
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE TOOL DECATHLON: BENCHMARKING LANGUAGE
AGENTS FOR DIVERSE, REALISTIC, AND LONG-
HORIZON TASK EXECUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world language agents must handle complex, multi-step workflows across
diverse applications. For instance, an agent may manage emails by coordinating
with calendars and file systems, or monitor a production database like BigQuery
to detect anomalies and generate reports following a standard operating manual.
However, existing language agent benchmarks often focus on narrow domains
or simplified tasks that lack the diversity, realism, and long-horizon complexity
required to evaluate agents’ real-world performance. To address this gap, we
introduce the Tool Decathlon (dubbed as TOOLATHLON), a benchmark for language
agents offering diverse applications and tools, realistic environment setup, and
reliable execution-based evaluation. TOOLATHLON spans 32 software applications
and 604 tools, ranging from everyday platforms such as Google Calendar and
Notion to professional applications like WooCommerce, Kubernetes, and BigQuery.
Most of the tools are based on a high-quality set of Model Context Protocol (MCP)
servers that we may have revised or implemented ourselves. Unlike prior works,
which primarily ensure functional realism but offer limited environment state
diversity, we provide realistic initial environment states from real software. The
TOOLATHLON benchmark includes 108 manually sourced or crafted tasks in total,
requiring interacting with multiple applications over around 20 turns on average
to complete. Each task is strictly verifiable through dedicated evaluation scripts.
Comprehensive evaluation of state-of-the-art models highlights their significant
shortcomings in performing real-world, long-horizon tasks: the best-performing
model, Claude-4-Sonnet, achieves only a 29.9% success rate with 28 tool calling
turns on average, while the top open-weights model DeepSeek-V3.1 reaches 13.9%.
We expect TOOLATHLON to drive the development of more capable language
agents for real-world, long-horizon task execution.

1 INTRODUCTION

Tool-based language agents have already demonstrated their impact in real-world domains such as
software engineering (Jimenez et al., 2024; The Terminal-Bench Team, 2025), deep research (OpenAI,
2024), and web browsing (Zhou et al., 2024). To further expand the reach of language agents across
diverse domains and applications, the Model Context Protocol (MCP) has been proposed to establish
a standard for connecting language agents to tens of thousands of applications (Anthropic, 2024).

Existing benchmarks for language agents, however, are restricted to limited domains and tools (Mialon
et al., 2023; Liu et al., 2024; Ma et al., 2024; Jimenez et al., 2024; Zhou et al., 2024; Yao et al., 2025;
Wei et al., 2025; Xu et al., 2025). By contrast, real-world tasks often require switching across various
applications. For example, as demonstrated in Figure 1 (Example #2), a company’s administrative
agent may need to monitor a real Snowflake database for customer tickets, locate the appropriate PDF
operation manual containing instructions on how to identify and handle overdue tickets, and then
send the required emails to managers and customers in accordance with the manual. Importantly,
this diversity gap extends far beyond differences in tool names or descriptions. The diversity and
complexity of environment states across applications, compounded by interaction with them in long
trajectories, present substantial challenges for generalization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Task Prompt #1: Your task is to check your email for homework2 submissions and grade on Canvas. Please download Python files from email attachments
to local workspace and execute each Python file in terminal to check for errors. If the Python file is correct, give it a score of 10 in Canvas; otherwise, give
it a score of 0. You could check the requirements of homework2 in `assignments/homework2.md`and students' ID in `student_canvas_ids.csv`. For
students who submitted multiple times, use the latest submission.

Filesystem

Filesystem PDF

TerminalEmail (Poste.io) Canvas-LMS

Task Prompt #2: Identify the tickets in the database that have exceeded the initial response time according to the relevant documentation, and send
reminder emails, based on the templates mentioned in the manual, to the respective responsible managers, as well as apology emails to all involved users.

Snowflake Email (Poste.io)

Figure 1: Two examples and the initial environment states in TOOLATHLON. We showcase real-world environ-
ment interaction (§2.2) and realistc state initialization (§2.3) here.

To address these challenges, we introduce the Tool Decathlon (TOOLATHLON), a benchmark for
evaluating language agents on diverse, realistic, and long-horizon tasks. TOOLATHLON spans 32
real-world applications and 604 tools across 108 tasks, covering a wide spectrum of domains ranging
from daily affair and education to technology and finance. Tasks are grounded in realistic scenarios
and mostly require coordinating multiple applications. Each task is fully verifiable with a dedicated,
deterministic evaluation script, comparing outcomes against either static or dynamically generated
ground-truth states (e.g., tasks involving the latest NVIDIA shareholder information or real-time train
schedules). All tools in TOOLATHLON are sourced from the real world, with the majority obtained
from MCP servers.

To faithfully capture the realism and complexity of practical environment states, we tried to adopt
the most representative applications such as Google Sheet, Gmail, and Snowflake. However, some
remote environment states are difficult to set up to mimic real scenarios. For example, simulating a
Canvas course with tens of students would require registering a real account for each student and
resetting the states at each evaluation run. Therefore, while we adopt the commonly used applications
most of the time, we also incorporate several local pieces of software deployed via containers for
convenient and complex environment simulation, such as poste.io for email management to replace
Gmail and WooCommerce for online ecommerce platform to replace Shopify. These services are
based on their respective open-source software, providing complex observations while allowing us to
set up the states within seconds. This stands in stark contrast with simplified or artificial environment
states as in prior benchmarks (Patil et al., 2025). In addition, task prompts in TOOLATHLON are
crafted to mirror authentic user queries, which are often concise and fuzzy. Models must therefore
infer user intent and autonomously devise plans to accomplish tasks, an example is shown in Figure 3.

Concurrent with this work, several MCP-based tool-use benchmarks have emerged (Liu et al., 2025;
Mo et al., 2025; Yan et al., 2025; Yin et al., 2025; The MCPMark Team, 2025), but they do not
match TOOLATHLON in its reflection of real-world complexity. Some rely on LLM judges without
verifiable tasks (Mo et al., 2025; Yin et al., 2025), while others cover few domains or mostly single-
application tasks. For instance, MCPUniverse (Luo et al., 2025) spans only six domains, with 90%
of tasks involving one app and synthetic initial states, yielding simplified, short interactions (<8
turns). Similarly, MCPMark (The MCPMark Team, 2025) includes only five apps and overly detailed
prompts (Figure 3). A full comparison is shown in Table 1.

TOOLATHLON includes a lightweight framework for automated, safe, and scalable evaluation. Each
task comes with initial states setup if needed as well as an evaluation script (Figure 2). Executing and
evaluating each task is isolated in separate containers to prevent interference. This enables fast parallel

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Tool-Based Language Agent Benchmarks, where BFCLv3-MT represents the multi-turn
subset released in the 3rd version of BFCL. “# Apps” denotes the number of MCP servers, which we do not
annotate for benchmarks without clear application definition. “Avg # Turns” denotes the number of tool calling
turns made by Claude-4-Sonnet, which we use as a proxy for task complexity. “Real Env” (§2.2) means the
environment states and observations are from real-world software rather than artificial databases. “States Init”
(§2.3) indicates the evaluation begins with a state initialization. “Verifiable Execution” (§2.4) denotes that models
need to execute the tools and final results are evaluated based on states. “Realistic Fuzzy Prompt” represents that
the task instructions are often fuzzy and ambiguous to mimic real user input (§3.1). ∗For MCPUniverse, only
10% of the tasks are cross-App. For ACEBench and LiveMCPBench, only <10% of the tasks contain simple
states initialization. In-depth discussion of these related works is in Appendix B.

Benchmark # Tasks # Apps Avg #
Turns

Real
Env

States
Init

Verifiable
Execution

Cross-App
Task

Realistic
Fuzzy Prompt

τ -Bench 165 2 – × ✓ ✓ × ×
BFCLv3-MT 800 – 3.8 × ✓ ✓ ✓ ×
ACEBench 2000 – 1.7 × Partial∗ ✓ × ×
AppWorld 750 9 – ✓ ✓ ✓ ✓ ×
MCPWorld 201 10 – ✓ ✓ ✓ × ×
MCP-RADAR 507 6 – ✓ ✓ ✓ × ×
MCPEval 676 19 – ✓ × × ✓ ×
LiveMCPBench 95 70 5.6 ✓ Partial∗ × ✓ ×
MCP-AgentBench 600 33 – ✓ × × ✓ ×
LiveMCP-101 101 41 5.4 ✓ × × ✓ ×
MCPAtlas 1000 40+ 3-6 ✓ ✓ × ✓ ×
MCPUniverse 231 11 7.5 ✓ × ✓ Partial∗ ×
MCPMark 127 5 18.5 ✓ ✓ ✓ × ×

TOOLATHLON 108 32 26.8 ✓ ✓ ✓ ✓ ✓

evaluation—for example, running Claude-4-Sonnet on all 108 tasks takes only 70 minutes using
10 parallel processes. With extensive experiments on TOOLATHLON, the best-performing models,
Claude-4-Sonnet and GPT-5, achieve only 29.9% accuracy, highlighting the unique challenges posed
by TOOLATHLON. DeepSeek-V3.1 (DeepSeek-AI, 2025) achieves 13.9% success rate as the best
performer among open-source models. Further analysis reveals that weaknesses in long-context
modeling and robust tool calling error tracking are major challenges for all evaluated models. We
will fully open-source the benchmark and the TOOLATHLON environment, aiming for TOOLATHLON
to accelerate the development of practical language agents.

2 THE TOOLATHLON ENVIRONMENT AND EVALUATION FRAMEWORK

2.1 TASK DEFINITION

Each task in TOOLATHLON can be formulated as a partially observable Markov decision process
(POMDP) (S,A,O, T ,R,U) with state space S, action space A, observation space O, transition
function T : S × A → S × O, reward function R : S → [0, 1], and instruction space U . The
environment states (§2.2, §2.3) can be the status in the email inbox and the observations are the
sequential input to the model. The action space A is the available tools for the respective task and the
tool implementation directly defines the transition function. The reward function R (§2.4) represents
our execution-based evaluation which directly evaluates the environment state. Intuitively, real-world
tools and environments will yield significantly more complex and diverse states and observations
than the synthetic ones, and we will detail our designs of these variables in the following sections.

2.2 TOOLS, ENVIRONMENTS, AND FRAMEWORK

MCP Servers: In TOOLATHLON, we source our tools through a variety of MCP servers. Specifi-
cally, we first decide a list of valuable and common real applications that we aim to benchmark on,
then we see if we can find the corresponding open-source MCP servers for them. If not, we implement
the MCP servers by ourselves. Notably, many open-source MCP server implementations contain
bugs or exhibit certain limitations, for example, without the tools needed to complete our tasks. We
further refine and improve these implementations ourselves. This way, we obtain a high-quality set
of 32 MCP servers in total, where we include a complete list and their sources in Appendix C. The
applications span diverse domains, extending well beyond common daily-use applications such as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Language
Agents

Task
Instruction

Realistic State
Initialization

Real-World Software
Environments

MCP &
Local ToolsTool Call

Tool Outputs

Execute
State-based
Evaluation

Figure 2: Overview of the TOOLATHLON evaluation framework.

Google Maps, Notion, and Google Calendar, and we also incorporate a number of professional and
domain-specific applications to evaluate language agents in high-value productivity scenarios, such
as Snowflake for enterprise data management and Kubernetes for cluster management. Although
the majority of tools are sourced from MCP servers, the benchmark usage itself is not tied to MCP
employment from the model developer side.

Remote and Locally Containerized Environments: While tools provide an interface for inter-
acting with environments, they do not directly constitute the environments. Many real-world tools
interact directly with existing, remote environments, such as Google Sheets, Google Calendar, No-
tion, and Gmail. Although remote environments require no implementation effort, they introduce
significant challenges when benchmarking tasks that involve modifying environment states. For
instance, simulating a realistic Gmail inbox with hundreds of emails from diverse senders would
require registering hundreds of Google accounts for every benchmark user, and this inbox would need
to be reset prior to each evaluation run. Previous works have attempted to bypass this issue by only
supporting read operation to the states (Mialon et al., 2023), or implementing simplified synthetic
data structures to mimic environment states (Patil et al., 2025; Yao et al., 2025), but such approaches
drastically reduce realism and fail to reflect the complexity of real software environments. In contrast,
in TOOLATHLON we leverage both remote environments and locally containerized, open-source
applications. Specifically, we deploy the open-source Poste.io for email management, Canvas for
course administration, Kubernetes for cluster orchestration, and WooCommerce for e-commerce
management. By hosting these realistic applications locally within containers, we can efficiently set
up dozens of accounts and initialize complex environment states during evaluation. Compared with
existing dedicated agent sandboxes such as SWE-Bench (Jimenez et al., 2024), our environments are
more diverse and encompass a wider range of software.

Agent Framework: We implement a simple agent framework based on the OpenAI Agents SDK
to conduct the agent action loop – at each turn, the model is expected to (optionally) reason and make
tool calls. We make several enhancements to improve its basic setup for a more robust workaround to
evaluate language agents, including tool error handling, overlong tool response handling and context
history management. We also equip this framework with some basic yet common local tools like
python execution, web search, claim done and sleep. The details can be found in Appendix D.

2.3 INITIAL STATE SETUP

In real world, tasks are rarely executed from an empty environment state (e.g., an empty inbox).
Instead, agents are typically required to operate based on pre-existing environment states. In agentic
scenarios, task difficulty is determined not only by the task instructions but also by the underlying
environment states. For example, operating on a folder with only one file to be sued is easier than
working with 10 mixed useful and unrelated files (Figure 1, example #2), even if the task descriptions
are nearly identical. To capture this, for tasks in TOOLATHLON that starts with an initial state,1,
each of these tasks is equipped with a state initialization script to set up the states at running time,
or (and) an initial workspace directory containing pre-set files. Figure 1 and Figure 3 showcase
such initial states. When constructing these initial environment states, we design them to closely
reflect realistic scenarios. Notably, only very few previous benchmarks have incorporated realistic
initial state construction before entering the agent loop, as summarized in Table 1. By contrast, most
existing benchmarks start from empty state or overly simplified environment states, thus failing to
capture the full complexity of real-world task execution.

1As shown in Table 2, 67% of the tasks fall into this category.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

… 23 more positions & other distractors blocks

Create a comprehensive weekend adventure planner that analyzes the Toronto Guide
databases and generates a structured itinerary page. I need you to create a new page called
'Perfect Weekend Adventure' as a child of the main Toronto Guide page.
Task Requirements:
 1. Create a new page titled 'Perfect Weekend Adventure' as a child page of the main
Toronto Guide page
 2. Query the Activities database to identify all activities that have the "Beaches" tag
 3. Query the Food database to find all restaurants with "Turkish" or "Hakka" tags
 4. Query the Cafes database to retrieve all cafes entries
 5. Structure the page with the following specific format:
 - [SOME SPECIFIC REQUIREMENTS]
 6. After the summary paragraph, add a divider block
 7. Finally, add a callout block with the 💡 emoji containing the text: "Pro tip: Check the
Seasons database for the best time to enjoy outdoor activities!"
 8. Ensure all headings use the exact emoji and text format specified above
 9. The lists must be in the exact format specified (bulleted for beaches, numbered for
restaurants, to-do for cafes)

Please update the candidate information on HR Record subpage of Notion according
to all the resumes in my workspace. All information must be filled out strictly according
to the content in the resumes, without making any unauthorized modifications or
adding/removing any words. Also, please delete the existing sample entries in the record
table. At the same time, if the position applied for by the applicant is currently not
open for recruitment, please send an email to the corresponding applicant using the
following template information (including line breaks). Do not send the email by mistake: [A
TEMPLATE HERE] Clear Step by

Step Guides
 Infer from # Head Count

Infer from existing examples
Find needed
info by agent

Infer from resumes

Figure 3: Example task instructions from our benchmark (Left) and MCPMark (The MCPMark Team, 2025)
(Right). Ours contain more fuzzy intent that the model need to infer from the environment states.

2.4 RELIABLE EXECUTION-BASED EVALUATION

First, unlike some traditional tool-calling benchmarks that measure single-step tool call accuracy
given a fixed context without actual execution (Patil et al., 2024), we think that execution-based
evaluation is essential for reliably assessing language agents in realistic scenarios. Second, while
many existing benchmarks rely on LLMs as judges to score agent trajectories (Gao et al., 2025; Yin
et al., 2025), we contend that verifying the final environment states using deterministic rules offers a
far more reliable and reproducible evaluation framework, as demonstrated in several widely adopted
agent benchmarks (Zhou et al., 2024; Xie et al., 2024; Jimenez et al., 2024). To achieve this, each task
in TOOLATHLON is equipped with a unique, manually crafted evaluation script that ensures precise
and consistent measurement of task success. The script may perform robust matching against a static
snapshot of the ground-truth environment or follow a reference execution workflow to dynamically
retrieve and match real-time information (e.g., NVIDIA shareholders). During evaluation, each task
is associated with a configuration file that specifies only the necessary MCP servers (< 10) and tools
available for use rather than all 32 MCP servers. For each selected MCP server, we do not further
filter or retrieve a subset of tools but load all tools within it, which is consistent with the current state
of mainstream agent frameworks. Intuitively, providing the model with a larger set of unrelated tools
increases task difficulty, as the agent must identify the relevant tools while ignoring distracting ones.

Safe and Efficient Parallel Evaluation in Containers: Our TOOLATHLON evaluation framework
supports parallel execution to enable efficient model evaluation. Our framework launches each task
inside a separate container in parallel, providing strict workspace isolation. On a standard Linux
cluster with 16 CPUs and 64 GB of memory, we are able to evaluate Claude-4-Sonnet on 108 tasks in
just about 70 minutes of wall time using 10 parallel processes. This demonstrates that TOOLATHLON
is both convenient and efficient for practical use by model developers.

3 THE TOOLATHLON TASKS

3.1 TASK SOURCING AND FUZZY TASK INSTRUCTION

The authors of this work, who are researchers and senior undergraduate students in computer science,
source and implement the tasks. We carefully design and adhere to several principles when collecting
tasks: (1) Real User Demands: All tasks are either directly sourced from real-world websites or
crafted to reflect genuine user demands. (2) Multi-App Orchestration: We intentionally source
tasks that require interaction with multiple MCP servers, as this reflects authentic human workflows
and increases task complexity. (3) Diversity: To ensure broad task diversity, we adopt a two-stage
sourcing process. In the first stage, we start with an initial MCP server list covering more than 50
applications and freely source tasks without restricting to specific servers. In the second stage, we
analyze the distribution of the sourced tasks and identify Apps that are important but underrepresented.
We then conduct an additional round of targeted task sourcing specifically for them.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Literature Review

Manuscript Editing

Scholarly Activities

Profile

ManagementCourse

School Application

Teaching

Academic Affairs

Quantitative

Strategy

Stock
Tra

ding

Mark
eti

ng
An

aly
tic

s
De

plo
ym

en
t

De
vO

ps
 S

we
ep

Da
ta

 C
ur

at
io

n

OSS Engagem
ent

Project Sync
Experim

ent

Analysis
Data Wrangling

Talent
Management

Data Auditing

Financial Admin

Health Guidance
Travel Helper

Social MediaTra
nsportation

Per
son

al A
ffa

ir

Sp
ort

s A
na

lys
is

On
lin

e P
ur

ch
as

e

Pr
od

uc
t

As
so

rtm
en

t

In
ve

nt
or

y
Co

nt
ro

l

DT
C

M
an

ag
em

en
t

Research

(13.9%
)

Campus(16.7%)

Finance

(9.3%)

Te
ch

(1
7.

6%
)

Business
(16.7%)

Daily

(15.7%)E-
co

m
m

er
ce

(1
0.

1%
)

Figure 4: Task topic distribution of TOOLATHLON.

Realistic Fuzzy Task Instruction: We design
task instructions to resemble authentic user in-
put, which is often fuzzy or ambiguous. This
requires the agent to infer user intent given
the environment state, formulate plans, and
carry them out. For example, as shown in Fig-
ure 3 Left, a real user may simply say “Please
update the candidate information on HR
Record subpage according to all the
resumes...... if the position applied
for by the applicant is currently not
open,” This is a fuzzy instruction
without specifying in which format the agent
should fill in the information, but the Notion
database has provided some examples that the
agent needs to know to check itself. Also, the
instruction does not mention where to find the
status of the posted job and the agent needs to
check Notion to find that by itself. In contrast,
task instructions in some existing benchmarks
(Figure 3 Right) explicitly include detailed step-
by-step plans, which reduce the planning effort for agents. More examples of this kind are shown in
Figure 10 and 11.

All the sourced tasks experience multiple rounds of rigorous quality check, filtering and refinement
before we implement them, and finally we obtain 108 tasks in total. The topic distribution of all tasks
is shown in Figure 4 and Table 2 shows some key statistics of the complete benchmark.

3.2 TASK IMPLEMENTATION

Table 2: Key statistics of TOOLATHLON.

Statistics Value
MCP servers (# tools) 32 (604)
Local toolkits (# tools) 7 (16)
Avg/Min/Max tools per task 69.9/28/128
Tasks with state initialization 72/108 (67%)

As described in §2.4, each task in our benchmark
is implemented with a corresponding evaluation
script and potential initial states setup. This
process involves collecting ground-truth states
statically or dynamically, and design scripts to
automatically clear and re-fill new initial states.
To ensure realistic setups and reliable evaluation,
implementing a single task in TOOLATHLON
requires, on average, 4–6 hours of work by a graduate student majoring in computer science.

Finalizing Tasks and Quality Check: After crowd-sourcing task implementations from multiple
contributors, we perform intensive quality checks conducted by 5–6 experienced authors. In this
stage, each task is carefully reviewed and revised to unify standards across all tasks and ensure
correctness, solvability, and unambiguity, which requires approximately 5 hours of labor per task per
round of checking. Once all tasks are finalized, we perform an additional round of comprehensive
cross-checking and bug fixing of the entire benchmark before running the final experiments.

4 EXPERIMENT

In this section, we present the configuration details and experimental settings for several leading
commercial and open models on TOOLATHLON, as well as their performance.

4.1 SETUP

Models and Configuration: Our evaluation includes the leading commercial model series in terms
of agentic abilities, such as GPT-5 (-mini) (OpenAI, 2025b), o3&o4-mini (OpenAI, 2025a), Claude-
4-Sonnet (Anthropic, 2025), Gemini 2.5(-Pro,-Flash) (Comanici et al., 2025), Grok-4(-Fast) (xAI,
2025a;b), Grok-Code-Fast-1 (xAI, 2025c). We also benchmark the best-performing open-weight

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Main results for all the models. P@1, P@3, Pˆ3 and # Turns represents Pass@1, Pass@3, Passˆ3 and
average numbers of turns, respectively. We make bold the highest score.

Model Research Campus Finance Tech Business Daily E-com P@1 P@3 Pˆ3 # Turns

Proprietary Models
Claude-4-Sonnet 37.8 22.2 33.3 24.6 40.7 27.5 24.2 29.9±3.5 42.6 17.6 26.8
GPT-5 22.2 27.8 26.7 49.1 31.5 25.5 15.2 29.6±1.5 38.9 21.3 19.5
GPT-5-high 17.8 24.1 23.3 40.4 29.6 27.5 24.2 27.5±1.9 38.0 13.9 20.8
Grok-4 33.3 16.7 16.7 33.3 27.8 17.6 42.4 26.5±2.3 39.8 14.8 19.4
Grok-4-Fast 26.7 14.8 13.3 22.8 22.2 17.6 27.3 20.7±0.4 29.6 13.0 15.2
o3 15.6 16.7 10.0 31.6 24.1 17.6 3.0 18.5±0.8 25.9 13.0 19.2
Grok-Code-Fast-1 24.4 11.1 10.0 19.3 18.5 13.7 21.2 17.0±1.9 25.9 8.3 20.4
o4-mini 15.6 9.3 16.7 19.3 14.8 11.8 6.1 13.6±0.4 24.1 6.5 18.3
GPT-5-mini 17.8 5.6 16.7 17.5 14.8 7.8 3.0 12.0±0.8 19.4 5.6 19.5
Gemini-2.5-Pro 6.7 3.7 3.3 14.0 7.4 2.0 0.0 5.9±1.9 11.1 0.9 12.5
Gemini-2.5-Flash 2.2 0.0 10.0 5.3 5.6 2.0 9.1 4.3±1.6 6.5 2.8 8.8

Open-Source Models
DeepSeek-V3.1 2.2 13.0 23.3 21.1 14.8 11.8 12.1 13.9±0.8 21.3 8.3 29.9
GLM-4.5 13.3 11.1 16.7 17.5 5.6 15.7 15.2 13.3±1.9 20.4 8.3 23.9
Qwen-3-Coder 8.9 11.1 10.0 15.8 14.8 9.8 12.1 12.0±2.0 19.4 7.4 29.9
Kimi-K2-0905 11.1 9.3 13.3 14.0 7.4 9.8 18.2 11.4±2.7 16.7 5.6 26.7

models including Qwen-3-Coder (Qwen Team, 2025), DeepSeek-V3.1 (DeepSeek-AI, 2025), Kimi-
K2-0905 (Kimi Team et al., 2025) and GLM-4.5 (GLM-4.5 Team et al., 2025). As described in §2.4,
each task is preconfigured with a list of MCP servers and common tools to access. During evaluation,
we set the maximum allowable number of turns as 100 for all models. In our main evaluation setup,
we only provide the models with the MCP servers and common tools that are useful for executing the
task. We note that as each MCP server is equipped with multiple related tools, so the models will
still see many unnecessary tools during evaluation. In Appendix E.2, we analyze the performance
variation by offering more unrelated MCP servers to the models.

Metrics: We evaluate each model three times and report the average pass@1 success rate as well as
the standard deviation. We also include the pass@3 – the fraction of tasks with at least one correct
trajectory, and passˆ3 (Yao et al., 2025) – the fraction of tasks where all three trajectories are correct,
to measure the model’s potential capability coverage and its ability to complete tasks reliably. We
also report the average number of turns used.

4.2 MAIN RESULTS

Results in Table 3 show that Claude-4-Sonnet and GPT-5 are the leading ones, but they only achieve
about 30% success rate. Grok-4, with 26.5% Pass@1, is clearly in the second tier. All other models
remain at 20% or below. This indicates that our benchmark remains challenging for state-of-the-art
models and effectively distinguishes their capabilities. For open-source models, scores remain below
15%, revealing a gap with proprietary models. Notably, grok-code-fast-1 and grok-4-fast completed
all tasks at a high speed within 1 hour while scoring near 20% points, whereas others typically
required 1-3 hours. Interestingly, increased reasoning effort for thinking models (e.g., GPT-5 vs. GPT-
5-high) shows no benefits, suggesting that exploring new observations matters more than extended
internal reasoning in agentic tasks. We also find that Gemini-2.5’s ability to understand requirements
and proactively explore is insufficient – it may neglect requirements or give up prematurely during
the execution process, resulting in poor performance when handling complex tasks.

Looking at performance across task categories: Claude-4-Sonnet excels in Finance, Research,
Business, and Daily tasks, demonstrating strong general capabilities across diverse tools; GPT-5
performs exceptionally in Campus adn Tech tasks, showcasing effectiveness in educational and
technical scenarios; Grok-4 stands out in E-commerce, indicating specialized strength in commercial
and transactional operations. We also observe significant differences between Pass@3 and Passˆ3
success rates. This indicates that while many models have certain capability coverage, they lack
consistency in producing reliable results. For real-world tasks, building agents with both high success
rates and robust consistency remains a critical challenge.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

DeepSeek-V3.1

Kimi-K2-0905

GPT-5-high

GPT-5-mini
GPT-5

Grok-4

Gemini-2.5-Pro

Grok-Code-Fast-1

Qwen-3-Coder

Gemini-2.5-Flash
GLM-4.5

Grok-4-Fast

Claude-4-Sonnet
o4-mini o3

0

5

10

15

Er
ro

r P
re

se
nc

e
(%

)

Wrong Tool Name
Tool Call Error
Pass@1

0

10

20

30

Pa
ss

@
1

(%
)

Figure 5: Two kinds of tool calling error presence ratios in calling tools for different models.

5 ANALYSIS

In this section, we conduct analysis in depth to better understand model performance in TOOLATHLON,
focusing on tool-call errors, as well as long-context and overlong-output challenges. More analysis,
including how tool error and the involvement of unrelated MCP servers impact model performance,
and qualitative analysis & case studies, can be found in Appendix E and G.

5.1 THE FAILURE OF CALLING TOOLS

Easy
[3.4, 14.8]

Medium
[14.9, 22.4]

Hard
[22.7, 53.9]

0

10

20

30

40

50
Su

cc
es

s R
at

e
(%

) 38%

26%
24%

12
Turns

22
Turns 44

Turns

42%

25%

20%9
Turns

16
Turns 32

Turns

26%

14%

20%

10
Turns

13
Turns

22
Turns

23%

9% 9%15
Turns

28
Turns

45
Turns

24%

4%
7%

16
Turns

27
Turns

45
Turns

Claude-4-Sonnet
GPT-5
Grok-4-Fast
DeepSeek-V3.1
Qwen-3-Coder

Figure 6: Model performance on three groups of tasks
divided by average turns. The x-axis represents different
task difficulty groups determined by different avg turns
range [Min Turns, Max Turns]

We mainly focus on two major tool-calling er-
rors: hallucinating non-existing tools (e.g., in-
correct tool names) and errors raised during tool
execution. Statistics for different models on
these two types of errors are shown in Figure
5. It can be seen that all models produce tool
execution errors to varying degrees, possibly
due to incorrect parameter passing or attempts
to access non-existent resources. However, we
found no significant correlation between overall
success rate and the frequency of such errors. In
fact, error messages from tools may help models
understand the tool implementation or structure,
allowing adjustments in subsequent turns. The
other type of error–incorrect tool names–more
likely affects final scores. Leading models produce few tool name errors. In Appendix E, Figure
9, we further analyze the success rate difference between trajectories containing tool-calling errors
versus error-free trajectories. Most models do suffer from tool call errors, except for Claude-4-Sonnet,
which may understand the tool better via error messages and gets a higher success rate.

5.2 THE LONG-CONTEXT CHALLENGES FOR LANGUAGE AGENTS

0 10 20 30 40
Success Rate - No Overlong Tool Output (%)

0

10

20

30

40

Su
cc

es
s R

at
e

- W
ith

 O
ve

rlo
ng

 To
ol

 O
ut

pu
t (

%
)

GPT-5
GPT-5-high
GPT-5-mini
o3
o4-mini
Grok-4
Grok-4-Fast
Grok-Code-Fast-1
Gemini-2.5-Pro
Gemini-2.5-Flash
Claude-4-Sonnet
DeepSeek-V3.1
Kimi-K2-0905
GLM-4.5
Qwen-3-Coder

Figure 7: Avg. Success Rate on Trajec-
tories w/wo overlong tool outputs.

Since our benchmark is built on real tools and environments,
it naturally generates many long-horizon trajectories. To quan-
titatively describe differences between tasks, we calculate the
average execution turns for each task across all models, and
use this as a proxy to divide all tasks into three equally-sized
groups: Easy, Medium, and Hard, with execution turns increas-
ing with difficulty. In Figure 6, we show the performance of
five representative models on different groups and their average
turns in each group. It shows that groups with higher average
turns generally have lower success rates across models, and
leading models (GPT-5, Claude-4-Sonnet) maintain clear ad-
vantages in all groups. We also find that there is no significant
difficulty difference between Medium and Hard groups, suggest-
ing that our benchmark’s difficulty doesn’t entirely stem from
standard multi-step long-horizon execution, but possibly from
models ending tasks prematurely without exploring enough
observations, leading to failure.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10 1 100

average cost per task ($)

0

10

20

30

pa
ss

@
1

(%
)

Gemini-2.5-Flash

Claude-4-Sonnet

Kimi-K2-0905
GLM-4.5

DeepSeek-V3.1
Grok-Code-Fast-1

Gemini-2.5-Pro

o4-mini

GPT-5-mini

Grok-4
GPT-5

o3

0 5K 10K 15K 20K 25K 30K
average output tokens per task

0

10

20

30

pa
ss

@
1

(%
)

Gemini-2.5-Flash

Claude-4-Sonnet

Kimi-K2-0905

GLM-4.5 DeepSeek-V3.1
Qwen-3-

-Coder

Grok-Code-Fast-1

Gemini-2.5-Pro

o4-mini
GPT-5-mini

Grok-4
GPT-5

Grok-4-Fast

GPT-5-high

o3

Figure 8: The relationship between average task success rate and average cost (Left) and output tokens (Right).

Another concern is whether models can successfully complete tasks when encountering overlong
tool outputs, like fetching lengthy HTML source code or directly listing all data from a database
(we refer the readers to Appendix D for handling overlong outputs in our framework). We calculate
the proportion of trajectories containing overlong tool outputs encountered by all models during
evaluation, as well as each model’s success rates with and without overlong tool outputs. Results show
that the proportion of overlong tool outputs varies from approximately 15% to 30% across different
models. Additionally, Figure 7 shows that most models experience a decline in success rate when
encountering overlong tool outputs, with only a few models maintaining unchanged performance. We
notice that Grok-4 performs significantly better with overlong tool outputs, likely because it excels
at extracting key information from truncated data structures. While tasks with overlong outputs are
often logically straightforward (e.g., price comparison, data extraction), most models get trapped
trying to process complete lengthy outputs. Our analysis reveals that Grok-4 prefers not to read the
saved overlong tool output, instead working directly with truncated versions from tool calls, making
efficient information extraction from partial data critical for handling overlong outputs.

5.3 THE RELATIONSHIP BETWEEN PERFORMANCE AND EXPENSES

Since we are measuring models in realistic settings, cost and token usage matter as well, as they
determine how different models should be used under various budgets. For cost,2 Figure 8 Left shows
that Claude-4-Sonnet and Grok-4 incur relatively high costs, whereas most other models remain
under $1 per task. Among the high-performing models, GPT-5 is notably cost-effective as it achieves
comparable performance to Claude-4-Sonnet but costs only 1/10 as much, and Grok-Code-Fast and
Grok-4-Fast (free under time limits) achieve the highest success rates among the lowest-cost models.
We also plot the output token count distribution in Figure 8 Right. It shows how success rate varies
with different average output token counts. Most models cluster between 5K–10K output tokens
with success rates of 10–20%, exhibiting a weak positive correlation. Output conciseness varies
markedly: GPT-5 produces the most tokens and increasing its reasoning effort (GPT-5-high) leads to
more tokens, whereas Claude-4-Sonnet and Grok-4 achieve strong results with fewer output tokens,
indicating they tend to rely more on environment observation instead of internal reasoning. Models
like Gemini-2.5-Flash have the lowest output token counts and correspondingly low accuracy, while
others show a similar concentrated distribution.

6 CONCLUSION

We introduce TOOLATHLON, a comprehensive benchmark for evaluating language agents on real-
world, long-horizon tasks spanning 32 applications and 604 tools. Our evaluation reveals significant
limitations in current models, with the best-performing Claude-4-Sonnet achieving only 29.9% suc-
cess rate, highlighting substantial room for improvement in handling complex multi-step workflows.
Through detailed analyses, we identified key challenges including long context handling, tool-calling
errors, and the need for greater robustness in execution. We believe TOOLATHLON will drive the
development of more capable and robust language agents for practical real-world deployment.

2Prompt caching will reduce the cost a lot in our evaluation as input tokens dominate, which explains why
GPT-5 is not much more expensive than some open models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing the model context protocol. https://www.anthropic.com/news/
model-context-protocol, 2024.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, 2025.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng
Wang, and Wu Liu. ACEBench: Who wins the match point in tool usage?, 2025. URL https:
//arxiv.org/abs/2501.12851.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

DeepSeek-AI. Deepseek-v3.1 release. https://api-docs.deepseek.com/news/news250821,
2025.

Xuanqi Gao, Siyi Xie, Juan Zhai, Shqing Ma, and Chao Shen. MCP-RADAR: A multi-dimensional
benchmark for evaluating tool use capabilities in large language models, 2025. URL https:
//arxiv.org/abs/2505.16700.

GLM-4.5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie,
Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, et al. GLM-4.5: Agentic, reasoning, and coding
(arc) foundation models. arXiv preprint arXiv:2508.06471, 2025.

Zikang Guo, Benfeng Xu, Chiwei Zhu, Wentao Hong, Xiaorui Wang, and Zhendong Mao. Mcp-
agentbench: Evaluating real-world language agent performance with mcp-mediated tools, 2025.
URL https://arxiv.org/abs/2509.09734.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534, 2025.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen, Weiran
Yao, Shelby Heinecke, Silvio Savarese, Huan Wang, and Caiming Xiong. MCPEval: Automatic
mcp-based deep evaluation for ai agent models, 2025. URL https://arxiv.org/abs/2507.
12806.

Ziyang Luo, Zhiqi Shen, Wenzhuo Yang, Zirui Zhao, Prathyusha Jwalapuram, Amrita Saha, Doyen
Sahoo, Silvio Savarese, Caiming Xiong, and Junnan Li. MCP-Universe: Benchmarking large
language models with real-world model context protocol servers, 2025. URL https://arxiv.
org/abs/2508.14704.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn LLM
agents. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://openreview.net/forum?id=4S8agvKjle.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
GAIA: a benchmark for general ai assistants, 2023. URL https://arxiv.org/abs/2311.12983.

10

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2501.12851
https://api-docs.deepseek.com/news/news250821
https://arxiv.org/abs/2505.16700
https://arxiv.org/abs/2505.16700
https://arxiv.org/abs/2509.09734
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2507.12806
https://arxiv.org/abs/2507.12806
https://arxiv.org/abs/2508.14704
https://arxiv.org/abs/2508.14704
https://openreview.net/forum?id=4S8agvKjle
https://arxiv.org/abs/2311.12983

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guozhao Mo, Wenliang Zhong, Jiawei Chen, Xuanang Chen, Yaojie Lu, Hongyu Lin, Ben He,
Xianpei Han, and Le Sun. Livemcpbench: Can agents navigate an ocean of mcp tools?, 2025. URL
https://arxiv.org/abs/2508.01780.

OpenAI. Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2024.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025a.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, 2025b.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive APIs. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=tBRNC6YemY.

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agentic
evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=2GmDdhBdDk.

Qwen Team. Qwen3-coder: Agentic coding in the world. https://qwenlm.github.io/blog/
qwen3-coder/, 2025.

Scale AI. Mcp atlas. https://scale.com/leaderboard/mcp atlas, 2025.

The MCPMark Team. MCPMark: Stress-testing comprehensive mcp use. https://github.com/
eval-sys/mcpmark, 2025.

The Terminal-Bench Team. Terminal-bench: A benchmark for ai agents in terminal environments,
Apr 2025. URL https://github.com/laude-institute/terminal-bench.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. AppWorld: A controllable world of
apps and people for benchmarking interactive coding agents. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 16022–16076, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.850.
URL https://aclanthology.org/2024.acl-long.850/.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents, 2025. URL https://arxiv.org/abs/2504.12516.

xAI. Grok-4. https://x.ai/news/grok-4, 2025a.

xAI. Grok-4-fast. https://x.ai/news/grok-4-fast, 2025b.

xAI. Grok code fast 1. https://x.ai/news/grok-code-fast-1, 2025c.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=tN61DTr4Ed.

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking llm agents on consequential real world tasks, 2025.
URL https://arxiv.org/abs/2412.14161.

11

https://arxiv.org/abs/2508.01780
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-gpt-5/
https://openreview.net/forum?id=tBRNC6YemY
https://openreview.net/forum?id=2GmDdhBdDk
https://qwenlm.github.io/blog/qwen3-coder/
https://qwenlm.github.io/blog/qwen3-coder/
https://scale.com/leaderboard/mcp_atlas
https://github.com/eval-sys/mcpmark
https://github.com/eval-sys/mcpmark
https://github.com/laude-institute/terminal-bench
https://aclanthology.org/2024.acl-long.850/
https://arxiv.org/abs/2504.12516
https://x.ai/news/grok-4
https://x.ai/news/grok-4-fast
https://x.ai/news/grok-code-fast-1
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=tN61DTr4Ed
https://arxiv.org/abs/2412.14161

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yunhe Yan, Shihe Wang, Jiajun Du, Yexuan Yang, Yuxuan Shan, Qichen Qiu, Xianqing Jia, Xinge
Wang, Xin Yuan, Xu Han, Mao Qin, Yinxiao Chen, Chen Peng, Shangguang Wang, and Mengwei
Xu. MCPWorld: A unified benchmarking testbed for api, gui, and hybrid computer use agents,
2025. URL https://arxiv.org/abs/2506.07672.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R Narasimhan. τ -bench: A benchmark for
Tool-Agent-User interaction in real-world domains. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=roNSXZpUDN.

Ming Yin, Dinghan Shen, Silei Xu, Jianbing Han, Sixun Dong, Mian Zhang, Yebowen Hu, Shujian
Liu, Simin Ma, Song Wang, Sathish Reddy Indurthi, Xun Wang, Yiran Chen, and Kaiqiang Song.
Livemcp-101: Stress testing and diagnosing mcp-enabled agents on challenging queries, 2025.
URL https://arxiv.org/abs/2508.15760.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=oKn9c6ytLx.

12

https://arxiv.org/abs/2506.07672
https://openreview.net/forum?id=roNSXZpUDN
https://arxiv.org/abs/2508.15760
https://openreview.net/forum?id=oKn9c6ytLx

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USE IN PAPER WRITING

In writing this paper, we use advanced large language models to help us correct grammatical
errors, polish language, and adjust sentence structures. Additionally, we leverage the powerful code
generation capabilities of large language models in creating figures and tables, helping us efficiently
and accurately produce well-formatted and visually appealing charts.

B RELATED WORK

Benchmarks for tool-based language agents differ substantially in the realism of their tools, environ-
ments, and task configurations, and can be viewed along a spectrum from fully simulated settings
to those grounded in real-world applications. At one end of this spectrum, several works evaluate
tool use purely through simulation, without executing real APIs or interacting with actual application
backends. Representative examples include τ -Bench (Yao et al., 2025), BFCL (Patil et al., 2025), and
ACEBench (Chen et al., 2025), which assess function calling accuracy or multi-turn tool selection in
controlled scenarios, but rely on mock implementations or language-model-based emulation. While
such designs enable efficiency and reproducibility, they omit many of the challenges that arise from
executing real tools in unpredictable environments.

Moving beyond simulated tools, other benchmarks connect agents to real APIs yet operate in
synthetic or constrained environments where initial states are artificially constructed. For exam-
ple, AppWorld (Trivedi et al., 2024) offers a high-fidelity simulation of multiple apps, and MCP-
World (Yan et al., 2025), MCP-RADAR (Gao et al., 2025), MCPEval (Liu et al., 2025), and MCP-
AgentBench (Guo et al., 2025) grant access to real Apps via Model Context Protocol (MCP) (An-
thropic, 2024) but often begin from zero or artificially designed states or center on single-application
tasks. These setups capture tool execution more faithfully than pure simulation, yet still fall short of
representing the complexity of authentic, multi-application workflows.

Closer to realistic settings, a number of recent benchmarks combine real tools with more authentic
environment conditions. LiveMCPBench (Mo et al., 2025), LiveMCP-101 (Yin et al., 2025), MCPAt-
las (Scale AI, 2025), MCPUniverse (Luo et al., 2025), and MCPMark (The MCPMark Team, 2025)
introduce production-grade MCP servers, multi-step workflows, and realistic tool outputs. Neverthe-
less, they remain limited in diversity of domains, the realism of environment state initialization, or
the naturalness of task instructions—many lack genuinely ambiguous or underspecified prompts that
mimic real user requests.

Our work, TOOLATHLON, advances this trajectory by combining real tools with genuinely realistic
environments across 32 applications and 604 tools, spanning a broad range of domains. Initial states
are grounded in authentic usage scenarios rather than synthetic constructs, and tasks often require
long-horizon, cross-application orchestration. Moreover, prompts are intentionally concise and fuzzy,
compelling agents to infer intent and autonomously plan, while deterministic, script-based evaluation
ensures correctness in evaluation.

C MCP SERVER LIST AND SOURCE

We show all the MCP servers used in the TOOLATHLON benchmark in Table 4. The MCP servers we
have selected span multiple domains, ranging from everyday entertainment to education, and even
to productivity-level business, software development, and beyond. Most of these MCP servers are
sourced from existing community-developed projects, and for a substantial proportion of them, we
have made further functional enhancements — including but not limited to optimizing tool output,
improving robustness in error handling, and adding new tools. Moreover, we recognize that the
current coverage of available MCP servers is still insufficient. Therefore, we have also developed
new MCP servers for certain application software ourselves, enabling us to extend the supported task
scope into more domains. We will make these MCP servers publicly available to the community as
well, in order to promote the building and usage of agents.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Complete list of MCP servers used in TOOLATHLON and their sources.

MCP Server Source
Arxiv Latex https://github.com/takashiishida/arxiv-latex-mcp
Arxiv https://github.com/blazickjp/arxiv-mcp-server
Canvas-LMS Revised based on https://github.com/DMontgomery40/mcp-canvas-lms
Emails (Poste.io) Custom Implementaion
Excel https://github.com/haris-musa/excel-mcp-server/
Fetch https://github.com/tokenizin-agency/mcp-npx-fetch
Filesystem https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
Git https://github.com/modelcontextprotocol/servers/tree/main/src/git
Github Revised based on https://github.com/github/github-mcp-server
Google Cloud Custom Implementation
Google Calendar https://github.com/GongRzhe/Calendar-Autoauth-MCP-Server
Google Forms https://github.com/matteoantoci/google-forms-mcp
Google Maps https://github.com/modelcontextprotocol/servers-archived/tree/main/src/google-maps
Google Sheets https://github.com/xing5/mcp-google-sheets
HowToCook https://github.com/worryzyy/HowToCook-mcp
Hugging Face https://huggingface.co/mcp
Kubernetes Revised based on https://github.com/Flux159/mcp-server-kubernetes
Memory https://github.com/modelcontextprotocol/servers/tree/main/src/memory
Notion Revised based on https://github.com/makenotion/notion-mcp-server
PDF Tools Custom Implementation
Playwright Revised based on https://github.com/microsoft/playwright-mcp
PowerPoint https://github.com/GongRzhe/Office-PowerPoint-MCP-Server
12306 Revised based on https://github.com/Joooook/12306-mcp
Scholarly Revised based on https://github.com/adityak74/mcp-scholarly
Snowflake Revised based on https://github.com/isaacwasserman/mcp-snowflake-server
Terminal Revised based on https://github.com/MladenSU/cli-mcp-server
Weights & Biases Revised based on https://github.com/wandb/wandb-mcp-server
WooCommerce Custom Implementation
Word https://github.com/GongRzhe/Office-Word-MCP-Server
Yahoo Finance Revised based on https://github.com/Alex2Yang97/yahoo-finance-mcp
YouTube Revised based on https://github.com/ZubeidHendricks/youtube-mcp-server
YouTube Transcript https://github.com/jkawamoto/mcp-youtube-transcript

D IMPLEMENTATION DETAILS OF AGENT FRAMEWORK

Our framework is built and developed based on OpenAI-Agent-SDK (Version 0.0.15), and we make
the following main enhancements to mke it more robust and capable for our complex evaluation:

(1) Tool Error Handling: When models call a non-existing tool or the tool call returns errors, the
agent loop breaks and exits by default. We improve this by giving the errors as observations to the
agent without breaking the loop, so that the agent can continue the trajectory to proceed further. This
way mimics the realistic, noisy environments where tool calling sometimes does not work and the
agent needs to deal with such scenarios;

(2) Overlong Tool Response Handling: Overlong tool outputs (like huge HTML) can easily exhaust
models’ context, therefore we truncate them to a preset threshold (100K characters) instead of placing
the entire response into the context. To prevent information loss, a toolkit is implemented to enable
the agent to search and navigate through the cached raw lengthy tool outputs via paging. The page
size is set to 10K characters by default. This toolkit is available for all task evaluations.

(3) Context history management: To further prevent model context overflow, we design a context
management mechanism with supporting tools. Models can check accumulated token counts and
turn numbers in current context, and drop historical turns to reduce context pressure via these tools.
All history, whether dropped or not, remains searchable through these tools as well. When context
exceeds limits without model intervention, our framework automatically clears everything except the
last 10 turns’ preview and initial user input, ensuring continuous agent operation as a final safeguard.

(4) Extra local tools: We implement and include the following tools alongside the existing MCP
sersers: (a) Python, which executes arbitrary Python code; (b) Web Search, which searches content
on the Internet driven by Google Search. (c) Done, which the model can call to explicitly indicate the

14

https://github.com/takashiishida/arxiv-latex-mcp
https://github.com/blazickjp/arxiv-mcp-server
https://github.com/DMontgomery40/mcp-canvas-lms
https://github.com/haris-musa/excel-mcp-server/
https://github.com/tokenizin-agency/mcp-npx-fetch
https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
https://github.com/modelcontextprotocol/servers/tree/main/src/git
https://github.com/github/github-mcp-server
https://github.com/GongRzhe/Calendar-Autoauth-MCP-Server
https://github.com/matteoantoci/google-forms-mcp
https://github.com/modelcontextprotocol/servers-archived/tree/main/src/google-maps
https://github.com/xing5/mcp-google-sheets
https://github.com/worryzyy/HowToCook-mcp
https://huggingface.co/mcp
https://github.com/Flux159/mcp-server-kubernetes
https://github.com/modelcontextprotocol/servers/tree/main/src/memory
https://github.com/makenotion/notion-mcp-server
https://github.com/microsoft/playwright-mcp
https://github.com/GongRzhe/Office-PowerPoint-MCP-Server
https://github.com/Joooook/12306-mcp
https://github.com/adityak74/mcp-scholarly
https://github.com/isaacwasserman/mcp-snowflake-server
https://github.com/MladenSU/cli-mcp-server
https://github.com/wandb/wandb-mcp-server
https://github.com/GongRzhe/Office-Word-MCP-Server
https://github.com/Alex2Yang97/yahoo-finance-mcp
https://github.com/ZubeidHendricks/youtube-mcp-server
https://github.com/jkawamoto/mcp-youtube-transcript

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

GPT-5 o3

Grok-4-Fast

GPT-5-high

Qwen-3-Coder

Grok-Code-Fast-1

Kimi-K2-0905

DeepSeek-V3.1
GLM-4.5

Gemini-2.5-Flash

GPT-5-mini
Grok-4

Gemini-2.5-Pro
o4-mini

Claude-4-Sonnet

20

0

 S
uc

ce
ss

 R
at

e
(%

)
Wrong Tool Name SR
Tool Call Error SR

Figure 9: The success rate difference between trajectories with certain kind of tool calling errors and without
errors.

completion of tool calling for a task. (d) Sleep, which the model can call to wait for some time before
proceeding.

E EXTRA ANALYSIS FOR TOOLATHLON

E.1 THE IMPACT OF TOOL CALL ERRORS ON FINAL SUCCESS RATES

During our experiments, we observe that models exhibit tool call errors. These included invoking
incorrect tool names caused by hallucination or forgetting, and errors raised in tool execution. As
shown in Figure 9, we analyze the impact of tool call errors on success rate.

For most models, the frequency of tool call errors was negatively correlated with successful task
execution, indicating that a model’s misunderstanding of a tool adversely affects its performance.
This negative impact was most pronounced in GPT-5. Intriguingly, Claude-4-Sonnet showed an
increase in success rate when tool execution raises errors. We hypothesize that this is because Claude
has the ability to learn from the feedback of an incorrect tool call, gaining a deeper understanding of
the tool’s function, which it then successfully applies to the agentic task.

E.2 PERFORMANCE WHEN FEEDING INTO MORE UNRELATED MCP SERVERS.

Table 5: Model performance when includ-
ing various numbers of unrelated MCP
servers.

Model # Unrelated MCP Servers
0 2 4 8

GPT-5 29.6 25.0 25.0 25.0
Qwen-3-Coder 11.4 12.0 9.3 11.1

In the default setting of our benchmark, the MCP servers re-
quired for each task are pre-configured, and we only include
MCP servers relevant or necessary for that task. However, in
real-world scenarios, users may intentionally or unintention-
ally maintain connections to more irrelevant MCP servers,
such as forgetting to clear settings from previous agent task
executions, or hoping to complete various tasks with the same
configuration. Therefore, we conducted an additional abla-
tion experiment to observe how model performance changes
when adding irrelevant MCP servers to tasks. We select GPT-
5 and Qwen-3-Coder as test models and conduct experiments under three settings: adding 2, 4, and 8
irrelevant MCP servers to each task. As shown in Table 5, we find the impact of adding unrelated
MCP servers to be minimal for Qwen-3-Coder. However, for GPT-5, the score drops from 29.6 to
around 25 under the same setting, indicating that some models are more sensitive to such interference.

E.3 CASE STUDY: TYPICAL CHALLENGES MODELS MET IN TOOLATHLON

Unable to fully utilize the given tools or resources in fuzzy instructions We sometimes find that
the model fails to take full advantage of the resources we provide if we do not explicitly tell the model
in detail how and when to use them. It may fail to use indirect methods with existing information and
available tools to reach its goal if its first attempt fails. We show an example as follows:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Task dataset-license-issue by DeepSeek-V3.1

Prompt: ... asking about the license information ... please update the corresponding huggingface dataset
pages ... If you need the huggingface token, you can find it in the “.hf token” file.

Last (28th) Turn: I notice that the dataset doesn’t have a detailed README that I can directly update
through the API. However, based on my analysis, I can provide the license information response as
requested. Based on my research, the datasets are derived from HuggingFaceTB’s educational datasets
which use the ODC-BY (Open Data Commons Attribution License). This is the most permissive license
from the original data sources ...

As per the prompt, the model has already been reminded to use the given “.hf token” file since
we noticed that the Hugging Face MCP does not allow update operations. However, we find that
DeepSeek-V3.1 tried several times to access this on the server or use web search instead of writing
terminal commands or Python code to directly access the needed dataset with the given token.
Therefore, even though it has identified the correct license information (ODC-BY), it still fails to
update the datasets pages and finish this task.

Fail to handle real complex environment states One of our design principles for this benchmark
is to setup realistic environments, such as a large project collaboration with tens of developers or an
online shop with hundreds of products. We find that models often get lost in such scenarios, e.g. by
omitting a large number of items that should be examined. We provide an example below:

Task task-tracker by Claude-4-Sonnet

Prompt: Please find all developers’ branches in the “BenchColl” project for the most recent commits ...
Update our Notion page: “Task Tracker” based on the new tasks, and create a new branch in GitHub ...

Evaluation: ... Comparing Notion Page with local groundtruth Excel file ... Issues found:
• Row count mismatch. Expected: 116, Got: 91
• Excel task ’analytics-dashboard’ not found in Notion database ...

In this task, we ask the model to check a project repository involving more than 10 developers,
determine the progress of each person, and add new records to Notion. This requires the model to
examine all the different branches and compare them in detail against an example task template. In
the observed trajectory, we see that the model does attempt to follow this process; however, it does
not actually go through all possible files and folders to produce a complete update. As a result, the
model updates the Notion pages with far fewer task items than expected, which leads to failure.

Laziness in long horizon working Certain tasks require the model to complete a sequence of
subtasks over an extended time horizon, such as processing data spanning multiple years. Such
workloads are common in real-world applications. While we expect the models to execute these
complex and repetitive tasks in a fully end-to-end manner, our observations indicate that they often
terminate prematurely and delegate the remaining work back to the user. An example is shown below:

Task music-analysis by Grok-Code-Fast-1

Prompt: A music streaming platform wants to accurately identify the 1940s pop singles with the most
sustained popularity ... Follow the format of the “music analysis result.xlsx” in the workspace, create one
sheet for one year and fill them. ...

Last (66th) Turn: The analysis has been completed for 1940. I used the original Google Sheet data to
calculate the longest consecutive weeks each song stayed in the top 3, sorted the leaderboard by longest
top 3 streaks descending, then by song name ascending, then by artist ascending. ... For other 1940s years
(1941-1949), the same steps can be applied using their respective sheet IDs. The file now contains the
analysis for 1940 as requested. [Claim Done]

In this task, the model is asked to analyze popular singles from the 1940s, year by year. The model
carries out this process for the first year (1940), but then stops, claiming it has completed the task

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

after 66 turns of work. This happens even though we have set the system prompt as: ... you can either
call the “claim done” tool ... to indicate completion. This will immediately terminate the task, and
you will have no further opportunity to work on it. — which is intended to enforce the model finishes
everything before exiting. Nevertheless, this kind of premature termination still occurs, causing an
early exit and failing even the first completeness check in the corresponding Excel sheet.

F PROMPT

We use a very simple system prompt (except the tool schemas) in our evaluation, where the
{workspace dir} will be replaced with actual agent workspace directory in execution.

Agent System Prompt

Accessible workspace directory: {workspace dir}
When processing tasks, if you need to read/write local files and the user provides a relative path, you need
to combine it with the above workspace directory to get the complete path.
If you believe the task is completed, you can either call the “claim done” tool or respond without calling
any tool to indicate completion. This will immediately terminate the task, and you will have no further
opportunity to work on it.
Please complete the given task independently. Do not seek confirmation or additional feedback from the
user. You should handle all situations on your own, as the user will not provide any further information.

Figure 10: An example of format inference in task k8s-safety-audit, where the agent needs to read the sheets
Week1 and Week2 to understand the format it should use when filling in Week3 in this Google Sheet with the
safety auditing results on a given kubernates cluster.

Figure 11: An example of file edit inference in task email-paper-homepage, where the agent is only given the
instruction to update an example personal page on Github but needs to explore the file structures by itself and
determine which files to edit.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G MORE EXAMPLES OF QUALITATIVE ANALYSIS

G.1 EXAMPLES FOR FUZZY USER INSTRUCTIONS

We present two examples of fuzzy user instructions in real-world scenarios in this subsection. The
first example (Figure 10) comes from the task k8s-safety-audit, where the agent needs to conduct
a security audit of a deployed cluster based on predefined security audit rules and synchronize the
results to a Google Sheet. However, the user instruction only mentions ”update to Week3 sheet,”
which requires the agent to independently read the existing Week1 and Week2 sheets and infer the
required format for filling in the information.

The second example (Figure 11) comes from the task email-paper-homepage, where the agent needs
to update the relevant content on a personal GitHub homepage based on paper acceptance emails in
the inbox. The user instruction only mentions ”update my personal page,” which requires the agent to
independently find the corresponding repository, explore the file structure, and decide which files and
which parts of them should be modified.

In both examples, we examine whether the model can, given concise and fuzzy instructions, use tool
calls to explore and determine the actual actions that need to be performed in the real environment.

G.2 COMPLETE EXAMPLE TASK TRAJECTORIES

We present the trajectories of Claude-4-Sonnet (Anthropic, 2025) on two different tasks. Given that
some tool-call results are excessively long, we have simplified certain tool outputs and removed all
personally identifiable information.

Traj #1: HuggingFace Upload. This task requires the model to identify, among the 10 training
checkpoints, the one with the highest average score across all benchmarks, and write the result to
README.md. Subsequently, the model must create a Hugging Face repository and upload all relevant
files. We do not directly provide the evaluation scores; after inspecting the folders, Claude-4-Sonnet
realized it needed to run the evaluation script itself. To increase the difficulty of this task, we also
introduce some easily fixable syntax errors into the test code, which the model must identify and
correct on its own. Although Claude-4-Sonnet eventually identified the correct checkpoint, it failed to
complete the task because it omitted the images required in README.md when uploading the files. We
do not explicitly prompt the model to upload these images, but it should have inferred the dependency
on them from the content of README.md.

Traj #2: Notion HR. It requires the model to retrieve open positions from Notion and assign roles to
candidates based on their resumes. For candidates without a suitable position, the model needs to
send rejection emails. Claude-4-Sonnet perfectly completed this task after making 45 tool calls. It
successfully read all the resumes, and fill in correct information accordingly on the Notion table and
send rejection emails to all candidates taht apply for positions with no head counts.

Traj #1: HuggingFace Upload (Claude-4-sonnet-0514, failed after 47 tool callings)

 User Please scan the workspace folder, pick the model checkpoint with the highest
eval accuracy, then push the best model’s folder to Hugging Face Hub as a model repo named
MyAwesomeModel-TestRepo. Finalize the repo’s README.md with the detailed evaluation results
for all 15 benchmarks (keep three decimal places), you can refer to the current README.md under
workspace.

Æ Agent I’ll help you scan the workspace, find the model checkpoint with the highest eval accuracy,
push it to Hugging Face Hub, and update the README.md with detailed evaluation results. Let me
start by exploring the workspace structure.

å filesystem list directory

"path": "workspace"

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

¾ Tool Response:

[FILE] .tokens
[FILE] README.md
[DIR] checkpoints
[DIR] evaluation
[DIR] figures
[FILE] hf token.txt

Æ Agent Let me explore the checkpoints directory to see the available model checkpoints:

å filesystem list directory

"path": "workspace/checkpoints"

¾ Tool Response:

[DIR] step 100
[DIR] step 200
[DIR] step 300
...
[DIR] step 1000

Æ Agent Now let me check the evaluation directory to find the evaluation results:

å filesystem list directory

"path": "workspace/evaluation"

¾ Tool Response:

[FILE].setup.py.swp
[DIR] benchmarks
[DIR] build
[FILE] eval.py
[FILE] setup.py
[DIR] utils

Æ Agent Let me check the benchmarks directory for evaluation results:

å filesystem list directory

"path": "workspace/evaluation/benchmarks"

¾ Tool Response:

[DIR] code generation
[DIR] common sense
[DIR] creative writing
[DIR] dialogue generation
...
[DIR] text classification
[DIR] translation

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Æ Agent I can see there are 15 benchmark directories. Let me search for evaluation result files that
might contain accuracy metrics:

å filesystem search files

"path": "workspace", "pattern": "eval"

¾ Tool Response:

workspace/evaluation
workspace/evaluation/benchmarks/code generation/eval.py
workspace/evaluation/benchmarks/common sense/eval.py
workspace/evaluation/benchmarks/creative writing/eval.py
workspace/evaluation/benchmarks/dialogue generation/eval.py
...
workspace/evaluation/benchmarks/translation/eval.py
workspace/evaluation/eval.py

Æ Agent Let me search for result files or JSON files that might contain the evaluation results:

å filesystem search files

"path": "workspace", "pattern": "result"

¾ Tool Response:

No matches found

å filesystem search files

"path": "workspace", "pattern": "json"

¾ Tool Response:

workspace/checkpoints/step 100/config.json
...
workspace/checkpoints/step 1000/config.json

Æ Agent Let me check if there are any log files or training logs:

å filesystem search files

"path": "workspace", "pattern": "log"

¾ Tool Response:

workspace/evaluation/benchmarks/dialogue generation
workspace/evaluation/benchmarks/logical reasoning

Æ Agent Let me look for any files with accuracy or evaluation metrics in their names:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

å filesystem search files

"path": "workspace", "pattern": "accuracy"

¾ Tool Response:

No matches found

Æ Agent Let me check the current README.md to understand the structure and see if it contains
any evaluation information:

å filesystem read file

"path": "workspace/README.md"

¾ Tool Response:

...

	Benchmark	Model1	Model2	Model1-v2	MyAwesomeModel
Core Reasoning Tasks	Math Reasoning	0.510	0.535	0.521	
{RESULT}					
...					
Language Understanding	Reading Comprehension	0.671	0.685	0.690	
{RESULT}					
...					
Generation Tasks	Code Generation	0.615	0.631	0.640	{RESULT}
...					
Specialized Capabilities	Translation	0.782	0.799	0.801	
{RESULT} |
...

Æ Agent I can see the README.md has placeholders {RESULT} for the evaluation results. Now
I need to find the actual evaluation results. Let me check each checkpoint directory to see if they
contain evaluation results:

å filesystem list directory

"path": "workspace/checkpoints/step 100"

¾ Tool Response:

[FILE] config.json
[FILE] pytorch model.bin

å filesystem list directory

"path": "workspace/checkpoints/step 1000"

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

¾ Tool Response:

[FILE] config.json
[FILE] pytorch model.bin

Æ Agent Let me check if there are any evaluation results in the main evaluation directory:

å filesystem directory tree

"path": "workspace/evaluation"

¾ Tool Response:

[
{

"name": ".setup.py.swp",
"type": "file"

},
{

"name": "benchmarks",
"type": "directory",
"children": [
{

"name": "code generation",
"type": "directory",
"children": [
{

"name": "eval.py",
"type": "file"

}
]

},

...
]

Æ Agent Let me check the main evaluation script to understand how evaluation results are generated:

å filesystem read file

"path": "eval.py"

¾ Tool Response:

...

def run benchmark evaluation(benchmark name, model path):

...

Æ Agent Now I need to run the evaluation script for each checkpoint to find the one with the highest
eval accuracy. Let me run the evaluation for each checkpoint:

å terminal run command

"command": "cd workspace && python evaluation/eval.py checkpoints/step 100"

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

¾ Tool Response:

[
{"type": "text", "text": "0.493 ", "annotations": null},
{"type": "text", "text": "math reasoning: 0.345 code generation: Error

text classification: Error sentiment analysis: 0.617 question answering:
0.475 logical reasoning: 0.319 common sense: 0.53 reading comprehension:
0.475 dialogue generation: Error summarization: 0.517 translation: 0.64
knowledge retrieval: 0.529 creative writing: 0.328 instruction following:
0.55 safety evaluation: 0.628 ", "annotations": null, "error": true}

...
]

Processing other model checkpoints (Step 200 - Step 900)

å terminal run command

"command": "cd workspace && python evaluation/eval.py checkpoints/step 1000"

¾ Tool Response:

[
{"type": "text", "text": "0.712 ", "annotations": null},
...

]

Æ Agent Perfect! I can see that step 1000 has the highest eval accuracy of 0.712. Let me also extract
the individual benchmark scores for step 1000. I notice there are some errors with code generation,
text classification, and dialogue generation benchmarks, but I have scores for the other benchmarks.
Let me fix those missing benchmarks first to get complete results. Let me check what’s wrong with
the code generation benchmark:

å filesystem read file

"path": "workspace/evaluation/benchmarks/code generation/eval.py"

¾ Tool Response:

...

if not os.path.isfile(args.model path):

...

Æ Agent I see the issue - the code generation script is checking if the model path is a file, but we’re
passing a directory. Let me check the text classification script:

å filesystem read file

"path": "workspace/evaluation/benchmarks/text classification/eval.py"

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

¾ Tool Response:

...

from utils.benchmark utils import get benchmark score

...

Æ Agent Let me check the dialogue generation script:

å filesystem read file

"path": "workspace/evaluation/benchmarks/dialogue generation/eval.py"

¾ Tool Response:

...

from utils.benchmark utils import get benchmark score

...

Æ Agent Let me check the benchmark utils to understand how the scoring works:

å terminal run command

"command": "cd workspace/evaluation &&
python -c "from utils.benchmark utils import get benchmark score;
print(get benchmark score(’code generation’, 1000))""

¾ Tool Response:

Security violation: Invalid command part ‘python -c "from
utils.benchmark utils import get benchmark score’: Invalid command format:
No closing quotation

å python-execute

import sys
import os
sys.path.insert(0, ’/workspace/dumps/workspace/evaluation’)
from utils.benchmark utils import get benchmark score

Get scores for step 1000 for the missing benchmarks
code gen score = get benchmark score("code generation", 1000)
text class score = get benchmark score("text classification", 1000)
dialogue gen score = get benchmark score("dialogue generation", 1000)

print(f"code generation: code gen score")
print(f"text classification: text class score")
print(f"dialogue generation: dialogue gen score")

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

¾ Tool Response:

=== STDOUT ===
code generation: 0.65
text classification: 0.828
dialogue generation: 0.644

Æ Agent Great! Now I have all the scores for step 1000. Let me compile the complete results for
step 1000:Based on the evaluation results, step 1000 has the highest overall eval accuracy of 0.712.
Here are the complete results for step 1000:

• Math Reasoning: 0.550

• Code Generation: 0.650

• ...

Now I need to:

• Get the HF token

• Push the step 1000 model to Hugging Face Hub

• Update the README.md with these results

Let me first get the HF token:

å filesystem read file

"path": "workspace/hf token.txt"

¾ Tool Response:

hf xxxxxxxxxxxxxxx

Æ Agent Now let me authenticate with Hugging Face:

å terminal run command

"command": "cd workspace && echo "hf xxxxxxxxxxxxxxx" | huggingface-cli login
--token"

¾ Tool Response:

Security violation: Invalid command part ’huggingface-cli login --token’:
Command ’huggingface-cli’ is not allowed

Æ Agent Let me try using the Python API instead:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

å python-execute

import os
from huggingface hub import HfApi, login

Set the token
token = "hf xxxxxxxxxxxxxxx"
os.environ["HF TOKEN"] = token

Login
login(token=token)

Initialize API
api = HfApi()

print("Successfully authenticated with Hugging Face Hub")

¾ Tool Response:

=== STDOUT ===
Successfully authenticated with Hugging Face Hub
=== STDERR ===
Note: Environment variable‘HF TOKEN‘ is set and is the current active token
independently from the token you’ve just configured.

Æ Agent Now let me check what files are in the step 1000 checkpoint:

å filesystem list directory

"path": "workspace/checkpoints/step 1000"

¾ Tool Response:

[FILE] config.json
[FILE] pytorch model.bin

Æ Agent Let me also check if there are any other necessary files (like tokenizer files) in the
workspace:

å filesystem search files

"path": "workspace", "pattern": "tokenizer"

¾ Tool Response:

No matches found

Æ Agent Let me check if there are any vocab files or other model-related files:

å filesystem search files

"path": "workspace", "pattern": "vocab"

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

¾ Tool Response:

No matches found

Æ Agent Let me check the config.json to understand the model better:

å filesystem read file

"path": "workspace/checkpoints/step 1000/config.json"

¾ Tool Response:

{
"model type": "bert",
"architectures": ["BertModel"]

}

Æ Agent Now let me create the repository and push the model. First, let me copy the best model to
a temporary directory and add the updated README:

å filesystem create directory

"path": "workspace/model upload"

¾ Tool Response:

Successfully created directory workspace/model upload

å terminal run command

"command": "cd workspace && cp checkpoints/step 1000/* model upload/"

¾ Tool Response:

Command completed with return code: 0

Æ Agent Now let me update the README.md with the evaluation results. I need to replace the
{RESULT} placeholders with the actual scores:

å filesystem read file

"path": "workspace/README.md"

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

¾ Tool Response:

...

	Benchmark	Model1	Model2	Model1-v2	MyAwesomeModel
Core Reasoning Tasks	Math Reasoning	0.510	0.535	0.521	
{RESULT}					
...					
Language Understanding	Reading Comprehension	0.671	0.685	0.690	
{RESULT}					
...					
Generation Tasks	Code Generation	0.615	0.631	0.640	{RESULT}
...					
Specialized Capabilities	Translation	0.782	0.799	0.801	
{RESULT} |
...

...

Æ Agent Now let me create the updated README.md with the actual evaluation results:

å filesystem edit file

{
"path": "README.md",
"edits": [

"oldText":"| **Core Reasoning Tasks** | Math Reasoning | 0.510 | 0.535 |
0.521 | {RESULT} |",

"newText":"| **Core Reasoning Tasks** | Math Reasoning | 0.510 | 0.535 |
0.521 | 0.550 |",
...

]
}

¾ Tool Response:

	Benchmark	Model1	Model2	Model1-v2	MyAwesomeModel
-| Core Reasoning Tasks | Math Reasoning | 0.510 | 0.535 | 0.521 | RESULT |
...
+| Core Reasoning Tasks | Math Reasoning | 0.510 | 0.535 | 0.521 | 0.550 |
...

Æ Agent Now let me copy the updated README to the model upload directory:

å terminal run command

"command": "cd workspace && cp README.md model upload/"

¾ Tool Response:

Command completed with return code: 0

Æ Agent Now let me push the model to Hugging Face Hub:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

å python-execute

import os
from huggingface hub import HfApi, login

Set the token and login
token = "hf xxxxxxxxxxxxxxx"
os.environ["HF TOKEN"] = token
login(token=token)

Initialize API
api = HfApi()

Create the repository
repo id = "MyAwesomeModel-TestRepo"
try:

api.create repo(repo id=repo id, private=False, exist ok=True)
print(f"Repository repo id created successfully!")

except Exception as e:
print(f"Error creating repository: e")

Upload all files from the model upload directory
model path = "/workspace/dumps/workspace/model upload"
try:

api.upload folder(
folder path=model path,
repo id=repo id,
repo type="model"

)
print(f"Model uploaded successfully to repo id!")

except Exception as e:
print(f"Error uploading model: e")

¾ Tool Response:

=== STDOUT ===
Repository MyAwesomeModel-TestRepo created successfully!
Error uploading model: 404 Client Error.

Repository Not Found.
=== STDERR ===
Note: Environment variable‘HF TOKEN‘ is set and is the current active token
independently from the token you’ve just configured.

Æ Agent I need to include my username in the repository ID. Let me check who I am:

å huggingface hf whoami

None

¾ Tool Response:

You are authenticated as anonymized user.

Æ Agent Now let me create the repository with the correct format:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

å python-execute

...
repo id = "anonymized user/MyAwesomeModel-TestRepo"
...

¾ Tool Response:

=== STDOUT ===
Repository anonymized user/MyAwesomeModel-TestRepo created successfully!
Model uploaded successfully to anonymized user/MyAwesomeModel-TestRepo!
=== STDERR === Note: Environment variable‘HF TOKEN‘ is set and is the current
active token independently from the token you’ve just configured.

Æ Agent Perfect! Let me verify what files were uploaded:

å filesystem list directory

"path": "workspace/model upload"

¾ Tool Response:

[FILE] README.md
[FILE] config.json
[FILE] pytorch model.bin

Æ Agent Excellent! Let me also verify the README.md content in the upload directory to make
sure it has the correct evaluation results:

å filesystem read file

{
"path": "workspace/model upload/README.md",
"head": 50

}

¾ Tool Response:

license: mit
library name: transformers

MyAwesomeModel
...

Æ Agent Perfect! The task has been completed successfully. ...

å claim done

None

¾ Tool Response:

you have claimed the task is done!

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Traj #2: Notion HR (Claude-4-sonnet-0514, succeed after 45 tool callings)

 User Please update the candidate information on the HR Record subpage of the Notion page
according to the resumes in my workspace. All information must be filled out strictly according to
the content in the resumes, without making any unauthorized modifications or adding/removing any
words. Also, please delete the existing sample entries in the record table. At the same time, if the
position applied for by the applicant is currently not open for recruitment, please send an email to the
corresponding applicant using the following template information (including line breaks). Do not
send the email by mistake:

Dear Applicant,

Thank you very much for your interest in joining MCP Inc and for taking the time to sub-
mit your application. We truly appreciate the effort you put into applying for this position.

After careful review, we regret to inform you that the position you applied for is currently
filled. However, we were impressed with your qualifications and would like to keep your resume on
file for future opportunities that may better match your skills and experience.

We encourage you to check our careers page regularly for new openings, and please feel
free to apply for other positions that align with your background and interests.

Thank you again for considering MCP Inc as a potential employer. We wish you the very
best in your job search and future career endeavors.

Best regards, HR Team, MCP Inc

Æ Agent I’ll help you update the HR Record subpage in Notion with resume information and
handle any necessary email communications. Let me start by exploring your workspace to find the
resumes and then locate the Notion page.

å filesystem list directory

"path": "workspace"

¾ Tool Response:

[DIR] .pdf tools tempfiles
[DIR] cvs

å filesystem list directory

"path": "workspace/cvs"

¾ Tool Response:

[FILE] alice jackson resume.pdf
[FILE] angela moore resume.pdf
[FILE] charles castillo resume.pdf
...
[FILE] nancy robinson resume.pdf

Æ Agent Great! I found 10 resume PDF files. Now let me search for the Notion page with HR
Record information.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

å notion API-post-search

"query": "HR Record"

¾ Tool Response:

{"object":"list","results":[...]}

Æ Agent I found the HR Record page. Let me retrieve its contents to see the structure and any
existing database.

å notion API-get-block-children

"block id": "xxxxx"

¾ Tool Response:

{"object":"list","results":[...]}

Æ Agent I can see there are three databases in the HR Record page:

1. Job Positions (block ID: xx-yy-zz)

2. Job Application Timeline (block ID: yy-zz-xx)

3. Candidates (block ID: zz-xx-yy)

Let me first examine the Job Positions database to understand what positions are available, and then
the Candidates database to see its structure.

å notion API-retrieve-a-database

"database id": "xx-yy-zz"

¾ Tool Response:

{"object":"database","id":"xx-yy-zz",...}

å notion API-post-database-query

"database id": "xx-yy-zz"

¾ Tool Response:

{"object":"list","results":[...]}

Æ Agent Now let me examine the Candidates database structure:

å notion API-retrieve-a-database

"database id": "zz-xx-yy"

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

¾ Tool Response:

{"object":"database","id":"zz-xx-yy",...}

å notion API-post-database-query

"database id": "zz-xx-yy"

¾ Tool Response:

{"object":"list","results":[...]}

Æ Agent Now I have a clear understanding of the situation:Job Positions with available headcount
(Head Counts > 0):

• Advanced Investment Banking Analyst: 3 positions

• Market Risk Specialist: 4 positions

• ...

Existing sample candidates and their applied positions:

• Alice Jackson → Financial Risk Analyst (2 positions available) ✓

• Debra Smith → Securities Trader (0 positions available) ×
• Michael Diaz → Investment Analyst (2 positions available) ✓

• ...

I need to:

1. Delete all existing sample entries

2. Read all the resume PDFs to extract candidate information

3. Add new entries based on actual resumes

4. Send rejection emails to candidates applying for positions with 0 headcount

Let me start by reading all the resume PDFs:

å pdf-tools read pdf pages

"pdf file path": "workspace/cvs/alice jackson resume.pdf", "start page": 1,
"end page": 10

¾ Tool Response:

PDF total pages: 3
Extracted page range: 1-3

=== Page 1 ===
ALICE JACKSON
**Applied Position: Financial Risk Analyst **
CONTACT INFORMATION
...

Read the resumes of the other candidates in sequence

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Æ Agent Now I have all the resume information. Let me analyze what I found:
Candidates from resumes and their applied positions:

• Alice Jackson – Applied: Financial Risk Analyst (2 positions available) ✓
Education: Master of Finance, Columbia Business School; Bachelor Economics, University
of Pennsylvania
Email: alice jackson38@mcp.com

• Angela Moore – Applied: Securities Trader (0 positions available) ×
Education: Master of Science in Computational Finance, Carnegie Mellon University
Email: angela moore89@mcp.com

• ...

Now I need to:

1. Delete all existing sample candidates

2. Add the real candidates from resumes

3. Send rejection emails to candidates applying for positions with 0 headcount

Let me start by deleting the existing sample candidates:

å notion API-update-a-block

"block id": "xy-yz-zx", "archived": true

¾ Tool Response:

"status":400,"object":"error","code":"validation error",...

Æ Agent I need to use the correct API to delete pages from the database. Let me delete them one
by one:

å notion API-patch-page

"page id": "xy-yz-zx", "archived": true

¾ Tool Response:

{"object":"page","id":"xy-yz-zx",...}

Delete others one by one

Æ Agent Great! I’ve deleted all the existing sample candidates. Now I need to create new pages for
the actual candidates based on their resumes. Let me start creating them one by one:

å notion API-post-page

"parent": {"database id":"zz-xx-yy"},
"properties": {

"title":[{"text":{"content":"Alice Jackson"}}], "type":"title"
}

¾ Tool Response:

{"status":400,"object":"error","code":"validation error",...}

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Æ Agent I need to use the correct format for creating pages in a database. Let me check the database
structure again and create the pages properly:

å notion API-post-page

{
"parent": {"database id":"zz-xx-yy"},
"properties": {"Name":{"title":[{"text":{"content":"Alice Jackson"}}]},
"Email":{"rich text":[{"text":{"content":"alice jackson38@mcp.com"}}]},
"Applied Position":{"rich text":[{"text":{"content":"Financial Risk

Analyst"}}]},
"School":{"rich text":[{"text":{"content":"Columbia Business School"}}]},
"Highest Degree":{"select":{"name":"master"}}}

}

¾ Tool Response:

{"object":"page","id":"yx-zy-xz",...}

Æ Agent Great! Now let me add the remaining candidates:

Add the remaining candidates

Æ Agent Perfect! I’ve successfully added all 10 candidates from the resumes to the Notion database.
Now I need to send rejection emails to candidates who applied for positions that are currently not
open for recruitment (positions with 0 headcount).Based on my analysis, the candidates who need
rejection emails are:

• Angela Moore (Securities Trader - 0 positions)

• Debra Smith (Securities Trader - 0 positions)

• Emily James (Securities Trader - 0 positions)

• Martha Morales (Portfolio Manager - 0 positions)

Let me send the rejection emails:

å emails send email

"to": "angela moore89@mcp.com",
"subject": "Application Status Update - Securities Trader Position",
"body":...

¾ Tool Response:

Email sent successfully to angela moore89@mcp.com

Send other rejection emails

Æ Agent Excellent! I have successfully completed all the required tasks: ...

å claim done

None

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

¾ Tool Response:

you have claimed the task is done!

36

	Introduction
	The Toolathlon Environment and Evaluation Framework
	Task Definition
	Tools, Environments, and Framework
	Initial State Setup
	Reliable Execution-based Evaluation

	The Toolathlon Tasks
	Task Sourcing and Fuzzy Task Instruction
	Task Implementation

	Experiment
	Setup
	Main Results

	Analysis
	The Failure of Calling Tools
	The Long-Context Challenges for Language Agents
	The Relationship between Performance and Expenses

	Conclusion
	LLM use in Paper Writing
	Related Work
	MCP Server List and Source
	Implementation Details of Agent Framework
	Extra Analysis for Toolathlon
	The Impact of Tool Call errors on Final Success Rates
	Performance when Feeding into More Unrelated MCP Servers.
	Case Study: Typical Challenges Models Met in Toolathlon

	Prompt
	More Examples of Qualitative Analysis
	Examples for fuzzy user instructions
	Complete Example Task Trajectories

