need not come at the price of a worse rate of convergence to the optimal risk. Finally,
we note that the factor 3 in our risk decomposition (10) is just an artifact of our analysis. In fact,
by slightly modifying our proof of Theorem 9, one can show that any factor in the interval (1,3] is
achievable at the cost of a larger lower-order term in (10).

Risk monotonicity in expectation. The original open problem due to [53] was around risk mono-
tonicity in expectation—as in (3). Our algorithm wrapper also allows us to almost6 achieve this
notion of monotonicity with a slight modification of the sequence (ξk) in (9); we essentially set
the confidence level δ as a function of k. In fact, the next result shows that risk monotonicity in
expectation is achievable up to an additive fast-rate term:
Theorem 11. Let b ≥ 1, ρ > 1, and φρ be as in (4). Under Assumptions 1 and 2, Algorithm 1 with the
sequence of gaps (ξk) given by

ξk = ξ
′
k ∶=

1

∣1 − ε′k ∣
(

√

ε′k ⋅ V̂k +
2ε′k
ρ + 1

) , (11)

with ε′k ∶=
2(ρ+1)
k

(KL(B(Z1∶k) × Pk−1∥P0 × P0) + 2 ln(φρ(k)) + 2b lnk) and (Pk) being as in Al-
gorithm 1, satisfies, for all t ≥ N ∶= sup{n ∶ 8 ln(nbφρ(n)) > n},

E [EPt(h)[L(h)]] ≤ E [EPt−1(h)[L(h)]] + 1/tb. (12)

We note that N need not be too large since φρ(n) ≤ O(lnn). However, while taking b large will
make the additive 1/tb term in (12) small, it will increase the sample size N beyond which (12) holds.

5We note that it is typical that maxk≤nKL(B(Z1∶k)∥P0) ≤ O(KL(B(Z1∶n)∥P0)), for n ≥ 1.
6We thank Olivier Bousquet and his colleagues for pointing out a mistake in the original proof of Theorem 11.

The theorem originally claimed that Algorithm 1 achieves risk-monotonicity in expection without the additive
1/tb term in (12), which turns out not to be correct.
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Ignoring the additive 1/tb term, the notion of risk-monotonicity in theorem 11 corresponds to the
notion of weak Z-monotonicity in [33]—one of their strongest notions of risk monotonicity since it
holds for all data generating distributions (granted Assumption 1 holds, or the data is i.i.d.). We can
modify Algorithm 1 to make it globally Z-monotonic, where (12) would hold for all t ≥ 1 (instead of
t ≥ N ), by forcing the outputs Pk of the algorithm to be P0 for all k < N .

With the same choice of gap sequence (ξk) in Theorem 11 it is easy to show (following almost the
same proof steps as in our previous results) that the excess risk rates in Theorem 9 and Proposition
10 will hold with probability 1/nb (instead of δ) for every sample size n.

5 Discussion and Future Work

The primary goal of this paper was to answer the fundamental question around the existence of a
consistent, risk-monotonic algorithm in the general statistical learning setting. We answer this in
the affirmative for a notation of monotonicity that holds with high probability and further show that
there is virtually no cost for achieving this when it comes to excess-risk rates. We believe this is an
important milestone in the search for risk-monotonic algorithms. It remains to see if risk-monotonicity
in expectation is achievable; i.e. achieving (12) without the additive term.

From a computational perspective, the main setback of Algorithm 1 is that returning the distribution
Pn = Pn(Z1∶n) requires n-calls to the base algorithm B. This implies that 1 may run n times slower
than B in the worst case. However, when the base algorithm outputs distributions centered at ERMs,
it may be possible to efficiently generate the sequence of distributions (B(Z1∶k))k by leveraging the
fact that ERM solutions for sample sizes k and k + 1 can be close to each other.

When the loss ` is convex in the first argument, there is no need for a randomized algorithm7 (i.e. we
do not need B(Z1∶k) ≪ P0), and it is possible to efficiently generate a sequence of predictors (ĥn)
with monotonic risk using an online convex optimization algorithm as the base algorithm B. However,
in general, it is unclear whether risk-monotonicity can be achieved without the (greedy) for-loop
procedure of Algorithm 1. We note also that if one only wants a decreasing risk after some sample
size s ∈ N, then computing the distributions (Pk)k<s is unnecessary. In this case, the for-loop
in Algorithm 1 need only start at k = s; the resulting hypotheses would satisfy the monotonicity
condition in Definition 1 for all n ≥ s ∨ nδ .

Through Theorem 9, we showed that the excess risk of Algorithm 1 is at most three times that of
the base algorithm plus a lower-order term. It remains to evaluate the empirical performance of the
algorithm to identify for which applications the additional cost in the excess risk is worth it to achieve
risk monotonicity.

Some important questions remain open along the axes of assumptions. In particular, can we remove
the boundedness condition on the loss while retaining risk-monotonicity? It might be possible to
achieve this for unbounded convex losses using the non-exponential weighted aggregation techniques
recently suggested by [2]. Lifting the boundedness assumption may be key in resolving another
COLT open problem [24] regarding achievable risk rates of log-loss Bayesian predictors. Our results
build foundations for these avenues, which are promising subjects for future work.

Finally, it would be interesting to explore what other concentration inequalities for non-i.i.d. processes
can be derived using other parameter-free online learning algorithms. An obvious starting point is to
look at MATRIX-FREEGRAD [39].

7Randomization is also not needed if one is only interested in i.i.d. processes (see Appendix D).
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[14] Stéphane d’Ascoli, Levent Sagun, and Giulio Biroli. Triple descent and the two kinds of
overfitting: Where & why do they appear? arXiv preprint arXiv:2006.03509, 2020.

[15] Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A model of double descent for
high-dimensional binary linear classification. arXiv preprint arXiv:1911.05822, 2019.

[16] Michal Derezinski, Feynman T Liang, and Michael W Mahoney. Exact expressions for double
descent and implicit regularization via surrogate random design. Advances in Neural Information
Processing Systems, 33, 2020.
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[30] Nicole Krämer. On the peaking phenomenon of the lasso in model selection. arXiv preprint
arXiv:0904.4416, 2009.

[31] Marco Loog. Contrastive pessimistic likelihood estimation for semi-supervised classification.
IEEE transactions on pattern analysis and machine intelligence, 38(3):462–475, 2015.

[32] Marco Loog and Robert P.W. Duin. The dipping phenomenon. In Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR), pages 310–317. Springer, 2012.

[33] Marco Loog, Tom Viering, and Alexander Mey. Minimizers of the empirical risk and risk
monotonicity. In Advances in Neural Information Processing Systems, pages 7476–7485, 2019.

[34] Marco Loog, Tom Viering, Alexander Mey, Jesse H. Krijthe, and David M. J. Tax. A brief
prehistory of double descent. Proceedings of the National Academy of Sciences, 117(20):10625–
10626, 2020.

[35] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance
penalization. arXiv preprint arXiv:0907.3740, 2009.

[36] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample-variance
penalization. In COLT 2009 - The 22nd Conference on Learning Theory, Montreal, Quebec,
Canada, June 18-21, 2009, 2009.

[37] Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

[38] Zakaria Mhammedi, Peter Grünwald, and Benjamin Guedj. Pac-bayes un-expected bernstein
inequality. In Advances in Neural Information Processing Systems, pages 12202–12213, 2019.

12



[39] Zakaria Mhammedi and Wouter M. Koolen. Lipschitz and comparator-norm adaptivity in online
learning. In Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz,
Austria], volume 125 of Proceedings of Machine Learning Research, pages 2858–2887. PMLR,
2020.

[40] Preetum Nakkiran. More data can hurt for linear regression: Sample-wise double descent. arXiv
preprint arXiv:1912.07242, 2019.

[41] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt. In International Conference on
Learning Representations, 2020.

[42] Preetum Nakkiran, Prayaag Venkat, Sham Kakade, and Tengyu Ma. Optimal regularization can
mitigate double descent. arXiv preprint arXiv:2003.01897, 2020.

[43] Manfred Opper and Wolfgang Kinzel. Statistical mechanics of generalization. In Models of
neural networks III, pages 151–209. Springer, 1996.

[44] V.H. Peña, T.L. Lai, and Q.M. Shao. Self-Normalized Processes: Limit Theory and Statistical
Applications. Probability and Its Applications. Springer Berlin Heidelberg, 2008.

[45] Alexander Rakhlin and Karthik Sridharan. On equivalence of martingale tail bounds and
deterministic regret inequalities. In Conference on Learning Theory, pages 1704–1722. PMLR,
2017.

[46] Omar Rivasplata, Ilja Kuzborskij, Csaba Szepesvári, and John Shawe-Taylor. Pac-bayes analysis
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