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Abstract001

Temporal Domain Generalization (TDG) aim002
at generalizing across temporal distribution003
shifts, e.g., lexical change over time, by pre-004
dicting future models. Due to the prohibitive005
full model prediction cost on large-scale sce-006
narios, recent TDG works only predict the clas-007
sifier, but this limits generalization potential008
by failing to adjust other model components.009
To address this, we propose Temporal Experts010
Averaging (TEA), a novel TDG framework011
based on weight averaging that adjusts the en-012
tire model to maximize generalization poten-013
tial while maintaining minimal computational014
overhead when scaling to large-scale datasets015
and models. Our theoretical analysis of weight016
averaging for TDG guided us to develop two017
steps that enhance generalization to future do-018
mains. First, we create expert models with019
functional diversity yet parameter similarity by020
fine-tuning a domain-agnostic base model on021
individual temporal domains while constrain-022
ing weight changes. Second, we optimize the023
bias-variance tradeoff through adaptive averag-024
ing coefficients derived from modeling tempo-025
ral weight trajectories in a principal component026
subspace and weighting experts based on their027
projected proximity to future domains in the028
subspace. Extensive experiments across 7 TDG029
benchmarks, 5 models, and 2 TDG settings re-030
ports TEA outperforms prior TDG methods by031
up to 69% while being up to 60x more efficient.032

1 Introduction033

Temporal Domain Generalization (TDG) (ying Bai034

et al., 2022; Nasery et al., 2021; Qin et al., 2022;035

Xie et al., 2024c,a; Yong et al., 2023; Xie et al.,036

2024b) aims at generalizing to unseen future data037

under temporal distribution shift without retrain-038

ing the models, as illustrated in Fig. 1. Unlike039

traditional Domain Generalization (DG) lacking040

target domain information (Li et al., 2017a; Muan-041

det et al., 2013; Li et al., 2018a,b), TDG could042

leverage temporal patterns for prediction, such as043
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Figure 1: Examples of temporal domain generalization
(TDG) span both vision and language tasks. TDG aims
at enabling models trained on historical data to directly
generalize to future data without retraining.

predicting NLP research trends (Yao et al., 2022a), 044

to better adapt the models for future domains. How- 045

ever, prior work faces limitations in scaling. Early 046

brute-force approaches predict entire models but 047

encounter prohibitive computational costs on large- 048

scale models and datasets (Nasery et al., 2021; ying 049

Bai et al., 2022; Qin et al., 2022). As shown in 050

Fig. 2a, recent methods improve efficiency by only 051

predicting classifier (Xie et al., 2024c,b), but sac- 052

rifice generalization potential by failing to adjust 053

other model components. In large-scale bench- 054

marks (Yao et al., 2022a; Lin et al., 2022), these 055

methods struggle to surpass basic ERM baselines. 056

To address the scaling challenges, we propose 057

Temporal Experts Averaging (TEA), a TDG frame- 058

work based on weight averaging (WA) that predicts 059

the averaging coefficients of temporal experts for 060

future domains. As standard WA methods for DG, 061

e.g., (Cha et al., 2021; Rame et al., 2022; Wortsman 062

et al., 2022), lack mechanisms to exploit temporal 063

patterns in TDG, we identify two key strategies to 064

leverage temporal patterns in WA through a bias- 065

variance-covariance-locality decomposition analy- 066

sis of generalization error: a) creating weights with 067

functional diversity yet parameter similarity, and b) 068

optimizing averaging coefficients to achieve better 069

bias-variance tradeoffs than uniform averaging. 070

Thus, our TEA first creates a set of temporal 071

1



1880 

Backbone

Classifier

1880 2020

2020

Backbone

Classifier

(a) Classifier-only TDG framework

Backbone

Classifier

1880 2020Experts

... ...

��

��

��

...

∙
∙
∙

2020 

Backbone

Classifier

...

��

��

��

...

∙
∙
∙

1880 

(b) Our Temporal Expert Averaging (TEA) framework

Figure 2: TDG framework comparison. (a) Classifier-only TDG (Xie et al., 2024c,b) only predicts future classifiers
to reduce computational costs in large-scale scenarios, but limits generalization potential by neglecting other model
components. (b) Our Temporal Expert Averaging (TEA) enables higher generalization potential by adjusting the
entire model through predicting future averaging coefficients of temporal experts capturing diverse functionalities.
The low-dimensional nature of these coefficients ensures TEA’s efficiency in large-scale scenarios.

experts with functional diversity yet parameter sim-072

ilarity by training a domain-agnostic base model073

on all source domains, followed by constrained in-074

cremental fine-tuning on each individual domain.075

To create adaptive averaging coefficients, we then076

extract principal components from the deviations077

between expert weights and the base model, creat-078

ing a low-dimensional subspace to model temporal079

weight trajectories. This enables forecasting fu-080

ture domain positions and averaging experts based081

on their projected proximity to the future domain.082

This enables TEA to temporally-adapt all model083

parameters with computational costs comparable to084

standard ERM training, offering higher generaliza-085

tion potential than merely adjusting the classifier.086

The superiority of TEA is demonstrated through087

comprehensive evaluation across 7 diverse TDG088

benchmarks and 5 different models, covering both089

vision and language tasks. Beyond standard TDG090

with simultaneous access to all source domains, we091

also evaluate on Continual Domain Generalization092

over Temporal Drift (CDGTD) settings, where new093

domains arrive sequentially. Across this extensive094

evaluation, TEA consistently achieves new state-of-095

the-art results, outperforming prior TDG methods096

by up to 69% while being up to 60x more efficient.097

Our contributions can be summarized as follows:098

• We propose TEA, a novel weight-averaging-099

based TDG framework that efficiently enhances100

generalization across temporal shifts with broad101

model/dataset compatibility.102

• We provide valuable theoretical insights on the103

under-explored WA-TDG integration, design our104

method based on these insights, and validate our105

insights and method through superior generaliza-106

tion performance across various benchmarks.107

• We enhance TDG evaluation comprehensiveness108

by addressing both TDG and CDGTD, unlike109

prior work that typically focused on just one set-110

ting. We also introduce CLEAR-10 and CLEAR- 111

100 as new evaluation benchmarks for TDG. 112

2 Related Work 113

Temporal Domain Generalization (TDG) (Ortiz- 114

Jiménez et al., 2019; Mancini et al., 2019; Wang 115

et al., 2020; ying Bai et al., 2022; Nasery et al., 116

2021; Zeng et al., 2023; Wang et al., 2022; Xie 117

et al., 2024c,a; Yong et al., 2023; Xie et al., 2024b) 118

exploits temporal patterns in ordered domains with 119

smooth distribution shifts to enhance generaliza- 120

tion to future domains. Early approaches like 121

GI (Nasery et al., 2021) and DRAIN (ying Bai et al., 122

2022) predict entire model parameters but face 123

computational challenges with large-scale models, 124

while recent methods like EvoS (Xie et al., 2024c) 125

and W-Diff (Xie et al., 2024b) reduce costs by 126

only adjusting classifiers, potentially limiting gen- 127

eralization. TDG encompasses multiple settings: 128

the original setting with simultaneous access to all 129

source domains, Continual Domain Generalization 130

over Temporal Drift (CDGTD) with sequentially 131

available domains, and Continuous Temporal Do- 132

main Generalization (CTDG) for continuously dis- 133

tributed temporal data. We focus on the original 134

TDG and CDGTD settings as CTDG remains im- 135

practical for most realistic benchmarks. 136

Domain Adaptation and Generalization. En- 137

abling models to perform well on out-of- 138

distribution (OOD) data has been a crucial chal- 139

lenge in machine learning. Two specific tasks 140

highly relevant to our work are Domain Adapta- 141

tion (DA) and Domain Generalization (DG). DA 142

methods (Saenko et al., 2010; Sun et al., 2015; 143

Sun and Saenko, 2016; Gong et al., 2012; Tzeng 144

et al., 2017; Li et al., 2016) typically adapt mod- 145

els against distribution shift by utilizing data from 146

the target domain. In contrast, DG methods (Li 147

et al., 2017a; Muandet et al., 2013; Li et al., 2018a, 148
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2017b; Gulrajani and Lopez-Paz, 2021; Li et al.,149

2018b, 2019) operate without target domain infor-150

mation, solely leveraging source domain patterns151

to enhance OOD generalization.152

Weight Averaging (WA) (Cha et al., 2021,153

2022; Rame et al., 2022; Wortsman et al., 2022)154

proves effective for Domain Generalization, with155

DiWA (Rame et al., 2022) showing reduced vari-156

ance against marginal distribution shifts. While157

WA is also used in Multi-task Learning (Ilharco158

et al., 2022b; Yadav et al., 2023; Ortiz-Jimenez159

et al., 2023; Wang et al., 2024; Stoica et al.,160

2023) with our design partly inspired by task arith-161

metic (Ilharco et al., 2022a), fundamental differ-162

ences between MTL and TDG make direct applica-163

tion impractical.164

3 Temporal Experts Averaging165

Let X be the input space, Y the label space, ℓ :166

Y2 → R+ a loss function, {Di} a sequence of167

domains with timestamps ti ∈ T and distributions168

pi. Given source domains DS = {Di}Si=1, where169

t1 < . . . < tS , and a neural network f(·, θ) :170

X → Y with weights θ, we aim to minimize the171

generalization error at future time tf > tS :172

Ef (θ) = E(x,y)∼pf [ℓ(f(x, θ), y)]. (1)173

We obtain the weights of S temporal expert mod-174

els {θi}Si=1 = {θ(li)}Si=1, where θi is optimized175

for domain Di while using data from other do-176

mains, with learning procedure noted as li =177

{{Di}Si=1, ti, c} and other configurations (e.g.,178

hyper-parameters) as c. We leverage temporal pat-179

terns to derive adaptive coefficients {αi}Si=1, where180 ∑S
i=1 αi = 1 and αi ≥ 0, for combining expert181

weights into the final weight θTEA, formulated as:182

fTEA ≜ f(·, θTEA),183

θTEA ≜
S∑

i=1

αi

(
{ti}Si=1, {θi}Si=1, tf

)
· θi. (2)184

To leverage temporal shift patterns for reducing fu-185

ture generalization error, we gain insight into TEA186

through theoretical analysis in Section 3.1. Follow-187

ing the insights, we implement our TEA by creat-188

ing functionally diverse yet parametrically similar189

experts {θi}Si=1 (Section 3.2) and determining coef-190

ficients {αi}Si=1 based on expert-future proximity191

(Section 3.3). Section 3.4 details TEA’s application192

to the CDGTD setting.193

3.1 Theoretical Analysis and Insights 194

To gain insight into TEA, we extend DiWA’s (Rame 195

et al., 2022) theoretical analysis developed for DG 196

to our WA-TDG integration setting. Since our pri- 197

mary goal is to guide method design, we briefly 198

summarize the theoretical analysis and results in 199

the main text, with complete derivations and proofs 200

available in the supplementary. 201

Bias-variance-covariance-locality Decomposi- 202

tion. Similar to DiWA (Rame et al., 2022), we 203

introduce the bias-variance-covariance-locality 204

(BVCL) decomposition of generalization error 205

for TDG and TEA by leveraging the similarity 206

between averaging in weight space and function 207

space. Denoting Ef = E(x,y)∼pf , l = {l1, . . . , lS}, 208

f̄i(x) = Eli [f(x, θ(li))], biasi = y − f̄i(x), 209

vari = Eli

[(
f(x, θ(li))− f̄i(x)

)2]
, covi,j = 210

Eli,lj

[(
f(x, θ(li))− f̄i(x)

) (
f(x, θ(lj))− f̄j(x)

)]
211

and ∆{θ} = maxSi=1 ∥θi − θTEA∥2, the expected 212

generalization error on future timestamp tf of 213

θTEA =
∑S

i=1 αiθi over the joint distribution of 214

the learning procedures is: 215

El[Ef (θTEA)] = Ef [B + V + C] +O(∆̄2), (3) 216

B =

(
S∑

i=1

αi · biasi

)2

, V =

S∑
i=1

α2
i · vari, 217

C =
∑
i ̸=j

αiαjcovi,j , ∆̄2 = El

[
∆{θ}

]
. 218

To reduce future generalization error in Equa- 219

tion 3, we can control learning procedures {li}Si=1 220

affecting expert weights {θi}Si=1 and modify av- 221

eraging coefficients {αi}Si=1, which constitute the 222

key differences between our TEA and WA for typ- 223

ical DG. While finding optimal solutions remains 224

challenging due to real-world complexity, quali- 225

tative analysis provides valuable insights summa- 226

rized as two tradeoffs implemented through experts 227

and coefficients respectively. Detailed analysis and 228

assumptions are in the supplementary material. 229

Insight 1 Tradeoff between Functional Diversity 230

and Parameter Similarity among Experts. Covari- 231

ance C reduction necessitates functional diversity 232

among experts, while the locality constraint ∆̄2 233

demands parameter similarity among experts. 234

Insight 2 Tradeoff between Bias and Variance via 235

Averaging Coefficients. Reducing variance V re- 236

quires averaging weights evenly, while reducing 237

bias B demands concentrating coefficients on ex- 238

perts with lower bias magnitudes on future data. 239

3



����� ����

� Source Domains

Domain-agnostic 
Pretraining

Temporal 
Finetuning

Source Domain �� Source Domain �1

...

...

...

Temporal 
Finetuning

�����...

�-dimensional Projection via PCA on Deviations: 

�1

����
(�1, �11)

(��, ��1)
(��, ��1)

��

����

(�1, �1�)

(��, ���)

(��, ���)

Forecast along Component 1 ...

...

Forecast along Component �����
�1

��

...

��
,

Target Future Domain ��

...∙α1 αn+ ∙+
����

=

Measure Expert-Future Distance 
of the � Principle Components

��

��
�� �1

��

��
��

�� =
(���� − ��)�

 �=�
� (���� − ��)�

�� ��=(��1, . . . , ���)

Training Temporal Experts Temporal Dynamics Forecasting Proximity-based Expert Averaging

Figure 3: Overview of our TEA framework. Firstly, we obtain a base model θbase through domain-agnostic
pretraining on all source domains, then derive experts θ1, ..., θn via constrained domain-specific incremental
finetuning in reverse temporal order. Secondly, we apply PCA to expert weight deviations {θi − θbase}ni=1, forecast
future positions along the P most significant components with Autoregressive Integrated Moving Average (ARIMA),
effectively projecting experts into a low-dimensional space for prediction. Finally, we assign averaging coefficients
based on projected expert-future proximity, where closer experts receive higher coefficients.

3.2 Training Temporal Experts240

TDG assumes smooth temporal distribution shifts241

with moderate changes between adjacent domains.242

This allows an expert to be fine-tuned for learning243

domain-specific functionality of neighboring do-244

mains with minimal parameter adjustments. There-245

fore, we can satisfy Insight 1 through incremen-246

tal domain-specific fine-tuning while constraining247

minimal parameter changes. However, a prerequi-248

site is that experts must have already thoroughly249

learned the intrinsic distribution.250

A "Pretraining-Finetuning" approach is adopted251

for our expert training that efficiently generates252

diverse temporal experts with similar parameters.253

The overall process can be formulated as:254

θbase = θS+1 = θ(lERM(DS)), (Pretraining)255

θi = θ(lSI({Dti}, θi+1)), (Finetuning)256

where i ∈ {S, . . . , 1},DS = {D1, . . . , DS}, lERM257

represents the Empirical Risk Minimization (ERM)258

learning process, and lSI represents the learning pro-259

cess with Synaptic Intelligence (SI) (Zenke et al.,260

2017) constraining parameter changes.261

Pretraining aims to capture intrinsic, time-262

invariant distributions. We apply standard ERM263

training with source domains {D1, . . . , DS}. No264

temporal information is incorporated during this 265

stage. Unlike WA for DG (Cha et al., 2021, 2022; 266

Rame et al., 2022; Wortsman et al., 2022), we up- 267

date normalization layers during pretraining to pre- 268

vent underfitting, as TDG exhibits smaller distribu- 269

tion differences than DG settings. 270

Temporal Finetuning sequentially adapts the base 271

model to capture time-varying distributions. We 272

freeze the normalization layers and proceed in re- 273

verse temporal order (tS → . . . → t1) in this stage. 274

For each domain Di, we uniformly sample K 275

weights during finetuning, {θki }Kk=1, and expert θi 276

is obtained by uniform averaging: θi =
∑K

k=1
1
K θki 277

SI (Zenke et al., 2017) is used to constrain pa- 278

rameter changes, which also prevent catastrophic 279

forgetting of intrinsic distributions. Other contin- 280

ual learning methods can also be used. Since later 281

fine-tuning stages are influenced by previous ones, 282

we use reverse temporal order (recent to earliest) 283

to better capture distributions from recent domains 284

that more likely resemble future test domains under 285

smooth distribution shift assumptions. 286

3.3 Adaptive Weight Averaging 287

If future weights are available, we could satisfy 288

Insight 2 by assigning coefficients based on expert- 289

future weight proximity, although we could directly 290
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use future weights. However, precisely predict-291

ing the future in high-dimensional weight space is292

both hard and computationally prohibitive. As we293

only need relative rankings of expert-future proxim-294

ity, we can project experts into a low-dimensional295

space that captures the principal components of296

weight temporal evolution, enabling us to predict297

future positions and measure expert-future proxim-298

ity efficiently for assigning averaging coefficients.299

PCA over Temporal Weight Deviation. The300

weight deviations {δθi}Si=1, δθi = θi − θbase of all301

experts captures weight dynamics under temporal302

distribution shifts, though these dynamics typically303

stem from multiple underlying factors and contain304

noise. We apply PCA to {δθi}Si=1 to decompose305

the principal components of weight temporal evo-306

lution and reduce noise. By considering only the P307

most significant components {vp}Pp=1, we can ob-308

tain a P -dimensional space and project the experts309

into points in this space, where ci = (c1i , ..., c
P
i ) is310

the projection of θi:311

ci = (c1i , ..., c
P
i ) (4)312

= (⟨θi − θbase, v1⟩, . . . , ⟨θi − θbase, vP ⟩)313

Principal Component Trajectory Forecasting.314

We could construct a temporal evolution trajectory315

of the P principle components with all experts’ pro-316

jected points and their timestamps, {(ci, ti)}Si=1.317

Then we predict the future domain position in this318

P -dimensional space by forecasting along this tem-319

poral evolution trajectory. As we often have limited320

temporal domains available leading to few histor-321

ical points in the trajectory, we simply model the322

P -dimensional trajectory as P separate time series,323

{(cpi , ti)}Pi=1 for p ∈ {1, ..., P}, by treating all the324

dimensions independently. For prediction, we ap-325

ply the Autoregressive Integrated Moving Average326

(ARIMA) model to each time series:327

cp(tf ) = ARIMA({(cpi , ti)}
S
i=1, tf ) (5)328

where p ∈ {1, ..., P} and tf is the future domain’s329

timestamp. The predicted future point in the princi-330

ple component space is cf = (c1(tf ), ..., c
P (tf )).331

Distance-based Averaging Coefficients Based on332

Insight 2, we assign higher averaging coefficients to333

experts with greater expert-future proximity (lower334

expert-future distance) in the principal component335

space. Specifically, for expert θi with projected336

point ci = (c1i , ..., c
P
i ) and our predicted future337

point cf = (c1(tf ), ..., c
P (tf )), we calculate dis-338

tance di = ∥ci−cf∥. We then assign the averaging339

coefficient for θi as: 340

αi =
(dmax − di)

r∑n
j=1(dmax − dj)r

, (6) 341

where dmax = max(d1, ..., dn) and r is a hyperpa- 342

rameter controlling the sharpness of the weighting 343

distribution. Higher r concentrates the averaging 344

more on experts closer to the predicted future. 345

3.4 TWA for CDTDG 346

The TWA method described above targets the orig- 347

inal TDG setting with access to all source domains, 348

and cannot be directly applied to the CDTDG set- 349

ting with sequentially available domains. Simply 350

sampling models during the incremental learning 351

process fails because adjacent domains have varia- 352

tions not only from temporal distribution shifts but 353

also from newly introduced data, which inevitably 354

leads to significant parameter differences even be- 355

tween models from adjacent domains, thereby vio- 356

lating the locality constraints. 357

We therefore slightly relax the CDTDG con- 358

straints by maintaining small memory buffers (e.g., 359

10%) of used training data {d1, d2, . . . , dS} from 360

each domain. After training on the final source do- 361

main, we can access these buffers, which is reason- 362

able in practice with minimal impacts on fairness 363

by using only previously seen data. Based on this 364

relaxation, we apply the original TWA framework: 365

θbase = θS+1 = θ(lIncERM({DS})) (Pretraining) 366

θi = θ(lSI({dti}, θi+1)), (Finetuning) 367

where i ∈ {S, . . . , 1}, lIncERM is the incremental 368

learning process with ERM, and lSI is the learning 369

process with SI constraining parameter changes. 370

4 Experimental Results 371

4.1 Experimental Setup 372

We first introduce the major experimental setups, 373

with detailed configurations provided in the supple- 374

mentary material. Note that for overlapped bench- 375

marks, we follow the configurations from Xie et al. 376

(2024c,b) for fair and consistent comparisons. 377

Benchmarks. We include 4 benchmarks from 378

Yao et al. (2022a) (Huffpost, Arxiv, Yearbook 379

and FMoW), 2 benchmarks from Lin et al. (2022) 380

(CLEAR-10/100), and Rotated MNIST (RMNIST). 381

Huffpost and Arxiv are text benchmarks; others are 382

image benchmarks. RMNIST and Yearbook are 383

small-scale; others are large-scale. Each dataset is 384
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Dataset Metric
Method TEA (ours)

ERM IRM CORAL Mixup LISA GI§ LSSAE§ SWAD DiWA

Yearbook
(Yao et al., 2022a)

DS+1 89.30 97.09 95.94 94.98 95.51 97.42 93.93 97.18 97.66 97.71
OODavg. 88.46 94.52 91.79 91.12 92.97 96.37 92.12 95.00 95.36 95.95
OODworst 86.81 92.58 88.84 88.35 91.29 95.73 88.75 93.89 94.42 94.80

RMNIST
DS+1 98.15 95.10 93.04 97.11 96.21 97.78 96.73 97.93 97.67 98.61

OODavg. 92.14 85.05 79.10 89.66 87.04 91.00 90.36 94.51 92.06 94.47
OODworst 83.89 72.52 62.96 79.63 75.15 82.46 82.13 84.89 84.31 88.83

FMoW
(Yao et al., 2022a)

DS+1 72.43 64.77 62.14 70.27 70.05 61.62 59.15 71.59 73.85 75.63
OODavg. 59.76 54.92 51.42 57.73 55.52 50.83 48.66 59.96 60.77 62.45
OODworst 49.85 46.51 42.19 48.04 44.61 42.78 41.38 50.48 51.00 52.45

CLEAR-10
(Lin et al., 2022)

DS+1 80.83 77.50 77.57 78.57 71.50 72.73 55.63 69.20 81.03 83.53
OODavg. 81.20 77.03 77.89 78.21 70.89 71.31 55.74 68.14 81.17 83.16
OODworst 80.83 76.60 77.47 76.90 70.27 70.33 54.83 67.53 80.60 82.43

CLEAR-100
(Lin et al., 2022)

DS+1 63.92 57.74 61.95 62.96 53.80 51.87 39.82 47.38 65.64 67.39
OODavg. 63.19 56.79 60.53 62.42 52.82 51.06 39.41 46.04 64.71 66.96
OODworst 62.62 56.24 59.46 61.93 52.08 50.32 38.87 45.18 63.96 66.43

Huffpost
(Yao et al., 2022a)

DS+1 72.74 71.04 71.34 73.34 72.19 68.06 - 73.40 73.31 73.43
OODavg. 71.50 70.31 70.08 71.16 70.24 66.32 - 71.59 71.51 72.12
OODworst 69.63 68.97 68.68 69.29 68.60 64.64 - 70.10 70.18 70.64

Arxiv
(Yao et al., 2022a)

DS+1 57.49 51.11 50.98 57.58 56.53 53.43 - 57.08 57.21 59.28
OODavg. 52.38 45.89 45.77 52.77 52.41 49.19 - 52.96 52.80 55.23
OODworst 49.28 42.86 42.71 49.62 49.67 46.13 - 50.09 49.92 52.31

Overall Avg.
DS+1 76.41 73.48 73.28 76.40 73.68 71.70 - 73.25 77.91 79.37

OODavg. 72.66 69.22 68.08 71.87 69.13 67.87 - 69.74 74.77 75.76
OODworst 69.13 64.90 62.04 67.54 65.95 64.63 - 65.71 70.55 72.56

Table 1: Accuracy (%) on all benchmarks under TDG setting. Baselines include ERM, IRM (Arjovsky et al., 2019),
CORAL (Sun and Saenko, 2016), Mixup (Zhang et al., 2018), LISA (Yao et al., 2022b), GI (Nasery et al., 2021),
LSSAE (Qin et al., 2022), SWAD (Cha et al., 2021), and DiWA (Rame et al., 2022). Best and second-best results
are bolded and underlined. For FMoW, CLEAR-10&100, Huffpost and Arxiv, we only apply GI to classifiers due
to backbone size limitations. LSSAE only applies to image benchmarks. § indicates TDG baselines.

divided into first S source and last F target domains385

with ratios S : F of: Yearbook (16:5), RMNIST386

(6:3), FMoW (13:3), Huffpost (4:3), Arxiv (9:7),387

and CLEAR-10/100 (5:5). Each source domain388

uses a random 90%-10% train-validation split.389

Model Architectures. We use: 4-layer CNN for390

Yearbook, ConvNet (Qin et al., 2022) for RMNIST,391

DenseNet-121 (Huang et al., 2017) for FMoW, Dis-392

tilBERT (Sanh et al., 2019) for Huffpost/Arxiv, and393

ResNet-18/50 (He et al., 2016) for CLEAR-10/100.394

Baselines: For TDG, we evaluate against ERM,395

IRM (Arjovsky et al., 2019), CORAL (Sun and396

Saenko, 2016), Mixup (Zhang et al., 2018),397

LISA (Yao et al., 2022b), GI (Nasery et al., 2021),398

LSSAE (Qin et al., 2022), SWAD (Cha et al.,399

2021), and DiWA (Rame et al., 2022), where GI400

and LSSAE are representative TDG methods and401

SWAD and DiWA are representative weight averag-402

ing approaches. For CDGTD, we include Incremen-403

tal ERM (IncERM), Mixup (Zhang et al., 2018),404

SimCLR (Chen et al., 2020), SwAV (Caron et al.,405

2020), EWC (Kirkpatrick et al., 2017), SI (Zenke406

et al., 2017), A-GEM (Chaudhry et al., 2018),407

DRAIN (ying Bai et al., 2022), EvoS (Xie et al.,408

2024c), and W-Diff (Xie et al., 2024b), with EvoS409

and W-Diff being state-of-the-art CDGTD meth- 410

ods. Due to computational constraints (e.g., GI 411

finetuning costs 400 GPU hours per epoch), full GI 412

and DRAIN are applied only on Yearbook and RM- 413

NIST. For larger benchmarks, we use GI without 414

finetuning and apply DRAIN only to the classifier. 415

Method Configurations. Overlapped baselines 416

use configurations from (Xie et al., 2024c,b). TEA 417

maintain equivalent total training steps (e.g., 25 418

baseline epochs = 20 pretraining + 5 finetuning for 419

TEA). Other details including CLEAR configura- 420

tions are in the supplement. 421

4.2 Main Results 422

TDG setting results and comparisons are pre- 423

sented in Table 1. Our TEA outperforms all base- 424

line methods on both image and text benchmarks. 425

Specifically, we observe: a). Prior TDG baselines 426

(GI (Nasery et al., 2021) and LSSAE (Qin et al., 427

2022)) perform well on small-scale benchmarks 428

(RMNIST and Yearbook (Yao et al., 2022a)) but 429

degrade significantly on other large-scale bench- 430

marks (Lin et al., 2022; Yao et al., 2022a). While 431

GI’s poor performance potentially stems from com- 432

putational constraints preventing finetuning stage, 433

LSSAE was fully applied, indicating that prior 434
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Dataset Metric
Method TEA (ours)

IncERM Mixup SimCLR SwAV EWC SI A-GEM DRAIN§ EvoS§ W-Diff§

Yearbook
(Yao et al., 2022a)

DS+1 96.61 90.21 95.94 97.37 97.18 97.09 94.36 96.23 97.37 97.32 97.75
OODavg. 94.72 89.83 93.07 94.27 95.12 94.67 90.96 94.71 95.53 95.03 95.29
OODworst 93.48 88.43 89.65 91.44 93.64 93.48 88.88 93.73 94.78 94.05 94.40

RMNIST
DS+1 98.62 98.43 98.23 98.08 98.56 98.61 95.99 98.52 98.64 98.70 98.74

OODavg. 92.80 92.38 90.98 90.85 92.02 93.27 86.95 93.09 93.84 94.12 93.76
OODworst 84.61 83.45 81.05 80.96 82.80 85.65 75.45 85.75 87.04 87.36 87.05

FMoW
(Yao et al., 2022a)

DS+1 65.52 64.84 64.97 66.47 66.23 66.61 54.54 67.22 67.18 68.80 67.87
OODavg. 53.99 52.00 53.20 54.51 54.55 54.89 47.61 55.05 54.64 55.86 55.21
OODworst 45.23 42.54 44.71 45.29 45.80 46.46 41.13 46.24 45.86 46.51 46.27

CLEAR-10
(Lin et al., 2022)

DS+1 75.90 74.97 78.43 77.53 75.07 76.73 60.67 74.40 77.03 68.00 79.20
OODavg. 75.82 74.99 78.41 78.05 73.71 76.07 59.49 74.52 77.06 67.85 77.87
OODworst 74.83 74.10 77.73 77.13 72.30 75.00 58.17 73.97 76.87 66.03 77.43

CLEAR-100
(Lin et al., 2022)

DS+1 56.73 51.68 60.52 58.89 56.22 31.76 23.61 54.74 57.02 52.33 58.93
OODavg. 55.67 50.86 59.67 57.59 55.20 30.82 22.55 53.16 56.09 51.92 58.43
OODworst 54.47 50.32 58.65 56.53 54.30 30.35 21.64 51.90 55.47 51.65 57.70

Huffpost
(Yao et al., 2022a)

DS+1 73.57 73.07 - - 73.64 72.58 72.23 73.42 73.42 73.91 73.99
OODavg. 71.98 71.52 - - 71.53 71.50 71.16 71.75 72.36 72.29 72.40
OODworst 69.80 69.44 - - 68.99 69.61 69.10 69.69 70.19 70.40 70.61

Arxiv
(Yao et al., 2022a)

DS+1 56.22 56.64 - - 56.60 49.98 52.02 56.04 56.60 56.66 57.34
OODavg. 52.43 52.95 - - 52.78 47.27 48.91 52.07 53.15 53.43 54.20
OODworst 49.37 49.97 - - 49.73 44.77 46.03 48.97 50.19 50.70 51.41

Overall Avg.
DS+1 73.88 72.01 - - 74.79 69.34 64.77 74.29 75.32 73.67 76.26

OODavg. 71.23 69.55 - - 71.88 66.48 61.34 70.99 71.81 70.07 72.45
OODworst 67.59 65.46 - - 67.84 63.40 57.09 67.94 68.63 66.67 69.27

Table 2: Accuracy (%) under CDGTD setting. Baselines include: ERM (IncERM), Mixup (Zhang et al., 2018),
SimCLR (Chen et al., 2020), SwAV (Caron et al., 2020), EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017),
A-GEM (Chaudhry et al., 2018), DRAIN (ying Bai et al., 2022), EvoS (Xie et al., 2024c), and W-Diff (Xie et al.,
2024b). Best and second-best results are bolded and underlined. For FMoW, CLEAR-10, CLEAR-100, Huffpost
and Arxiv, we only apply DRAIN to classifiers due to backbone size limitations. SimCLR and SwAV only apply to
image benchmarks. § indicates TDG baselines.

TDG methods also struggle to model temporal dis-435

tribution shifts on large-scale tasks beyond com-436

putational limitations. In contrast, TEA consis-437

tently improves performance across all scales, out-438

performing GI by up to 30% and LSSAE by up439

to 69%; b). TEA also consistently outperforms440

weight averaging methods (DiWA (Rame et al.,441

2022) and SWAD (Cha et al., 2021)), validating442

that our approach not only benefits from sampling443

experts with functional diversity and parameter sim-444

ilarity but further leverages adaptive averaging co-445

efficients to specifically address temporal shifts,446

thereby enhancing temporal generalization beyond447

standard weight averaging techniques.448

CDGTD setting results and comparisons are pre-449

sented in Table 2. Our TEA still achieves the best450

performance on average, outperforming state-of-451

the-art CDGTD baselines, EvoS (Xie et al., 2024c)452

and W-Diff (Xie et al., 2024b). On text benchmarks,453

our TEA consistently performs the best, while on454

image benchmarks, although different benchmarks455

favor different methods, our TEA generally ranks456

within the top two. These results demonstrate the457

superiority and flexibility of TEA, showing that458

TEA can effectively improve temporal generaliza-459

tion even under imited data access constraints.460

Training Cost Analysis is presented in Table 3. 461

Early TDG methods (GI (Nasery et al., 2021), 462

LSSAE (Qin et al., 2022), and DRAIN (ying 463

Bai et al., 2022)) significantly increase training 464

costs (see Yearbook and RMNIST for full costs). 465

Even classifier-only W-Diff averages 81× the train- 466

ing cost. In contrast, our TEA only slightly in- 467

creases cost by 33% over ERM in both TDG and 468

CDGTD, being up to 60x more efficient that prior 469

TDG/CDGTD baselines. 470

4.3 Ablation Study and Analysis 471

Single Model Ablation results are shown in Ta- 472

ble 4. The Random Expert average accuracies from 473

randomly selected temporal experts, while Last 474

Expert shows accuracies from the last domain ex- 475

perts. Random Expert performs worse than ERM, 476

indicating that our method does not simply im- 477

prove domain-agnostic convergence during fine- 478

tuning. Last Expert outperforms Random Expert, 479

demonstrating that our temporal finetuning enables 480

the model to learn domain-specific distributions, 481

achieving functional diversity among experts. 482

Weight Averaging Ablation are shown in Table 4. 483

Recall that TEA optimizes two tradeoffs: (1) func- 484

tional diversity vs. parameter similarity (with tem- 485
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Method Yearbook RMNIST CLEAR-10 CLEAR-100 FMoW HuffPost Arxiv Overall Rel. Cost
TDG setting

ERM 0.02 0.02 0.30 1.58 2.34 3.05 7.92 2.18 1.00
GI 0.21 1.31 0.32∗ 3.54∗ 5.35∗ 3.87∗ 9.75∗ 3.48 12.01
LSSAE 0.19 0.22 2.19 9.43 12.05 - - - 7.78
TEA 0.04 0.04 0.33 1.62 2.43 3.23 8.57 2.32 1.33

CDGTD setting
IncERM 0.02 0.02 0.30 1.58 2.34 3.03 7.95 2.18 1.00
DRAIN 0.05 0.13 0.33† 1.75† 2.45† 3.07† 8.86 2.38 2.05
EvoS 0.07 0.07 0.38 1.67 2.56 3.08 9.04 2.41 1.80
W-Diff 3.12 6.74 3.47 32.35 65.31 13.18 77.93 28.87 81.01
TEA 0.04 0.04 0.32 1.64 2.46 3.19 8.65 2.33 1.33

Table 3: Training cost (hours on A40 GPU) for each method. Rel. Cost is the computational cost ratio vs.
ERM/IncERM, averaged across all tasks. ∗GI without finetuning. †Classifier-only DRAIN.

Configuration Yearbook RMNIST FMoW CLEAR-10 CLEAR-100 Huffpost Arxiv Overall
Single Model
- ERM 88.46 92.14 59.76 81.20 63.19 71.50 52.38 72.66
- Random Expert 87.46 82.29 59.37 81.63 63.26 71.34 52.05 71.06
- Last Expert 95.42 92.17 60.49 81.53 63.16 71.33 54.57 74.10
Weight Averaging
- Only Temporal Experts 95.41 92.64 60.54 82.12 66.32 71.43 53.79 74.61
- Only Adaptive Averaging 94.03 92.92 60.83 83.07 66.85 71.73 53.26 74.67
Full TEA (ours) 95.95 94.47 62.45 83.16 66.96 72.12 55.23 75.76

Table 4: Ablation study of TEA components under the TDG setting with OOD average accuracy (%).

Coefficients Yearbook RMNIST Arxiv Overall

ERM 88.46 92.14 52.38 72.66
Correct 95.95 94.47 55.23 75.76
Reversed 82.95 77.03 50.13 70.05

Table 5: Temporal Sanity Check with OOD Avg. Accu-
racy (%). Overall is averaged across the 7 benchmarks.

Time:

(a) Yearbook.

Time:

(b) FMoW.

Figure 4: Visualization of averaging coefficients and
accuracies of experts on target domain DS+1.

poral experts), and (2) bias vs. variance (with486

adaptive averaging). Only Temporal Experts uses487

uniform coefficients to average experts, optimiz-488

ing only tradeoff 1, while Only Adaptive Averag-489

ing samples domain-agnostic weights then trains490

Time2Vec (Kazemi et al., 2019) for adaptive coeffi-491

cients (detailed in supp.), optimizing only tradeoff492

2. Both variants underperform full TEA, validating493

the necessity of both design choices.494

Temporal Sanity Check are shown in Figure 4 and495

Table 5. Our adaptive averaging should increase496

coefficients for better-performing experts on future497

domains while decreasing coefficients for poor per-498

formers. Figure 4 confirms this design by showing499

higher coefficients for higher-performing models 500

on domain DS+1. Table 5 validates our design by 501

showing that reversing coefficient order leads to 502

worse OOD accuracy than ERM. 503

5 Conclusion 504

This work addresses Temporal Domain Generaliza- 505

tion (TDG), enabling models to generalize across 506

temporal distribution shifts. We propose Tempo- 507

ral Expert Averaging (TEA), an efficient weight 508

averaging framework for large-scale TDG. Based 509

on theoretical insights, TEA uses constrained tem- 510

poral finetuning to create functionally diverse yet 511

parameter-similar experts, then adaptively averages 512

them using coefficients derived from temporal dy- 513

namics of weight deviation principal components. 514

Comprehensive evaluation demonstrates TEA’s su- 515

perior performance and efficiency across TDG and 516

CDGTD settings. Since prior TDG work focuses 517

on small-scale scenarios, we hope this encourages 518

research on large-scale temporal generalization. 519

Limitations. Like prior TDG methods, our TEA 520

relies on smooth distribution shift assumptions and 521

cannot guarantee performance with abrupt shifts. 522

Since most large-scale TDG benchmarks use dis- 523

crete domains, we only explore discrete settings, 524

though TEA could theoretically extend to Continu- 525

ous Temporal Domain Generalization (CTDG). 526
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A Experimental Setup Details826

A.1 Benchmark Introduction827

Huffpost (Ginosar et al., 2015) is a text classifica-828

tion benchmark comprising news headlines from829

The Huffington Post spanning 2012-2018. The830

task requires classifying headlines into 11 news831

categories: “Black Voices”, “Business”, “Com-832

edy”, “Crime”, “Entertainment”, “Impact”, “Queer833

Voices”, “Science”, “Sports”, “Tech”, and “Travel”.834

This temporal dataset captures evolving journalistic835

styles and content trends in digital media over six836

years. We adopt a temporal split using the first 4837

years as training domains and the final 3 years as838

test domains for evaluating temporal generalization.839

Sample distributions across domains are detailed840

in Table 6.841

Arxiv (Ginosar et al., 2015) is a text classification842

benchmark containing paper titles and their corre-843

sponding primary categories spanning 2007-2022.844

The task requires classifying research papers into845

one of 172 categories based solely on their titles.846

This temporal dataset reflects the dynamic evolu-847

tion of research fields, with changing academic848

trends and emerging disciplines captured across849

the 16-year timespan. We adopt a temporal split850

using the first 9 years as training domains and the851

final 7 years as test domains for evaluating tem-852

poral generalization. Sample distributions across853

domains are presented in Table 7.854

Yearbook dataset, sourced from Yao et al.855

(2022a) and built upon the MIT-licensed Portraits856

dataset (Ginosar et al., 2015), comprises 32×32857

grayscale yearbook portraits from 128 American858

high schools across 27 states. Spanning eight859

decades (1930-2013), this temporal dataset cap-860

tures the evolution of fashion trends and societal861

changes, making it particularly suitable for eval-862

uating algorithmic performance on temporal do-863

main shift. We formulate the task as binary gender864

classification, partitioning the timeline into 4-year865

intervals to create 21 distinct domains. Following866

standard practice, we allocate the initial 16 domains867

for training and reserve the final 5 domains for out-868

of-domain evaluation. Sample distributions across869

domains are detailed in Table 8.870

Rotated MNIST (RMNIST) derives from the clas-871

sic MNIST dataset (Deng, 2012) by systemati-872

cally applying rotational transformations from 0°873

to 80° in 10° increments, creating 9 sequential874

domains that simulate temporal distribution shift.875

This benchmark evaluates 10-class digit classifica- 876

tion performance on 28×28 grayscale images under 877

gradually increasing rotational distortion. We adopt 878

a 6-3 domain split, utilizing the initial six domains 879

for model training and evaluating generalization on 880

the final three domains. 881

FMoW (Ginosar et al., 2015) contains 224×224 882

RGB satellite imagery spanning 2002-2017 across 883

200 countries. This temporal benchmark captures 884

natural evolution in visual features driven by hu- 885

man development and environmental changes over 886

time. The classification task involves predicting 887

functional land use across 62 categories, ranging 888

from residential areas to industrial facilities. We 889

partition the dataset temporally with each year con- 890

stituting a distinct domain, yielding 16 total do- 891

mains. Training utilizes the first 13 domains, while 892

the final 3 domains serve as out-of-distribution test 893

sets. Domain-wise sample distributions are pro- 894

vided in Table 9. 895

CLEAR-10&100 (Lin et al., 2022) contain user- 896

uploaded images from 2007-2014 with natural tem- 897

poral shifts of visual concepts. Samples are or- 898

ganized into 10 chronologically ordered domains. 899

CLEAR-10 comprises 10 classes with 3,000 sam- 900

ples per domain (300 per class), while CLEAR- 901

100 contains 100 classes with 10,000 samples per 902

domain (100 per class). We set the image input 903

shape as (224, 224, 3) and use the first 5 domains 904

as source domains and the final 5 domains as target 905

domains for temporal generalization evaluation. 906

Domain Year Training Split Validation Split All

1 2012 6701 744 7446
2 2013 7492 832 8325
3 2014 9539 1059 10599
4 2015 11826 1313 13140
5 2016 10548 1172 11721
6 2017 7907 878 8786
7 2018 3501 388 3890

Total 2012–2018 57514 6386 63907

Table 6: Domain Sizes for Huffpost (Yao et al., 2022a)

A.2 Method Configurations 907

Huffpost (Yao et al., 2022a) uses pretrained Distil- 908

BERT base model (Sanh et al., 2019) as the back- 909

bone. All baseline methods are trained on 90% ran- 910

domly split training data from source domains for 911

50 epochs with learning rate 2e-5 (except A-GEM 912

which uses 1e-7). Other baseline configurations 913

follow Xie et al. (2024c,b). 914
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Domain Year Training Split Validation Split All

1 2007 131550 14616 146167
2 2008 62460 6939 69400
3 2009 206244 22916 229161
4 2010 50665 5629 56295
5 2011 55741 6193 61935
6 2012 51678 5741 57420
7 2013 64951 7216 72168
8 2014 79498 8833 88332
9 2015 193979 21553 215533

10 2016 120682 13409 134092
11 2017 111024 12336 123361
12 2018 123891 13765 137657
13 2019 142767 15862 158630
14 2020 166014 18445 184460
15 2021 201241 22360 223602
16 2022 89765 9973 99739

Total 2007–2022 1852150 205786 2057952

Table 7: Domain Size for Arxiv (Yao et al., 2022a)

Domain Interval Training Split Validation Split All

1 1930 – 1933 758 87 845
2 1934 – 1937 1149 130 1279
3 1938 – 1941 949 108 1057
4 1942 – 1945 2353 263 2616
5 1946 – 1949 1229 138 1367
6 1950 – 1953 1082 122 1204
7 1954 – 1957 1646 185 1831
8 1958 – 1961 1295 146 1441
9 1962 – 1965 1468 166 1634
10 1966 – 1969 2227 249 2476
11 1970 – 1973 1634 183 1817
12 1974 – 1977 2238 250 2488
13 1978 – 1981 1553 175 1728
14 1982 – 1985 2331 261 2592
15 1986 – 1989 1792 201 1993
16 1990 – 1993 1729 195 1924
17 1994 – 1997 1882 211 2093
18 1998 – 2001 2136 239 2375
19 2002 – 2005 1868 210 2078
20 2006 – 2009 1010 114 1124
21 2010 – 2013 1102 125 1227

Total 1930 – 2013 33431 3758 37189

Table 8: Domain Sizes for Yearbook (Yao et al., 2022a)

TEA for Huffpost uses the same DistilBERT back-915

bone. Under TDG setting, TEA first trains on all916

source domain training splits using ERM for 45917

epochs with learning rate 2e-5 during the pretrain-918

ing stage, then performs temporal finetuning for919

5 epochs on each domain in reverse temporal or-920

der (from 2015 to 2012) using SI with learning921

rate 5e-6 and constraint strength csi = 0.1. Under922

CDGTD setting, we adopt 47-epoch incremental923

ERM training on each domain (from 2012 to 2015)924

with learning rate 2e-5, followed by 30 temporal925

finetuning epochs on each domain in reverse tempo-926

ral order (from 2015 to 2012) using SI with learning927

rate 5e-6 and constraint strength csi = 0.1. Note928

that temporal finetuning under CDGTD uses only929

10% of the data, so the total training cost remains930

47+30×0.1=50 epochs. During temporal finetun-931

Domain Year Training Split Validation Split All

1 2002 1676 227 1903
2 2003 2279 276 2555
3 2004 1755 240 1995
4 2005 2512 324 2836
5 2006 3155 406 3561
6 2007 1497 190 1687
7 2008 2261 298 2559
8 2009 7439 935 8374
9 2010 18957 2456 21413
10 2011 22111 2837 24948
11 2012 24704 3138 27842
12 2013 3465 385 3850
13 2014 5572 620 6192
14 2015 8885 988 9873
15 2016 14363 1596 15959
16 2017 5534 615 6149

Total 2002–2017 126165 15531 141696

Table 9: Domain Sizes for FMoW (Yao et al., 2022a)

ing on each domain, we sample model weights at 932

K = 5 evenly spaced training steps and uniformly 933

average them to obtain expert model weights. For 934

PCA on expert deviations, we use the top 10 prin- 935

cipal components. For ARIMA estimation, we 936

employ an ARIMA(1,1,1) model. When comput- 937

ing averaging coefficients, we set the sharpness 938

hyperparameter r = 5. 939

Arxiv (Yao et al., 2022a) also uses pretrained Dis- 940

tilBERT base model (Sanh et al., 2019) as the back- 941

bone. All baseline methods are trained on 90% ran- 942

domly split training data from source domains for 943

5 epochs with learning rate 2e-5 (except A-GEM 944

which uses 1e-6). Other baseline configurations 945

follow Xie et al. (2024c,b). 946

TEA for Arxiv uses the same DistilBERT back- 947

bone. Under TDG setting, TEA first trains on 948

all source domain training splits using ERM for 949

4 epochs with learning rate 2e-5 during the pre- 950

training stage, then performs temporal finetuning 951

for 1 epoch on each domain in reverse temporal 952

order (from 2015 to 2007) using SI with learn- 953

ing rate 5e-6 and constraint strength csi = 0.1. 954

Under CDGTD setting, we adopt 4-epoch incre- 955

mental ERM training on each domain (from 2007 956

to 2015) with learning rate 2e-5, followed by 10 957

temporal finetuning epochs on each domain in re- 958

verse temporal order (from 2015 to 2007) using 959

SI with learning rate 5e-6 and constraint strength 960

csi = 0.1. Note that temporal finetuning under 961

CDGTD uses only 10% of the data, so the total 962

training cost remains 4+10×0.1=5 epochs. During 963

temporal finetuning on each domain, we sample 964

model weights at K = 5 evenly spaced training 965

steps and uniformly average them to obtain expert 966
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model weights. For PCA on expert deviations, we967

use the top 10 principal components. For ARIMA968

estimation, we employ an ARIMA(1,1,1) model.969

When computing averaging coefficients, we set the970

sharpness hyperparameter r = 5.971

Yearbook (Yao et al., 2022a) uses a 4-layer convo-972

lutional network from Yao et al. (2022a). All base-973

line methods are trained on 90% randomly split974

training data from source domains for 50 epochs975

with learning rate 1e-3. Other baseline configura-976

tions follow Xie et al. (2024c,b).977

TEA for Yearbook uses the same 4-layer convolu-978

tional network from Yao et al. (2022a). Under TDG979

setting, TEA first trains on all source domain train-980

ing splits using ERM for 40 epochs with learning981

rate 1e-3 during the pretraining stage, then per-982

forms temporal finetuning for 10 epochs on each983

domain in reverse temporal order (from D16 to984

D1) using SI with learning rate 5e-4 and constraint985

strength csi = 0.1. Under CDGTD setting, we986

adopt 48-epoch incremental ERM training on each987

domain (from D1 to D16) with learning rate 1e-988

3, followed by 20 temporal finetuning epochs on989

each domain in reverse temporal order (from D16 to990

D1) using SI with learning rate 5e-4 and constraint991

strength csi = 0.1. Note that temporal finetuning992

under CDGTD uses only 10% of the data, so the993

total training cost remains 48+20×0.1=50 epochs.994

During temporal finetuning on each domain, we995

sample model weights at K = 5 evenly spaced996

training steps and uniformly average them to obtain997

expert model weights. For PCA on expert devia-998

tions, we use the top 10 principal components. For999

ARIMA estimation, we employ an ARIMA(1,1,1)1000

model. When computing averaging coefficients,1001

we set the sharpness hyperparameter r = 5.1002

RMNIST adopts the ConvNet in Qin et al. (2022).1003

All baseline methods are trained on 90% randomly1004

split training data from source domains for 501005

epochs with learning rate 1e-3 (except A-GEM1006

which uses 1e-5). Other baseline configurations1007

follow Xie et al. (2024c,b).1008

TEA for RMNIST uses the same ConvNet. Un-1009

der TDG setting, TEA first trains on all source1010

domain training splits using ERM for 40 epochs1011

with learning rate 1e-3 during the pretraining stage,1012

then performs temporal finetuning for 10 epochs1013

on each domain in reverse temporal order (from1014

D6 to D1) using SI with learning rate 2e-4 and con-1015

straint strength csi = 0.1. Under CDGTD setting,1016

we adopt 48-epoch incremental ERM training on1017

each domain (from D1 to D6) with learning rate 1018

1e-3, followed by 20 temporal finetuning epochs on 1019

each domain in reverse temporal order (from D6 to 1020

D1) using SI with learning rate 2e-4 and constraint 1021

strength csi = 0.1. Note that temporal finetuning 1022

under CDGTD uses only 10% of the data, so the 1023

total training cost remains 48+20×0.1=50 epochs. 1024

During temporal finetuning on each domain, we 1025

sample model weights at K = 5 evenly spaced 1026

training steps and uniformly average them to obtain 1027

expert model weights. For PCA on expert devia- 1028

tions, we use the top 10 principal components. For 1029

ARIMA estimation, we employ an ARIMA(1,1,1) 1030

model. When computing averaging coefficients, 1031

we set the sharpness hyperparameter r = 5. 1032

FMoW (Yao et al., 2022a) adopts a DenseNet- 1033

121 (Huang et al., 2017) backbone pretrained on 1034

ImageNet (Deng et al., 2009). All baseline meth- 1035

ods are trained on 90% randomly split training data 1036

from source domains for 25 epochs with learning 1037

rate 2e-4 (except A-GEM which uses 1e-6). Other 1038

baseline configurations follow Xie et al. (2024c,b). 1039

TEA for FMoW uses the same DenseNet- 1040

121 (Huang et al., 2017). Under TDG setting, TEA 1041

first trains on all source domain training splits using 1042

ERM for 20 epochs with learning rate 2e-4 during 1043

the pretraining stage, then performs temporal fine- 1044

tuning for 5 epochs on each domain in reverse tem- 1045

poral order (from D13 to D1) using SI with learning 1046

rate 7e-5 and constraint strength csi = 0.1. Under 1047

CDGTD setting, we adopt 23-epoch incremental 1048

ERM training on each domain (from D1 to D13) 1049

with learning rate 2e-4, followed by 20 temporal 1050

finetuning epochs on each domain in reverse tem- 1051

poral order (from D13 to D1) using SI with learning 1052

rate 2e-5 and constraint strength csi = 0.1. Note 1053

that temporal finetuning under CDGTD uses only 1054

10% of the data, so the total training cost remains 1055

23+20×0.1=25 epochs. During temporal finetun- 1056

ing on each domain, we sample model weights at 1057

K = 5 evenly spaced training steps and uniformly 1058

average them to obtain expert model weights. For 1059

PCA on expert deviations, we use the top 10 prin- 1060

cipal components. For ARIMA estimation, we 1061

employ an ARIMA(1,1,1) model. When comput- 1062

ing averaging coefficients, we set the sharpness 1063

hyperparameter r = 1. 1064

CLEAR-10 (Lin et al., 2022) adopts a ResNet- 1065

18 (He et al., 2016). All baseline methods are 1066

trained on 90% randomly split training data from 1067

source domains for 50 epochs with batch size 128 1068
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and learning rate 1e-3 (except A-GEM which uses1069

1e-6). Other baseline configurations follow the1070

FMoW configurations from Xie et al. (2024c,b).1071

TEA for CLEAR-10 uses the same ResNet-18 (He1072

et al., 2016). Batch size is 128. Under TDG set-1073

ting, TEA first trains on all source domain training1074

splits using ERM for 45 epochs with learning rate1075

1e-3 during the pretraining stage, then performs1076

temporal finetuning for 5 epochs on each domain1077

in reverse temporal order (from D5 to D1) using1078

SI with learning rate 1e-4 and constraint strength1079

csi = 0.1. Under CDGTD setting, we adopt 49-1080

epoch incremental ERM training on each domain1081

(from D1 to D5) with learning rate 1e-3, followed1082

by 10 temporal finetuning epochs on each domain1083

in reverse temporal order (from D5 to D1) using1084

SI with learning rate 1e-4 and constraint strength1085

csi = 0.1. Note that temporal finetuning under1086

CDGTD uses only 10% of the data, so the total1087

training cost remains 49+10×0.1=50 epochs. Dur-1088

ing temporal finetuning on each domain, we sample1089

model weights at K = 5 evenly spaced training1090

steps and uniformly average them to obtain expert1091

model weights. For PCA on expert deviations, we1092

use the top 10 principal components. For ARIMA1093

estimation, we employ an ARIMA(1,1,1) model.1094

When computing averaging coefficients, we set the1095

sharpness hyperparameter r = 0.5.1096

CLEAR-100 (Lin et al., 2022) adopts a ResNet-1097

50 (He et al., 2016). All baseline methods are1098

trained on 90% randomly split training data from1099

source domains for 50 epochs with batch size 1281100

and learning rate 5e-4 (except A-GEM which uses1101

1e-6). Other baseline configurations follow the1102

FMoW configurations from Xie et al. (2024c,b).1103

TEA for CLEAR-100 uses the same ResNet-1104

50 (He et al., 2016). Batch size is 128. Un-1105

der TDG setting, TEA first trains on all source1106

domain training splits using ERM for 45 epochs1107

with learning rate 5e-4 during the pretraining stage,1108

then performs temporal finetuning for 5 epochs on1109

each domain in reverse temporal order (from D51110

to D1) using SI with learning rate 1e-4 and con-1111

straint strength csi = 0.1. Under CDGTD setting,1112

we adopt 49-epoch incremental ERM training on1113

each domain (from D1 to D5) with learning rate 5e-1114

4, followed by 10 temporal finetuning epochs on1115

each domain in reverse temporal order (from D5 to1116

D1) using SI with learning rate 1e-4 and constraint1117

strength csi = 0.1. Note that temporal finetuning1118

under CDGTD uses only 10% of the data, so the1119

total training cost remains 49+10×0.1=50 epochs. 1120

During temporal finetuning on each domain, we 1121

sample model weights at K = 5 evenly spaced 1122

training steps and uniformly average them to obtain 1123

expert model weights. For PCA on expert devia- 1124

tions, we use the top 10 principal components. For 1125

ARIMA estimation, we employ an ARIMA(1,1,1) 1126

model. When computing averaging coefficients, 1127

we set the sharpness hyperparameter r = 0.5. 1128

A.3 Ablation Details 1129

Ablation study of TEA components examines four 1130

variants: Random Expert, Last Expert, Only Tem- 1131

poral Experts, and Only Adaptive Averaging. The 1132

first three involve simple modifications to specific 1133

TEA components, while Only Adaptive Averaging 1134

represents a more substantially different variant. 1135

We briefly describe the first three below and detail 1136

Only Adaptive Averaging in the following section: 1137

• Random Expert: Randomly selects expert 1138

models and reports the average performance 1139

across multiple runs, which effectively equals 1140

the average performance of all experts. 1141

• Last Expert: Uses only the expert from the 1142

final domain. 1143

• Only Temporal Experts: Identical to TEA 1144

except for using uniform averaging coeffi- 1145

cients (1/S) instead of adaptive coefficients 1146

to average all expert weights. 1147

Only Adaptive Averaging shown in 5 aims to 1148

use base weights without temporal fine-tuning to 1149

achieve functional diversity, capturing temporal 1150

shift patterns solely through adaptive weight av- 1151

eraging in the coefficients. This variant cannot 1152

be implemented by simply removing TEA compo- 1153

nents, as our averaging coefficient estimation relies 1154

on shift patterns from experts corresponding to dif- 1155

ferent temporal domains. Without temporal differ- 1156

ences between base weights, we cannot use TEA’s 1157

principal component trajectory-based coefficient 1158

estimation. Therefore, we adopt a training-based 1159

generation approach instead. 1160

We first sample base weights. Following 1161

SWA (Izmailov et al., 2018), we randomly 1162

sample S weights from the training process, 1163

which we call "snapshots". A key challenge 1164

arises with normalization layers: on TDG tasks, 1165

freezing normalization layers leads to underfitting, 1166

while optimizing them results in snapshots with 1167
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(a) Training the Selector Network. (b) Inference.

Figure 5: An overview of our Only Adaptive Averaging ablation. (a) When optimizing the selector network in Only
Adaptive Averaging, we use output averaging as a proxy task, utilizing the estimated coefficients to average the
outputs of all snapshots. (b) During inference, we perform weight averaging with the optimized selector network.

different normalization parameters and statistics.1168

Since weight averaging is highly sensitive to1169

normalization differences, excessive variation1170

causes poor performance in the averaged model.1171

We address this using a "late sampling" strategy,1172

as we observe that normalization becomes1173

sufficiently good during intermediate training1174

stages. Specifically, we freeze the normalization1175

layers during the final epoch of each task and1176

sample K snapshots {θk}Kk=1 within this last1177

epoch (noted as K as we use all domain as a1178

unified domain and set K = S for fair ablation).1179

We then generate adaptive averaging coefficients1180

through a training-based approach. Specifically,1181

we use a Time2Vec (Kazemi et al., 2019) module1182

with a 2-layer MLP as the selector network ϕ to1183

generate averaging coefficients. After sampling1184

the snapshots, we randomly select samples with1185

timestamps from the training domains and train the1186

selector network to combine the outputs of these1187

snapshots. We formulate this training process as:1188

ϕ∗ =argmin
ϕ

∑
i∈[1,S]

∑
(x,t,y)∼Di

ℓ

(
K∑
k=1

ϕ(t)k · f(x, θk), y

)

s.t. {θk}Kk=1 ∼ Sls(argmin
θ

∑
i∈[1,S]

∑
(X,·,Y )∼Di

ℓ(f(X, θ), Y ),

1189

where Sls is the snapshot sampling process with1190

late sampling strategy. We use Adam optimizer for1191

optimizing the selector network with learning rate1192

as 1e-4, batch size as 1 and training steps as 2000.1193

After training ϕ∗, we use it during inference to1194

generate averaging coefficients for the K = S 1195

snapshots: αOAA = {αOAA
k }Kk=1 = ϕ∗(tf ). 1196

B Additional Discussion 1197

TDG’s Value for NLP Community. On one hand, 1198

Temporal Domain Generalization (TDG) (Ortiz- 1199

Jiménez et al., 2019; Mancini et al., 2019; Wang 1200

et al., 2020; ying Bai et al., 2022; Nasery et al., 1201

2021; Zeng et al., 2023; Wang et al., 2022; Xie 1202

et al., 2024c,a; Yong et al., 2023; Xie et al., 2024b) 1203

has broad application prospects in NLP tasks, as 1204

temporal distribution shifts are prevalent in NLP, 1205

such as lexical changes over time and evolving un- 1206

derstanding of specific expressions (e.g., memes) 1207

across time periods. Particularly in the large lan- 1208

guage model era, TDG’s low-resource general- 1209

ization nature can reduce the expensive compu- 1210

tational and data costs required for LLM retrain- 1211

ing or fine-tuning. On the other hand, TDG has 1212

already been widely recognized as a valuable di- 1213

rection by the relevant community, with numer- 1214

ous papers published in top-tier conferences, in- 1215

cluding our baselines: GI (NeurIPS’21) (Nasery 1216

et al., 2021), LSSAE (ICML’22) (Qin et al., 2022), 1217

DRAIN (ICLR’23) (ying Bai et al., 2022), EvoS 1218

(NeurIPS’23) (Xie et al., 2024c), and W-Diff 1219

(NeurIPS’24) (Xie et al., 2024b). 1220

Continual Learning. TDG shares similar data con- 1221

figurations with continual learning (Zenke et al., 1222

2017; Lopez-Paz and Ranzato, 2017; Shin et al., 1223
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2017; Chaudhry et al., 2018), and our main bench-1224

marks (Yao et al., 2022a; Lin et al., 2022)were orig-1225

inally introduced for continual learning. However,1226

TDG and continual learning differ significantly1227

in their objectives. Standard continual learning1228

primarily focuses on the past, addressing whether1229

learning new tasks causes catastrophic forgetting of1230

previous knowledge. In contrast, TDG focuses on1231

the future, concerned with leveraging past knowl-1232

edge to enhance generalization to future domains.1233

We incorporate representative continual learning1234

baselines including EWC (Kirkpatrick et al., 2017),1235

SI (Zenke et al., 2017), and A-GEM (Chaudhry1236

et al., 2018), which show no significant generaliza-1237

tion improvement on future domains.1238

Continual Domain Generalization over Tempo-1239

ral Drift (CDGTD) can be viewed as an intersec-1240

tion of standard TDG and continual learning. This1241

represents a reasonable application direction, re-1242

quiring models to both retain past knowledge and1243

generalize well to future domains. However, this1244

does not diminish the importance of standard TDG,1245

as the core challenge of TDG—how to utilize tem-1246

poral shift patterns in past data for better future gen-1247

eralization—is orthogonal to CDGTD’s additional1248

constraint of sequential domain access. Moreover,1249

CDGTD may complicate the exploration of tem-1250

poral generalization capabilities by introducing an1251

additional variable. Therefore, we consider both1252

standard TDG and CDGTD equally important, with1253

no priority distinction.1254

Large Language Models (LLMs). While1255

LLMs (OpenAI, 2023; Touvron et al., 2023; Guo1256

et al., 2025) achieve good generalization through1257

training on massive datasets, this does not con-1258

flict with TDG. TDG fundamentally targets low-1259

resource scenarios and has considerable practical1260

value when large training datasets are unavailable.1261

Conversely, in cases of relatively smooth temporal1262

distribution shifts, applying TDG with limited data1263

is more data-efficient than brute-force generaliza-1264

tion through massive training. Furthermore, regard-1265

less of how much data LLMs are trained on, TDG1266

can be further applied to enhance temporal gener-1267

alization capabilities. Notably, TDG application to1268

LLMs is particularly promising as it can effectively1269

reduce LLM training costs. However, TDG is still1270

far from being applicable to LLMs, primarily due1271

to scaling limitations. This highlights the value of1272

our work as a solid step toward LLM-scale TDG.1273

Temporal Reasoning (Xiong et al., 2024; Yuan1274

et al., 2024; Fatemi et al., 2024; Chu et al., 2023). 1275

While this may sound related to TDG, the primary 1276

connection is that both contain "temporal" in their 1277

names. Temporal reasoning focuses on enabling 1278

models to understand explicit temporal relation- 1279

ships at the individual sample level, whereas TDG 1280

aims to adapt models to implicit temporal distribu- 1281

tion shifts at the dataset level. Temporal reasoning 1282

could potentially improve TDG performance, but 1283

this remains unexplored. 1284

C Theoretical Analysis 1285

C.1 Notations 1286

We denote X the input space, Y the label space, 1287

and ℓ : Y2 → R+ a loss function. We have a se- 1288

quence of domains {Di} indexed by timestamps 1289

ti ∈ T , where T is a totally ordered set repre- 1290

senting time. Each domain Di has a distribution 1291

pi. For the training (source) domains {Di}Si=1, we 1292

have timestamps t1 < t2 < . . . < tS in T , and cor- 1293

responding distributions p1, p2, . . . , pS . For sim- 1294

plicity, we will use pi to refer to the joint, posterior, 1295

and marginal distributions of (X,Y ) at time t. We 1296

note fi : X → Y as the labeling function at time 1297

ti. We assume there is no noise in the data: fi 1298

is defined on Xi ≜ {x ∈ X | pi(x) > 0} by 1299

∀(x, y) ∼ pi, fi(x) = y. 1300

C.2 Temporal Domain Generalization 1301

We consider a neural network (NN) f(·, θ) : X → 1302

Y made of a fixed architecture f with weights θ. 1303

Given observations from source domains at times 1304

t1, t2, . . . , tS , we seek θ minimizing the target gen- 1305

eralization error at a future time tf > tS : 1306

Ef (θ) = E(x,y)∼pf [ℓ(f(x, θ), y)]. (7) 1307

f(·, θ) should approximate ff on Xf . This is chal- 1308

lenging in the TDG setup because we only have 1309

data from earlier timestamps, which are related yet 1310

different from the future target domain. 1311

The differences between domains at different 1312

timestamps are due to distribution shifts (i.e., the 1313

fact that pi(X,Y ) ̸= pj(X,Y ) for i ̸= j), which 1314

can be decomposed into: 1315

• Diversity shift: when marginal distributions 1316

differ over time (i.e., pi(X) ̸= pj(X)) 1317

• Correlation shift: when posterior distri- 1318

butions differ over time (i.e., pi(Y |X) ̸= 1319

pj(Y |X) and fi ̸= fj) 1320
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The weights are typically learned on source1321

domain data {D1, D2, . . . , DS} from timestamps1322

{t1, t2, . . . , tS} (each composed of ni i.i.d. sam-1323

ples from pi(X,Y )) with a configuration c, which1324

contains all other configurations and sources1325

of randomness in learning. We call lT =1326

{D1, D2, . . . , DS , c} a learning procedure, and ex-1327

plicitly write θ(lT ) to refer to the weights obtained1328

after stochastic minimization of the appropriate ob-1329

jective function. Specific to our TEA, we define1330

li = {D1, D2, . . . , DS , ti, c} as a temporal expert1331

learning procedure to get expert model θi = θ(li)1332

which is designed to excels on domain Di while1333

also using data from other domains.1334

C.3 Temporal Expert Averaging1335

We study the benefits of combining S individ-1336

ual member weights {θi}Si=1 ≜ {θ(li)}Si=1 ob-1337

tained from S different domains at timestamps1338

{t1, t2, . . . , tS}. Each weight θi corresponds to1339

an expert model that is more proficient for domain1340

Di (though not necessarily trained exclusively on1341

that domain).1342

Unlike traditional weight averaging (Cha et al.,1343

2021; Rame et al., 2022; Wortsman et al., 2022)1344

that uses equal coefficients, for temporal domain1345

generalization, we propose a temporally-weighted1346

averaging scheme that assigns different importance1347

to experts based on their relevance to the target1348

future domain.1349

Temporal Expert Averaging (TEA) is defined as:1350

fTEA ≜ f(·, θTEA),1351

θTEA ≜
S∑

i=1

αi

(
{ti}Si=1, {θi}Si=1, tf

)
· θi. (8)1352

where the coefficients {αi}Si=1 satisfy
∑S

i=1 αi =1353

1 and αi ≥ 0 for all i. These coefficients are de-1354

termined based on the temporal shift among the1355

source domain experts {θi}Si=1 and temporal infor-1356

mation {ti}Si=1 and tf .1357

C.4 TEA loss derivation1358

Following Rame et al. (2022), we decompose1359

TEA’s error leveraging the similarity between1360

WA and functional ensembling (ENS) (Lakshmi-1361

narayanan et al., 2017; Dietterich, 2000), a more1362

traditional way to combine a collection of weights.1363

We also use Mean Squared Error as ℓ for simplic-1364

ity. For TDG setting, we define Temporal ENS1365

(T-ENS) with coefficients {αi}Si=1 as 1366

fT-ENS ≜
S∑

i=1

αif(·, θi). (9) 1367

Lemma 1 establishes that fTEA approximates 1368

fT-ENS to first order when {θi}Si=1 are close in 1369

weight space. 1370

Lemma 1 (TWA and T-ENS). Given {θi}Si=1 with 1371

learning procedures for different temporal experts. 1372

Denoting ∆{θ} = maxSi=1 ∥θi − θTEA∥2, ∀(x, y) ∈ 1373

X × Y: 1374

fTEA(x) = fT-ENS(x) +O(∆2
{θ}) (10) 1375

ℓ(fTEA(x), y) = ℓ(fT-ENS(x), y) +O(∆2
{θ}). 1376

1377

Proof. This proof has two components: 1378

• to establish the functional approximation, it 1379

performs Taylor expansion of the models’ pre- 1380

dictions at the first order. 1381

• to establish the loss approximation, it per- 1382

forms Taylor expansion of the loss at the first 1383

order. 1384

Functional approximation With a Taylor expan- 1385

sion at the first order of the models’ predictions 1386

w.r.t. parameters θ: 1387

fθi = fTEA +∇f |TEA∆i +O
(
∥∆i∥22

)
1388

fT-ENS − fTEA 1389

=
S∑

i=1

αi∇f |TEA∆i +
S∑

i=1

αiO
(
∥∆i∥22

)
, 1390

where ∆i = θi − θTWA. 1391

Note that unlike in the equal weighting case, we 1392

don’t have
∑S

i=1∆i = 0 for weighted averaging. 1393

Instead, we have
∑S

i=1 αi∆i = 0. Therefore: 1394

fT-ENS − fTEA 1395

=

S∑
i=1

αi∇f |TEA∆i +

S∑
i=1

αiO
(
∥∆i∥22

)
1396

= ∇f |TWA

S∑
i=1

αi∆i +O

(
S∑

i=1

αi∥∆i∥22

)
1397

= O

(
S∑

i=1

αi∥∆i∥22

)
1398
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Since ∆i ≤ ∆{θ} for all i, and
∑S

i=1 αi = 1,1399

we have:1400

fT-ENS − fTEA = O

(
S∑

i=1

αi∆
2
{θ}

)
1401

= O

(
∆2

{θ}

S∑
i=1

αi

)
1402

= O
(
∆2

{θ}

)
1403

Loss approximation. With a Taylor expansion at1404

the zeroth order of the loss w.r.t. its first input and1405

injecting the functional approximation:1406

ℓ(fT-ENS(x); y) = ℓ(fTWA(x); y)1407

+O(∥fT-ENS(x)− fTEA(x)∥2)1408

ℓ(fT-ENS(x); y) = ℓ(fTEA(x); y) +O
(
∆2

{θ}

)
1409

1410

C.5 Bias-variance-covariance-locality1411

Decomposition for TEA1412

We can derive the following decomposition of1413

TEA’s expected test error in the future domain. The1414

expectation is over the joint distribution describing1415

the S learning procedures {li}Si=1. (Note that in1416

the temporal domain generalization (TDG) setting,1417

models from different timestamps may have differ-1418

ent biases and variances due to the evolution of1419

data distributions over time. This temporal hetero-1420

geneity is a key characteristic that distinguishes1421

TDG from standard DG.)1422

Proposition 1 (Bias-variance-covariance-locality1423

decomposition for temporal weight averaging). De-1424

noting f̄i(x) = Eli [f(x, θ(li))] as the expected1425

prediction of an expert model for timestamp ti,1426

Ef = E(x,y)∼pf and l = {l1, . . . , lS}, the ex-1427

pected generalization error on future domain tf1428

of θTWA =
∑S

i=1 αi · θi over the joint distribution1429

of the learning procedures is:1430

El[Ef (θTEA)] = Ef [B + V + C] +O(∆̄2), (11)1431

where 1432

B =

(
S∑

i=1

αi · biasi

)2

, biasi = y − f̄i(x), 1433

V =
S∑

i=1

α2
i · vari, vari = Eli

[
dev2i

]
, 1434

C =
∑
i ̸=j

αiαjcovi,j , covi,j = E{li,lj} [devi · devj ] , 1435

with devi = f(x, θ(li))− f̄i(x), 1436

∆̄2 = E[∆2
{θ}] with ∆{θ} =

S
max
i=1

∥θi − θTWA∥2. 1437

Proof. Following Rame et al. (2022), we use the he 1438

bias-variance decomposition in Kohavi et al. (1996) 1439

with fT-ENS ≜
∑S

i=1 αif(·, θ(li)) to decompose 1440

the expected generalization error: 1441

El[Ef ({θ(li)}Si=1)] 1442

= Ef [Bias{fT-ENS|(x, y)}2 + Var{fT-ENS|x}], 1443

where bias term becomes: 1444

Bias{fT-ENS|(x, y)} 1445

= y − El

[
S∑

i=1

αif(x, θ(li))

]
1446

= y −
S∑

i=1

αiEl[f(x, θ(li))] 1447

= y −
S∑

i=1

αif̄i(x) 1448

=
S∑

i=1

αi(y − f̄i(x)) 1449

=

S∑
i=1

αibiasi(x, y) 1450

Thus, the squared bias term is: 1451

Bias{fT-ENS|(x, y)}2 =

(
S∑

i=1

αibiasi

)2

1452

For the variance term, denoting devi = 1453

f(x, θ(li))− f̄i(x), we have: 1454
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Var{fT-ENS|x}

= El

( S∑
i=1

αif(x, θ(li))− El

[
S∑

i=1

αif(x, θ(li))

])2


= El

( S∑
i=1

αi(f(x, θ(li))− f̄i(x))

)2


= El

 S∑
i=1

S∑
j=1

αiαj · devi · devj


=

S∑
i=1

α2
iEl[dev2i ] +

∑
i ̸=j

αiαjEl[devi · devj ]

=
S∑

i=1

α2
i vari +

∑
i ̸=j

αiαjcovi,j

1455

Combination with Lemma 1 We recall that per1456

our adapted Lemma 1:1457

ℓ(fTEA(x), y) = ℓ(fT-ENS(x), y) +O(∆2
{θ}).1458

Taking the expectation over the learning procedures1459

and combining all terms:1460

E[Ef (θTEA)] = Ef

( S∑
i=1

αibiasi

)2
1461

+ Ef

[
S∑

i=1

α2
i vari

]
1462

+ Ef

∑
i ̸=j

αiαj covi,j

1463

+O(∆̄2)1464

1465

C.6 Theoretical Insights for TEA1466

From Equation 11, we can see that generalization1467

error can be reduced by minimizing bias B, vari-1468

ance V , covariance C, and locality ∆̄2. However,1469

due to the complexity of real-world data and mod-1470

els, finding an optimal analytical solution is nearly1471

impossible. Nevertheless, similar to Rame et al.1472

(2022), we can derive practical insights for design-1473

ing TEA by analyzing the relationships between1474

these four terms, model properties, and averaging1475

coefficients.1476

Insight 1 Tradeoff between Functional Diversity1477

and Parameter Similarity among Experts. Covari-1478

ance C reduction necessitates functional diversity1479

among experts, while the locality constraint ∆̄21480

demands parameter similarity among experts.1481

The covariance term increases when the predic-1482

tions of {f(·, θ(li))}Si=1 are correlated, suggesting1483

that DiWA’s (Rame et al., 2022) approach to reduce 1484

covariance by encouraging functional diversity re- 1485

mains effective. However, the locality term ∆̄2 1486

simultaneously constrains the weights to remain 1487

close in parameter space. This tradeoff suggests 1488

that when training these expert models, we should 1489

find an appropriate balance between encouraging 1490

diverse predictions and maintaining parameter sim- 1491

ilarity. 1492

Insight 2 Tradeoff between Bias and Variance via 1493

Averaging Coefficients. Reducing variance V re- 1494

quires averaging weights evenly, while reducing 1495

bias B demands concentrating coefficients on ex- 1496

perts with lower bias magnitudes on future data. 1497

Insight 2 is obtained by introducing 2 assump- 1498

tions specific to the TDG for further discussion 1499

about bias and variance. 1500

Assumption 1 (Ordered Bias Magnitudes). The 1501

models can be ordered by expected bias magni- 1502

tudes on future domains such that Ef

[
bias2m1

]
≥ 1503

Ef

[
bias2m1

]
≥ · · · ≥ Ef

[
bias2mS

]
, with {mj}Sj=1 1504

being a permutation of {i}Si=1. 1505

Assumption 2 (Equal Variance Experts). The vari- 1506

ance of each expert’s prediction is equal across 1507

all experts, such that Ef [vari] = v for all i ∈ 1508

{1, 2, ...,M}. 1509

Lemma 2 (Optimal Averaging Coefficients for 1510

Bias Minimization). Let the bias of model i be: 1511

bi(x, y) = biasi(x, y), σ
2
i := Ef

[
b2i
]
, 1512

and define the root-mean-square magnitude: 1513

σi =
√
σ2
i (i = 1, . . . , S). 1514

According to Assumption 1, magnitudes are or- 1515

dered σm1 ≥ σm2 ≥ · · · ≥ σmS , where {mj}Sj=1 1516

is a permutation of {1, . . . , S}. For convex weights 1517

α ∈ ∆S := {αi ≥ 0,
∑S

i=1 αi = 1}, consider the 1518

combined bias loss: 1519

L(α) := Ef

( S∑
i=1

αibi

)2
 . (12) 1520

If no information is available on the pairwise bias 1521

covariances Σij := Ef [bibj ], (i ̸= j), then the 1522

minimax problem: 1523

min
α∈∆S

max
Σ s.t. diag(Σ)=σ2

L(α) (13) 1524

is solved by: 1525

α⋆
mS

= 1, α⋆
i = 0 for i ̸= mS (14) 1526

with L(α⋆) = σ2
mS

. 1527
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Proof. We can write L(α) = α⊤Σα with un-1528

known positive-semidefinite matrix Σ satisfying1529

Σii = σ2
i . By the Cauchy-Schwarz inequality,1530

|Σij | ≤ σiσj . The worst case occurs when all1531

covariances reach the extreme value Σij = σiσj ,1532

yielding:1533

max
Σ

L(α) =

(
S∑

i=1

αiσi

)2

. (15)1534

Since
∑

i αiσi is a convex combination of the or-1535

dered set {σmj}, its minimum over the simplex1536

∆S is attained by placing all weight on the smallest1537

RMS magnitude σmS , which gives the stated α⋆1538

and the minimax value L(α⋆) = σ2
mS

.1539

Lemma 3 (Optimal Averaging Coefficients for1540

Variance Minimization). Consider the variance1541

term with equal variances Ef [vari] = v for all1542

i ∈ {1, . . . , S}:1543

Ef [V] = v

S∑
i=1

α2
i . (16)1544

For averaging coefficients α ∈ ∆S := {αi ≥1545

0,
∑S

i=1 αi = 1}, the variance term is minimized1546

when weights are distributed equally across all1547

models:1548

α⋆
i =

1

S
for all i (17)1549

with optimal variance v · 1
S .1550

Proof. We seek to minimize
∑S

i=1 α
2
i subject to1551

the constraints
∑S

i=1 αi = 1 and αi ≥ 0. By the1552

Cauchy-Schwarz inequality:1553 (
S∑

i=1

αi

)2

≤ S

S∑
i=1

α2
i , (18)1554

with equality if and only if all αi are equal. Since1555 ∑S
i=1 αi = 1, we have:1556

1 =

(
S∑

i=1

αi

)2

≤ S

S∑
i=1

α2
i , (19)1557

which implies
∑S

i=1 α
2
i ≥ 1

S . Equality is achieved1558

when αi =
1
S for all i, giving the optimal solution.1559

1560

In summary, Lemma 2 indicates that optimiz- 1561

ing the bias term requires concentrating weight 1562

on experts with smaller bias magnitude on fu- 1563

ture domains, while Lemma 3 suggests that 1564

minimizing variance requires the opposite ap- 1565

proach—distributing weight as evenly as possible 1566

across all experts. This creates a fundamental trade- 1567

off between bias and variance in the selection of 1568

averaging coefficients. 1569

Discussion about Assumptions. Assumption 1 is 1570

similar to the smooth distribution shift assumption 1571

used by most prior TDG methods (ying Bai et al., 1572

2022; Zeng et al., 2023; Nasery et al., 2021; Xie 1573

et al., 2024b,c), allowing us to model distribution 1574

change and leverage temporal information to pre- 1575

dict future parameter or feature. Assumption 2 is 1576

reasonable when all experts share the same archi- 1577

tecture, optimization procedure and hyperparame- 1578

ters, differing only in the specific temporal domains 1579

they’ve been optimized to excel in. 1580

D Additional Results 1581

We show the coefficients vs. DS+1 accuracy across 1582

all benchmarks in Figure 6. 1583
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(a) Huffpost. (b) Arxiv.

(c) Yearbook. (d) RMNIST.

(e) FMoW. (f) CLEAR-10.

(g) CLEAR-100.

Figure 6: Visualization of averaging coefficients and accuracies of experts on target domain DS+1.
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